CN102557033B - Process for recovering molybdenum-silicon heteropoly acid from waste molybdenum disilicide - Google Patents
Process for recovering molybdenum-silicon heteropoly acid from waste molybdenum disilicide Download PDFInfo
- Publication number
- CN102557033B CN102557033B CN 201210001369 CN201210001369A CN102557033B CN 102557033 B CN102557033 B CN 102557033B CN 201210001369 CN201210001369 CN 201210001369 CN 201210001369 A CN201210001369 A CN 201210001369A CN 102557033 B CN102557033 B CN 102557033B
- Authority
- CN
- China
- Prior art keywords
- molybdenum
- solution
- powder
- waste
- deionized water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 229910021343 molybdenum disilicide Inorganic materials 0.000 title claims abstract description 22
- 239000002699 waste material Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 8
- 239000011964 heteropoly acid Substances 0.000 title abstract description 22
- GALOTNBSUVEISR-UHFFFAOYSA-N molybdenum;silicon Chemical compound [Mo]#[Si] GALOTNBSUVEISR-UHFFFAOYSA-N 0.000 title abstract description 10
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims abstract description 55
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 45
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 36
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000011733 molybdenum Substances 0.000 claims abstract description 32
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 30
- 239000000843 powder Substances 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000008367 deionised water Substances 0.000 claims abstract description 18
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000000605 extraction Methods 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 239000002002 slurry Substances 0.000 claims abstract description 11
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 9
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 9
- 239000000741 silica gel Substances 0.000 claims abstract description 9
- 239000007787 solid Substances 0.000 claims abstract description 8
- 229910052573 porcelain Inorganic materials 0.000 claims abstract description 3
- 239000012043 crude product Substances 0.000 claims abstract 3
- 239000000243 solution Substances 0.000 claims description 35
- 239000000047 product Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 229920006395 saturated elastomer Polymers 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 238000010298 pulverizing process Methods 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims 1
- 238000004821 distillation Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000003756 stirring Methods 0.000 abstract description 21
- 238000004064 recycling Methods 0.000 abstract description 9
- 238000001816 cooling Methods 0.000 abstract description 7
- 239000005416 organic matter Substances 0.000 abstract description 7
- 238000005292 vacuum distillation Methods 0.000 abstract description 7
- 239000000706 filtrate Substances 0.000 abstract description 6
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 229910000476 molybdenum oxide Inorganic materials 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 abstract description 2
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 2
- 239000002910 solid waste Substances 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract 1
- 239000011812 mixed powder Substances 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 7
- 229910016006 MoSi Inorganic materials 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 229910000953 kanthal Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 229910020968 MoSi2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Silicon Compounds (AREA)
Abstract
一种从废旧二硅化钼中回收钼硅杂多酸的工艺,属于固体废物的回收利用技术领域。将废旧二硅化钼粉碎成粉末,然后把废旧二硅化钼粉末转入瓷舟中,在一定温度下焙烧,获得钼和硅的氧化物混合粉末,将氧化后的粉末和去离子水混合制成浆体;向浆体中加入固体NaOH,磁力搅拌,冷却后过滤,将过滤后的溶液直接倒入盐酸中进行搅拌,然后放入水浴锅中加热,并不断搅拌直至有硅胶析出,过滤硅胶,向滤液中加入正丁醇进行萃取,并进行减压蒸馏,得到钼硅杂多酸粗产物;用去离子水溶解后加入少量硝酸,过滤洗去残余正丁醇有机物,干燥得到钼硅杂多酸。优点在于,可以实现废旧二硅化钼中钼的再利用,节约了原材料,实现资源循环利用。
The invention discloses a process for recovering molybdenum silicon heteropolyacid from waste molybdenum disilicide, which belongs to the technical field of solid waste recovery and utilization. The waste molybdenum disilicide is crushed into powder, then the waste molybdenum disilicide powder is transferred into a porcelain boat, roasted at a certain temperature to obtain a mixed powder of molybdenum and silicon oxide, and the oxidized powder is mixed with deionized water to produce Slurry; add solid NaOH to the slurry, stir magnetically, filter after cooling, pour the filtered solution directly into hydrochloric acid for stirring, then put it into a water bath for heating, and keep stirring until silica gel is precipitated, filter silica gel, Add n-butanol to the filtrate for extraction, and carry out vacuum distillation to obtain the crude product of molybdenum silica heteropoly acid; dissolve it in deionized water, add a small amount of nitric acid, filter and wash off the residual n-butanol organic matter, and dry to obtain molybdenum silica heteropoly acid acid. The advantage is that molybdenum in waste molybdenum disilicide can be reused, raw materials are saved, and resource recycling is realized.
Description
技术领域 technical field
本发明属于固体废物的回收利用技术领域,尤其是涉及一种从废旧二硅化钼中回收钼硅杂多酸的工艺。The invention belongs to the technical field of solid waste recycling, and in particular relates to a process for recovering molybdenum silicon heteropolyacid from waste molybdenum disilicide.
背景技术 Background technique
钼是一种稀有贵重金属。钼在地球上的蕴藏量较少,其含量仅占地壳重量的0.001%,全世界钼矿主要分布在美国、中国、智利、俄罗斯、加拿大等国。我国已探明钼金属储量840万吨,居世界第二位,钼产品产量居世界第三位,占世界钼总产量的24%~25%。Molybdenum is a rare and precious metal. The reserves of molybdenum on the earth are small, and its content only accounts for 0.001% of the weight of the earth's crust. The molybdenum mines in the world are mainly distributed in the United States, China, Chile, Russia, Canada and other countries. my country's proven reserves of molybdenum metal are 8.4 million tons, ranking second in the world, and the output of molybdenum products ranks third in the world, accounting for 24% to 25% of the world's total molybdenum output.
钼的膨胀系数小,导电率大,导热性能好,在常温下不受空气的侵蚀,跟盐酸、氢氟酸及碱溶液均不起反应,仅溶于硝酸、王水或浓硫酸之中,对大多数液态金属、非金属熔渣和熔融玻璃亦相当稳定。因此,钼及其合金在钢铁、电子、航空航天、核能技术、金属压力加工、化学等工业领域有着广泛的应用和良好的前景,成为国民经济中一种重要的原料和不可替代的战略物质。Molybdenum has a small expansion coefficient, high electrical conductivity, and good thermal conductivity. It is not eroded by air at room temperature, does not react with hydrochloric acid, hydrofluoric acid, and alkaline solutions, and is only soluble in nitric acid, aqua regia, or concentrated sulfuric acid. It is also quite stable to most liquid metals, non-metallic slags and molten glasses. Therefore, molybdenum and its alloys have a wide range of applications and good prospects in steel, electronics, aerospace, nuclear energy technology, metal pressure processing, chemistry and other industrial fields, and have become an important raw material and an irreplaceable strategic substance in the national economy.
随着钼资源在国防军工和国民经济中应用领域的不断扩大,对钼及其化合物的需求量不断提高。仅仅依靠从含钼金属矿中提取钼及其化合物已不能满足生产发展的需要,而且作为一种有限资源,无限制的开发利用也是不可能的,因此,从战略角度出发,必须实现钼资源循环利用,建立含钼二次资源的回收再生利用系统,开发先进的从各种含钼二次资源中回收钼与生产钼制品的工艺技术,增加钼的循环利用率,促使钼业可持续发展。With the continuous expansion of molybdenum resources in the national defense industry and national economy, the demand for molybdenum and its compounds continues to increase. Only relying on the extraction of molybdenum and its compounds from molybdenum-containing metal ores can no longer meet the needs of production development, and as a limited resource, unlimited development and utilization is also impossible. Therefore, from a strategic point of view, it is necessary to realize the recycling of molybdenum resources Utilize, establish a recovery and recycling system for molybdenum-containing secondary resources, develop advanced technology for recovering molybdenum from various molybdenum-containing secondary resources and producing molybdenum products, increase the recycling rate of molybdenum, and promote the sustainable development of the molybdenum industry.
二硅化钼(MoSi2)以其高的熔点、较低的密度、良好的高温抗氧化性能以及一系列力学、电学等优异性能而受到航空航天以及军工部门的高度重视,作为一种潜在的高温结构材料有希望用于1200~1600℃的高温氧化领域。Molybdenum disilicide (MoSi 2 ) has been highly valued by the aerospace and military sectors for its high melting point, low density, good high temperature oxidation resistance and a series of mechanical, electrical and other excellent properties, as a potential high temperature Structural materials are expected to be used in the field of high-temperature oxidation at 1200-1600 °C.
目前,MoSi2最广泛的应用是作为电炉发热元件。MoSi2发热元件是由瑞典Kanthal公司发明的,1956年Kanthal公司获得了MoSi2发热元件的第一个商业专利,其代表产品是Kanthal公司生产的Kanthal和Kanthal-Super,20世纪90年代初Kanthal把发热元件的温度提高到1900℃。我国从20世纪60年代初开展MoSi2发热元件的研究,20世纪80年代实现了二硅化钼发热元件的工业生产。MoSi2发热元件已经用在大型工业电炉和小型实验室电炉上,是冶金、电子、玻璃、陶瓷和磁性材料等行业的主要设备之一。At present, the most widely used application of MoSi 2 is as heating element of electric furnace. The MoSi 2 heating element was invented by the Swedish Kanthal Company. In 1956, Kanthal obtained the first commercial patent for the MoSi 2 heating element. Its representative products are Kanthal and Kanthal-Super produced by Kanthal Company. In the early 1990s, Kanthal introduced The temperature of the heating element is increased to 1900°C. China started the research on MoSi2 heating elements in the early 1960s, and realized the industrial production of molybdenum disilicide heating elements in the 1980s. MoSi 2 heating elements have been used in large industrial electric furnaces and small laboratory electric furnaces, and are one of the main equipment in industries such as metallurgy, electronics, glass, ceramics and magnetic materials.
目前,全球MoSi2发热元件产量已经超过600吨/年,我国产量也已经超过300吨/年,但是废旧二硅化钼发热元件并没有引起人们的足够重视。因而,我国每年有300余吨二硅化钼废料被遗弃或闲置。在我国每年300余吨二硅化钼发热元件中大约含有190余吨钼(价值近亿元人民币),如果把这些废料加以回收利用,将极大地增强钼的循环利用率,对钼工业的可持续发展以及环境保护产生重大意义,还可以带来良好的经济效益。At present, the global output of MoSi 2 heating elements has exceeded 600 tons/year, and the output in China has also exceeded 300 tons/year, but the waste of molybdenum disilicide heating elements has not attracted enough attention. Therefore, more than 300 tons of molybdenum disilicide waste are abandoned or idle in my country every year. There are more than 190 tons of molybdenum (worth nearly 100 million yuan) in more than 300 tons of molybdenum disilicide heating elements in my country every year. If these wastes are recycled, the recycling rate of molybdenum will be greatly enhanced, and the sustainable development of the molybdenum industry will be greatly enhanced. Development and environmental protection have great significance, and can also bring good economic benefits.
发明内容 Contents of the invention
本发明的目的在于提供一种从废旧二硅化钼中回收钼硅杂多酸的工艺,解决了二硅化钼的循环利用问题,并且方法简单,效果好,节省资源。The object of the present invention is to provide a process for recovering molybdenum silicon heteropolyacid from waste molybdenum disilicide, which solves the recycling problem of molybdenum disilicide, and has simple method, good effect and resource saving.
本发明的工艺步骤如下:Processing step of the present invention is as follows:
(1)将废旧二硅化钼粉碎成尺寸为2~15微米的粉末;(1) Pulverizing waste molybdenum disilicide into powders with a size of 2 to 15 microns;
(2)将粉碎后得到的物料转入瓷舟,置于箱式电阻炉中焙烧,焙烧温度为400~600℃,焙烧时间为4~10h,获得钼和硅氧化物的混合物;(2) transfer the pulverized material into a porcelain boat, place it in a box-type resistance furnace for roasting, the roasting temperature is 400-600° C., and the roasting time is 4-10 hours to obtain a mixture of molybdenum and silicon oxide;
(3)将氧化后得到的粉末和去离子水按照重量比1∶10~1∶5配置成混合物浆体;(3) The powder obtained after oxidation and deionized water are configured into a mixture slurry according to a weight ratio of 1:10 to 1:5;
(4)向氧化后的粉末和去离子水的混合物浆体中加入固体NaOH,NaOH与粉末的质量之比为0.5~1.2;60~90℃磁力搅拌1~2h,冷却后过滤,取过滤溶液;(4) Add solid NaOH to the mixture slurry of oxidized powder and deionized water, the mass ratio of NaOH to powder is 0.5-1.2; magnetically stir at 60-90°C for 1-2h, filter after cooling, and take the filtered solution ;
(5)预先在烧杯中加入质量分数为37.5%的浓盐酸,浓盐酸与溶液体积之比为1∶8~1∶15,将溶液缓慢倒入浓盐酸中,并进行搅拌;(5) Adding concentrated hydrochloric acid with a mass fraction of 37.5% in the beaker in advance, the ratio of concentrated hydrochloric acid to the volume of the solution is 1: 8 to 1: 15, slowly pour the solution into the concentrated hydrochloric acid, and stir;
(6)将步骤(5)的溶液放入水浴锅中40~80℃加热,并不断搅拌直至有硅胶析出,过滤后取其溶液;(6) Put the solution of step (5) into a water bath and heat at 40-80°C, and keep stirring until silica gel is precipitated, and take the solution after filtering;
(7)向步骤(6)的溶液中加入等体积的正丁醇进行萃取,经三次萃取,前两次静置10~30min,最后一次静置20~40min后分液,分液后取上面正丁醇溶液;(7) Add an equal volume of n-butanol to the solution of step (6) for extraction. After three extractions, the first two stand still for 10-30 minutes, and the last stand for 20-40 minutes to separate the liquid. After the liquid separation, take the above Butanol solution;
(8)将三次萃取后得到的正丁醇溶液混合,然后用正丁醇的饱和水溶液洗涤三次,将洗涤后的正丁醇溶液进行减压蒸馏,得到钼硅杂多酸产物;(8) The n-butanol solution obtained after three extractions is mixed, then washed three times with a saturated aqueous solution of n-butanol, and the washed n-butanol solution is subjected to vacuum distillation to obtain a molybdenum-silicone heteropoly acid product;
(9)将钼硅杂多酸产物再次用去离子水溶解后加入少量硝酸,过滤洗去残余正丁醇有机物,干燥得到钼硅杂多酸产物。(9) Dissolve the molybdenum-silica heteropolyacid product in deionized water again, add a small amount of nitric acid, filter and wash off the residual n-butanol organic matter, and dry to obtain the molybdenum-silica heteropolyacid product.
与已有技术相比,本发明可以实现废旧二硅化钼中稀有贵重金属钼和半导体金属硅的重新再利用,实现资源循环利用战略,通过本发明合成了一种新材料——钼硅杂多酸。本工艺针对性强、效果好,在废旧硅钼棒以及钼硅制品的循环利用方面具有广泛的实用性。Compared with the prior art, the present invention can realize the reuse of rare precious metal molybdenum and semiconductor metal silicon in waste molybdenum disilicide, and realize the strategy of resource recycling. Through the present invention, a new material - molybdenum silicon heteropoly acid. The process has strong pertinence and good effect, and has wide practicability in the recycling of waste silicon-molybdenum rods and molybdenum-silicon products.
附图说明 Description of drawings
图1是本发明获得产物的X射线衍射图谱,可以看出,根据本发明能够得到钼硅杂多酸。Fig. 1 is the X-ray diffraction spectrum of the product obtained in the present invention, as can be seen, according to the present invention can obtain molybdenum silicon heteropolyacid.
图2是本发明制备的钼硅杂多酸的宏观形貌。Fig. 2 is the macroscopic appearance of the molybdenum silicon heteropolyacid prepared in the present invention.
具体实施方式 Detailed ways
实施例1:将废旧二硅化钼粉碎成2微米的粉末,然后置于电炉中在600℃下焙烧10h,将焙烧后得到的粉末和去离子水按照重量比1∶10配置成混合物浆体,接着加入固体NaOH,NaOH与粉末的质量之比为0.5,60℃磁力搅拌2h,冷却后过滤,将滤液倒入浓盐酸中,浓盐酸与溶液体积之比为1∶8,搅拌均匀;将溶液放入水浴锅中,在40℃加热,并不断搅拌直至有硅胶析出,过滤后取其溶液;向溶液中加入等体积的正丁醇进行萃取,经三级萃取,前两次静置10min,最后一次静置20min后分液,用正丁醇的饱和水溶液洗涤,然后进行减压蒸馏,得杂多酸产物;用去离子水溶解后加入少量硝酸,过滤洗去残余正丁醇有机物,干燥得到钼硅杂多酸。Example 1: Pulverize waste molybdenum disilicide into 2-micron powder, then place it in an electric furnace and roast it at 600°C for 10 hours, and configure the powder and deionized water obtained after roasting into a mixture slurry according to the weight ratio of 1:10, Then add solid NaOH, the mass ratio of NaOH to powder is 0.5, stir magnetically at 60°C for 2h, filter after cooling, pour the filtrate into concentrated hydrochloric acid, the ratio of concentrated hydrochloric acid to solution volume is 1:8, stir evenly; Put it into a water bath, heat at 40°C, and keep stirring until silica gel is precipitated, then take the solution after filtration; add an equal volume of n-butanol to the solution for extraction, and perform three-stage extraction, and stand for 10 minutes for the first two times. After standing still for 20 minutes for the last time, separate the liquid, wash with a saturated aqueous solution of n-butanol, and then conduct vacuum distillation to obtain a heteropolyacid product; dissolve it in deionized water, add a small amount of nitric acid, filter and wash off the residual n-butanol organic matter, and dry Obtain molybdenum silicon heteropolyacid.
实施例2:将废旧二硅化钼粉碎成15微米的粉末,然后置于电炉中在400℃下焙烧8h,将焙烧后得到的粉末和去离子水按照重量比1∶8配置成混合物浆体,接着加入固体NaOH,NaOH与粉末的质量之比为0.7,70℃磁力搅拌1.7h,冷却后过滤,将滤液倒入浓盐酸中,浓盐酸与溶液体积之比为1∶10,搅拌均匀;将溶液放入水浴锅中,在60℃加热,并不断搅拌直至有硅胶析出,过滤后取其溶液;向溶液中加入等体积的正丁醇进行萃取,经三级萃取,前两次静置15min,最后一次静置25min后分液,用正丁醇的饱和水溶液洗涤,然后进行减压蒸馏,得杂多酸产物;用去离子水溶解后加入少量硝酸,过滤洗去残余正丁醇有机物,干燥得到钼硅杂多酸。Example 2: Pulverize waste molybdenum disilicide into 15-micron powder, then place it in an electric furnace and roast it at 400°C for 8 hours, and configure the powder and deionized water obtained after roasting into a mixture slurry according to the weight ratio of 1:8. Then add solid NaOH, the mass ratio of NaOH to powder is 0.7, stir magnetically at 70°C for 1.7h, filter after cooling, pour the filtrate into concentrated hydrochloric acid, the ratio of concentrated hydrochloric acid to solution volume is 1:10, stir well; Put the solution into a water bath, heat at 60°C, and keep stirring until silica gel is precipitated, then take the solution after filtration; add an equal volume of n-butanol to the solution for extraction, and perform three-stage extraction, and stand for 15 minutes for the first two times , after standing still for 25min for the last time, separate the liquid, wash with a saturated aqueous solution of n-butanol, and then carry out vacuum distillation to obtain a heteropolyacid product; add a small amount of nitric acid after dissolving with deionized water, filter and wash away the residual n-butanol organic matter, Dry to obtain molybdosilicone heteropolyacid.
实施例3.将废旧二硅化钼粉碎成12微米的粉末,然后置于电炉中在500℃下焙烧4h,将焙烧后得到的粉末和去离子水按照重量比1∶7配置成混合物浆体,接着加入固体NaOH,NaOH与粉末的质量之比为0.8,80℃磁力搅拌1.5h,冷却后过滤,将滤液倒入浓盐酸中,浓盐酸与溶液体积之比为1∶12,搅拌均匀;将溶液放入水浴锅中,在70℃加热,并不断搅拌直至有硅胶析出,过滤后取其溶液;向溶液中加入等体积的正丁醇进行萃取,经三级萃取,前两次静置20min,最后一次静置30min后分液,用正丁醇的饱和水溶液洗涤,然后进行减压蒸馏,得杂多酸产物;用去离子水溶解后加入少量硝酸,过滤洗去残余正丁醇有机物,干燥得到钼硅杂多酸。Embodiment 3. The waste molybdenum disilicide is pulverized into a powder of 12 microns, then placed in an electric furnace and roasted at 500° C. for 4 h, and the powder obtained after roasting and deionized water are configured into a mixture slurry according to a weight ratio of 1:7. Then add solid NaOH, the mass ratio of NaOH to powder is 0.8, stir magnetically at 80°C for 1.5h, filter after cooling, pour the filtrate into concentrated hydrochloric acid, the ratio of concentrated hydrochloric acid to solution volume is 1:12, stir well; Put the solution in a water bath, heat at 70°C, and keep stirring until silica gel is precipitated, then take the solution after filtration; add an equal volume of n-butanol to the solution for extraction, and perform three-stage extraction, and stand for 20 minutes for the first two times , after standing still for 30min for the last time, separate the liquid, wash with a saturated aqueous solution of n-butanol, and then carry out vacuum distillation to obtain a heteropolyacid product; add a small amount of nitric acid after dissolving with deionized water, filter and wash away the residual n-butanol organic matter, Dry to obtain molybdosilicone heteropolyacid.
实施例4.将废旧二硅化钼粉碎成9微米的粉末,然后置于电炉中在450℃下焙烧6h,将焙烧后得到的粉末和去离子水按照重量比1∶6配置成混合物浆体,接着加入固体NaOH,NaOH与粉末的质量之比为1.0,85℃磁力搅拌1.2h,冷却后过滤,将滤液倒入浓盐酸中,浓盐酸与溶液体积之比为1∶13,搅拌均匀;将溶液放入水浴锅中,在50℃加热,并不断搅拌直至有硅胶析出,过滤后取其溶液;向溶液中加入等体积的正丁醇进行萃取,经三级萃取,前两次静置25min,最后一次静置35min后分液,用正丁醇的饱和水溶液洗涤,然后进行减压蒸馏,得杂多酸产物;用去离子水溶解后加入少量硝酸,过滤洗去残余正丁醇有机物,干燥得到钼硅杂多酸。Embodiment 4. Pulverize waste molybdenum disilicide into 9-micron powder, then place it in an electric furnace and roast at 450° C. for 6 hours, and configure the powder and deionized water obtained after roasting into a mixture slurry according to a weight ratio of 1:6. Then add solid NaOH, the ratio of NaOH to powder mass is 1.0, stir magnetically at 85°C for 1.2h, filter after cooling, pour the filtrate into concentrated hydrochloric acid, the ratio of concentrated hydrochloric acid to solution volume is 1:13, stir well; Put the solution in a water bath, heat at 50°C, and keep stirring until silica gel is precipitated, then take the solution after filtration; add an equal volume of n-butanol to the solution for extraction, and perform three-stage extraction, and stand for 25 minutes for the first two times , after standing still for 35min for the last time, separate the liquid, wash with a saturated aqueous solution of n-butanol, and then carry out vacuum distillation to obtain a heteropolyacid product; add a small amount of nitric acid after dissolving with deionized water, filter and wash away the residual n-butanol organic matter, Dry to obtain molybdosilicone heteropolyacid.
实施例5.将废旧二硅化钼粉碎成6微米的粉末,然后置于电炉中在550℃下焙烧7h,将焙烧后得到的粉末和去离子水按照重量比1∶5配置成混合物浆体,接着加入固体NaOH,NaOH与粉末的质量之比为1.2,90℃磁力搅拌1h,冷却后过滤,将滤液倒入浓盐酸中,浓盐酸与溶液体积之比为1∶15,搅拌均匀;将溶液放入水浴锅中,在80℃加热,并不断搅拌直至有硅胶析出,过滤后取其溶液;向溶液中加入等体积的正丁醇进行萃取,经三级萃取,前两次静置30min,最后一次静置40min后分液,用正丁醇的饱和水溶液洗涤,然后进行减压蒸馏,得杂多酸产物;用去离子水溶解后加入少量硝酸,过滤洗去残余正丁醇有机物,干燥得到钼硅杂多酸。
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210001369 CN102557033B (en) | 2012-01-06 | 2012-01-06 | Process for recovering molybdenum-silicon heteropoly acid from waste molybdenum disilicide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210001369 CN102557033B (en) | 2012-01-06 | 2012-01-06 | Process for recovering molybdenum-silicon heteropoly acid from waste molybdenum disilicide |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102557033A CN102557033A (en) | 2012-07-11 |
CN102557033B true CN102557033B (en) | 2013-06-05 |
Family
ID=46403861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210001369 Expired - Fee Related CN102557033B (en) | 2012-01-06 | 2012-01-06 | Process for recovering molybdenum-silicon heteropoly acid from waste molybdenum disilicide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102557033B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101456590A (en) * | 2009-01-09 | 2009-06-17 | 中国矿业大学 | Recovery process of waste and old molybdenum disilicide |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9828020D0 (en) * | 1998-12-18 | 1999-02-10 | Bp Chem Int Ltd | Synthesis of heteropolyacids |
-
2012
- 2012-01-06 CN CN 201210001369 patent/CN102557033B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101456590A (en) * | 2009-01-09 | 2009-06-17 | 中国矿业大学 | Recovery process of waste and old molybdenum disilicide |
Non-Patent Citations (4)
Title |
---|
Keggin结构钼磷和钼硅杂多酸盐热稳定性研究;王恩波等;《无机化学学报》;19941231;第10卷(第4期);352-357 * |
张帅等.钼资源回收工艺现状及展望.《无机盐工业》.2011,第43卷(第12期),12-15. |
王恩波等.Keggin结构钼磷和钼硅杂多酸盐热稳定性研究.《无机化学学报》.1994,第10卷(第4期),352-357. |
钼资源回收工艺现状及展望;张帅等;《无机盐工业》;20111231;第43卷(第12期);12-15 * |
Also Published As
Publication number | Publication date |
---|---|
CN102557033A (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107964593B (en) | A method of lithium in lithium cell slag is scrapped by chloridising roasting evaporation recycling | |
CN103131854B (en) | Method for comprehensively recovering scandium and titanium by leaching red mud with titanium white waste acid | |
CN103466648B (en) | A kind of self-spreading metallurgical legal system is for the clean preparation method of superfine powder | |
CN104690277B (en) | A method of recovering NdFeB oil sludge using reduction diffusion technology | |
CN106222430B (en) | A kind of hydrometallurgical recovery copper and cobalt method of copper cobalt slag | |
CN104120444B (en) | A kind of technique using mechanical activation reducing process to reclaim metallic lead from waste and old lead bearing glass | |
CN106745128A (en) | A kind of method of aluminium lime-ash removal of impurities | |
CN103834805A (en) | Method of leaching divalent cobalt from cobalt copper bidery metal | |
CN101712491A (en) | Process method for producing vanadic oxide from vanadium-contained wastewater slag | |
CN107460345A (en) | A kind of method for producing high titanium slag | |
CN103123840B (en) | A kind of permanent magnetic material with high compressive strength and preparation method thereof | |
CN102557033B (en) | Process for recovering molybdenum-silicon heteropoly acid from waste molybdenum disilicide | |
CN103215439A (en) | Method for extracting scandium from scandium enrichment | |
CN114588999A (en) | A low-carbon green method for preparing high-purity SiO2 from iron tailings | |
CN102703710A (en) | Resource treatment method for extracting gold by means of waste plastic-packaged IC card plates | |
CN102732736B (en) | Method for extracting vanadium from burning slag of stone coal vanadium mine fluidized bed | |
CN102583544A (en) | Method for preparing molybdenum trioxide by utilizing waste silicon molybdenum rod | |
CN107686897A (en) | A kind of method that titanium is carried from titanium-containing blast furnace slag | |
CN102583515B (en) | Method for preparing CaTiO3 composite material from slow-cooling titanium-bearing blast furnace slag | |
CN106467937B (en) | A kind of method of recovery indium and tin | |
CN110055417A (en) | A method of efficiently separating vanadium titanium from vanadium slag mixing | |
CN101456590B (en) | Recovery process of waste and old molybdenum disilicide | |
CN103342376B (en) | Process for extracting valuable metal from coal gangues | |
CN105858728A (en) | Method for preparing sodium tungstate by recycling tungsten wastes | |
CN105506298A (en) | Environment-friendly efficient resource recovery process for low-grade matte slag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130605 Termination date: 20180106 |