CN102527437A - Magnetically-separable noble metal catalyst and preparation method thereof - Google Patents
Magnetically-separable noble metal catalyst and preparation method thereof Download PDFInfo
- Publication number
- CN102527437A CN102527437A CN2011102633556A CN201110263355A CN102527437A CN 102527437 A CN102527437 A CN 102527437A CN 2011102633556 A CN2011102633556 A CN 2011102633556A CN 201110263355 A CN201110263355 A CN 201110263355A CN 102527437 A CN102527437 A CN 102527437A
- Authority
- CN
- China
- Prior art keywords
- noble metal
- catalyst
- metal catalyst
- reaction
- nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 40
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 239000010931 gold Substances 0.000 claims abstract description 36
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052737 gold Inorganic materials 0.000 claims abstract description 33
- 239000002105 nanoparticle Substances 0.000 claims abstract description 26
- 239000004005 microsphere Substances 0.000 claims abstract description 25
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011258 core-shell material Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 7
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000001338 self-assembly Methods 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 230000003197 catalytic effect Effects 0.000 claims description 13
- 238000006722 reduction reaction Methods 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 8
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 claims description 5
- BYGOPQKDHGXNCD-UHFFFAOYSA-N tripotassium;iron(3+);hexacyanide Chemical compound [K+].[K+].[K+].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] BYGOPQKDHGXNCD-UHFFFAOYSA-N 0.000 claims description 4
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 claims description 3
- 235000019345 sodium thiosulphate Nutrition 0.000 claims description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 2
- 239000012279 sodium borohydride Substances 0.000 claims description 2
- 239000010970 precious metal Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 8
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- 238000006555 catalytic reaction Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 238000007885 magnetic separation Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 239000011943 nanocatalyst Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-M 4-nitrophenolate Chemical compound [O-]C1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-M 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- AWDBHOZBRXWRKS-UHFFFAOYSA-N tetrapotassium;iron(6+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+6].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] AWDBHOZBRXWRKS-UHFFFAOYSA-N 0.000 description 1
- SWGJCIMEBVHMTA-UHFFFAOYSA-K trisodium;6-oxido-4-sulfo-5-[(4-sulfonatonaphthalen-1-yl)diazenyl]naphthalene-2-sulfonate Chemical compound [Na+].[Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=C(S([O-])(=O)=O)C2=C1 SWGJCIMEBVHMTA-UHFFFAOYSA-K 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Catalysts (AREA)
Abstract
本发明涉及一种可磁性分离的贵金属催化剂及其制备方法。该催化剂由磁性载体和贵金属纳米粒子组成。其中磁性载体为具有核壳结构的微球,四氧化三铁为核,二氧化硅为壳。贵金属纳米粒子为金纳米粒子。本发明利用层层自组装的方法将金纳米粒子负载在磁性微球上,使得催化剂可以通过外加磁场有效地从反应后的溶液中分离出来并且重复使用,解决了目前贵金属催化反应体系金属纳米粒子分离难的问题。
The invention relates to a magnetically separable noble metal catalyst and a preparation method thereof. The catalyst is composed of magnetic carrier and noble metal nanoparticles. The magnetic carrier is a microsphere with a core-shell structure, ferric oxide is the core, and silicon dioxide is the shell. The noble metal nanoparticles are gold nanoparticles. The present invention uses the layer-by-layer self-assembly method to load gold nanoparticles on the magnetic microspheres, so that the catalyst can be effectively separated from the reacted solution by an external magnetic field and reused, which solves the problem of metal nanoparticles in the current noble metal catalytic reaction system. problem of separation.
Description
技术领域 technical field
本发明属于贵金属纳米催化剂技术领域,具体涉及一种可磁性分离的金催化剂及其制备方法以及在有机和无机还原反应上的应用。The invention belongs to the technical field of noble metal nano-catalysts, and in particular relates to a magnetically separable gold catalyst, its preparation method and its application in organic and inorganic reduction reactions.
背景技术 Background technique
贵金属纳米粒子由于其较小的粒径、较高的表面活性而被广泛用作催化剂。贵金属纳米粒子在适当条件下可以催化断裂H-H、C-H、C-C和C-O键。由于这种颗粒没有孔隙,可避免由于反应物向内孔的缓慢扩散而引起某些副反应,因而其活性和选择性都高于同类的传统催化剂。然而贵金属纳米粒子本身存在的两个缺点限制了其在催化领域的应用。首先,由于贵金属纳米粒子具有小的尺寸且在反应体系中有高的分散性,因此很难将其从体系中彻底分离出来;此外,贵金属纳米粒子具有高的表面能使其倾向于聚集形成大的粒子,最终失去其纳米粒子的特性。解决这些问题的一种方法就是将它们固定在固态的载体上。大量的文章报道了碳材料、金属氧化物和沸石等作为贵金属纳米粒子的载体,然而它们的应用也遇到了催化剂分离难的问题。由于这些载体均为粉体的小颗粒,采用传统的机械分离方法比如过滤和离心,耗时长,能耗高,并且分离的效率也不够理想。磁性分离是一种新型的绿色分离方法。它能够快速有效的回收催化剂,降低对环境的污染,减小分离过程的能耗。因而把贵金属纳米粒子负载在磁性的载体上,组装成磁载贵金属催化剂,可利用磁分离实现催化剂回收,使其既保持良好的催化活性,又能够重复使用。Noble metal nanoparticles are widely used as catalysts due to their small size and high surface activity. Noble metal nanoparticles can catalyze the breaking of H-H, C-H, C-C and C-O bonds under appropriate conditions. Because the particle has no pores, it can avoid some side reactions caused by the slow diffusion of reactants to the inner pores, so its activity and selectivity are higher than similar traditional catalysts. However, two disadvantages of noble metal nanoparticles limit their application in the field of catalysis. First of all, due to the small size and high dispersion of noble metal nanoparticles in the reaction system, it is difficult to completely separate them from the system; in addition, the high surface energy of noble metal nanoparticles tends to aggregate to form large particles, eventually losing their nanoparticle properties. One way to solve these problems is to immobilize them on solid supports. A large number of articles have reported carbon materials, metal oxides, and zeolites as supports for noble metal nanoparticles. However, their application also encountered the problem of difficult separation of catalysts. Since these carriers are all small particles of powder, traditional mechanical separation methods such as filtration and centrifugation are time-consuming, high energy consumption, and the separation efficiency is not ideal. Magnetic separation is a new type of green separation method. It can quickly and effectively recover the catalyst, reduce the pollution to the environment and reduce the energy consumption of the separation process. Therefore, the noble metal nanoparticles are loaded on the magnetic carrier and assembled into a magnetically loaded noble metal catalyst. The catalyst can be recovered by magnetic separation, so that it not only maintains good catalytic activity, but also can be reused.
核壳结构复合材料具有独特的性质和在诸多领域的潜在应用价值。在磁性核上包上一层惰性氧化物壳如二氧化硅,既能避免磁性核在强酸强碱的溶液中受到腐蚀,又能在惰性氧化物壳的外表面嫁接新的官能团,从而极大丰富其表面化学。把贵金属纳米粒子固载在这样核壳结构的磁性载体上可以使金属粒子在循环使用中保持高的催化活性,同时将贵金属纳米粒子修饰到具有功能特性的核壳结构磁性球上,得到双功能或者多功能的复合材料。复合材料中各成分间的协同作用将会促进该材料中各组分的性质分别得到改善。Core-shell composites have unique properties and potential applications in many fields. Coating a layer of inert oxide shell such as silicon dioxide on the magnetic core can not only prevent the magnetic core from being corroded in the solution of strong acid and strong alkali, but also graft new functional groups on the outer surface of the inert oxide shell, thereby greatly Enrich its surface chemistry. Immobilizing noble metal nanoparticles on such a core-shell magnetic carrier can make the metal particles maintain high catalytic activity during recycling. At the same time, the noble metal nanoparticles are modified on the core-shell magnetic spheres with functional properties to obtain dual functions. Or multifunctional composites. The synergistic effect between the components in the composite material will promote the properties of each component in the material to be improved separately.
层层自组装是构筑膜材料的一种简单易行的方法。本发明采用聚亚乙基二胺为聚阳离子,柠檬酸根包裹的金纳米粒子作为阴离子,通过静电相互作用,在核壳结构的磁性微球表面组装多层膜。金纳米粒子固定在聚亚乙基二胺的多层膜中,其多孔结构确保催化底物能够快速到达金纳米粒子的活性点,从而保证金纳米粒子高效的催化性能。Layer-by-layer self-assembly is a simple and easy method to construct membrane materials. In the invention, polyethylene diamine is used as polycation, gold nanoparticles wrapped by citrate are used as anion, and a multilayer film is assembled on the surface of magnetic microspheres with a core-shell structure through electrostatic interaction. The gold nanoparticles are immobilized in the multilayer film of polyethylene diamine, and its porous structure ensures that the catalytic substrate can quickly reach the active sites of the gold nanoparticles, thereby ensuring the efficient catalytic performance of the gold nanoparticles.
发明内容 Contents of the invention
本发明制备了一种可磁性分离的贵金属催化剂,该催化剂由磁性载体和贵金属纳米粒子组成。其中磁性载体为四氧化三铁和二氧化硅构成的核壳结构微球,贵金属纳米粒子为金纳米粒子。The invention prepares a magnetically separable noble metal catalyst, which is composed of a magnetic carrier and noble metal nanoparticles. Wherein the magnetic carrier is a core-shell structure microsphere composed of iron ferric oxide and silicon dioxide, and the noble metal nanoparticles are gold nanoparticles.
所述的四氧化三铁磁性微球是在高温水热条件下制备得到,其颗粒大小在300-360纳米之间(见附图1);二氧化硅壳层的厚度在20纳米到25纳米之间;金纳米粒子在沸腾状态下利用柠檬酸还原制备。这种预先制备的金纳米颗粒,可以对其形貌和粒径进行有效地控制。本发明中的金纳米粒子颗粒大小为12纳米左右,形貌为球形The ferroferric oxide magnetic microspheres are prepared under high-temperature hydrothermal conditions, and the particle size is between 300-360 nanometers (see accompanying drawing 1); the thickness of the silica shell is from 20 nanometers to 25 nanometers Between; gold nanoparticles were prepared by reduction of citric acid in boiling state. The shape and size of the pre-prepared gold nanoparticles can be effectively controlled. The particle size of the gold nanoparticles in the present invention is about 12 nanometers, and the shape is spherical
本发明制备的可磁性分离的贵金属催化剂是通过层层自组装的方法,其中聚亚乙基二胺作为聚阳离子,柠檬酸根包裹的金纳米粒子作为阴离子,通过静电作用,把金纳米粒子负载到核壳结构的磁性微球表面(见附图2)。The magnetically separable noble metal catalyst prepared by the present invention is a method of self-assembly layer by layer, wherein polyethylene diamine is used as a polycation, and gold nanoparticles wrapped by citrate are used as anions. Through electrostatic interaction, the gold nanoparticles are loaded on the The surface of magnetic microspheres with core-shell structure (see accompanying drawing 2).
本发明制备的可磁性分离的贵金属催化剂在有机还原反应(对硝基苯酚还原生成对氨基苯酚)以及无机还原反应(铁氰酸钾还原生成亚铁氰酸钾)均具有优异的催化活性。The magnetically separable noble metal catalyst prepared by the invention has excellent catalytic activity in organic reduction reaction (reduction of p-nitrophenol to generate p-aminophenol) and inorganic reduction reaction (reduction of potassium ferricyanate to generate potassium ferrocyanate).
本发明制备的可磁性分离的贵金属催化剂,便于分离回收。反应结束后,在外磁场的作用下,30秒内迅速分离。该催化剂具有良好的循环使用性,多次循环使用后,其催化活性保持在90%以上。The magnetically separable noble metal catalyst prepared by the invention is convenient for separation and recovery. After the reaction, under the action of an external magnetic field, they will be separated rapidly within 30 seconds. The catalyst has good recyclability, and its catalytic activity remains above 90% after repeated use.
附图说明 Description of drawings
图1负载金的磁性微球的扫描电镜照片Fig.1 Scanning electron micrographs of gold-loaded magnetic microspheres
图2负载金的磁性微球的透射电镜照片Figure 2 Transmission electron micrographs of gold-loaded magnetic microspheres
图3硝基苯酚与硼氢化钠反应加入金催化剂前后紫外可见光谱变化Figure 3 The change of UV-visible spectrum before and after adding gold catalyst in the reaction of nitrophenol and sodium borohydride
图4铁氰酸钾与硫代硫酸钠反应加入金催化剂前后紫外可见光谱变化Figure 4 The changes of ultraviolet-visible spectra before and after adding gold catalyst in the reaction of potassium ferricyanate and sodium thiosulfate
图5,金催化剂五次循环反应速率变化曲线Figure 5, the curve of the reaction rate of the five cycles of the gold catalyst
具体实施方式 Detailed ways
实施例1:核壳结构的磁性核的制备Example 1: Preparation of magnetic core with core-shell structure
首先,制备四氧化三铁微球。2.7g FeCl3·6H2O和7.2g乙酸钠加入到100mL乙二醇溶液中,磁性搅拌至形成均一的黄色澄清溶液,然后转入聚四氟乙烯内衬的高压水热釜中,200℃下反应8h。得到的四氧化铁磁性颗粒用水和乙醇反复洗涤,50℃真空干燥然后备用。在四氧化三铁表面负载二氧化硅壳层前,0.1g四氧化三铁首先用15mL 2M HCl溶液超声处理5min。磁性分离,洗涤,然后加入到400mL乙醇,100mL超纯水和15mL浓氨水的混合溶液中,机械搅拌15min后,逐滴加入3.5mL正硅酸四乙酯,继续机械搅拌反应6h。外磁场分离除去溶液中二氧化硅杂质,得到的核壳结构磁性微球。用乙醇和超纯水反复洗涤,最后真空干燥后备用。First, ferric oxide microspheres were prepared. 2.7g FeCl 3 6H 2 O and 7.2g sodium acetate were added to 100mL ethylene glycol solution, stirred magnetically until a uniform yellow clear solution was formed, then transferred to a polytetrafluoroethylene-lined high-pressure hydrothermal kettle at 200°C Under reaction 8h. The obtained iron tetroxide magnetic particles were repeatedly washed with water and ethanol, dried under vacuum at 50° C. and then used for future use. Before loading the silica shell layer on the surface of ferric oxide, 0.1 g of ferric oxide was ultrasonically treated with 15 mL of 2M HCl solution for 5 min. Magnetically separated, washed, and then added to a mixed solution of 400mL ethanol, 100mL ultrapure water and 15mL concentrated ammonia water. After mechanical stirring for 15 minutes, 3.5mL tetraethyl orthosilicate was added dropwise, and mechanical stirring was continued for 6 hours. The external magnetic field separates and removes the silica impurities in the solution to obtain magnetic microspheres with a core-shell structure. Washed repeatedly with ethanol and ultrapure water, and finally vacuum-dried before use.
实施例2:金纳米粒子的制备Embodiment 2: Preparation of gold nanoparticles
250mL HAuCl4·3H2O水溶液(1mM)和25mL柠檬酸钠水溶液(38.3mM)在磁力搅拌下都加热到沸腾。然后把沸腾的柠檬酸钠溶液迅速加入到金的前驱体溶液中,混合溶液继续搅拌10min后撤掉热源,溶液继续搅拌15min,得到含有金纳米粒子的紫红色溶液。冷却后,冷藏保存,备用。250 mL of HAuCl 4 ·3H 2 O aqueous solution (1 mM) and 25 mL of sodium citrate aqueous solution (38.3 mM) were heated to boiling under magnetic stirring. Then the boiling sodium citrate solution was quickly added to the gold precursor solution, the mixed solution was stirred for 10 minutes, the heat source was removed, and the solution was stirred for 15 minutes to obtain a purple-red solution containing gold nanoparticles. After cooling, refrigerate and store for later use.
实施例3:金纳米粒子在磁性微球上的负载Example 3: Loading of gold nanoparticles on magnetic microspheres
金纳米粒子在磁性微球的负载通过层层自组装方法,按照以下步骤进行:(i)0.25g核壳结构的磁性微球载体首先加入到10mL浓度为10mg/mL聚亚乙基二胺(PEI)水溶液中,搅拌30min,在微球表面吸附一层PEI聚阳离子。然后磁性分离,反复洗涤除去多余的PEI。PEI溶液中含有0.5M NaCl作为支持电解质,溶液的pH调整为8.5。(ii)吸附了PEI的磁性微球继续加入到10mL预先合成的Au溶液中,搅拌30min,在PEI聚阳离子表面吸附上一层金纳米粒子,重复以上分离和洗涤过程,得到负载了一个PEI/Au双层的磁性微球。重复(i)和(ii)两个步骤,得到组装不同PEI/Au双层数的磁性微球,其金纳米粒子的负载量从1.27%到5.70%连续可调。The loading of gold nanoparticles on magnetic microspheres is carried out by the layer-by-layer self-assembly method according to the following steps: (i) 0.25g of magnetic microsphere carrier with core-shell structure is first added to 10mL concentration of 10mg/mL polyethylene diamine ( PEI) aqueous solution, stirred for 30 minutes, and a layer of PEI polycations was adsorbed on the surface of the microspheres. Then magnetic separation, repeated washing to remove excess PEI. The PEI solution contained 0.5M NaCl as a supporting electrolyte, and the pH of the solution was adjusted to 8.5. (ii) The magnetic microspheres adsorbed by PEI were added to 10mL of the pre-synthesized Au solution, stirred for 30min, and a layer of gold nanoparticles was adsorbed on the surface of the PEI polycation, and the above separation and washing process was repeated to obtain a PEI/ Au bilayer magnetic microspheres. Two steps (i) and (ii) were repeated to obtain magnetic microspheres assembled with different numbers of PEI/Au bilayers, and the loading of gold nanoparticles was continuously adjustable from 1.27% to 5.70%.
实施例4:负载了金纳米粒子的磁性微球在对硝基苯酚还原反应中的催化性能测试Example 4: Catalytic performance test of magnetic microspheres loaded with gold nanoparticles in the reduction reaction of p-nitrophenol
含有0.75×10-3mmol负载了金纳米粒子的磁性微球加入含有1.5mL对硝基苯酚(0.01M),100mL水和1.5mL NaBH4(1M)的混合溶液中,在25℃下不断电动搅拌反应,每隔5min取样,磁性分离催化剂,测试溶液的紫外可见光谱。反应在20min内完成,溶液颜色从亮黄色变成无色。Magnetic microspheres containing 0.75×10 -3 mmol loaded gold nanoparticles were added to a mixed solution containing 1.5mL p-nitrophenol (0.01M), 100mL water and 1.5mL NaBH 4 (1M), and the electrokinetics were continuously performed at 25°C. The reaction was stirred, samples were taken every 5 minutes, the catalyst was magnetically separated, and the ultraviolet-visible spectrum of the solution was tested. The reaction was completed within 20 min, and the color of the solution changed from bright yellow to colorless.
催化活性评价:对硝基苯酚加入NaBH4后,紫外可见光谱中波长400nm处对应于对硝基苯酚盐的吸收。随着反应的进行,此吸收峰的强度降低。由于反应过程中中,加入过量的NaBH4,所以此反应可以近似看成一级反应。把测得400nm波长处的光吸收值取负对数后,以时间为横坐标,作图。曲线拟合后,得到的直线的斜率即为此还原反应的反应速率。空白实验只加相同体积同一浓度的反应底物而不加催化剂。紫外可见光谱表征在美国PerkinElmer公司生产的Lambda-35型的紫外可见光谱仪。Catalytic activity evaluation: After adding NaBH 4 to p-nitrophenol, the wavelength 400nm in the ultraviolet-visible spectrum corresponds to the absorption of p-nitrophenolate. The intensity of this absorption peak decreases as the reaction progresses. Since an excess of NaBH 4 was added during the reaction, the reaction can be approximately regarded as a first-order reaction. Take the negative logarithm of the light absorption value measured at the wavelength of 400nm, and plot the graph with time as the abscissa. After curve fitting, the slope of the obtained straight line is the reaction rate of the reduction reaction. In the blank experiment, only the same volume and concentration of the reaction substrate was added without catalyst. Ultraviolet-visible spectroscopy was characterized by a Lambda-35 ultraviolet-visible spectrometer produced by PerkinElmer in the United States.
不加催化剂,反应进行的及其缓慢。而加入少量的催化剂后,反应迅速进行,400nm的吸收峰急剧降低。根据-lnA400/t曲线斜率计算出反应速率,加入催化剂后,反应速率提高了将近90倍。Without catalyst, the reaction proceeds extremely slowly. After adding a small amount of catalyst, the reaction proceeded rapidly, and the absorption peak at 400nm decreased sharply. The reaction rate was calculated according to the slope of the -lnA 400 /t curve. After adding the catalyst, the reaction rate increased nearly 90 times.
实施例5:负载了金纳米粒子的磁性微球在铁氰酸钾还原反应中的催化性能测试Example 5: Catalytic Performance Test of Magnetic Microspheres Loaded with Gold Nanoparticles in the Reduction of Potassium Ferricyanate
含有1.0×10-3mmol金纳米粒子的磁性微球加入含有2mL K3[Fe(CN)6](0.01M),30mL H2O和2mL Na2S2O3(0.1M)溶液中,40℃下不断电动搅拌反应90min,每隔10min取样,磁性分离催化剂测试溶液的紫外可见光谱。催化活性评价按照实施例4的方法进行。由于反应过程中加入过量的硫代硫酸钠,所以此反应也可以近似看成一级反应。K3[Fe(CN)6]的特征吸收峰在420nm,实验中把测得420nm波长处的光吸收值取负对数后,以时间为横坐标作图。曲线拟合后,得到直线的斜率即为此还原反应的反应速率。不加催化剂,反应几乎不能进行。加入催化剂后反应顺利进行,420nm处的吸收峰逐渐降低。根据-lnA420/t曲线斜率计算出反应速率。加入催化剂后,反应速率提高了将近8倍。Magnetic microspheres containing 1.0×10 -3 mmol gold nanoparticles were added to a solution containing 2mL K 3 [Fe(CN) 6 ] (0.01M), 30mL H 2 O and 2mL Na 2 S 2 O 3 (0.1M), At 40°C, the reaction was continuously electric stirring for 90 minutes, and samples were taken every 10 minutes, and the ultraviolet-visible spectrum of the solution was tested by magnetic separation of the catalyst. Catalytic activity evaluation was carried out according to the method of Example 4. Because excessive sodium thiosulfate is added in the reaction process, so this reaction can also be approximately regarded as a first-order reaction. The characteristic absorption peak of K 3 [Fe(CN) 6 ] is at 420nm. In the experiment, after taking the negative logarithm of the light absorption value at 420nm wavelength measured in the experiment, the abscissa is plotted with time. After curve fitting, the slope of the obtained straight line is the reaction rate of the reduction reaction. Without the addition of a catalyst, the reaction is almost impossible to proceed. After adding the catalyst, the reaction proceeded smoothly, and the absorption peak at 420 nm gradually decreased. The reaction rate was calculated from the slope of the -lnA 420 /t curve. After adding the catalyst, the reaction rate increased by nearly 8 times.
实施例6:负载了金纳米粒子的磁性微球在两个反应体系中的循环利用Example 6: Recycling of magnetic microspheres loaded with gold nanoparticles in two reaction systems
按照实施例4,5完成一次催化实验后,采用外磁场分离溶液中的催化剂,用超纯水反复洗涤、烘干。重复以上的实验步骤,进入多次的循环使用。本发明中,催化剂循环利用5次。5次使用后,催化剂的催化性能保持在90%以上。因此,本发明中的可磁性分离金纳米催化剂结构稳定,具有优异的循环使用性。After a catalytic experiment was completed according to Examples 4 and 5, the catalyst in the solution was separated by an external magnetic field, washed and dried repeatedly with ultrapure water. Repeat the above experimental steps to enter multiple cycles. In the present invention, the catalyst is recycled 5 times. After 5 times of use, the catalytic performance of the catalyst remained above 90%. Therefore, the magnetically separable gold nanocatalyst in the present invention has a stable structure and excellent recyclability.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102633556A CN102527437A (en) | 2010-12-16 | 2011-09-06 | Magnetically-separable noble metal catalyst and preparation method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010591086.1 | 2010-12-16 | ||
CN201010591086 | 2010-12-16 | ||
CN2011102633556A CN102527437A (en) | 2010-12-16 | 2011-09-06 | Magnetically-separable noble metal catalyst and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102527437A true CN102527437A (en) | 2012-07-04 |
Family
ID=46336182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011102633556A Pending CN102527437A (en) | 2010-12-16 | 2011-09-06 | Magnetically-separable noble metal catalyst and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102527437A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102990078A (en) * | 2013-01-16 | 2013-03-27 | 无锡市寰创环境科技发展有限公司 | Method for preparing nanoscale zero-valent iron loaded on surfaces of glass beads by virtue of layer-by-layer assembly |
CN103157493A (en) * | 2013-03-21 | 2013-06-19 | 北京化工大学 | Noble metal supported composite functional nano sphere catalyst having recoverability function and application thereof in catalyzing reduction of p-nitrophenol |
CN103191784A (en) * | 2013-03-28 | 2013-07-10 | 北京化工大学 | Magnetic nickel aluminum hydrotalcite composite material loaded with gold nanoparticles and application thereof for catalyzing reduction reaction of p-nitrophenol |
CN103212441A (en) * | 2013-04-12 | 2013-07-24 | 中国科学院福建物质结构研究所 | Bimetal pyridine film catalyst and preparation and application thereof |
CN104307578A (en) * | 2014-11-12 | 2015-01-28 | 东南大学 | Reactivation method of ceramic catalyst in sodium borohydride reduction reaction of p-nitrophenol |
CN104888868A (en) * | 2015-05-29 | 2015-09-09 | 广西大学 | A kind of preparation method of noble metal supported Fe3O4 nanometer microsphere |
CN105126869A (en) * | 2015-08-26 | 2015-12-09 | 辽宁石油化工大学 | Method for preparing p-aminophenol by using Ni/Ag/Fe3O4 composite catalyst |
CN107649184A (en) * | 2017-09-27 | 2018-02-02 | 武汉工程大学 | A kind of perfusion silica gel/nanogold complex microsphere and its preparation method and application |
CN107824198A (en) * | 2017-11-09 | 2018-03-23 | 武汉工程大学 | A kind of preparation method and applications of the magnetic nano-catalyst of supported nano-gold |
CN109626549A (en) * | 2019-01-17 | 2019-04-16 | 上海理工大学 | A kind of method of quick catalysis degradation 4- nitrophenol |
CN109847762A (en) * | 2019-01-18 | 2019-06-07 | 中国科学院宁波材料技术与工程研究所 | Catalyst, preparation method and application for hydrogenation to synthesize p-aminophenol |
CN112619666A (en) * | 2020-11-30 | 2021-04-09 | 深圳市人民医院 | Preparation method and application of central radial-diplopore nano composite material |
CN113740311A (en) * | 2021-08-13 | 2021-12-03 | 电子科技大学 | A metal-dielectric material composite probe SERS substrate and its preparation method |
CN114910435A (en) * | 2022-05-09 | 2022-08-16 | 洛阳莱博图电子科技有限公司 | Water quality total nitrogen detection reagent and preparation method thereof |
CN116060038A (en) * | 2021-11-04 | 2023-05-05 | 复旦大学 | A super-assembled micro-nano motor catalyst and its application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060105170A1 (en) * | 2002-08-29 | 2006-05-18 | Isis Innovation Limited | Magnetic particle and process for preparation |
CN101716348A (en) * | 2009-12-07 | 2010-06-02 | 江南大学 | Construction and application of gold-magnetic nanoparticle-based medicament carrying platform |
-
2011
- 2011-09-06 CN CN2011102633556A patent/CN102527437A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060105170A1 (en) * | 2002-08-29 | 2006-05-18 | Isis Innovation Limited | Magnetic particle and process for preparation |
CN101716348A (en) * | 2009-12-07 | 2010-06-02 | 江南大学 | Construction and application of gold-magnetic nanoparticle-based medicament carrying platform |
Non-Patent Citations (2)
Title |
---|
SHOUHU XUAN等: "Preparation,Characterization,and Catalytic Activity of Core/Shell Fe3O4@Polyaniline@Au Nanocomposites", 《LANGMUIR》 * |
李迪等: "单层膜包裹的金纳米粒子的表面状态对铁氰根离子和硫代硫酸根离子间的氧化还原反应的影响", 《中国科学B辑》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102990078A (en) * | 2013-01-16 | 2013-03-27 | 无锡市寰创环境科技发展有限公司 | Method for preparing nanoscale zero-valent iron loaded on surfaces of glass beads by virtue of layer-by-layer assembly |
CN103157493A (en) * | 2013-03-21 | 2013-06-19 | 北京化工大学 | Noble metal supported composite functional nano sphere catalyst having recoverability function and application thereof in catalyzing reduction of p-nitrophenol |
CN103157493B (en) * | 2013-03-21 | 2015-01-28 | 北京化工大学 | Noble metal supported composite functional nano sphere catalyst having recoverability function and application thereof in catalyzing reduction of p-nitrophenol |
CN103191784A (en) * | 2013-03-28 | 2013-07-10 | 北京化工大学 | Magnetic nickel aluminum hydrotalcite composite material loaded with gold nanoparticles and application thereof for catalyzing reduction reaction of p-nitrophenol |
CN103191784B (en) * | 2013-03-28 | 2015-05-13 | 北京化工大学 | Magnetic nickel aluminum hydrotalcite composite material loaded with gold nanoparticles and application thereof for catalyzing reduction reaction of p-nitrophenol |
CN103212441A (en) * | 2013-04-12 | 2013-07-24 | 中国科学院福建物质结构研究所 | Bimetal pyridine film catalyst and preparation and application thereof |
CN104307578A (en) * | 2014-11-12 | 2015-01-28 | 东南大学 | Reactivation method of ceramic catalyst in sodium borohydride reduction reaction of p-nitrophenol |
CN104307578B (en) * | 2014-11-12 | 2016-06-29 | 东南大学 | Ceramic catalyst rejuvenation method in sodium borohydride reduction paranitrophenol reacts |
CN104888868A (en) * | 2015-05-29 | 2015-09-09 | 广西大学 | A kind of preparation method of noble metal supported Fe3O4 nanometer microsphere |
CN105126869A (en) * | 2015-08-26 | 2015-12-09 | 辽宁石油化工大学 | Method for preparing p-aminophenol by using Ni/Ag/Fe3O4 composite catalyst |
CN107649184A (en) * | 2017-09-27 | 2018-02-02 | 武汉工程大学 | A kind of perfusion silica gel/nanogold complex microsphere and its preparation method and application |
CN107824198A (en) * | 2017-11-09 | 2018-03-23 | 武汉工程大学 | A kind of preparation method and applications of the magnetic nano-catalyst of supported nano-gold |
CN109626549A (en) * | 2019-01-17 | 2019-04-16 | 上海理工大学 | A kind of method of quick catalysis degradation 4- nitrophenol |
CN109626549B (en) * | 2019-01-17 | 2021-11-30 | 上海理工大学 | Method for rapidly catalyzing and degrading 4-nitrophenol |
CN109847762A (en) * | 2019-01-18 | 2019-06-07 | 中国科学院宁波材料技术与工程研究所 | Catalyst, preparation method and application for hydrogenation to synthesize p-aminophenol |
CN112619666A (en) * | 2020-11-30 | 2021-04-09 | 深圳市人民医院 | Preparation method and application of central radial-diplopore nano composite material |
CN112619666B (en) * | 2020-11-30 | 2023-10-03 | 深圳市人民医院 | Preparation method and application of center radial-double-hole nano composite material |
CN113740311A (en) * | 2021-08-13 | 2021-12-03 | 电子科技大学 | A metal-dielectric material composite probe SERS substrate and its preparation method |
CN113740311B (en) * | 2021-08-13 | 2022-12-20 | 电子科技大学 | Metal-dielectric material composite probe SERS substrate and preparation method thereof |
CN116060038A (en) * | 2021-11-04 | 2023-05-05 | 复旦大学 | A super-assembled micro-nano motor catalyst and its application |
CN114910435A (en) * | 2022-05-09 | 2022-08-16 | 洛阳莱博图电子科技有限公司 | Water quality total nitrogen detection reagent and preparation method thereof |
CN114910435B (en) * | 2022-05-09 | 2023-05-23 | 洛阳莱博图电子科技有限公司 | Water quality total nitrogen detection reagent and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102527437A (en) | Magnetically-separable noble metal catalyst and preparation method thereof | |
Chen et al. | A simple strategy for engineering heterostructures of Au nanoparticle-loaded metal–organic framework nanosheets to achieve plasmon-enhanced photocatalytic CO 2 conversion under visible light | |
Yang et al. | High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets | |
Chang et al. | Fe3O4 nanoparticles coated with Ag-nanoparticle-embedded metal–organic framework MIL-100 (Fe) for the catalytic reduction of 4-nitrophenol | |
Wu et al. | Fabrication of highly stable metal oxide hollow nanospheres and their catalytic activity toward 4-nitrophenol reduction | |
Sharma et al. | Preparation and catalytic applications of nanomaterials: a review | |
Zhou et al. | Au decorated Fe 3 O 4@ TiO 2 magnetic composites with visible light-assisted enhanced catalytic reduction of 4-nitrophenol | |
CN103586048B (en) | A kind of nano Pd particle magnetic catalyst, preparation and react for liquid-phase catalysis | |
Fang et al. | Synthesis of novel ultrasmall Au-loaded magnetic SiO2/carbon yolk-shell ellipsoids as highly reactive and recoverable nanocatalysts | |
Liu et al. | Aluminum metal–organic framework–silver nanoparticle composites for catalytic reduction of nitrophenols | |
CN105084372A (en) | Method for loading nano-particles of metal or metallic oxide in mesoporous silica channel | |
CN103191784B (en) | Magnetic nickel aluminum hydrotalcite composite material loaded with gold nanoparticles and application thereof for catalyzing reduction reaction of p-nitrophenol | |
CN107335403A (en) | Load magnetic core-shell nano composite material, its preparation method and the application of nickel particle | |
Verma et al. | Plasmonic nanocatalysts for visible-NIR light induced hydrogen generation from storage materials | |
CN103464065A (en) | Magnetic nanosphere with mesoporous shell and quick preparation method thereof | |
CN107617447A (en) | A kind of Ag@MOFs/TiO2The preparation method of photochemical catalyst and application | |
Kharisov et al. | Iron-based Nanomaterials in the Catalysis | |
CN103055896A (en) | Magnetic recyclable graphene-based precious metal composite nanosheet catalyst, preparation method and application | |
Yin et al. | Ag/Ag2O confined visible-light driven catalyst for highly efficient selective hydrogenation of nitroarenes in pure water medium at room temperature | |
CN107252685A (en) | A kind of hydroxyl aminated compounds functional magnetic graphene oxide catalysis material and its preparation method and application | |
Kang et al. | Au-coated Fe3O4@ SiO2 core-shell particles with photothermal activity | |
CN108907174A (en) | A kind of silver palladium alloy nano material and its preparation method and application | |
CN108704654A (en) | A kind of nitrating carbon inlays non-precious metal catalyst and its preparation method and application | |
Si et al. | Research progress of yolk–shell structured nanoparticles and their application in catalysis | |
CN106040307B (en) | One step hydro thermal method synthesizes Fe3O4(PAA) preparation method of@C-Au core-shell structure microballoon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120704 |