CN102531660A - Method for preparing porous ceramic by using tertiary butanol-based freezing sublimation method - Google Patents
Method for preparing porous ceramic by using tertiary butanol-based freezing sublimation method Download PDFInfo
- Publication number
- CN102531660A CN102531660A CN2010106166905A CN201010616690A CN102531660A CN 102531660 A CN102531660 A CN 102531660A CN 2010106166905 A CN2010106166905 A CN 2010106166905A CN 201010616690 A CN201010616690 A CN 201010616690A CN 102531660 A CN102531660 A CN 102531660A
- Authority
- CN
- China
- Prior art keywords
- hours
- tert
- butanol
- ceramics
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 239000000919 ceramic Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000005092 sublimation method Methods 0.000 title claims abstract description 10
- 230000008014 freezing Effects 0.000 title description 9
- 238000007710 freezing Methods 0.000 title description 9
- 239000011148 porous material Substances 0.000 claims abstract description 41
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000000843 powder Substances 0.000 claims abstract description 20
- 239000002994 raw material Substances 0.000 claims abstract description 18
- 239000011224 oxide ceramic Substances 0.000 claims abstract description 17
- 229910052574 oxide ceramic Inorganic materials 0.000 claims abstract description 16
- 239000004698 Polyethylene Substances 0.000 claims abstract description 11
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims abstract description 11
- -1 polyethylene Polymers 0.000 claims abstract description 11
- 229920000573 polyethylene Polymers 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims abstract description 11
- 239000002904 solvent Substances 0.000 claims abstract description 9
- 239000011230 binding agent Substances 0.000 claims abstract description 3
- 239000002270 dispersing agent Substances 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 8
- 238000000859 sublimation Methods 0.000 claims description 8
- 230000008022 sublimation Effects 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000000967 suction filtration Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 13
- 238000001914 filtration Methods 0.000 abstract description 12
- 238000009826 distribution Methods 0.000 abstract description 11
- 239000002002 slurry Substances 0.000 abstract description 10
- 229910010293 ceramic material Inorganic materials 0.000 description 9
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- CRPUJAZIXJMDBK-UHFFFAOYSA-N camphene Chemical compound C1CC2C(=C)C(C)(C)C1C2 CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- PXRCIOIWVGAZEP-UHFFFAOYSA-N Primaeres Camphenhydrat Natural products C1CC2C(O)(C)C(C)(C)C1C2 PXRCIOIWVGAZEP-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 2
- 229930006739 camphene Natural products 0.000 description 2
- ZYPYEBYNXWUCEA-UHFFFAOYSA-N camphenilone Natural products C1CC2C(=O)C(C)(C)C1C2 ZYPYEBYNXWUCEA-UHFFFAOYSA-N 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GCXABJZYUHROFE-UHFFFAOYSA-N [Si]=O.[Y] Chemical compound [Si]=O.[Y] GCXABJZYUHROFE-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及多孔陶瓷领域,具体为一种以叔丁醇基冷冻升华法制备多孔陶瓷的方法,氧化物材料体系基本不受限制,工程类陶瓷普遍适用。采用氧化物陶瓷粉末为原料,以叔丁醇做溶剂,以柠檬酸和聚乙烯醇缩丁醛分别做为分散剂和粘结剂。原料经过球磨5~50小时,将分散均匀的原料倒入聚乙烯模具中,模具底部温度在零度以下、顶部温度为室温,经过5分钟~2小时冷却。脱模后在水循环泵抽滤条件下升华24~72小时,在空气炉中加热至1200~1600℃并保温5分钟~2小时。本发明在室温下配置有机体系的浆料,得到的多孔陶瓷具有定向孔分布,且孔为多边形,尺寸分布在100微米以下,而纵向长度可达毫米量级。本发明通过调节固含量来控制孔隙率大小,并且制备超高孔隙率(>80%)材料。The invention relates to the field of porous ceramics, in particular to a method for preparing porous ceramics by a tert-butanol-based freeze-sublimation method. The oxide material system is basically not limited, and is generally applicable to engineering ceramics. Oxide ceramic powder is used as raw material, tert-butanol is used as solvent, citric acid and polyvinyl butyral are used as dispersant and binder respectively. The raw materials are ball milled for 5 to 50 hours, and the evenly dispersed raw materials are poured into polyethylene molds. The temperature at the bottom of the mold is below zero, and the temperature at the top is room temperature. After 5 minutes to 2 hours, it cools down. After demoulding, it is sublimated for 24-72 hours under the condition of water circulation pump suction and filtration, heated to 1200-1600°C in an air furnace and kept for 5 minutes-2 hours. The present invention prepares the slurry of the organic system at room temperature, and the obtained porous ceramics have directional pore distribution, and the pores are polygonal, the size distribution is below 100 microns, and the longitudinal length can reach the order of millimeters. The invention controls the size of the porosity by adjusting the solid content, and prepares the ultra-high porosity (>80%) material.
Description
技术领域 technical field
本发明涉及多孔陶瓷领域,具体为一种以叔丁醇基冷冻升华法制备多孔陶瓷的方法。The invention relates to the field of porous ceramics, in particular to a method for preparing porous ceramics by a tert-butanol-based freeze-sublimation method.
背景技术 Background technique
多孔陶瓷,是指具有一定尺寸和数量的孔隙结构的新型陶瓷材料。在材料成型与高温烧结过程中,内部形成大量彼此相通或闭合的气孔。多孔陶瓷具有均匀分布的微孔或孔洞,孔隙率较高、体积密度小、比表面较大和独特的物理表面特性,对液体和气体介质有选择的透过性、能量吸收或阻尼特性,作为陶瓷材料特有的耐高温、耐腐蚀、高的化学稳定性和尺寸稳定性。因此多孔陶瓷这一绿色材料可以在气体或液体过滤、净化分离、化工催化载体、吸声减震、高级保温材料、生物植入材料、特种墙体材料和传感器材料等多方面得到广泛的应用。孔隙率作为多孔陶瓷材料的主要技术指标,其对材料性能有较大的影响。一般来讲,高孔隙率的多孔陶瓷材料具有更好的隔热性能和过滤性能,因而其应用更加广泛。因此多孔陶瓷在金属铸造、石油化工、核电工业、食品加工、能源、环保及生物等领域有着广泛的应用。冷冻升华法是近年来新兴的一种制备定向多孔陶瓷的方法,常用的溶剂是水和莰烯,但由于水冷冻前后体积变化比较大(体积变化量达9%),并且对于一些易与水发生反应的材料,如氧化镁、氮化铝,并不适用于该体系;用水做溶剂所制备材料的孔隙率一般在30%~70%范围内,进一步提高孔隙率有一定困难;而莰烯的熔点相比于叔丁醇较高,不能在室温下操作,另外它与很多常用的有机添加剂并不相溶,这也限制了其在陶瓷工艺中的应用。Porous ceramics refer to new ceramic materials with a certain size and number of pore structures. During the process of material molding and high-temperature sintering, a large number of interconnected or closed pores are formed inside. Porous ceramics have evenly distributed micropores or holes, high porosity, small bulk density, large specific surface area and unique physical surface properties, and have selective permeability, energy absorption or damping properties for liquid and gas media. Material-specific high temperature resistance, corrosion resistance, high chemical stability and dimensional stability. Therefore, porous ceramics, a green material, can be widely used in many aspects such as gas or liquid filtration, purification and separation, chemical catalyst carrier, sound absorption and shock absorption, advanced thermal insulation materials, biological implant materials, special wall materials and sensor materials. As the main technical index of porous ceramic materials, porosity has a great influence on the properties of materials. In general, porous ceramic materials with high porosity have better thermal insulation and filtration properties, so their applications are more extensive. Therefore, porous ceramics are widely used in the fields of metal casting, petrochemical industry, nuclear power industry, food processing, energy, environmental protection and biology. The freeze-sublimation method is a new method for preparing oriented porous ceramics in recent years. The commonly used solvents are water and camphene. Materials that react, such as magnesium oxide and aluminum nitride, are not suitable for this system; the porosity of materials prepared by using water as a solvent is generally in the range of 30% to 70%, and it is difficult to further increase the porosity; and camphene Compared with tert-butanol, its melting point is higher, and it cannot be operated at room temperature. In addition, it is not compatible with many commonly used organic additives, which also limits its application in ceramic technology.
发明内容 Contents of the invention
本发明的目的在于提供一种以叔丁醇基冷冻升华法制备多孔陶瓷的方法,解决现有技术中存在的适用范围不够、提高孔隙率较困难等问题,制备多孔陶瓷具有直孔形貌,并进一步提高了多孔陶瓷的孔隙率。The purpose of the present invention is to provide a method for preparing porous ceramics with tert-butanol-based freeze-sublimation method, which solves the problems of insufficient scope of application and difficulty in improving porosity in the prior art, and prepares porous ceramics with straight hole morphology. And further improve the porosity of porous ceramics.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种以叔丁醇基冷冻升华法制备多孔陶瓷的方法,该方法以氧化物陶瓷粉、叔丁醇、柠檬酸和聚乙烯醇缩丁醛为原料,通过浇注、冷冻、升华和烧结制备出高孔隙率、定向排布的多孔陶瓷,可以同时得到定向孔分布和超高孔隙率的多孔陶瓷,具体步骤如下:A method for preparing porous ceramics by tert-butanol-based freeze-sublimation method, which uses oxide ceramic powder, tert-butanol, citric acid and polyvinyl butyral as raw materials, and prepares porous ceramics by pouring, freezing, sublimation and sintering Porous ceramics with high porosity and directional arrangement can simultaneously obtain porous ceramics with directional pore distribution and ultra-high porosity. The specific steps are as follows:
1)原料组成及成分范围:1) Raw material composition and composition range:
氧化物陶瓷粉末为原料,以叔丁醇做溶剂,以柠檬酸和聚乙烯醇缩丁醛分别为分散剂和粘结剂;其中,柠檬酸占氧化物陶瓷粉末的0.5~3wt%,聚乙烯醇缩丁醛占氧化物陶瓷粉末的0.3~5wt%,固含量(即氧化物陶瓷粉末含量)范围为5~40vol%。Oxide ceramic powder is used as raw material, tert-butanol is used as solvent, citric acid and polyvinyl butyral are respectively used as dispersant and binder; wherein, citric acid accounts for 0.5-3wt% of oxide ceramic powder, polyethylene Alcohol butyral accounts for 0.3-5 wt% of the oxide ceramic powder, and the solid content (that is, the content of the oxide ceramic powder) ranges from 5-40 vol%.
2)制备工艺:2) Preparation process:
原料经过球磨5~50小时,将分散均匀的浆料倒入聚乙烯模具中,模具采用底部温度在零度以下、顶部温度则为室温(20~30℃)的梯度温度,经过5分钟~2小时,待浆料完全凝固,脱模后在水循环泵抽滤条件下(压力约为0.098MPa)升华24~72小时,之后在空气炉中以2~20℃/min的升温速率加热至1200~1600℃并保温0.5~2小时进行烧结,得到多孔的块体陶瓷。After ball milling the raw materials for 5-50 hours, pour the uniformly dispersed slurry into a polyethylene mold. The mold adopts a gradient temperature with the bottom temperature below zero and the top temperature at room temperature (20-30°C). After 5 minutes to 2 hours , after the slurry is completely solidified, after demolding, it is sublimated for 24 to 72 hours under the condition of water circulation pump suction and filtration (pressure is about 0.098MPa), and then heated to 1200 to 1600 in an air furnace at a heating rate of 2 to 20°C/min. ℃ and keep warm for 0.5 to 2 hours for sintering to obtain porous bulk ceramics.
本发明中,氧化物陶瓷粉末的粒度为200~400目,氧化物陶瓷粉末可以为工程类氧化物陶瓷,优选氧化铝、氧化硅、氧化钛、氧化锆、莫来石或硅酸钇等;采用本发明方法获得的多孔陶瓷孔为直孔形貌,多孔陶瓷孔径为20~100μm,孔隙率分布在50%~90%之间。In the present invention, the particle size of the oxide ceramic powder is 200-400 mesh, and the oxide ceramic powder can be an engineering oxide ceramic, preferably alumina, silicon oxide, titanium oxide, zirconium oxide, mullite or yttrium silicate; The pores of the porous ceramics obtained by the method of the invention are in the shape of straight pores, the diameter of the pores of the porous ceramics is 20-100 μm, and the porosity is distributed between 50% and 90%.
本发明中,将模具放在冰块上,实现模具底部温度在零度以下,而顶部温度则为室温(20~30℃),从而可以形成梯度温度。In the present invention, the mold is placed on ice cubes so that the temperature at the bottom of the mold is below zero while the temperature at the top is room temperature (20-30° C.), thereby forming a gradient temperature.
本发明的特点是:The features of the present invention are:
1.本发明选用原料简单,分别是:氧化物陶瓷粉、叔丁醇、柠檬酸和聚乙烯醇缩丁醛。1. The present invention uses simple raw materials, which are respectively: oxide ceramic powder, tert-butanol, citric acid and polyvinyl butyral.
2.本发明通过选用叔丁醇作为冷冻升华的溶剂,使得这个工艺流程可以在室温下进行操作,较之以往工艺要更加便捷。2. The present invention uses tert-butanol as the solvent for freeze sublimation, so that the process can be operated at room temperature, which is more convenient than the previous process.
3.采用本发明方法获得的多孔材料具有均匀的孔分布,孔具有明显的定向性,且孔隙率可控,并可得到超高孔隙率,采用该方法所制备的材料特别适合应用于高温和高腐蚀性介质的过滤,也可作为渗入轻质金属制备复合材料的骨架。3. The porous material obtained by the method of the present invention has a uniform pore distribution, the pores have obvious orientation, and the porosity is controllable, and ultra-high porosity can be obtained. The material prepared by this method is particularly suitable for high temperature and Filtration of highly corrosive media can also be used as a framework for infiltrating light metals to prepare composite materials.
4.本发明方法适用性强,材料选择不受氧化物体系限制,例如:氧化铝、氧化硅、氧化钛、氧化锆、莫来石、硅酸钇等。4. The method of the present invention has strong applicability, and the selection of materials is not limited by the oxide system, for example: alumina, silica, titania, zirconia, mullite, yttrium silicate and the like.
5.本发明用叔丁醇做替代溶剂是因为其性能在有机体系中最接近于水并且其体积收缩要远小于水,且工艺简单,在常温下就可进行。同时,用叔丁醇作为溶剂制得的多孔陶瓷孔形貌显著不同于用水和莰烯两种溶剂所得的枝晶状孔形貌,该方法制备出的材料具有直孔形貌的特征,所得材料特别适合应用于高温和高腐蚀性介质的过滤,也可作为渗入轻质金属制备复合材料的骨架。以上特点提供了一种制备新型孔形貌的工艺。5. The present invention uses tert-butanol as a substitute solvent because its performance is closest to water in an organic system and its volume shrinkage is much smaller than water, and the process is simple and can be carried out at normal temperature. At the same time, the pore morphology of porous ceramics prepared by using tert-butanol as a solvent is significantly different from the dendritic pore morphology obtained by two solvents of water and amphene. The material prepared by this method has the characteristics of straight pore morphology, and the obtained The material is especially suitable for the filtration of high temperature and highly corrosive media, and can also be used as a skeleton for infiltrating light metals to prepare composite materials. The above features provide a process for preparing novel pore shapes.
6.本发明可以在室温下配置有机体系的浆料,最终得到的多孔陶瓷具有定向孔分布,且孔为多边形,尺寸分布在100微米以下,而纵向长度可达毫米量级。采用本发明方法可通过调节固含量来控制孔隙率大小,并且可用该方法制备超高孔隙率(>80%)材料。6. The present invention can prepare the slurry of the organic system at room temperature, and the finally obtained porous ceramic has a directional pore distribution, and the pores are polygonal, the size distribution is below 100 microns, and the longitudinal length can reach the order of millimeters. By adopting the method of the invention, the porosity can be controlled by adjusting the solid content, and the method can be used to prepare ultra-high porosity (>80%) materials.
7.本发明氧化物材料体系基本不受限制,工程类陶瓷普遍适用。7. The oxide material system of the present invention is basically not limited, and is generally applicable to engineering ceramics.
附图说明 Description of drawings
图1为多孔氧化铝在垂直于冷冻方向的扫描电镜照片。Figure 1 is a scanning electron micrograph of porous alumina in the direction perpendicular to freezing.
图2为多孔氧化铝在平行于冷冻方向的扫描电镜照片。Figure 2 is a scanning electron micrograph of porous alumina in a direction parallel to freezing.
图3为固含量与孔隙率关系曲线。Figure 3 is the relationship curve between solid content and porosity.
图4为多孔Y2SiO5陶瓷的扫描电镜照片。Fig. 4 is a scanning electron micrograph of porous Y 2 SiO 5 ceramics.
图5为多孔Y2SiO5陶瓷的孔径分布图。Fig. 5 is a pore size distribution diagram of porous Y 2 SiO 5 ceramics.
图6为多孔Y2SiO5陶瓷的固含量与孔隙率和压缩强度关系曲线。Fig. 6 is the relation curve of solid content, porosity and compressive strength of porous Y 2 SiO 5 ceramics.
具体实施方式 Detailed ways
下面通过实施例详述本发明。The present invention is described in detail below by way of examples.
实施例1.Example 1.
原料采用粒度为400目左右的Al2O3粉39.7克、叔丁醇31.6克、柠檬酸0.397克和聚乙烯醇缩丁醛0.200克,球磨10小时,将分散好的浆料倒入聚乙烯模具中,模具底部温度在零下5℃,而顶部温度则为室温(20~30℃),冷冻时间10分钟,脱模,在水循环泵抽滤条件下(压力约为0.098MPa)升华24小时,之后在空气炉中于1500℃保温1小时,合成多孔陶瓷材料,获得的多孔陶瓷孔为直孔形貌,孔径为20~60μm,孔隙率为66%。相应的扫描照片列在附图1上。The raw materials are 39.7 grams of Al 2 O 3 powder with a particle size of about 400 mesh, 31.6 grams of tert-butanol, 0.397 grams of citric acid and 0.200 grams of polyvinyl butyral. Ball mill for 10 hours, and pour the dispersed slurry into polyethylene In the mold, the temperature at the bottom of the mold is minus 5°C, while the temperature at the top is room temperature (20-30°C), the freezing time is 10 minutes, demoulding, sublimation under the condition of water circulation pump filtration (pressure is about 0.098MPa) for 24 hours, Afterwards, it was kept at 1500° C. for 1 hour in an air furnace to synthesize a porous ceramic material. The obtained porous ceramic pores were in the shape of straight pores, with a diameter of 20-60 μm and a porosity of 66%. The corresponding scanned photos are listed in Figure 1.
实施例2.Example 2.
原料采用粒度为400目左右的Al2O3粉29.9克、叔丁醇33.6克、柠檬酸0.297克和聚乙烯醇缩丁醛0.161克,球磨15小时,将分散好的浆料倒入聚乙烯模具中,模具底部温度在零下3℃,而顶部温度则为室温(20~30℃),冷冻时间10分钟,脱模,在水循环泵抽滤条件下(压力约为0.098MPa)升华48小时,之后在空气炉中于1400℃保温1小时,合成多孔陶瓷材料,获得的多孔陶瓷孔为直孔形貌,孔径为50~80μm,孔隙率可达72%。相应的扫描照片列在附图2上。The raw materials are 29.9 grams of Al 2 O 3 powder with a particle size of about 400 mesh, 33.6 grams of tert-butanol, 0.297 grams of citric acid and 0.161 grams of polyvinyl butyral. Ball mill for 15 hours, and pour the dispersed slurry into polyethylene In the mold, the temperature at the bottom of the mold is minus 3°C, while the temperature at the top is room temperature (20-30°C), the freezing time is 10 minutes, demoulding, sublimation under the condition of water circulation pump filtration (pressure is about 0.098MPa) for 48 hours, Afterwards, heat preservation at 1400° C. for 1 hour in an air furnace to synthesize porous ceramic materials. The obtained porous ceramic pores are in the shape of straight pores, with a pore diameter of 50-80 μm and a porosity of up to 72%. The corresponding scanned photographs are listed in Figure 2.
实施例3.Example 3.
原料采用粒度为400目左右的Al2O3粉19.85克、叔丁醇35.55克、柠檬酸。0.199克和聚乙烯醇缩丁醛0.101克,球磨12小时,将分散好的浆料倒入聚乙烯模具中,模具底部温度在零下6℃,而顶部温度则为室温(20~30℃),冷冻时间10分钟,脱模,在水循环泵抽滤条件下(压力约为0.098MPa)升华64小时,之后在空气炉中于1500℃保温1小时,合成多孔陶瓷材料,获得的多孔陶瓷孔为直孔形貌,孔径范围在50~100μm之间,孔隙率高达84.9%。固含量与孔隙率的关系见附图3上,随着固含量的下降,其孔隙率有所上升。The raw materials are 19.85 grams of Al 2 O 3 powder with a particle size of about 400 mesh, 35.55 grams of tert-butanol, and citric acid. 0.199 grams and 0.101 grams of polyvinyl butyral, ball milled for 12 hours, pour the dispersed slurry into a polyethylene mold, the temperature at the bottom of the mold is minus 6°C, and the temperature at the top is room temperature (20-30°C). Freeze for 10 minutes, remove the mold, sublimate for 64 hours under the condition of water circulation pump suction and filtration (pressure is about 0.098MPa), and then keep warm at 1500°C for 1 hour in an air furnace to synthesize porous ceramic materials. The obtained porous ceramic pores are straight Pore morphology, the pore diameter ranges from 50 to 100 μm, and the porosity is as high as 84.9%. The relationship between solid content and porosity is shown in Figure 3. As the solid content decreases, the porosity increases.
实施例4.Example 4.
原料采用粒度为400目左右的合成后的Y2SiO5粉44.4克、叔丁醇31.6克、柠檬酸0.44克和聚乙烯醇缩丁醛0.22克,球磨10小时,将分散好的浆料倒入聚乙烯模具中,模具底部温度在零下10℃,而顶部温度则为室温(20~30℃),冷冻时间10分钟,脱模,在水循环泵抽滤条件下(压力约为0.098MPa)升华24小时,之后在空气炉中于1200℃保温1小时,合成多孔陶瓷材料,获得的多孔陶瓷孔为直孔形貌,孔径为20~50μm,孔隙率为52.4%。与孔形貌对应的扫描照片列在附图4上,其中图4(a)为垂直凝固方向的扫描照片,图4(b)为平行于凝固方向的扫描照片。The raw materials are 44.4 grams of synthesized Y 2 SiO 5 powder with a particle size of about 400 meshes, 31.6 grams of tert-butanol, 0.44 grams of citric acid and 0.22 grams of polyvinyl butyral, ball milled for 10 hours, and poured the dispersed slurry Put it into a polyethylene mold, the temperature at the bottom of the mold is minus 10°C, and the temperature at the top is room temperature (20-30°C), the freezing time is 10 minutes, demoulding, sublimation under the condition of water circulation pump filtration (pressure is about 0.098MPa) After 24 hours, heat preservation at 1200° C. for 1 hour in an air furnace to synthesize a porous ceramic material. The obtained porous ceramic pores are straight pores with a diameter of 20-50 μm and a porosity of 52.4%. The scanning photos corresponding to the pore morphology are listed in accompanying drawing 4, wherein Fig. 4(a) is a scanning photo perpendicular to the coagulation direction, and Fig. 4(b) is a scanning photo parallel to the coagulation direction.
实施例5.Example 5.
原料采用粒度为300目左右的合成后的Y2SiO5粉33.4克、叔丁醇33.6克、柠檬酸0.33克和聚乙烯醇缩丁醛0.17克,球磨15小时,将分散好的浆料倒入聚乙烯模具中,模具底部温度在零下8℃,而顶部温度则为室温(20~30℃),冷冻时间20分钟,脱模,在水循环泵抽滤条件下(压力约为0.098MPa)升华48小时,之后在空气炉中于1300℃保温1小时,合成多孔陶瓷材料,获得的多孔陶瓷孔为直孔形貌,孔径范围在50~80μm,孔隙率可达63%以上。The raw materials are 33.4 grams of synthesized Y 2 SiO 5 powder with a particle size of about 300 mesh, 33.6 grams of tert-butanol, 0.33 grams of citric acid and 0.17 grams of polyvinyl butyral, ball milled for 15 hours, and poured the dispersed slurry Put it into a polyethylene mold, the bottom temperature of the mold is minus 8°C, and the top temperature is room temperature (20-30°C), the freezing time is 20 minutes, demoulding, and sublimation under the condition of water circulation pump filtration (pressure is about 0.098MPa) After 48 hours, heat preservation at 1300°C for 1 hour in an air furnace to synthesize a porous ceramic material. The obtained porous ceramic pores are in the shape of straight pores, the pore diameter ranges from 50 to 80 μm, and the porosity can reach more than 63%.
实施例6.Example 6.
原料采用粒度为400目左右的合成后的Y2SiO5粉22.2克、叔丁醇35.5克、柠檬酸0.22克和聚乙烯醇缩丁醛0.11克,球磨24小时,将分散好的浆料倒入聚乙烯模具中,模具底部温度在零摄氏度,而顶部温度则为室温(20~30℃),冷冻时间30分钟,脱模,在水循环泵抽滤条件下(压力约为0.098MPa)升华60小时,之后在空气炉中于1200℃保温1小时,合成多孔钇硅氧陶瓷材料,多孔陶瓷孔为直孔形貌,其孔径分布范围为60~100μm,孔隙率可达73%。以上合成的多孔钇硅氧陶瓷具有均匀的孔分布,采用压汞法表征孔分布的曲线列在附图5上。孔隙率及压缩强度与固含量的关系列在附图6上,由图5可知该方法孔径分布均匀,且孔径随固含量的增加而减小。由图6可以得知,可以调节固含量来优化孔隙率和材料强度之间的关系。The raw materials are 22.2 grams of synthesized Y 2 SiO 5 powder with a particle size of about 400 meshes, 35.5 grams of tert-butanol, 0.22 grams of citric acid and 0.11 grams of polyvinyl butyral, ball milled for 24 hours, and poured the dispersed slurry Put it into a polyethylene mold, the temperature at the bottom of the mold is zero degrees Celsius, and the temperature at the top is room temperature (20-30 degrees Celsius), the freezing time is 30 minutes, demoulding, sublimation 60 under the condition of water circulation pump filtration (pressure is about 0.098MPa) Hours, and then in an air furnace at 1200 ° C for 1 hour to synthesize porous yttrium silicon oxide ceramic materials. The porous ceramic pores are straight pores, the pore size distribution ranges from 60 to 100 μm, and the porosity can reach 73%. The porous yttrium silicate ceramics synthesized above have a uniform pore distribution, and the curves characterizing the pore distribution by mercury intrusion porosimetry are listed in Fig. 5 . The relationship between porosity, compressive strength and solid content is listed in Figure 6. From Figure 5, it can be seen that the pore size distribution of this method is uniform, and the pore size decreases with the increase of solid content. It can be seen from Figure 6 that the relationship between porosity and material strength can be optimized by adjusting the solid content.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106166905A CN102531660A (en) | 2010-12-31 | 2010-12-31 | Method for preparing porous ceramic by using tertiary butanol-based freezing sublimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106166905A CN102531660A (en) | 2010-12-31 | 2010-12-31 | Method for preparing porous ceramic by using tertiary butanol-based freezing sublimation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102531660A true CN102531660A (en) | 2012-07-04 |
Family
ID=46339854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010106166905A Pending CN102531660A (en) | 2010-12-31 | 2010-12-31 | Method for preparing porous ceramic by using tertiary butanol-based freezing sublimation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102531660A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104529505A (en) * | 2014-12-24 | 2015-04-22 | 东北大学 | Directional multi-stage-hole filter and preparation method thereof |
CN104671749A (en) * | 2013-12-03 | 2015-06-03 | 辽宁法库陶瓷工程技术研究中心 | Preparation method of high-porosity aluminum oxide ceramic filter |
CN107638737A (en) * | 2017-09-21 | 2018-01-30 | 陕西科技大学 | A kind of preparation method of efficient spider web type air filting material |
CN111116209A (en) * | 2019-12-06 | 2020-05-08 | 西安交通大学 | Directional porous silicon nitride honeycomb ceramic and rapid preparation method thereof |
CN111908906A (en) * | 2020-07-20 | 2020-11-10 | 中国科学院上海硅酸盐研究所 | High-porosity porous fused quartz with oriented pore structure and preparation method thereof |
CN113024231A (en) * | 2021-03-17 | 2021-06-25 | 深圳陶陶科技有限公司 | Preparation method of porous ceramic atomizing core and electronic cigarette |
CN114478047A (en) * | 2022-01-17 | 2022-05-13 | 南京航空航天大学 | Anti-leakage honeycomb graded-hole ceramic-based photothermal storage material and preparation method thereof |
CN115215677A (en) * | 2022-05-12 | 2022-10-21 | 中国科学院金属研究所 | Porous high-entropy carbide ultra-high-temperature heat-insulating material with uniform pore structure and preparation method thereof |
CN115259890A (en) * | 2022-06-24 | 2022-11-01 | 扬州北方三山工业陶瓷有限公司 | Preparation method of ceramic matrix composite |
CN115710137A (en) * | 2022-10-31 | 2023-02-24 | 西安建筑科技大学 | Calcium cobaltate thermoelectric ceramic with oriented micro-nano through holes and preparation method thereof |
CN115872732A (en) * | 2023-02-23 | 2023-03-31 | 中国人民解放军国防科技大学 | Porous yttrium silicate-aluminum oxide complex phase wave-transmitting ceramic and preparation method thereof |
-
2010
- 2010-12-31 CN CN2010106166905A patent/CN102531660A/en active Pending
Non-Patent Citations (4)
Title |
---|
CHANGQING HONG ET AL.: "Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting", 《SCRIPTA MATERIALIA》 * |
LIANGFA HU ET AL.: "Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
T.Y. YANG ET AL.: "Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries", 《RESOURCES, CONSERVATION AND RECYCLING》 * |
周立忠等: "叔丁醇基凝胶注模工艺制备轻质、高强莫来石多孔陶瓷", 《无机材料学报》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104671749A (en) * | 2013-12-03 | 2015-06-03 | 辽宁法库陶瓷工程技术研究中心 | Preparation method of high-porosity aluminum oxide ceramic filter |
CN104529505A (en) * | 2014-12-24 | 2015-04-22 | 东北大学 | Directional multi-stage-hole filter and preparation method thereof |
CN107638737A (en) * | 2017-09-21 | 2018-01-30 | 陕西科技大学 | A kind of preparation method of efficient spider web type air filting material |
CN111116209A (en) * | 2019-12-06 | 2020-05-08 | 西安交通大学 | Directional porous silicon nitride honeycomb ceramic and rapid preparation method thereof |
CN111908906A (en) * | 2020-07-20 | 2020-11-10 | 中国科学院上海硅酸盐研究所 | High-porosity porous fused quartz with oriented pore structure and preparation method thereof |
CN113024231A (en) * | 2021-03-17 | 2021-06-25 | 深圳陶陶科技有限公司 | Preparation method of porous ceramic atomizing core and electronic cigarette |
CN114478047A (en) * | 2022-01-17 | 2022-05-13 | 南京航空航天大学 | Anti-leakage honeycomb graded-hole ceramic-based photothermal storage material and preparation method thereof |
CN115215677A (en) * | 2022-05-12 | 2022-10-21 | 中国科学院金属研究所 | Porous high-entropy carbide ultra-high-temperature heat-insulating material with uniform pore structure and preparation method thereof |
CN115259890A (en) * | 2022-06-24 | 2022-11-01 | 扬州北方三山工业陶瓷有限公司 | Preparation method of ceramic matrix composite |
CN115259890B (en) * | 2022-06-24 | 2023-03-10 | 扬州北方三山工业陶瓷有限公司 | Preparation method of ceramic matrix composite |
CN115710137A (en) * | 2022-10-31 | 2023-02-24 | 西安建筑科技大学 | Calcium cobaltate thermoelectric ceramic with oriented micro-nano through holes and preparation method thereof |
CN115710137B (en) * | 2022-10-31 | 2023-05-12 | 西安建筑科技大学 | Calcium cobaltate thermoelectric ceramic with directional micro-nano through holes and preparation method thereof |
CN115872732A (en) * | 2023-02-23 | 2023-03-31 | 中国人民解放军国防科技大学 | Porous yttrium silicate-aluminum oxide complex phase wave-transmitting ceramic and preparation method thereof |
CN115872732B (en) * | 2023-02-23 | 2023-06-06 | 中国人民解放军国防科技大学 | A kind of porous yttrium silicate-alumina composite wave transparent ceramic and its preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102531660A (en) | Method for preparing porous ceramic by using tertiary butanol-based freezing sublimation method | |
Araki et al. | Room‐temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system | |
Liu et al. | A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method | |
CN101054311B (en) | Process of preparing porous ceramic material by ''freezing-gel forming'' | |
Fukushima et al. | Fabrication and properties of ultra highly porous silicon carbide by the gelation–freezing method | |
CN100482614C (en) | Method for preparing light-weight and high-strength ceramic materials by colloidal molding process | |
CN103588482B (en) | Manufacture method of high porosity and high strength yttrium-silicon-oxygen porous ceramics | |
CN103071764B (en) | For the CaZrO of titanium or titanium alloy hot investment casting 3the preparation method of shell | |
Li et al. | Porous Y2SiO5 ceramic with low thermal conductivity | |
Fu et al. | The role of CuO–TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting | |
CN102990006B (en) | A kind of shell for titanium or titanium alloy hot investment casting and preparation method thereof | |
CN103232228B (en) | Preparation method of porous aluminum oxide composite ceramic | |
Xue et al. | Al2O3 ceramics with well-oriented and hexagonally ordered pores: The formation of microstructures and the control of properties | |
CN102432327A (en) | Method for preparing alumina porous ceramic with composite structure by adopting freeze drying process | |
Choi et al. | Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting | |
Moritz et al. | Ceramic bodies with complex geometries and ceramic shells by freeze casting using ice as mold material | |
Matsunaga et al. | Fabrication of porous silica ceramics by gelation-freezing of diatomite slurry | |
CN104529505A (en) | Directional multi-stage-hole filter and preparation method thereof | |
CN107021785A (en) | A kind of ultra-toughness layered polymer ceramic composite and preparation method thereof | |
CN105084878A (en) | Preparation method of acicular mullite porous ceramic block material with superhigh amount of porosity | |
CN105669174A (en) | Porous mullite material with high porosity and oriented pore structure and preparation method thereof | |
CN104926316A (en) | Porous silicon nitride-silicon carbide composite ceramic material and preparation method thereof | |
CN105110779B (en) | A method for preparing mullite porous ceramics by welding whiskers | |
CN101423380B (en) | Method for preparing directional arrangement pore structure porous ceramic | |
Li et al. | Microstructures and properties of solid-state-sintered silicon carbide membrane supports |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120704 |
|
WD01 | Invention patent application deemed withdrawn after publication |