CN102542520A - Supplier cluster analysis management and customer allocation method - Google Patents
Supplier cluster analysis management and customer allocation method Download PDFInfo
- Publication number
- CN102542520A CN102542520A CN2011104458922A CN201110445892A CN102542520A CN 102542520 A CN102542520 A CN 102542520A CN 2011104458922 A CN2011104458922 A CN 2011104458922A CN 201110445892 A CN201110445892 A CN 201110445892A CN 102542520 A CN102542520 A CN 102542520A
- Authority
- CN
- China
- Prior art keywords
- supplier
- suppliers
- cluster analysis
- customer
- category
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种供应商聚类分析管理及客户分配方法,首先对供应商进行聚类分析,再根据分析结果进行客户分配,包括:利用面向属性归纳算法,根据第一种选定的归纳属性和第二种选定的归纳属性,对全部供应商进行聚类分析;控制系统根据描述设置评定规则;将拥有第一种类描述的供应商种类中的等级值低于预定下阈值的供应商种类中的所有供应商提取出来,检索其对应的第二种类描述所属的等级值,判断其等级值是否依然低于预定下阈值;将供应商中通过第一种类描述其等级值低于预定下阈值且通过第二种类描述其等级值仍然低于预定下阈值的供应商资料数据放入备用供应商数据库中。通过本发明的方法,能够公平地对供应商进行选择。The invention discloses a supplier cluster analysis management and customer allocation method. Firstly, the supplier is clustered and analyzed, and then the customer is allocated according to the analysis result, including: using the attribute-oriented induction algorithm, according to the first selected induction attribute and the second selected inductive attribute, cluster analysis is performed on all suppliers; the control system sets the evaluation rules according to the description; suppliers whose grade value in the supplier category described by the first category is lower than the predetermined lower threshold All the suppliers in the category are extracted, and the level value of the corresponding second category description belongs to it, and it is judged whether the level value is still lower than the predetermined lower threshold; The supplier profile data whose grade value is still lower than the predetermined lower threshold value described by the second category is put into the backup supplier database. Through the method of the invention, suppliers can be selected fairly.
Description
技术领域 technical field
本发明涉及一种供应商管控方法,尤其是涉及一种供应商聚类分析管理及客户分配方法。The invention relates to a supplier management and control method, in particular to a supplier cluster analysis management and customer allocation method.
背景技术 Background technique
以移动通讯服务商运营领域,随着服务内容的爆炸性增长,供应商的合理管控越来越成为现代商业必备的手段。常见的运营商管控需要通过众多环节才能完成,并且人为的主观干预性较强,造成实质上的不公平。In the field of mobile communication service provider operations, with the explosive growth of service content, reasonable management and control of suppliers has increasingly become an essential means of modern business. Common operator control needs to go through many links to complete, and human subjective intervention is strong, resulting in substantial unfairness.
发明内容 Contents of the invention
本发明针对现有技术的弊端,提供一种供应商聚类分析管理及客户分配方法,该方法能够利用计算机系统对供应商的状况进行自动分析,并分配客户资源,实现高效公平的管理和分配方式。Aiming at the drawbacks of the prior art, the present invention provides a supplier cluster analysis management and customer allocation method, which can use a computer system to automatically analyze the status of suppliers and allocate customer resources to achieve efficient and fair management and allocation Way.
本发明提供一种供应商聚类分析管理及客户分配方法,其特征在于,首先对供应商进行聚类分析,再根据分析结果进行客户分配,The present invention provides a supplier cluster analysis management and customer allocation method, which is characterized in that, firstly, the supplier is clustered and analyzed, and then the customer is allocated according to the analysis result,
具体包括以下步骤:Specifically include the following steps:
1)利用面向属性归纳算法,根据第一种选定的归纳属性,对全部供应商进行聚类分析,生成聚类后每类供应商的第一种类描述;1) Using the attribute-oriented induction algorithm, according to the first selected induction attribute, perform cluster analysis on all suppliers, and generate the first type description of each type of supplier after clustering;
2)再次利用面向属性归纳算法,根据第二种选定的归纳属性,对全部供应商进行聚类分析,生成聚类后每类供应商的第二种类描述;2) Using the attribute-oriented inductive algorithm again, according to the second selected inductive attribute, perform cluster analysis on all suppliers, and generate the second type description of each type of supplier after clustering;
3)控制系统根据第一种类描述设置第一种评定规则,根据第二种类描述设置第二种评定规则,并分别根据所述第一种评定规则和第二种评定规则分别对全部供应商种类进行等级评定;3) The control system sets the first evaluation rule according to the description of the first type, sets the second evaluation rule according to the description of the second type, and respectively evaluates all supplier types according to the first evaluation rule and the second evaluation rule. carry out ratings;
4)将拥有第一种类描述的供应商种类中的等级值低于预定下阈值的供应商种类中的所有供应商提取出来,检索其对应的第二种类描述所属的等级值,判断其等级值是否依然低于预定下阈值;4) Extract all the suppliers in the supplier category with the first category description whose level value is lower than the predetermined lower threshold, retrieve the level value of the corresponding second category description, and judge its level value Whether it is still below the predetermined lower threshold;
5)将供应商中通过第一种类描述其等级值低于预定下阈值且通过第二种类描述其等级值仍然低于预定下阈值的供应商资料数据放入备用供应商数据库中,将其余供应商资料数据放入可用供应商数据库中;5) Put the supplier profile data whose grade value is lower than the predetermined lower threshold described by the first category and whose grade value is still lower than the predetermined lower threshold described by the second category into the standby supplier database, and put the remaining suppliers Put the supplier profile data into the available supplier database;
6)对可用供应商中的各项参数进行资料数据发掘,发掘出各项参数之间的关联度,并评定各项参数的关联度等级;6) Excavate the data and data of each parameter in the available suppliers, discover the correlation degree between each parameter, and evaluate the correlation degree level of each parameter;
7)利用分配处理中心接收客户的信息,将客户的信息分解成需求信息和联系信息两类,并对需求信息和联系信息分别加密,并生成各自的安全密钥;7) Use the distribution processing center to receive customer information, decompose the customer information into demand information and contact information, encrypt the demand information and contact information separately, and generate their own security keys;
8)发掘需求信息内的资料数据,将这些资料数据与可用供应商中的各项参数进行匹配,并根据匹配上的参数的关联度等级,为此项匹配设置权重,其中,权重值与关联度等级成正比;8) Excavate the data in the demand information, match these data with various parameters in the available suppliers, and set the weight for this match according to the correlation level of the matched parameters, where the weight value is related to the correlation proportional to degree level;
9)根据权重值和相应的可用供应商中的各项参数的数值进行计算,并对计算结果进行排序,选出计算结果高者作为选中供应商;9) Calculate according to the weight value and the value of each parameter in the corresponding available suppliers, and sort the calculation results, and select the supplier with the highest calculation result as the selected supplier;
10)将需求信息和相应的安全密钥传递给选中供应商,并同时记录该传递信息,并将该传递信息与联系信息和相应的安全密钥传递给服务器备案。10) Transfer the demand information and corresponding security key to the selected supplier, record the transfer information at the same time, and transfer the transfer information, contact information and corresponding security key to the server for filing.
优选的是,所述的供应商聚类分析管理及客户分配方法中,所述第一种选定的归纳属性包括供应商的规模指标、产品故障率、领域偏向指标和供货量指标的组合。Preferably, in the supplier cluster analysis management and customer allocation method, the first selected generalized attribute includes a combination of the supplier's scale index, product failure rate, field bias index and supply quantity index .
优选的是,所述的供应商聚类分析管理及客户分配方法中,所述第二种选定的归纳属性包括到货及时率指标、服务好评率指标、地理区域信息、物流速度信息和技术研发实力指标。Preferably, in the supplier cluster analysis management and customer allocation method, the second selected generalized attribute includes arrival time rate index, service favorable rate index, geographical area information, logistics speed information and technology R&D strength indicators.
优选的是,所述的供应商聚类分析管理及客户分配方法中,所述预定下阈值为所有供应商种类中的等级值中最小的10%作为节点,所取到的数值。Preferably, in the supplier cluster analysis management and customer allocation method, the predetermined lower threshold is the value obtained by taking the smallest 10% of the grade values in all supplier categories as nodes.
优选的是,所述的供应商聚类分析管理及客户分配方法中,某一参数的关联度等级与和该参数产生关联的其它参数的数量成正比。Preferably, in the supplier cluster analysis management and customer allocation method, the degree of relevance of a certain parameter is directly proportional to the number of other parameters associated with this parameter.
本发明公开的供应商聚类分析管理及客户分配方法,能够利用计算机系统对供应商的状况进行自动分析,并分配客户资源,实现高效公平的管理和分配方式。The supplier cluster analysis management and customer allocation method disclosed by the invention can automatically analyze the status of suppliers by using a computer system, and allocate customer resources, so as to realize efficient and fair management and allocation.
具体实施方式 Detailed ways
下面对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。The present invention will be described in further detail below, so that those skilled in the art can implement it with reference to the description.
本发明公开了一种供应商聚类分析管理及客户分配方法,首先对供应商进行聚类分析,再根据分析结果进行客户分配,其目的是通过聚类分析的结果,实现对订单客户的公平分配。The invention discloses a supplier cluster analysis management and customer allocation method. Firstly, cluster analysis is performed on suppliers, and then customer allocation is performed according to the analysis results. The purpose is to realize fairness to order customers through the cluster analysis results. distribute.
具体包括以下步骤:Specifically include the following steps:
1)利用面向属性归纳算法,根据第一种选定的归纳属性,对全部供应商进行聚类分析,生成聚类后每类供应商的第一种类描述;面向属性归纳算法AOI根据指定的属性划分,对全部供应商进行分类,区分成多个类别。1) Use the attribute-oriented induction algorithm to perform cluster analysis on all suppliers according to the first selected induction attribute, and generate the first type description of each type of supplier after clustering; the attribute-oriented induction algorithm AOI is based on the specified attribute Divide, classify all suppliers, and divide them into multiple categories.
2)再次利用面向属性归纳算法,根据第二种选定的归纳属性,对全部供应商进行聚类分析,生成聚类后每类供应商的第二种类描述;也就是说换用两种逻辑,对全部供应商进行分类,这样是为了最大限定地避免以偏概全。2) Using the attribute-oriented inductive algorithm again, according to the second selected inductive attribute, perform cluster analysis on all suppliers, and generate the second type description of each type of supplier after clustering; that is to say, use two kinds of logic , to classify all suppliers, so as to avoid generalization to the greatest extent.
3)控制系统根据第一种类描述设置第一种评定规则,根据第二种类描述设置第二种评定规则,并分别根据所述第一种评定规则和第二种评定规则分别对全部供应商种类进行等级评定;由于分类方法不同,因此评定规则必然存在差别。3) The control system sets the first evaluation rule according to the description of the first type, sets the second evaluation rule according to the description of the second type, and respectively evaluates all supplier types according to the first evaluation rule and the second evaluation rule. Carry out grade assessment; due to the different classification methods, there must be differences in the assessment rules.
4)将拥有第一种类描述的供应商种类中的等级值低于预定下阈值的供应商种类中的所有供应商提取出来,检索其对应的第二种类描述所属的等级值,判断其等级值是否依然低于预定下阈值;这个下阈值的确定可以根据百分比确定,也可以根据数值本身确定。4) Extract all the suppliers in the supplier category with the first category description whose level value is lower than the predetermined lower threshold, retrieve the level value of the corresponding second category description, and judge its level value Whether it is still lower than the predetermined lower threshold; the determination of the lower threshold can be determined based on the percentage, or can be determined based on the value itself.
5)将供应商中通过第一种类描述其等级值低于预定下阈值且通过第二种类描述其等级值仍然低于预定下阈值的供应商资料数据放入备用供应商数据库中,将其余供应商资料数据放入可用供应商数据库中;这样就将可用供应商和备用供应商区分了出来。备用供应商由人为指定的方式分配客户,而可用供应商由系统自动指派的方式分派客户。5) Put the supplier profile data whose grade value is lower than the predetermined lower threshold described by the first category and whose grade value is still lower than the predetermined lower threshold described by the second category into the standby supplier database, and put the remaining suppliers The supplier profile data is placed in the available suppliers database; this distinguishes the available suppliers from the alternate suppliers. Alternative suppliers are assigned to customers by manual designation, while available suppliers are assigned by the system automatically.
6)对可用供应商中的各项参数进行资料数据发掘,发掘出各项参数之间的关联度,并评定各项参数的关联度等级;通过关联度评价,能够确立不同参数的不等地位。6) Excavate the data and data of each parameter in the available suppliers, discover the correlation degree between each parameter, and evaluate the correlation degree level of each parameter; through the correlation degree evaluation, the unequal status of different parameters can be established .
7)利用分配处理中心接收客户的信息,将客户的信息分解成需求信息和联系信息两类,并对需求信息和联系信息分别加密,并生成各自的安全密钥;7) Use the distribution processing center to receive customer information, decompose the customer information into demand information and contact information, encrypt the demand information and contact information separately, and generate their own security keys;
8)发掘需求信息内的资料数据,将这些资料数据与可用供应商中的各项参数进行匹配,并根据匹配上的参数的关联度等级,为此项匹配设置权重,其中,权重值与关联度等级成正比;关联度不同,权重不同。例如,出货率指标肯能就与其它参数的关联度更多,所以其权重应高更高。8) Excavate the data in the demand information, match these data with various parameters in the available suppliers, and set the weight for this match according to the correlation level of the matched parameters, where the weight value is related to the correlation The degree level is proportional; the degree of correlation is different, and the weight is different. For example, the shipment rate indicator may be more correlated with other parameters, so its weight should be higher.
9)根据权重值和相应的可用供应商中的各项参数的数值进行计算,并对计算结果进行排序,选出计算结果高者作为选中供应商;9) Calculate according to the weight value and the value of each parameter in the corresponding available suppliers, and sort the calculation results, and select the supplier with the highest calculation result as the selected supplier;
10)将需求信息和相应的安全密钥传递给选中供应商,并同时记录该传递信息,并将该传递信息与联系信息和相应的安全密钥传递给服务器备案。10) Transfer the demand information and corresponding security key to the selected supplier, record the transfer information at the same time, and transfer the transfer information, contact information and corresponding security key to the server for filing.
优选的是,所述的供应商聚类分析管理及客户分配方法中,所述第一种选定的归纳属性包括供应商的规模指标、产品故障率、领域偏向指标和供货量指标的组合。Preferably, in the supplier cluster analysis management and customer allocation method, the first selected generalized attribute includes a combination of the supplier's scale index, product failure rate, field bias index and supply quantity index .
优选的是,所述的供应商聚类分析管理及客户分配方法中,所述第二种选定的归纳属性包括到货及时率指标、服务好评率指标、地理区域信息、物流速度信息和技术研发实力指标。Preferably, in the supplier cluster analysis management and customer allocation method, the second selected generalized attribute includes arrival time rate index, service favorable rate index, geographical area information, logistics speed information and technology R&D strength indicators.
优选的是,所述的供应商聚类分析管理及客户分配方法中,所述预定下阈值为所有供应商种类中的等级值中最小的10%作为节点,所取到的数值。也就是说,将等级值按照从大到小的顺序进行排队,将排在最后的10%划分入备用供应商序列。Preferably, in the supplier cluster analysis management and customer allocation method, the predetermined lower threshold is the value obtained by taking the smallest 10% of the grade values in all supplier categories as nodes. That is to say, rank values are queued in descending order, and the last 10% are assigned to the standby supplier sequence.
优选的是,所述的供应商聚类分析管理及客户分配方法中,某一参数的关联度等级与和该参数产生关联的其它参数的数量成正比。也就说与该参数关联的其它参数越多,该参数的关联等级越高。Preferably, in the supplier cluster analysis management and customer allocation method, the degree of relevance of a certain parameter is directly proportional to the number of other parameters associated with this parameter. That is to say, the more other parameters associated with this parameter, the higher the association level of this parameter.
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。Although the embodiment of the present invention has been disclosed as above, it is not limited to the use listed in the specification and implementation, it can be applied to various fields suitable for the present invention, and it can be easily understood by those skilled in the art Therefore, the invention is not limited to the specific details and examples shown and described herein without departing from the general concept defined by the claims and their equivalents.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104458922A CN102542520A (en) | 2011-12-27 | 2011-12-27 | Supplier cluster analysis management and customer allocation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104458922A CN102542520A (en) | 2011-12-27 | 2011-12-27 | Supplier cluster analysis management and customer allocation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102542520A true CN102542520A (en) | 2012-07-04 |
Family
ID=46349346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011104458922A Pending CN102542520A (en) | 2011-12-27 | 2011-12-27 | Supplier cluster analysis management and customer allocation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102542520A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104574127A (en) * | 2013-10-21 | 2015-04-29 | 北京中海纪元数字技术发展股份有限公司 | Innovative marketing platform |
CN105808921A (en) * | 2016-02-29 | 2016-07-27 | 四川长虹电器股份有限公司 | Supplier supply timeliness ratio data processing method |
CN107122425A (en) * | 2017-04-07 | 2017-09-01 | 广东精点数据科技股份有限公司 | The method and system evaluated corporate client |
CN109214772A (en) * | 2018-08-07 | 2019-01-15 | 平安科技(深圳)有限公司 | Item recommendation method, device, computer equipment and storage medium |
CN112288375A (en) * | 2020-11-19 | 2021-01-29 | 南京岁卞智能设备有限公司 | Big data-based intelligent supply chain coordination management system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449536A (en) * | 2000-07-14 | 2003-10-15 | 上下文连接公司 | A system and method for directory services and e-commerce across multi-provider networks |
CN1675881A (en) * | 2002-08-15 | 2005-09-28 | 艾利森电话股份有限公司 | Monitoring of digital content provided from a content provider over a network |
-
2011
- 2011-12-27 CN CN2011104458922A patent/CN102542520A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449536A (en) * | 2000-07-14 | 2003-10-15 | 上下文连接公司 | A system and method for directory services and e-commerce across multi-provider networks |
CN1675881A (en) * | 2002-08-15 | 2005-09-28 | 艾利森电话股份有限公司 | Monitoring of digital content provided from a content provider over a network |
Non-Patent Citations (1)
Title |
---|
宋旭: "VMI环境下基于知识转移的供应商评价选择", 《商场现代化》, no. 602, 28 February 2010 (2010-02-28), pages 19 - 20 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104574127A (en) * | 2013-10-21 | 2015-04-29 | 北京中海纪元数字技术发展股份有限公司 | Innovative marketing platform |
CN104574127B (en) * | 2013-10-21 | 2018-07-06 | 北京中海纪元数字技术发展股份有限公司 | innovative marketing platform |
CN105808921A (en) * | 2016-02-29 | 2016-07-27 | 四川长虹电器股份有限公司 | Supplier supply timeliness ratio data processing method |
CN105808921B (en) * | 2016-02-29 | 2018-03-02 | 四川长虹电器股份有限公司 | The data processing method of supplier's supply of material promptness rate |
CN107122425A (en) * | 2017-04-07 | 2017-09-01 | 广东精点数据科技股份有限公司 | The method and system evaluated corporate client |
CN109214772A (en) * | 2018-08-07 | 2019-01-15 | 平安科技(深圳)有限公司 | Item recommendation method, device, computer equipment and storage medium |
WO2020029400A1 (en) * | 2018-08-07 | 2020-02-13 | 平安科技(深圳)有限公司 | Project recommendation method and apparatus, and computer device and storage medium |
CN109214772B (en) * | 2018-08-07 | 2024-01-16 | 平安科技(深圳)有限公司 | Project recommendation method, device, computer equipment and storage medium |
CN112288375A (en) * | 2020-11-19 | 2021-01-29 | 南京岁卞智能设备有限公司 | Big data-based intelligent supply chain coordination management system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106156791B (en) | Business data classification method and device | |
CN110580649B (en) | Method and device for determining commodity potential value | |
CN106203140B (en) | Data circulation method, device and terminal based on data structure | |
CN106844407B (en) | Tag network generation method and system based on data set correlation | |
CN105721629B (en) | User identifier matching process and device | |
US10824956B1 (en) | System and method for price estimation of reports before execution in analytics | |
MX2012003721A (en) | Systems and methods for social graph data analytics to determine connectivity within a community. | |
CN107291672A (en) | The treating method and apparatus of tables of data | |
CN102542520A (en) | Supplier cluster analysis management and customer allocation method | |
CN108256721A (en) | A kind of method for scheduling task, terminal device and medium | |
TWI621989B (en) | Graph-based method and system for analyzing users | |
CN109460884A (en) | Orphan's list distribution method, electronic device and readable storage medium storing program for executing | |
CN110097302A (en) | The method and apparatus for distributing order | |
Radulescu et al. | A hybrid group multi-criteria approach based on SAW, TOPSIS, VIKOR, and COPRAS methods for complex IoT selection problems | |
CN111325422A (en) | Work order distribution method and system | |
Hunt et al. | Evolving machine-specific dispatching rules for a two-machine job shop using genetic programming | |
CN109784352A (en) | A kind of method and apparatus for assessing disaggregated model | |
WO2018078761A1 (en) | Clustering system, method, program, and recommendation system | |
US20200394330A1 (en) | Information processing system, data provision system, and related method | |
CN104965846B (en) | Visual human's method for building up in MapReduce platform | |
JP6267398B2 (en) | Service design support system and service design support method | |
CN109558887A (en) | A kind of method and apparatus of predictive behavior | |
JP2013033450A (en) | Manufacturing work period prediction device, manufacturing work period prediction method, and computer program | |
CN106952060A (en) | Logistic Scheduling method and device | |
CN106777303B (en) | Passenger flight inquiry behavior classification method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120704 |