CN102534314A - Lanthanum-hexaboride-reinforced aluminum-silicon-base composite material and preparation method thereof - Google Patents
Lanthanum-hexaboride-reinforced aluminum-silicon-base composite material and preparation method thereof Download PDFInfo
- Publication number
- CN102534314A CN102534314A CN201210016413XA CN201210016413A CN102534314A CN 102534314 A CN102534314 A CN 102534314A CN 201210016413X A CN201210016413X A CN 201210016413XA CN 201210016413 A CN201210016413 A CN 201210016413A CN 102534314 A CN102534314 A CN 102534314A
- Authority
- CN
- China
- Prior art keywords
- lanthanum
- silicon
- aluminum
- composite material
- aluminium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 41
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910000521 B alloy Inorganic materials 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims abstract description 16
- 239000000956 alloy Substances 0.000 claims abstract description 11
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052796 boron Inorganic materials 0.000 claims abstract description 9
- 238000007670 refining Methods 0.000 claims abstract description 7
- 238000003723 Smelting Methods 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 239000000155 melt Substances 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- KMWBBMXGHHLDKL-UHFFFAOYSA-N [AlH3].[Si] Chemical compound [AlH3].[Si] KMWBBMXGHHLDKL-UHFFFAOYSA-N 0.000 claims 4
- FGUJWQZQKHUJMW-UHFFFAOYSA-N [AlH3].[B] Chemical compound [AlH3].[B] FGUJWQZQKHUJMW-UHFFFAOYSA-N 0.000 claims 3
- 239000004411 aluminium Substances 0.000 claims 3
- 238000002425 crystallisation Methods 0.000 claims 2
- 230000008025 crystallization Effects 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 abstract description 19
- DJPURDPSZFLWGC-UHFFFAOYSA-N alumanylidyneborane Chemical compound [Al]#B DJPURDPSZFLWGC-UHFFFAOYSA-N 0.000 abstract description 13
- 239000002245 particle Substances 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 11
- 229910021419 crystalline silicon Inorganic materials 0.000 abstract description 9
- 238000011065 in-situ storage Methods 0.000 abstract description 8
- 238000002844 melting Methods 0.000 abstract description 6
- 230000008018 melting Effects 0.000 abstract description 6
- 230000003014 reinforcing effect Effects 0.000 abstract description 6
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000007769 metal material Substances 0.000 abstract description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 4
- 229910018125 Al-Si Inorganic materials 0.000 description 3
- 229910018520 Al—Si Inorganic materials 0.000 description 3
- 229910025794 LaB6 Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Silicon Compounds (AREA)
Abstract
本发明属金属材料领域,涉及一种六硼化镧增强铝硅基复合材料及其制备方法。该复合材料由基体合金和增强相组成,其特征是基体合金中含有弥散分布的六硼化镧增强相;复合材料中各组分的质量百分比为硅5.00-20.00%,镧0.68-6.82%,硼0.32-3.18%,其余为铝。其制备方法如下:首先将工业纯铝、工业结晶硅及铝-硼合金按一定的质量比置于熔炼炉中熔化并升温至800-1200℃,保温5-10分钟后向该熔体中加入适量的工业纯镧,原位反应10-15分钟后精炼、浇注,即可得到六硼化镧颗粒增强铝硅基复合材料。本发明在大气条件下,采用普通的熔炼工艺即可实现,无污染、成本低、工艺简单、生产效率高,适合规模化生产和应用。The invention belongs to the field of metal materials, and relates to a lanthanum hexaboride reinforced aluminum-silicon-based composite material and a preparation method thereof. The composite material is composed of a matrix alloy and a reinforcing phase, and is characterized in that the matrix alloy contains a dispersedly distributed lanthanum hexaboride reinforcing phase; the mass percentage of each component in the composite material is 5.00-20.00% of silicon, 0.68-6.82% of lanthanum, Boron 0.32-3.18%, the rest is aluminum. Its preparation method is as follows: Firstly, industrial pure aluminum, industrial crystalline silicon and aluminum-boron alloy are melted in a melting furnace according to a certain mass ratio, and the temperature is raised to 800-1200 ° C, and after holding for 5-10 minutes, adding Appropriate amount of industrial pure lanthanum, in-situ reaction for 10-15 minutes, refining and pouring, can obtain lanthanum hexaboride particle reinforced aluminum-silicon matrix composite material. The invention can be realized by adopting common smelting process under atmospheric conditions, has no pollution, low cost, simple process and high production efficiency, and is suitable for large-scale production and application.
Description
技术领域 technical field
本发明属金属材料领域,特别涉及一种利用六硼化镧增强的铝硅基复合材料及其制备方法。The invention belongs to the field of metal materials, in particular to an aluminum-silicon-based composite material reinforced by lanthanum hexaboride and a preparation method thereof.
背景技术 Background technique
铝硅合金因其具有优良的铸造性能,如收缩率小、流动性高、气密性好和热裂倾向小等,经过变质处理后,还具有良好的力学性能、物理性能和切削加工性能,因而在航空航天、汽车工业等领域有着广泛的应用。但节能减排的需要推动着该铝合金材料向高比强度、高比刚度、耐高温、抗疲劳等方向发展。颗粒增强金属基复合材料能够综合基体合金和增强相的优点,提高材料的使用性能,从而在很大程度上解决了材料当前面临的问题。Because of its excellent casting properties, such as small shrinkage, high fluidity, good air tightness and small thermal cracking tendency, aluminum-silicon alloy also has good mechanical properties, physical properties and cutting properties after modification. Therefore, it has a wide range of applications in aerospace, automobile industry and other fields. However, the need for energy saving and emission reduction drives the aluminum alloy material to develop in the direction of high specific strength, high specific stiffness, high temperature resistance, and fatigue resistance. Particle-reinforced metal matrix composites can combine the advantages of the matrix alloy and the reinforcing phase to improve the performance of the material, thus solving the current problems of the material to a large extent.
目前国内外针对颗粒增强铝硅基复合材料的研究已有较多报道,如文献[Banqiu Wu,Ramana G.Reddy.In-situ formation of SiC-reinforced Al-Si alloycomposites using Methane gas mixtures.Metallurgical and Materials Transaction B.2002,33(4):543-550]报道了一种碳化硅颗粒增强铝硅基复合材料及其制备方法,但此工艺极其复杂,反应过程难以控制,不利于大规模生产;专利号为99114272.1的中国专利报道了一种碳化钛增强耐磨铝合金及其制备工艺,但TiC颗粒在含硅铝熔体中极不稳定,易分解为Al4C3,从而影响了其对基体合金的强化效果;文献[Yanfeng Han,Xiangfa Liu,Xiufang Bian.In-situ TiB2particulate reinforced neareutectic Al-Si alloy composites.Composites:Part A 2002,33:439-444]报道了一种TiB2颗粒增强铝硅基复合材料及其制备方法,合金中TiB2粒子有较严重的聚集倾向,这制约了其在工业生产中的应用。At present, there have been many reports on the research on particle-reinforced Al-Si matrix composites at home and abroad, such as [Banqiu Wu, Ramana G.Reddy.In-situ formation of SiC-reinforced Al-Si alloycomposites using Methane gas mixtures.Metallurgical and Materials Transaction B.2002, 33(4): 543-550] reported a silicon carbide particle reinforced aluminum-silicon matrix composite material and its preparation method, but the process is extremely complicated, the reaction process is difficult to control, and is not conducive to large-scale production; patent The Chinese patent No. 99114272.1 reports a titanium carbide-enhanced wear-resistant aluminum alloy and its preparation process, but TiC particles are extremely unstable in the silicon-containing aluminum melt and are easily decomposed into Al 4 C 3 , which affects its impact on the matrix. The strengthening effect of the alloy; the literature [Yanfeng Han, Xiangfa Liu, Xiufang Bian.In-situ TiB2particulate reinforced neareutectic Al-Si alloy composites.Composites: Part A 2002, 33:439-444] reported a TiB2 particulate reinforced Al-Si TiB 2 particles in the alloy have a serious tendency to aggregate, which restricts its application in industrial production.
发明内容 Contents of the invention
本发明的目的在于克服上述现有技术的不足,提供一种组织均匀、性能优良的六硼化镧增强铝硅基复合材料,并提供一种工艺简单、环境友好、成本低、适合工业化生产的制备方法。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, provide a lanthanum hexaboride reinforced aluminum-silicon matrix composite material with uniform structure and excellent performance, and provide a simple process, environment-friendly, low cost, suitable for industrial production Preparation.
本发明是通过以下方式实现的:The present invention is achieved in the following ways:
一种六硼化镧增强铝硅基复合材料,由基体合金和增强相组成,其特征是增强相为六硼化镧,复合材料中各组分的质量百分比为硅5.00-20.00%,镧0.68-6.82%,硼0.32-3.18%,其余为铝。A lanthanum hexaboride-reinforced aluminum-silicon-based composite material, consisting of a matrix alloy and a reinforcing phase, characterized in that the reinforcing phase is lanthanum hexaboride, and the mass percentages of each component in the composite material are silicon 5.00-20.00%, lanthanum 0.68 -6.82%, boron 0.32-3.18%, the rest is aluminum.
上述六硼化镧增强铝硅基复合材料的制备方法,其特征包括以下步骤:The preparation method of the above-mentioned lanthanum hexaboride reinforced aluminum-silicon-based composite material is characterized in that it comprises the following steps:
(1)按以下质量百分比准备好所需原料:5.00%-20.00%的工业结晶硅,10.67%-63.60%的铝-硼合金,0.68%-6.82%的工业纯镧,其余为工业纯铝;其中,铝-硼合金中的硼质量百分含量为0.50-5.00%;(1) Prepare the required raw materials according to the following mass percentages: 5.00%-20.00% industrial crystalline silicon, 10.67%-63.60% aluminum-boron alloy, 0.68%-6.82% industrial pure lanthanum, and the rest are industrial pure aluminum; Wherein, the mass percentage of boron in the aluminum-boron alloy is 0.50-5.00%;
(2)将工业纯铝、工业结晶硅及铝-硼合金置于熔炼炉中熔化并升温至800-1200℃,保温5-10分钟;(2) Melting industrial pure aluminum, industrial crystalline silicon and aluminum-boron alloy in a smelting furnace and raising the temperature to 800-1200°C, keeping the temperature for 5-10 minutes;
(3)向该熔体中加入工业纯镧,原位反应10-15分钟后精炼、浇注,即可得到六硼化镧颗粒增强铝硅基复合材料。(3) Add commercially pure lanthanum to the melt, react in situ for 10-15 minutes, refine and pour, and then the lanthanum hexaboride particle-reinforced aluminum-silicon-based composite material can be obtained.
上述六硼化镧增强铝硅基复合材料的制备方法,其特征是步骤(3)中向熔体中加入工业纯镧后,熔体中熔解的硼和镧原位反应生成六硼化镧颗粒。The above-mentioned preparation method of lanthanum hexaboride reinforced aluminum-silicon-based composite material is characterized in that after adding industrial pure lanthanum to the melt in step (3), the boron and lanthanum melted in the melt react in situ to generate lanthanum hexaboride particles .
六硼化镧具有高熔点、高强度、耐磨以及良好的热稳定性和化学稳定性等优点,是铝硅基复合材料的理想增强相。同时,它与铝具有相似的晶体结构以及低的晶格错配度,使得其对α-Al具有一定的细化作用。若将其作为铝硅合金的增强相,则不仅能强化基体合金,还能对合金中的α-Al起到细化作用。此外,六硼化镧在铝熔体中的形貌和尺寸是可调控的,这为其在铝硅基复合材料中的应用进一步提供了条件。Lanthanum hexaboride has the advantages of high melting point, high strength, wear resistance, good thermal and chemical stability, and is an ideal reinforcing phase for aluminum-silicon-based composite materials. At the same time, it has a similar crystal structure and low lattice mismatch with aluminum, which makes it have a certain refining effect on α-Al. If it is used as the strengthening phase of aluminum-silicon alloy, it can not only strengthen the matrix alloy, but also refine the α-Al in the alloy. In addition, the shape and size of lanthanum hexaboride in aluminum melt can be adjusted, which further provides conditions for its application in aluminum silicon matrix composites.
利用本发明方法制备的六硼化镧颗粒增强铝硅基复合材料中,六硼化镧颗粒是经原位反应直接生成,表面洁净、无污染,与基体界面结合好,且能够在基体合金中弥散分布。粒子尺寸为1-6微米,形貌为规则的立方体。同时,由于六硼化镧与铝具有相似的晶体结构以及低的晶格错配度。因此,生成的六硼化镧颗粒不仅能够强化铝硅合金基体,还对α-Al有一定的细化作用。本发明在大气条件下,采用普通的熔炼工艺即可实现,无污染、成本低、工艺简单、生产效率高,因而特别适合规模化生产和应用。另外,通过组织优化、合金化和变质细化等方法,可得到力学性能更加优异的六硼化镧颗粒增强铝硅合金基复合材料。In the aluminum-silicon-based composite material reinforced with lanthanum hexaboride particles prepared by the method of the present invention, the lanthanum hexaboride particles are directly generated through in-situ reaction, the surface is clean, pollution-free, well bonded to the matrix interface, and can be in the matrix alloy Diffuse distribution. The particle size is 1-6 microns, and the shape is a regular cube. At the same time, because lanthanum hexaboride and aluminum have similar crystal structure and low lattice mismatch. Therefore, the generated lanthanum hexaboride particles can not only strengthen the aluminum-silicon alloy matrix, but also have a certain refining effect on α-Al. The present invention can be realized by adopting common smelting process under atmospheric conditions, has no pollution, low cost, simple process and high production efficiency, so it is especially suitable for large-scale production and application. In addition, lanthanum hexaboride particle-reinforced aluminum-silicon alloy matrix composites with better mechanical properties can be obtained through microstructure optimization, alloying, and modification and refinement.
具体实施方式 Detailed ways
下面给出本发明的三个最佳实例。Three best examples of the present invention are given below.
实施例1Example 1
(1)按以下质量百分比准备好所需原料:60.96%的工业纯铝、5.00%的工业结晶硅、32.00%的铝-硼合金、2.04%的工业纯镧;其中,铝-硼合金合金中硼的质量百分含量为3.00%。(1) Prepare the required raw materials according to the following mass percentages: 60.96% industrial pure aluminum, 5.00% industrial crystalline silicon, 32.00% aluminum-boron alloy, 2.04% industrial pure lanthanum; wherein, in the aluminum-boron alloy The mass percentage of boron is 3.00%.
(2)将工业纯铝、工业结晶硅及铝-硼合金置于熔炼炉中熔化并升温至800℃,保温5分钟。(2) Put industrial pure aluminum, industrial crystalline silicon and aluminum-boron alloy in a melting furnace to melt and raise the temperature to 800° C., and keep it warm for 5 minutes.
(3)向熔体中加入工业纯镧,原位反应10分钟后精炼、浇注,即可得到六硼化镧颗粒增强的铝硅基复合材料。(3) Adding commercially pure lanthanum to the melt, reacting in situ for 10 minutes, refining and pouring, the aluminum-silicon-based composite material reinforced with lanthanum hexaboride particles can be obtained.
用该方法制备的复合材料成分为:Al-5%Si-3%LaB6。The composition of the composite material prepared by this method is: Al-5%Si-3% LaB6 .
实施例2Example 2
(1)按以下质量百分比准备好所需原料:14.58%的工业纯铝、13.00%的工业结晶硅、65.60%的铝-硼合金、6.82%的工业纯镧;其中,铝-硼合金合金中硼的质量百分含量为5.00%;(1) Prepare the required raw materials according to the following mass percentages: 14.58% industrial pure aluminum, 13.00% industrial crystalline silicon, 65.60% aluminum-boron alloy, 6.82% industrial pure lanthanum; wherein, in the aluminum-boron alloy The mass percentage of boron is 5.00%;
(2)将工业纯铝、工业结晶硅及铝-硼合金置于熔炼炉中熔化并升温至1000℃,保温10分钟;(2) Melting industrial pure aluminum, industrial crystalline silicon and aluminum-boron alloy in a smelting furnace and raising the temperature to 1000°C for 10 minutes;
(3)向熔体中加入工业纯镧,原位反应15分钟后精炼、浇注,即可得到六硼化镧颗粒增强的铝硅基复合材料。(3) Adding commercially pure lanthanum to the melt, reacting in situ for 15 minutes, refining and pouring, the aluminum-silicon-based composite material reinforced with lanthanum hexaboride particles can be obtained.
用该方法制备的复合材料成分为:Al-13%Si-10%LaB6。The composition of the composite material prepared by this method is: Al-13%Si-10% LaB6 .
实施例3Example 3
(1)按以下质量百分比准备好所需原料:36.84%的工业纯铝、20.00%的工业结晶硅、39.75%的铝-硼合金、3.41%的工业纯镧;其中,铝-硼合金合金中硼的质量百分含量为4.00%;(1) Prepare the required raw materials according to the following mass percentages: 36.84% industrial pure aluminum, 20.00% industrial crystalline silicon, 39.75% aluminum-boron alloy, 3.41% industrial pure lanthanum; wherein, in the aluminum-boron alloy The mass percentage of boron is 4.00%;
(2)将工业纯铝、工业结晶硅及铝-硼合金置于熔炼炉中熔化并升温至1200℃,保温5分钟;(2) Melting industrial pure aluminum, industrial crystalline silicon and aluminum-boron alloy in a smelting furnace and raising the temperature to 1200°C for 5 minutes;
(3)向熔体中加入工业纯镧,原位反应10分钟后精炼、浇注,即可得到六硼化镧颗粒增强的铝硅基复合材料。(3) Adding commercially pure lanthanum to the melt, reacting in situ for 10 minutes, refining and pouring, the aluminum-silicon-based composite material reinforced with lanthanum hexaboride particles can be obtained.
用该方法制备的复合材料成分为:Al-20%Si-5%LaB6。The composition of the composite material prepared by this method is: Al-20%Si-5% LaB6 .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210016413 CN102534314B (en) | 2012-01-19 | 2012-01-19 | Lanthanum-hexaboride-reinforced aluminum-silicon-base composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210016413 CN102534314B (en) | 2012-01-19 | 2012-01-19 | Lanthanum-hexaboride-reinforced aluminum-silicon-base composite material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102534314A true CN102534314A (en) | 2012-07-04 |
CN102534314B CN102534314B (en) | 2013-08-21 |
Family
ID=46342331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210016413 Active CN102534314B (en) | 2012-01-19 | 2012-01-19 | Lanthanum-hexaboride-reinforced aluminum-silicon-base composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102534314B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103215477A (en) * | 2013-05-07 | 2013-07-24 | 山东大学 | Preparation method of calcium-hexaboride-reinforced aluminum matrix composite |
CN105967199A (en) * | 2016-07-04 | 2016-09-28 | 东南大学 | Preparation method of lanthanum hexaboride powder |
CN106048273A (en) * | 2016-07-04 | 2016-10-26 | 东南大学 | Aluminum silicon lanthanum boron quaternary intermediate alloy and preparing method thereof |
RU2697683C1 (en) * | 2018-11-23 | 2019-08-16 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Method for production of ingots from aluminum-matrix composite alloy |
CN113278853A (en) * | 2021-05-21 | 2021-08-20 | 上海理工大学 | High-hardness AlSi10Mg @ Gr composite material and product forming method thereof |
CN113355565A (en) * | 2021-06-02 | 2021-09-07 | 山东宏和轻量化科技有限公司 | High-temperature-resistant welded aluminum alloy suitable for extrusion casting and preparation method thereof |
CN118996192A (en) * | 2024-08-15 | 2024-11-22 | 合肥工业大学 | TiB preparation by refining matrix grains with La element2Method for particle reinforced aluminium-based composite material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1376805A (en) * | 2001-03-23 | 2002-10-30 | 中国科学院金属研究所 | High-strength in-situ Al-base composition |
CN1563455A (en) * | 2004-04-14 | 2005-01-12 | 北京科技大学 | Method for fabricating aluminum based composite material through composite reinforcement by in situ titanium diboride and dialuminum dioxide |
-
2012
- 2012-01-19 CN CN 201210016413 patent/CN102534314B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1376805A (en) * | 2001-03-23 | 2002-10-30 | 中国科学院金属研究所 | High-strength in-situ Al-base composition |
CN1563455A (en) * | 2004-04-14 | 2005-01-12 | 北京科技大学 | Method for fabricating aluminum based composite material through composite reinforcement by in situ titanium diboride and dialuminum dioxide |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103215477A (en) * | 2013-05-07 | 2013-07-24 | 山东大学 | Preparation method of calcium-hexaboride-reinforced aluminum matrix composite |
CN103215477B (en) * | 2013-05-07 | 2015-07-08 | 山东大学 | Preparation method of calcium-hexaboride-reinforced aluminum matrix composite |
CN105967199A (en) * | 2016-07-04 | 2016-09-28 | 东南大学 | Preparation method of lanthanum hexaboride powder |
CN106048273A (en) * | 2016-07-04 | 2016-10-26 | 东南大学 | Aluminum silicon lanthanum boron quaternary intermediate alloy and preparing method thereof |
CN105967199B (en) * | 2016-07-04 | 2018-02-02 | 东南大学 | A kind of preparation method of lanthanum hexaboride powder |
CN106048273B (en) * | 2016-07-04 | 2018-09-21 | 东南大学 | A kind of aluminium silicon lanthanum boron quaternary intermediate alloy and preparation method thereof |
RU2697683C1 (en) * | 2018-11-23 | 2019-08-16 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Method for production of ingots from aluminum-matrix composite alloy |
CN113278853A (en) * | 2021-05-21 | 2021-08-20 | 上海理工大学 | High-hardness AlSi10Mg @ Gr composite material and product forming method thereof |
CN113278853B (en) * | 2021-05-21 | 2022-08-23 | 上海理工大学 | High-hardness AlSi10Mg @ Gr composite material and product forming method thereof |
CN113355565A (en) * | 2021-06-02 | 2021-09-07 | 山东宏和轻量化科技有限公司 | High-temperature-resistant welded aluminum alloy suitable for extrusion casting and preparation method thereof |
CN113355565B (en) * | 2021-06-02 | 2022-04-15 | 山东宏和轻量化科技有限公司 | High-temperature-resistant welded aluminum alloy suitable for extrusion casting and preparation method thereof |
CN118996192A (en) * | 2024-08-15 | 2024-11-22 | 合肥工业大学 | TiB preparation by refining matrix grains with La element2Method for particle reinforced aluminium-based composite material |
CN118996192B (en) * | 2024-08-15 | 2025-03-04 | 合肥工业大学 | A method for preparing TiB2 particle reinforced aluminum matrix composite material by refining matrix grains using La element |
Also Published As
Publication number | Publication date |
---|---|
CN102534314B (en) | 2013-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102534314B (en) | Lanthanum-hexaboride-reinforced aluminum-silicon-base composite material and preparation method thereof | |
CN101921930B (en) | Multicomponent microalloyed titanium alloy and preparation method thereof | |
CN105463222B (en) | A kind of endogenous TiC Ti5Si3The preparation method of granule intensified titanium-base compound material | |
CN103160702B (en) | Method for preparing silicon carbide particle reinforced aluminum matrix composite material | |
CN100460541C (en) | Composite strengthened heat-resistant titanium alloy | |
CN105568034B (en) | A kind of particle hybrid composite and preparation method thereof | |
CN101463440A (en) | Aluminum based composite material for piston and preparation thereof | |
CN101323925A (en) | Tungsten carbide material with Ni3Al as cementing phase and preparation thereof | |
CN110512122B (en) | Graphene composite rare earth modified hypoeutectic Al-Si-Mg casting alloy and preparation method thereof | |
Guo et al. | Promoting wetting of Mg on the SiC surfaces by addition of Al, Zn and Zr elements: A study via first-principle calculations | |
CN104532042B (en) | A kind of cubic boron nitride particle Reinforced Cu base electrode composite and preparation method thereof | |
CN108384977B (en) | A dual-phase particle reinforced Al-based composite material and its preparation method | |
CN111690840B (en) | Amorphous phase silicate particle and SiC particle reinforced aluminum matrix composite material and preparation | |
CN102874809A (en) | Silicon carbide composite powder and preparation process thereof | |
WO2014019400A1 (en) | Method for refining primary silicon of hypereutectic al-si alloy | |
CN101985715B (en) | High performance cast magnesium alloy and preparation method thereof | |
CN100554463C (en) | The preparation method of a kind of original position TiB2 and the compound reinforced aluminum matrix composites of aluminium sesquioxide | |
CN103031462A (en) | Fabrication method of titanium carbide particle reinforced aluminum-copper base composite | |
CN100376705C (en) | Preparation method of aluminum oxide-titanium carbide particle reinforced aluminum matrix composite material | |
CN101787475B (en) | Quasicrystal particle reinforced magnesium matrix composite material and preparation method thereof | |
CN112359262A (en) | Strengthening and toughening titanium-aluminum-based composite material and preparation method thereof | |
CN1297682C (en) | Preparation method for reinforced aluminum base composite material composed by in situ alpha-Al2O3 crystal whisker and TiC grain | |
CN110551910B (en) | A kind of aluminum alloy composite refining and strengthening agent and preparation method and device thereof | |
CN101787481B (en) | Quasicrystal intermediate alloy containing Mg-Zn-Gd radical and preparation method thereof | |
CN101974782B (en) | Method for preparing α-Al2O3 whiskers by carbothermal reduction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |