CN102553582A - Method for preparing carbon supported Au-Pt or Au-Pd catalyst - Google Patents
Method for preparing carbon supported Au-Pt or Au-Pd catalyst Download PDFInfo
- Publication number
- CN102553582A CN102553582A CN2011103923306A CN201110392330A CN102553582A CN 102553582 A CN102553582 A CN 102553582A CN 2011103923306 A CN2011103923306 A CN 2011103923306A CN 201110392330 A CN201110392330 A CN 201110392330A CN 102553582 A CN102553582 A CN 102553582A
- Authority
- CN
- China
- Prior art keywords
- platinum
- gold
- carbon
- golden
- palladium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Catalysts (AREA)
Abstract
Description
the
技术领域 technical field
本发明涉及一种利用微波改性金铂或金钯双金属纳米粒子制备碳载高活性金铂或金钯催化剂的方法,属于催化材料技术领域。 The invention relates to a method for preparing carbon-loaded high-activity gold-platinum or gold-palladium catalysts by using microwave-modified gold-platinum or gold-palladium bimetallic nanoparticles, which belongs to the technical field of catalytic materials.
背景技术 Background technique
随着纳米制备技术与催化科学的迅猛发展,一些研究者从既能降低催化剂成本,又能提高催化剂活性及CO容许量的角度考虑,制备高催化活性的双金属AuPt、AuPd纳米粒子。近年来的研究发现双金属AuPt纳米粒子的物理化学性质不仅随Au与Pt的化学组成变化,而且还随AuPt纳米粒子的微结构而变化。例如,钟传健等人(C J Zhong et al,Langmuir.2006,22:2892)制备出Au质量百分比为65~85%的碳载AuPt纳米催化剂,经500℃合金化热处理,在碱性溶液中对甲醇的电催化活性超过相同负载量的Pt/C及PtRu/C催化剂;Bryan Eichhorn等人(Eichhorn B. et al, Advanced Fuctional Materials, 2007, 17: 3099)报道了AuPt合金纳米粒子比AuPt纳米异质聚集体对CO有更多的容许量;用化学法同时还原方法可制备出小粒径的AuPt纳米粒子(Chi J H et al, Journal of the electrochemical society, 2006, 153: 1812);由于Au、Pt及Pd的还原电位的差异导致了还原速率的不同,Au与Pt以及Au与Pd之间会形成梯度合金(类核壳)及相分离等结构,碳载Au Pt或Au Pd双金属催化剂还需通过高温固相热处理才能获得较好的催化活性。但是催化剂经传统高温热处理后,会出现纳米粒子团聚长大、局部烧结以及金属纳米粒子从碳载体表面脱落等问题。 With the rapid development of nano-preparation technology and catalytic science, some researchers have prepared bimetallic AuPt and AuPd nanoparticles with high catalytic activity from the perspective of reducing catalyst cost and improving catalyst activity and CO tolerance. Recent studies have found that the physical and chemical properties of bimetallic AuPt nanoparticles vary not only with the chemical composition of Au and Pt, but also with the microstructure of AuPt nanoparticles. For example, Zhong Chuanjian et al. (C J Zhong et al, Langmuir.2006, 22:2892) prepared a carbon-supported AuPt nanocatalyst with a mass percentage of Au of 65-85%. (Eichhorn B. et al, Advanced Fuctional Materials, 2007, 17: 3099) reported that AuPt alloy nanoparticles are more heterogeneous than AuPt nanoparticles Aggregates have more tolerance for CO; AuPt nanoparticles with small particle size can be prepared by chemical simultaneous reduction method (Chi J H et al, Journal of the electrochemical society , 2006, 153: 1812); due to Au, Pt The difference in the reduction potential of Pd and Pd leads to the difference in reduction rate. Gradient alloy (like core-shell) and phase separation structures will be formed between Au and Pt and Au and Pd. Carbon-supported Au Pt or Au Pd bimetallic catalysts need to Better catalytic activity can only be obtained by high-temperature solid-state heat treatment. However, after the catalyst is subjected to traditional high-temperature heat treatment, problems such as agglomeration and growth of nanoparticles, partial sintering, and detachment of metal nanoparticles from the surface of the carbon support will occur.
微波加热是内加热,具有加热速度快、加热均匀、无温度梯度、无滞后效应等特点。目前,微波加热用于催化剂制备,主要是利用微波加热辅助合成催化剂,即利用微波加热促进金属前躯体还原的特点,如钟起铃等人(ZHONG Qi Ling Acta Phys.-Chim. Sin., 2007, 23(3) :429)以乙二醇为还原剂, 采用微波加热法促进氯铂酸(H2PtCl6)还原制备出铂纳米粒子在碳纳米管表面分布均匀的碳载催化剂。利用微波在高压反应罐中产生的高温高压直接处理化学共还原法合成的金铂或金钯复合纳米胶体,诱导胶体中金铂或金钯双金属纳米粒子发生改性,使金铂或金钯双金属纳米粒子的微结构发生变化,再将微波改性的双金属纳米粒子沉积在碳载体表面,省略了催化剂高温热处理步骤,可得到高活性的碳载双金属纳米催化剂,同时还避免了纳米粒子的团聚长大、局部烧结以及脱落等问题。 Microwave heating is internal heating, which has the characteristics of fast heating speed, uniform heating, no temperature gradient, and no hysteresis effect. At present, microwave heating is used for catalyst preparation, mainly using microwave heating to assist in the synthesis of catalysts, that is, using microwave heating to promote the reduction of metal precursors, such as Zhong Qiling et al. (ZHONG Qi Ling Acta Phys.-Chim. Sin., 2007, 23 (3) :429) Using ethylene glycol as the reducing agent, microwave heating was used to promote the reduction of chloroplatinic acid (H 2 PtCl 6 ) to prepare a carbon-supported catalyst with uniform distribution of platinum nanoparticles on the surface of carbon nanotubes. Utilize the high temperature and high pressure generated by microwave in the high-pressure reaction tank to directly treat the gold-platinum or gold-palladium composite nanocolloid synthesized by the chemical co-reduction method, induce the modification of gold-platinum or gold-palladium bimetallic nanoparticles in the colloid, and make gold-platinum or gold-palladium The microstructure of the bimetallic nanoparticles changes, and then the microwave-modified bimetallic nanoparticles are deposited on the surface of the carbon carrier, omitting the high-temperature heat treatment step of the catalyst, and a highly active carbon-supported bimetallic nanocatalyst can be obtained. Particle agglomeration and growth, local sintering and shedding and other problems.
发明内容 Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种利用微波改性的金铂或金钯纳米粒子,并将改性金铂或金钯纳米粒子高效负载到碳黑或碳纳米管表面,制备碳载高活性金铂或金钯纳米催化剂的制备方法。 The purpose of the present invention is to overcome the deficiencies of the prior art, to provide a gold-platinum or gold-palladium nanoparticle modified by microwaves, and to efficiently load the modified gold-platinum or gold-palladium nanoparticle on the surface of carbon black or carbon nanotubes, A preparation method for preparing carbon-supported highly active gold-platinum or gold-palladium nano-catalysts.
本发明的技术方案是:首先用化学共还原方法合成粒子尺寸为3~10纳米的金铂或金钯复合纳米胶体,并将复合纳米胶体转入高压反应罐中,使反应罐中的金铂或金钯复合纳米胶体在很短时间内产生高温高压,待溶胶冷却后,再将微波改性过的金铂或金钯复合纳米粒子作为催化剂活性组分,负载到碳黑或碳纳米管载体表面,得到具有高活性的碳载高活性金铂或金钯催化剂。其中碳载高活性金铂催化剂的具体制备步骤包括如下: The technical scheme of the present invention is: at first synthetic particle size is 3~10 nanometers gold-platinum or gold-palladium composite nano-colloid with chemical co-reduction method, and composite nano-colloid is transferred in the high-pressure reaction tank, makes the gold-platinum in the reaction tank Or gold-palladium composite nanocolloids generate high temperature and high pressure in a short period of time. After the sol is cooled, microwave-modified gold-platinum or gold-palladium composite nanoparticles are used as catalyst active components and loaded onto carbon black or carbon nanotube carriers. On the surface, a carbon-supported high-activity gold-platinum or gold-palladium catalyst with high activity is obtained. Wherein the specific preparation steps of the carbon-supported high-activity gold-platinum catalyst include as follows:
(1)在Au(Ⅲ)含量为0.01~0.04wt%氯金酸和 Pt(Ⅳ)含量为0.01~0.04wt%氯铂酸的混合水溶液或乙醇溶液中,金:铂的质量比为1:0.25~4,然后在此溶液中加入浓度为1wt%的聚乙烯吡咯烷酮(PVP)做保护剂,再加入浓度为0.1wt%的还原剂,其中Au(Ⅲ):聚乙烯吡咯烷酮:还原剂的质量比为1:2~5:0.1~0.5,Pt(Ⅳ):聚乙烯吡咯烷酮:还原剂的质量比为0.25~4:2~5:0.1~0.5,按60~300转/分的速度搅拌0.5~1h,反应温度为10~50℃,得到粒子尺寸为3~10纳米金铂复合胶体溶液; (1) In a mixed aqueous solution or ethanol solution with an Au(Ⅲ) content of 0.01-0.04wt% chloroauric acid and a Pt(Ⅳ) content of 0.01-0.04wt% chloroplatinic acid, the mass ratio of gold: platinum is 1: 0.25 to 4, then add polyvinylpyrrolidone (PVP) with a concentration of 1wt% to this solution as a protective agent, and then add a reducing agent with a concentration of 0.1wt%, wherein Au(Ⅲ): polyvinylpyrrolidone: the mass of the reducing agent The ratio is 1:2~5:0.1~0.5, the mass ratio of Pt(Ⅳ):polyvinylpyrrolidone: reducing agent is 0.25~4:2~5:0.1~0.5, and the stirring speed is 0.5 at 60~300 rpm ~1h, the reaction temperature is 10~50°C, and a gold-platinum composite colloid solution with a particle size of 3-10 nanometers is obtained;
(2)将步骤(1)所得的金铂复合胶体溶液在2~6个标准大气压(atm),微波频率为915~2450MHz 的条件下将温度加热至100~250oC,保持处理1~8min,得到微波处理过的金铂复合胶体溶液;利用微波在高压反应罐中产生的高温高压处理金铂或金钯复合纳米胶体,诱导金铂或金钯双金属纳米粒子发生改性; (2) Heat the gold-platinum composite colloid solution obtained in step (1) to 100-250oC under the condition of 2-6 standard atmospheric pressure (atm) and microwave frequency of 915-2450MHz, and keep it for 1-8 minutes to obtain Microwave-treated gold-platinum composite colloid solution; using microwaves to generate high temperature and high pressure in a high-pressure reaction tank to treat gold-platinum or gold-palladium composite nano-colloids to induce modification of gold-platinum or gold-palladium bimetallic nanoparticles;
(3)将碳黑或碳纳米管加入到步骤(2)得到的微波处理过金铂复合胶体溶液中,保持金铂:碳黑的质量比为1~30:100,超声波处理0.15h后,在60~300转/分的速率下搅拌2~24h,然后过滤,用去二次水洗涤至无法检测出Cl-,在60℃真空条件下干燥1~3h,得到高活性碳载金铂纳米催化剂。 (3) Add carbon black or carbon nanotubes to the microwave-treated gold-platinum composite colloid solution obtained in step (2), keep the mass ratio of gold-platinum:carbon black at 1-30:100, and after ultrasonic treatment for 0.15h, Stir at a rate of 60-300 rpm for 2-24 hours, then filter, wash with secondary water until Cl - cannot be detected, and dry under vacuum at 60°C for 1-3 hours to obtain highly active carbon-supported gold platinum nanoparticles catalyst.
所述Au(Ⅲ)的含义为三价的金,Pt(Ⅳ)的含义为四价的铂,Pd(Ⅳ)的含义为四价的钯。 Au(III) means trivalent gold, Pt(IV) means tetravalent platinum, and Pd(IV) means tetravalent palladium.
所述步骤(1)中乙醇溶液的浓度为50 mol %~95 mol %。 The concentration of the ethanol solution in the step (1) is 50 mol % to 95 mol %.
所述碳载高活性金钯催化剂的具体制备方法与金铂催化剂的制备方法相同,将步骤(1)中的含Pt(Ⅳ)为0.01~0.04wt%的氯铂酸溶液换为含Pd(Ⅳ)为0.01~0.04wt%的氯化钯溶液即可,最终得到高活性碳载金钯纳米催化剂。 The specific preparation method of the carbon-supported high-activity gold-palladium catalyst is the same as the preparation method of the gold-platinum catalyst, and the chloroplatinic acid solution containing Pt (Ⅳ) in step (1) is replaced with Pd ( Ⅳ) Palladium chloride solution of 0.01-0.04wt% is sufficient, and a highly active carbon-supported gold-palladium nano-catalyst is finally obtained.
所述步骤(2)中合成金铂或金钯复合纳米胶体所使用的还原剂为硼氢化钠、硼氢化钾(KBH4)、甲醛、多聚甲醛、硫代硫酸钠、乙醇、乙二醇、柠檬酸、葡萄糖、水合肼中的任意一种,均为市售。 The reducing agent used in the synthesis of gold-platinum or gold-palladium composite nanocolloids in the step (2) is sodium borohydride, potassium borohydride (KBH 4 ), formaldehyde, paraformaldehyde, sodium thiosulfate, ethanol, ethylene glycol , citric acid, glucose, and hydrazine hydrate, all of which are commercially available.
所述催化剂的载体为碳黑或多壁碳纳米管,活性组分为经微波改性的金铂或金钯复合纳米粒子。 The carrier of the catalyst is carbon black or multi-walled carbon nanotubes, and the active component is gold-platinum or gold-palladium composite nanoparticles modified by microwaves.
所述碳黑为市售的Vulcan XC-72碳黑,碳纳米管为市售的多壁碳纳米管,碳管管径为20~60纳米。 The carbon black is commercially available Vulcan XC-72 carbon black, the carbon nanotubes are commercially available multi-walled carbon nanotubes, and the diameter of the carbon tubes is 20-60 nanometers.
和现有技术相比,本发明有如下优点或积极效果: Compared with the prior art, the present invention has the following advantages or positive effects:
1、催化剂的活性高:微波高温高压处理化学共还原法合成的金铂或金钯复合 1. The activity of the catalyst is high: the gold-platinum or gold-palladium compound synthesized by the chemical co-reduction method is treated by microwave high temperature and high pressure
纳米胶体,使作为催化剂活性组分的金铂或金钯复合纳米粒子的微结构发生变化,使碳载催化剂的催化活性大幅提高; Nano-colloid, which changes the microstructure of gold-platinum or gold-palladium composite nanoparticles as the active component of the catalyst, and greatly improves the catalytic activity of the carbon-supported catalyst;
2、负载量可控:可制备金铂或金钯与碳的质量比在1~20%范围的碳载金铂 或金钯纳米催化剂; 2. Controllable loading: can prepare carbon-supported gold-platinum or gold-palladium nanocatalysts with a mass ratio of gold-platinum or gold-palladium to carbon in the range of 1-20%;
3、方法成本低、工艺简单、对设备要求低,具有很好的工业应用前景。 3. The cost of the method is low, the process is simple, the requirements for equipment are low, and the method has good industrial application prospects.
附图说明 Description of drawings
图1为本发明实施例1制备的多壁碳纳米管负载微波处理后金铂复合纳米粒子TEM图。 FIG. 1 is a TEM image of gold-platinum composite nanoparticles prepared in Example 1 of the present invention loaded with multi-walled carbon nanotubes after microwave treatment.
具体实施方式 Detailed ways
下面用实施例对本发明作进一步说明。 The present invention will be further described below with embodiment.
实施例1:碳载高活性金铂催化剂的具体制备步骤包括如下: Embodiment 1: The specific preparation steps of carbon-supported high-activity gold-platinum catalyst include as follows:
(1)在Au(Ⅲ)含量为0.01wt%氯金酸和 Pt(Ⅳ)含量为0.01wt%氯铂酸的混合水溶液溶液中,金:铂的质量比为1:0.25,然后在此溶液中加入浓度为1wt%的聚乙烯吡咯烷酮(PVP)做保护剂,再加入浓度为0.1wt%的硼氢化钠,其中Au(Ⅲ):聚乙烯吡咯烷酮:硼氢化钠的质量比为1:2:0.1,Pt(Ⅳ):聚乙烯吡咯烷酮:硼氢化钠的质量比为0.25:2:0.1,按60转/分的速度搅拌1h,反应温度为10℃,得到粒子尺寸为3~10纳米金铂复合胶体溶液(如图1所示); (1) In the mixed aqueous solution of Au(Ⅲ) content of 0.01wt% chloroauric acid and Pt(Ⅳ) content of 0.01wt% chloroplatinic acid, the mass ratio of gold: platinum is 1:0.25, and then in this solution Add polyvinylpyrrolidone (PVP) with a concentration of 1wt% as a protective agent, and then add sodium borohydride with a concentration of 0.1wt%, wherein the mass ratio of Au(Ⅲ):polyvinylpyrrolidone: sodium borohydride is 1:2: 0.1, Pt(Ⅳ): The mass ratio of polyvinylpyrrolidone: sodium borohydride is 0.25:2:0.1, stir at a speed of 60 rpm for 1 hour, and the reaction temperature is 10°C to obtain gold and platinum with a particle size of 3 to 10 nanometers Composite colloid solution (as shown in Figure 1);
(2)将步骤(1)所得的金铂复合胶体溶液在2个标准大气压(atm),微波频率为2450MHz 的条件下将温度加热至100oC,保持处理8min,得到微波处理过的金铂复合胶体溶液; (2) Heat the gold-platinum composite colloid solution obtained in step (1) to 100oC at 2 standard atmospheric pressure (atm) and a microwave frequency of 2450MHz, and keep it for 8 minutes to obtain microwave-treated gold-platinum composite colloid solution;
(3)将Vulcan XC-72碳黑加入到步骤(2)得到的微波处理过金铂复合胶体溶液中,保持金铂:碳黑的质量比为1:100,超声波处理0.15h后,在60转/分的速率下搅拌24h,然后过滤,用去二次水洗涤至无法检测出Cl-,在60℃真空条件下干燥2h,得到金铂:碳黑的质量比为1:100的高活性碳载金铂纳米催化剂。 (3) Add Vulcan XC-72 carbon black to the microwave-treated gold-platinum composite colloid solution obtained in step (2), keep the mass ratio of gold-platinum:carbon black at 1:100, and after ultrasonic treatment for 0.15h, at 60 Stir at the speed of rev/min for 24 hours, then filter, wash with secondary water until Cl - cannot be detected, and dry under vacuum at 60°C for 2 hours to obtain a highly active gold-platinum:carbon black mass ratio of 1:100 Carbon-supported gold-platinum nanocatalysts.
实施例2 Example 2
碳载高活性金铂催化剂的具体制备步骤包括如下: The specific preparation steps of the carbon-supported high-activity gold-platinum catalyst include as follows:
(1)在Au(Ⅲ)含量为0.03wt%氯金酸和 Pt(Ⅳ)含量为0.02wt%氯铂酸的混合水溶液溶液中,金:铂的质量比为1:2,然后在此溶液中加入浓度为1wt%的聚乙烯吡咯烷酮(PVP)做保护剂,再加入浓度为0.1wt%的硼氢化钾,其中Au(Ⅲ):聚乙烯吡咯烷酮:硼氢化钾的质量比为1:4:0.2,Pt(Ⅳ):聚乙烯吡咯烷酮:硼氢化钾的质量比为2:4:0.2,按100转/分的速度搅拌0.8h,反应温度为40℃,得到粒子尺寸为3~8纳米金铂复合胶体溶液; (1) In the mixed aqueous solution with Au(Ⅲ) content of 0.03wt% chloroauric acid and Pt(Ⅳ) content of 0.02wt% chloroplatinic acid, the mass ratio of gold: platinum is 1:2, and then in this solution Add polyvinylpyrrolidone (PVP) with a concentration of 1wt% as a protective agent, and then add potassium borohydride with a concentration of 0.1wt%, wherein the mass ratio of Au(Ⅲ): polyvinylpyrrolidone: potassium borohydride is 1:4: 0.2, Pt (Ⅳ): polyvinylpyrrolidone: potassium borohydride mass ratio is 2:4:0.2, stirred at 100 rpm for 0.8h, the reaction temperature is 40°C, and the particle size is 3-8 nanometer gold Platinum complex colloidal solution;
(2)将步骤(1)所得的金铂复合胶体溶液在3个标准大气压(atm),微波频率为2000MHz 的条件下将温度加热至200oC,保持处理1min,得到微波处理过的金铂复合胶体溶液; (2) Heat the gold-platinum composite colloid solution obtained in step (1) to 200oC at 3 standard atmospheric pressure (atm) and a microwave frequency of 2000MHz, and keep it for 1min to obtain microwave-treated gold-platinum composite colloid solution;
(3)将多壁碳纳米管(碳管管径为20~60纳米)加入到步骤(2)得到的微波处理过金铂复合胶体溶液中,保持金铂:碳黑的质量比为1:10,超声波处理0.15h后,在100转/分的速率下搅拌12h,然后过滤,用去二次水洗涤至无法检测出Cl-,在60℃真空条件下干燥1h,得到金铂:碳黑的质量比为1:10的高活性碳载金铂纳米催化剂。 (3) Add multi-walled carbon nanotubes (carbon tubes with a diameter of 20 to 60 nanometers) into the microwave-treated gold-platinum composite colloid solution obtained in step (2), keeping the mass ratio of gold-platinum:carbon black at 1: 10. After ultrasonic treatment for 0.15h, stir at 100 rpm for 12h, then filter, wash with secondary water until Cl - cannot be detected, and dry under vacuum at 60°C for 1h to obtain gold platinum: carbon black A highly active carbon-supported gold-platinum nanocatalyst with a mass ratio of 1:10.
实施例3 Example 3
碳载高活性金铂催化剂的具体制备步骤包括如下: The specific preparation steps of the carbon-supported high-activity gold-platinum catalyst include as follows:
(1)在Au(Ⅲ)含量为0.04wt%氯金酸和 Pt(Ⅳ)含量为0.01wt%氯铂酸的混合乙醇溶液(浓度为95%)中,金:铂的质量比为1:4,然后在此溶液中加入浓度为1wt%的聚乙烯吡咯烷酮(PVP)做保护剂,再加入浓度为0.1wt%的甲醛,其中Au(Ⅲ):聚乙烯吡咯烷酮:甲醛的质量比为1:5:0.5,Pt(Ⅳ):聚乙烯吡咯烷酮:甲醛的质量比为4:5:0.5,按300转/分的速度搅拌0.8h,反应温度为40℃,得到粒子尺寸为3~7纳米金铂复合胶体溶液; (1) In a mixed ethanol solution (95% concentration) with Au(III) content of 0.04wt% chloroauric acid and Pt(IV) content of 0.01wt% chloroplatinic acid, the mass ratio of gold: platinum is 1: 4. Then add polyvinylpyrrolidone (PVP) with a concentration of 1wt% to this solution as a protective agent, and then add formaldehyde with a concentration of 0.1wt%, wherein the mass ratio of Au(III): polyvinylpyrrolidone: formaldehyde is 1: 5:0.5, Pt (Ⅳ): polyvinylpyrrolidone: formaldehyde mass ratio is 4:5:0.5, stirred at a speed of 300 rpm for 0.8h, the reaction temperature is 40°C, and the particle size is 3-7 nanometer gold Platinum complex colloidal solution;
(2)将步骤(1)所得的金铂复合胶体溶液在6个标准大气压(atm),微波频率为915MHz 的条件下将温度加热至250oC,保持处理6min,得到微波处理过的金铂复合胶体溶液; (2) Heat the gold-platinum composite colloid solution obtained in step (1) to 250oC under the condition of 6 standard atmospheric pressure (atm) and a microwave frequency of 915MHz, and keep it for 6min to obtain microwave-treated gold-platinum composite colloid solution;
(3)将多壁碳纳米管(碳管管径为20~60纳米)加入到步骤(2)得到的微波处理过金铂复合胶体溶液中,保持金铂:碳黑的质量比为3:10,超声波处理0.15h后,在300转/分的速率下搅拌2h,然后过滤,用去二次水洗涤至无法检测出Cl-,在60℃真空条件下干燥3h,得到金铂:碳黑的质量比为3:10的高活性碳载金铂纳米催化剂。 (3) Add multi-walled carbon nanotubes (carbon tubes with a diameter of 20 to 60 nanometers) into the microwave-treated gold-platinum composite colloid solution obtained in step (2), keeping the mass ratio of gold-platinum:carbon black at 3: 10. After ultrasonic treatment for 0.15h, stir at 300 rpm for 2h, then filter, wash with secondary water until Cl - cannot be detected, and dry under vacuum at 60°C for 3h to obtain gold platinum: carbon black A highly active carbon-supported gold-platinum nanocatalyst with a mass ratio of 3:10.
实施例4: Example 4:
碳载高活性金钯催化剂的具体制备步骤包括如下: The specific preparation steps of the carbon-supported high-activity gold-palladium catalyst include as follows:
(1)在Au(Ⅲ)含量为0.02wt%氯金酸和 Pt(Ⅳ)含量为0.01wt%氯钯酸的混合乙醇溶液(浓度为80%)中,金:钯的质量比为1:4,然后在此溶液中加入浓度为1wt%的聚乙烯吡咯烷酮(PVP)做保护剂,再加入浓度为0.1wt%的多聚甲醛,其中Au(Ⅲ):聚乙烯吡咯烷酮:多聚甲醛的质量比为1:3:0.5,Pt(Ⅳ):聚乙烯吡咯烷酮:多聚甲醛的质量比为4:3:0.5,按100转/分的速度搅拌0.8h,反应温度为30℃,得到粒子尺寸为3~10纳米金钯复合胶体溶液; (1) In a mixed ethanol solution (80% concentration) with Au(Ⅲ) content of 0.02wt% chloroauric acid and Pt(Ⅳ) content of 0.01wt% chloropalladic acid, the mass ratio of gold: palladium is 1: 4. Then add polyvinylpyrrolidone (PVP) with a concentration of 1wt% to this solution as a protective agent, and then add paraformaldehyde with a concentration of 0.1wt%, wherein Au(Ⅲ): polyvinylpyrrolidone: the mass of paraformaldehyde The ratio is 1:3:0.5, the mass ratio of Pt(Ⅳ):polyvinylpyrrolidone:paraformaldehyde is 4:3:0.5, stirred at a speed of 100 rpm for 0.8h, and the reaction temperature is 30°C to obtain the particle size It is a 3-10 nanometer gold-palladium composite colloidal solution;
(2)将步骤(1)所得的金钯复合胶体溶液在4个标准大气压(atm),微波频率为1950MHz 的条件下将温度加热至190oC,保持处理7min,得到微波处理过的金钯复合胶体溶液; (2) Heat the gold-palladium composite colloid solution obtained in step (1) to 190oC at 4 standard atmospheric pressure (atm) and a microwave frequency of 1950MHz, and keep it for 7min to obtain microwave-treated gold-palladium composite colloid solution;
(3)将多壁碳纳米管(碳管管径为20~60纳米)加入到步骤(2)得到的微波处理过金钯复合胶体溶液中,保持金铂:碳黑的质量比为1:50,超声波处理0.15h后,在300转/分的速率下搅拌2h,然后过滤,用去二次水洗涤至无法检测出Cl-,在60℃真空条件下干燥3h,得到金钯:碳黑的质量比为1:50的高活性碳载金钯纳米催化剂。 (3) Add multi-walled carbon nanotubes (carbon tubes with a diameter of 20 to 60 nanometers) into the microwave-treated gold-palladium composite colloid solution obtained in step (2), keeping the mass ratio of gold-platinum:carbon black at 1: 50. After ultrasonic treatment for 0.15h, stir at 300 rpm for 2h, then filter, wash with secondary water until Cl - cannot be detected, and dry at 60°C for 3h under vacuum to obtain gold palladium: carbon black A highly active carbon-supported gold-palladium nanocatalyst with a mass ratio of 1:50.
实施例5: Example 5:
碳载高活性金钯催化剂的具体制备步骤包括如下: The specific preparation steps of the carbon-supported high-activity gold-palladium catalyst include as follows:
(1)在Au(Ⅲ)含量为0.03wt%氯金酸和 Pt(Ⅳ)含量为0.02wt%氯钯酸的混合乙醇溶液(浓度为50%)中,金:钯的质量比为1:4,然后在此溶液中加入浓度为1wt%的聚乙烯吡咯烷酮(PVP)做保护剂,再加入浓度为0.1wt%的硫化硫酸钠,其中Au(Ⅲ):聚乙烯吡咯烷酮:硫化硫酸钠的质量比为1:4:0.2,Pt(Ⅳ):聚乙烯吡咯烷酮:硫化硫酸钠的质量比为4:4:0.2,按100转/分的速度搅拌0.8h,反应温度为40℃,得到粒子尺寸为3~8纳米金钯复合胶体溶液; (1) In a mixed ethanol solution (50% concentration) with Au(Ⅲ) content of 0.03wt% chloroauric acid and Pt(Ⅳ) content of 0.02wt% chloropalladic acid, the mass ratio of gold: palladium is 1: 4. Then add polyvinylpyrrolidone (PVP) with a concentration of 1wt% to this solution as a protective agent, and then add a concentration of 0.1wt% sodium sulfide, wherein Au (Ⅲ): polyvinylpyrrolidone: the quality of sodium sulfide The ratio is 1:4:0.2, the mass ratio of Pt(Ⅳ):polyvinylpyrrolidone:sodium sulfate sulfate is 4:4:0.2, stirred at a speed of 100 rpm for 0.8h, and the reaction temperature is 40°C to obtain the particle size It is a 3-8 nanometer gold-palladium composite colloidal solution;
(2)将步骤(1)所得的金钯复合胶体溶液在3个标准大气压(atm),微波频率为2000MHz 的条件下将温度加热至200oC,保持处理1min,得到微波处理过的金钯复合胶体溶液; (2) Heat the gold-palladium composite colloid solution obtained in step (1) to 200oC at 3 standard atmospheric pressure (atm) and a microwave frequency of 2000MHz, and keep it for 1min to obtain microwave-treated gold-palladium composite colloid solution;
(3)将多壁碳纳米管(碳管管径为20~60纳米)加入到步骤(2)得到的微波处理过金铂复合胶体溶液中,保持金钯:碳黑的质量比为1:10,超声波处理0.15h后,在100转/分的速率下搅拌12h,然后过滤,用去二次水洗涤至无法检测出Cl-,在60℃真空条件下干燥1h,得到金钯:碳黑的质量比为1:10的高活性碳载金钯纳米催化剂。 (3) Add multi-walled carbon nanotubes (carbon tubes with a diameter of 20 to 60 nanometers) into the microwave-treated gold-platinum composite colloid solution obtained in step (2), keeping the mass ratio of gold-palladium:carbon black at 1: 10. After ultrasonic treatment for 0.15h, stir at 100 rpm for 12h, then filter, wash with secondary water until Cl - cannot be detected, and dry under vacuum at 60°C for 1h to obtain gold palladium: carbon black A highly active carbon-supported gold-palladium nanocatalyst with a mass ratio of 1:10.
实施例6 Example 6
碳载高活性金钯催化剂的具体制备步骤包括如下: The specific preparation steps of the carbon-supported high-activity gold-palladium catalyst include as follows:
(1)在Au(Ⅲ)含量为0.02wt%氯金酸和 Pt(Ⅳ)含量为0.04wt%氯钯酸的混合乙醇溶液(浓度为60%)中,金:钯的质量比为1:4,然后在此溶液中加入浓度为1wt%的聚乙烯吡咯烷酮(PVP)做保护剂,再加入浓度为0.1wt%的乙醇,其中Au(Ⅲ):聚乙烯吡咯烷酮:乙醇的质量比为1:4:0.2,Pt(Ⅳ):聚乙烯吡咯烷酮:乙醇的质量比为4:4:0.2,按100转/分的速度搅拌0.8h,反应温度为40℃,得到粒子尺寸为3~8纳米金钯复合胶体溶液; (1) In a mixed ethanol solution (60% concentration) with Au(Ⅲ) content of 0.02wt% chloroauric acid and Pt(Ⅳ) content of 0.04wt% chloropalladium acid, the mass ratio of gold: palladium is 1: 4. Then add polyvinylpyrrolidone (PVP) with a concentration of 1wt% to this solution as a protective agent, and then add ethanol with a concentration of 0.1wt%, wherein the mass ratio of Au(Ⅲ):polyvinylpyrrolidone:ethanol is 1: 4:0.2, Pt(Ⅳ):polyvinylpyrrolidone:ethanol with a mass ratio of 4:4:0.2, stirred at a speed of 100 rpm for 0.8h, and a reaction temperature of 40°C to obtain gold particles with a particle size of 3 to 8 nanometers Palladium complex colloidal solution;
(2)将步骤(1)所得的金钯复合胶体溶液在3个标准大气压(atm),微波频率为2000MHz 的条件下将温度加热至200oC,保持处理1min,得到微波处理过的金钯复合胶体溶液; (2) Heat the gold-palladium composite colloid solution obtained in step (1) to 200oC at 3 standard atmospheric pressure (atm) and a microwave frequency of 2000MHz, and keep it for 1min to obtain microwave-treated gold-palladium composite colloid solution;
(3)将Vulcan XC-72碳黑加入到步骤(2)得到的微波处理过金铂复合胶体溶液中,保持金钯:碳黑的质量比为1:10,超声波处理0.15h后,在100转/分的速率下搅拌12h,然后过滤,用去二次水洗涤至无法检测出Cl-,在60℃真空条件下干燥1h,得到金钯:碳黑的质量比为1:10的高活性碳载金钯纳米催化剂。 (3) Add Vulcan XC-72 carbon black to the microwave-treated gold-platinum composite colloid solution obtained in step (2), keep the mass ratio of gold-palladium: carbon black at 1:10, and after ultrasonic treatment for 0.15h, at 100 Stir at a speed of rpm for 12 hours, then filter, wash with secondary water until Cl - cannot be detected, and dry at 60°C for 1 hour under vacuum to obtain a highly active gold-palladium:carbon black mass ratio of 1:10 Carbon-supported gold-palladium nanocatalysts.
实施例7: Embodiment 7:
本实施例碳载高活性金铂催化剂的具体制备步骤与实施例1相同,其中不同的是步骤(1)中的氧化剂为乙二醇。 The specific preparation steps of the carbon-supported high-activity gold-platinum catalyst in this example are the same as in Example 1, except that the oxidant in step (1) is ethylene glycol.
实施例8: Embodiment 8:
本实施例碳载高活性金铂催化剂的具体制备步骤与实施例2相同,其中不同的是步骤(1)中的氧化剂为柠檬酸。 The specific preparation steps of the carbon-supported high-activity gold-platinum catalyst in this example are the same as those in Example 2, except that the oxidizing agent in step (1) is citric acid.
实施例9: Embodiment 9:
本实施例碳载高活性金铂催化剂的具体制备步骤与实施例3相同,其中不同的是步骤(1)中的氧化剂为葡萄糖。 The specific preparation steps of the carbon-supported high-activity gold-platinum catalyst in this example are the same as those in Example 3, except that the oxidant in step (1) is glucose.
实施例10: Example 10:
本实施例碳载高活性金铂催化剂的具体制备步骤与实施例5相同,其中不同的是步骤(1)中的氧化剂为水合肼。 The specific preparation steps of the carbon-supported high-activity gold-platinum catalyst in this example are the same as in Example 5, except that the oxidizing agent in step (1) is hydrazine hydrate.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110392330.6A CN102553582B (en) | 2011-12-01 | 2011-12-01 | Method for preparing carbon supported Au-Pt or Au-Pd catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110392330.6A CN102553582B (en) | 2011-12-01 | 2011-12-01 | Method for preparing carbon supported Au-Pt or Au-Pd catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102553582A true CN102553582A (en) | 2012-07-11 |
CN102553582B CN102553582B (en) | 2015-01-28 |
Family
ID=46400982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110392330.6A Expired - Fee Related CN102553582B (en) | 2011-12-01 | 2011-12-01 | Method for preparing carbon supported Au-Pt or Au-Pd catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102553582B (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102896328A (en) * | 2012-10-30 | 2013-01-30 | 西安交通大学 | Method for continuously preparing colloid PdM (M=Pt, Au) alloy nano particles |
CN102935519A (en) * | 2012-11-06 | 2013-02-20 | 南京理工大学 | Precious metal nano-particle preparation method based on modified collagen |
CN102976879A (en) * | 2012-11-30 | 2013-03-20 | 清华大学 | Supported PtAu catalyst and method for catalytic reduction of olefinic bonds or acetylenic bonds by using same |
CN103007929A (en) * | 2012-12-07 | 2013-04-03 | 上海华谊(集团)公司 | Pd-based catalyst prepared through colloid deposition, preparation method and application |
CN104923303A (en) * | 2015-05-18 | 2015-09-23 | 昆明理工大学 | Method for preparing loaded noble metal nanocatalyst by modification treatment of carbon nanotubes with hydrogen fluoride and thiophenol |
CN104941688A (en) * | 2015-05-18 | 2015-09-30 | 昆明理工大学 | A method for preparing carbon-supported Au@Pd or Au@Pt catalysts by co-modifying carbon nanotubes with HF and thiophenol |
CN106346020A (en) * | 2016-11-16 | 2017-01-25 | 皖西学院 | Preparation method of platinum-palladium bi-metal nano-particles |
CN106607018A (en) * | 2015-10-23 | 2017-05-03 | 中国石油化工股份有限公司 | Low carbon alkane dehydrogenation catalyst, and preparation method and applications thereof |
CN106607020A (en) * | 2016-11-29 | 2017-05-03 | 南京东焱氢能源科技有限公司 | Preparation method for high-activity palladium-carbon catalyst |
CN106748644A (en) * | 2016-12-10 | 2017-05-31 | 山东元利科技股份有限公司 | A kind of method that dimethyl adipate gas phase hydrogenation produces 1,6 hexylene glycols |
CN106902817A (en) * | 2017-04-11 | 2017-06-30 | 辽宁大学 | A method of activating carbon nanotube-loaded palladium nanoparticles catalyst and its application |
CN107195917A (en) * | 2017-06-02 | 2017-09-22 | 浙江大学台州研究院 | A kind of AuPdNWs superfine nano forest elctro-catalysts of the vertical-growth on FTO glass and preparation method thereof |
CN108686704A (en) * | 2018-05-23 | 2018-10-23 | 陕西理工大学 | A kind of metallic catalyst preparation method |
CN108906039A (en) * | 2018-03-05 | 2018-11-30 | 浙江工业大学 | A kind of low-load amount Au catalyst and preparation method thereof and its application in catalysis oxidation toluene |
CN109126822A (en) * | 2018-09-25 | 2019-01-04 | 中南大学 | A kind of carbon nanotube-gold copper composite material and preparation method and application |
CN109248681A (en) * | 2018-09-06 | 2019-01-22 | 南京蔚岚环境技术研究院有限公司 | A kind of carbon monoxide oxidation catalyst and preparation method thereof and coat method of the catalyst on carrier |
CN109622036A (en) * | 2018-12-25 | 2019-04-16 | 南开大学 | A kind of preparation method for the Au-based catalyst preparing vinyl chloride for acetylene hydrochlorination method |
CN110568043A (en) * | 2019-08-26 | 2019-12-13 | 宁德师范学院 | Pt@Au/C bimetallic nanomaterials and its method for detecting glucose |
CN110947381A (en) * | 2018-09-27 | 2020-04-03 | 湖南大学 | Carbon black limited nano gold catalyst and preparation method thereof |
CN111082074A (en) * | 2019-11-28 | 2020-04-28 | 安徽元琛环保科技股份有限公司 | Porous platinum fuel cell catalyst and preparation method thereof |
CN111420656A (en) * | 2020-05-06 | 2020-07-17 | 北京化工大学 | A kind of catalyst for preparing isooctanoic acid by selective oxidation of isooctanol and preparation method thereof |
CN111889136A (en) * | 2019-05-05 | 2020-11-06 | 中国科学院青岛生物能源与过程研究所 | A kind of method for preparing catalyst carrier loaded with primary metal and secondary metal |
CN112086648A (en) * | 2020-08-18 | 2020-12-15 | 山东理工大学 | Method for synthesizing AuPd @ C material for oxygen reduction reaction electrocatalysis |
CN112442706A (en) * | 2020-11-06 | 2021-03-05 | 四川大学 | Electrocatalytic reduction of CO2Supported gold platinum alloy electrode and preparation method thereof |
CN114512687A (en) * | 2020-10-23 | 2022-05-17 | 中国石油化工股份有限公司 | Carbon-supported noble metal nano catalyst and preparation method and application thereof |
CN114749172A (en) * | 2022-04-21 | 2022-07-15 | 清华大学 | A continuous preparation method of carbon nanomaterials loaded with small particle size precious metals |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109453767A (en) * | 2019-01-21 | 2019-03-12 | 郴州高鑫铂业有限公司 | A kind of Pd-Au/C bimetallic catalyst and its preparation method and application |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101436670A (en) * | 2007-11-12 | 2009-05-20 | 汉能科技有限公司 | Fuel battery cathode catalyst and preparation method thereof |
-
2011
- 2011-12-01 CN CN201110392330.6A patent/CN102553582B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101436670A (en) * | 2007-11-12 | 2009-05-20 | 汉能科技有限公司 | Fuel battery cathode catalyst and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
NADAGOUDA N. MALLIKARJUNA ET AL.: "Microwave-Assisted Shape-Controlled Bulk Synthesis of Noble Nanocrystals and Their Catalytic Properties", 《CRYSTAL GROWTH & DESIGN》, vol. 7, 22 February 2007 (2007-02-22) * |
WEIXIA TU ET AL.: "Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation", 《J. MATER. CHEM.》, vol. 10, 4 August 2000 (2000-08-04) * |
温河丽 等: "碳载金铂双金属催化剂催化活性研究", 《贵金属》, vol. 32, no. 1, 28 February 2011 (2011-02-28) * |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102896328A (en) * | 2012-10-30 | 2013-01-30 | 西安交通大学 | Method for continuously preparing colloid PdM (M=Pt, Au) alloy nano particles |
CN102935519A (en) * | 2012-11-06 | 2013-02-20 | 南京理工大学 | Precious metal nano-particle preparation method based on modified collagen |
CN102976879A (en) * | 2012-11-30 | 2013-03-20 | 清华大学 | Supported PtAu catalyst and method for catalytic reduction of olefinic bonds or acetylenic bonds by using same |
CN102976879B (en) * | 2012-11-30 | 2015-01-21 | 清华大学 | Supported PtAu catalyst and method for catalytic reduction of olefinic bonds or acetylenic bonds by using same |
CN103007929B (en) * | 2012-12-07 | 2018-01-12 | 上海华谊(集团)公司 | The Pd bases catalyst of colloidal deposition method preparation, preparation method and application |
CN103007929A (en) * | 2012-12-07 | 2013-04-03 | 上海华谊(集团)公司 | Pd-based catalyst prepared through colloid deposition, preparation method and application |
CN104941688A (en) * | 2015-05-18 | 2015-09-30 | 昆明理工大学 | A method for preparing carbon-supported Au@Pd or Au@Pt catalysts by co-modifying carbon nanotubes with HF and thiophenol |
CN104923303A (en) * | 2015-05-18 | 2015-09-23 | 昆明理工大学 | Method for preparing loaded noble metal nanocatalyst by modification treatment of carbon nanotubes with hydrogen fluoride and thiophenol |
CN104941688B (en) * | 2015-05-18 | 2017-08-25 | 昆明理工大学 | The method that carbon carries Au@Pd or Au@Pt catalyst is prepared using HF and the common modification CNT of benzenethiol |
CN106607018A (en) * | 2015-10-23 | 2017-05-03 | 中国石油化工股份有限公司 | Low carbon alkane dehydrogenation catalyst, and preparation method and applications thereof |
CN106607018B (en) * | 2015-10-23 | 2019-07-23 | 中国石油化工股份有限公司 | A kind of catalyst for dehydrogenation of low-carbon paraffin and preparation method and application |
CN106346020A (en) * | 2016-11-16 | 2017-01-25 | 皖西学院 | Preparation method of platinum-palladium bi-metal nano-particles |
CN106607020A (en) * | 2016-11-29 | 2017-05-03 | 南京东焱氢能源科技有限公司 | Preparation method for high-activity palladium-carbon catalyst |
CN106748644A (en) * | 2016-12-10 | 2017-05-31 | 山东元利科技股份有限公司 | A kind of method that dimethyl adipate gas phase hydrogenation produces 1,6 hexylene glycols |
CN106748644B (en) * | 2016-12-10 | 2019-12-03 | 山东元利科技股份有限公司 | A kind of method of dimethyl adipate gas phase hydrogenation production 1,6- hexylene glycol |
CN106902817A (en) * | 2017-04-11 | 2017-06-30 | 辽宁大学 | A method of activating carbon nanotube-loaded palladium nanoparticles catalyst and its application |
CN106902817B (en) * | 2017-04-11 | 2019-07-02 | 辽宁大学 | Method for activating carbon nanotube-supported palladium nanoparticle catalyst and application thereof |
CN107195917A (en) * | 2017-06-02 | 2017-09-22 | 浙江大学台州研究院 | A kind of AuPdNWs superfine nano forest elctro-catalysts of the vertical-growth on FTO glass and preparation method thereof |
CN108906039A (en) * | 2018-03-05 | 2018-11-30 | 浙江工业大学 | A kind of low-load amount Au catalyst and preparation method thereof and its application in catalysis oxidation toluene |
CN108686704A (en) * | 2018-05-23 | 2018-10-23 | 陕西理工大学 | A kind of metallic catalyst preparation method |
CN109248681A (en) * | 2018-09-06 | 2019-01-22 | 南京蔚岚环境技术研究院有限公司 | A kind of carbon monoxide oxidation catalyst and preparation method thereof and coat method of the catalyst on carrier |
CN109126822B (en) * | 2018-09-25 | 2021-05-07 | 中南大学 | A kind of carbon nanotube-gold copper alloy composite material and its preparation method and application |
CN109126822A (en) * | 2018-09-25 | 2019-01-04 | 中南大学 | A kind of carbon nanotube-gold copper composite material and preparation method and application |
CN110947381A (en) * | 2018-09-27 | 2020-04-03 | 湖南大学 | Carbon black limited nano gold catalyst and preparation method thereof |
CN110947381B (en) * | 2018-09-27 | 2021-04-02 | 湖南大学 | Carbon black confined nano-gold catalyst and preparation method thereof |
CN109622036A (en) * | 2018-12-25 | 2019-04-16 | 南开大学 | A kind of preparation method for the Au-based catalyst preparing vinyl chloride for acetylene hydrochlorination method |
EP3965927A4 (en) * | 2019-05-05 | 2023-01-18 | Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences | METHOD OF MAKING A CATALYST SUPPORT LOADED WITH A FIRST METAL AND A SECOND METAL |
CN111889136A (en) * | 2019-05-05 | 2020-11-06 | 中国科学院青岛生物能源与过程研究所 | A kind of method for preparing catalyst carrier loaded with primary metal and secondary metal |
WO2020224483A1 (en) * | 2019-05-05 | 2020-11-12 | Qingdao Institute Of Bioenergy And Bioprocess Technology Chinese Academy Of Sciences | Method for preparing catalyst support loaded with a first metal and a second metal |
CN111889136B (en) * | 2019-05-05 | 2022-02-01 | 中国科学院青岛生物能源与过程研究所 | Method for preparing catalyst carrier loaded with first metal and second metal |
CN110568043A (en) * | 2019-08-26 | 2019-12-13 | 宁德师范学院 | Pt@Au/C bimetallic nanomaterials and its method for detecting glucose |
CN110568043B (en) * | 2019-08-26 | 2022-02-01 | 宁德师范学院 | Pt @ Au/C bimetallic nano material and method for detecting glucose by using same |
CN111082074A (en) * | 2019-11-28 | 2020-04-28 | 安徽元琛环保科技股份有限公司 | Porous platinum fuel cell catalyst and preparation method thereof |
CN111420656A (en) * | 2020-05-06 | 2020-07-17 | 北京化工大学 | A kind of catalyst for preparing isooctanoic acid by selective oxidation of isooctanol and preparation method thereof |
CN112086648A (en) * | 2020-08-18 | 2020-12-15 | 山东理工大学 | Method for synthesizing AuPd @ C material for oxygen reduction reaction electrocatalysis |
CN114512687A (en) * | 2020-10-23 | 2022-05-17 | 中国石油化工股份有限公司 | Carbon-supported noble metal nano catalyst and preparation method and application thereof |
CN114512687B (en) * | 2020-10-23 | 2023-11-28 | 中国石油化工股份有限公司 | Carbon-supported noble metal nano catalyst and preparation method and application thereof |
CN112442706A (en) * | 2020-11-06 | 2021-03-05 | 四川大学 | Electrocatalytic reduction of CO2Supported gold platinum alloy electrode and preparation method thereof |
CN114749172A (en) * | 2022-04-21 | 2022-07-15 | 清华大学 | A continuous preparation method of carbon nanomaterials loaded with small particle size precious metals |
Also Published As
Publication number | Publication date |
---|---|
CN102553582B (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102553582B (en) | Method for preparing carbon supported Au-Pt or Au-Pd catalyst | |
Esmaeilifar et al. | Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems | |
Kariuki et al. | Colloidal synthesis and characterization of carbon-supported Pd− Cu nanoparticle oxygen reduction electrocatalysts | |
CN108097316B (en) | Preparation method of MOFs nano material loaded with nano metal particles | |
CN104412432B (en) | The method for preparing catalytic structure | |
CN102553579B (en) | A kind of preparation method of highly dispersed supported nanometer metal catalyst | |
CN105431230B (en) | Method for forming noble metal nanoparticles on a support | |
CN101740786B (en) | PtRu/graphene nano electro-catalyst and preparation method thereof | |
CN102664275B (en) | Carbon-loaded kernel-shell copper-palladium-platinum catalyst for fuel battery and preparation method thereof | |
CN102554262B (en) | A hollow porous spherical platinum-silver alloy nanomaterial and preparation method thereof | |
Chen et al. | Carbon-supported PtAu alloy nanoparticle catalysts for enhanced electrocatalytic oxidation of formic acid | |
CN101572316B (en) | Modified catalyst for low-temperature fuel cell and preparation method thereof | |
CN104043481B (en) | A kind of functionalization graphene supports the preparation method of noble metal nanocrystalline composite catalyst | |
El-Deeb et al. | Microwave-assisted polyol synthesis of PtCu/carbon nanotube catalysts for electrocatalytic oxygen reduction | |
CN109841856B (en) | A kind of preparation method of monodisperse core-shell nanocatalyst for fuel cell | |
CN103537299B (en) | A kind of carbon carries Co core-Pt core/shell nanoparticles Catalysts and its preparation method | |
CN101480612A (en) | Platinum-containing bimetallic electrode catalyst using carbon-nitrogen nano tube as carrier and preparation method | |
CN104646025B (en) | A kind of preparation method of hollow Pt/Ni alloy and graphene airgel composite material | |
CN107930697A (en) | A kind of 67 composite materials of Pt/ZIF for being used to be catalyzed ammonia borane hydrolysis hydrogen manufacturing | |
CN108160094B (en) | A kind of nitrogen-doped carbon material supported noble metal catalyst and its preparation and application | |
CN104857955A (en) | Preparation method of noble metal nano catalyst | |
Vigneron et al. | Evolution in the chemical making of gold oxidation catalysts | |
CN103579639B (en) | A kind of cathode catalyst for fuel cell and preparation method | |
CN107694561A (en) | A kind of support type disperses noble metal quantum site catalyst and preparation method thereof | |
CN105489907B (en) | A kind of carbon nanotube loaded platinum iron superlattices alloy nano particle and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150128 Termination date: 20201201 |
|
CF01 | Termination of patent right due to non-payment of annual fee |