CN102527241A - Gas separation membrane assembly and gas separation method - Google Patents
Gas separation membrane assembly and gas separation method Download PDFInfo
- Publication number
- CN102527241A CN102527241A CN201110345156XA CN201110345156A CN102527241A CN 102527241 A CN102527241 A CN 102527241A CN 201110345156X A CN201110345156X A CN 201110345156XA CN 201110345156 A CN201110345156 A CN 201110345156A CN 102527241 A CN102527241 A CN 102527241A
- Authority
- CN
- China
- Prior art keywords
- hollow fiber
- gas
- tube sheet
- separation membrane
- membrane module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
技术领域 technical field
本申请发明涉及一种利用具有选择透过性的许多空心丝膜进行气体分离的气体分离膜组件及气体分离方法。The invention of the present application relates to a gas separation membrane module and a gas separation method for gas separation using a plurality of hollow fiber membranes with selective permeability.
背景技术 Background technique
作为使用具有选择透过性的分离膜进行气体分离(例如氧分离、氮分离、氢分离、水蒸气分离、二氧化碳分离、有机蒸气分离等)的分离膜组件,有板型及框架型、管型、空心丝型等。其中,空心丝型的气体分离膜组件不仅具有每单位体积的膜面积最大的优点,而且在耐压性、自支承性方面也优异,因此,在工业上是有利的,可以宽范围使用。As a separation membrane module for gas separation (such as oxygen separation, nitrogen separation, hydrogen separation, water vapor separation, carbon dioxide separation, organic vapor separation, etc.) using a separation membrane with selective permeability, there are plate type, frame type, and tube type , hollow wire type, etc. Among them, the hollow fiber type gas separation membrane module not only has the largest membrane area per unit volume, but also has excellent pressure resistance and self-supporting properties, so it is industrially advantageous and can be widely used.
发明内容 Contents of the invention
本申请发明在下述部分A~G中被详细说明,也包含组合有2种以上各部分中所说明的发明的发明。关于各个部分所公开的发明所涉及的背景技术及课题等,在各部分内进行说明。The invention of the present application is described in detail in the following sections A to G, and includes inventions in which two or more of the inventions described in each section are combined. The background art and problems related to the invention disclosed in each section are described in each section.
附图说明 Description of drawings
图1表示部分A的实施例1及比较例2的测定结果;Fig. 1 represents the measurement result of the
图2表示部分A的实施例1及实施例2的测定结果;Fig. 2 represents the measurement result of
图3是表示气体分离膜组件的一例的简图;Fig. 3 is a schematic diagram showing an example of a gas separation membrane module;
图4是表示混合气体分离用的管板的制作方法的简图;Fig. 4 is a schematic diagram showing a method of manufacturing a tube sheet for separation of mixed gases;
图5是示意性地表示部分C的第1实施方式的分离膜组件的基本构成的截面图;5 is a cross-sectional view schematically showing the basic configuration of the separation membrane module according to the first embodiment of Part C;
图6中图6(a)表示组件端部的结构的一例,图6(b)表示现有型的结构;Among Fig. 6, Fig. 6 (a) represents an example of the structure of component end, and Fig. 6 (b) represents the structure of existing type;
图7是表示管板周边的其它结构的图;Fig. 7 is a diagram showing other structures around the tube sheet;
图8表示部分C的第2实施方式的组件端部的结构的一例,图8(a)表示常温时的状态,图8(b)表示高温时的状态;Fig. 8 shows an example of the structure of the assembly end portion of the second embodiment of part C, Fig. 8 (a) shows the state at room temperature, and Fig. 8 (b) shows the state at high temperature;
图9表示部分C的第3实施方式的组件端部的结构的一例;Fig. 9 shows an example of the structure of the module end of the third embodiment of part C;
图10是表示其它实施方式的例子的图;FIG. 10 is a diagram showing an example of another embodiment;
图11中图11(a)是表示分离膜组件的又一其它例的截面图,图11(b)是将图11(a)的一部分放大后的图;Fig. 11(a) in Fig. 11 is a sectional view showing yet another example of the separation membrane module, and Fig. 11(b) is an enlarged view of a part of Fig. 11(a);
图12是表示O环的配置的一例的图;FIG. 12 is a diagram showing an example of an arrangement of O rings;
图13是部分D的一个方式涉及的气体分离膜组件的截面图;Fig. 13 is a cross-sectional view of a gas separation membrane module according to one mode of part D;
图14是图13的组件的筒状构件的截面图;Fig. 14 is a cross-sectional view of the tubular member of the assembly of Fig. 13;
图15是图13的组件的帽构件的正面图及侧面截面图,图15(A)是沿图15(B)的X-X线的截面图;Fig. 15 is a front view and a side sectional view of the cap member of the assembly of Fig. 13, and Fig. 15(A) is a sectional view along the X-X line of Fig. 15(B);
图16是用于表示变更了固定杆的根数的例子的帽构件的示意图;Fig. 16 is a schematic diagram of a cap member showing an example in which the number of fixing rods is changed;
图17是示意性地表示部分E的一个方式涉及的气体分离膜组件的基本构成的截面图;Fig. 17 is a cross-sectional view schematically showing the basic configuration of a gas separation membrane module according to one mode of part E;
图18是图17的部分放大图;Figure 18 is a partially enlarged view of Figure 17;
图19是表示图17的组件中的箱体的一例的截面图;Fig. 19 is a sectional view showing an example of a box in the assembly of Fig. 17;
图20是示意性地表示部分F的一个实施方式的气体分离膜组件的基本构成的截面图;20 is a cross-sectional view schematically showing the basic configuration of a gas separation membrane module of one embodiment of Part F;
图21(A)是图20的部分放大图,(B)是进一步表示其一部分的放大图;Fig. 21 (A) is a partial enlarged view of Fig. 20, and (B) is an enlarged view further showing a part thereof;
图22(A)是表示其它实施方式的气体分离膜组件的截面图,(B)是部分放大图;Fig. 22(A) is a sectional view showing a gas separation membrane module in another embodiment, and (B) is a partially enlarged view;
图23是进一步表示其它实施方式的气体分离膜组件的截面图;Fig. 23 is a cross-sectional view showing a gas separation membrane module of another embodiment;
图24是表示其它实施方式的气体分离膜组件的截面图;24 is a cross-sectional view showing a gas separation membrane module according to another embodiment;
图25是示意性地表示部分G的一个实施方式的气体分离膜组件的基本构成的截面图。Fig. 25 is a cross-sectional view schematically showing the basic configuration of a gas separation membrane module according to one embodiment of part G.
图26是图25的一部分放大图。FIG. 26 is an enlarged view of a part of FIG. 25 .
图27是图26的A-A中的截面图。FIG. 27 is a sectional view in A-A of FIG. 26 .
符号说明Symbol Description
1、1’、101 分离膜组件1, 1', 101 separation membrane module
10、110、110’ 筒状容器10, 110, 110' cylindrical container
10a 容器内周面10a Inner peripheral surface of container
10f 凸缘部10f Flange
10h 开口部10h opening
10s 台阶部10s steps
10t 台阶部10t steps
110g 槽110g slot
111 管材111 pipe
112 端部构件112 end member
12、112h 透过气体排出口12, 112h through the gas outlet
112f 凸缘部112f Flange
14 空心丝膜14 hollow fiber membrane
15、115 空心丝束15, 115 Hollow tow
17 环状密封构件17 ring seal member
18、118、119 O环18, 118, 119 O-rings
20、21、26、27、120、121、127 帽20, 21, 26, 27, 120, 121, 127 caps
20h 开口部20h opening
120f 凸缘部120f Flange
120s 台阶部120s steps
22A 混合气体导入口22A Mixed gas inlet
22B 非透过气体排出口22B Non-permeable gas outlet
27f 凸缘部27f Flange
127f 凸缘部127f Flange
127g 槽127g slot
30、30’、38、130A、130B、530 管板30, 30’, 38, 130A, 130B, 530 tube sheets
30s、530s 台阶部30s, 530s steps
30’t 台阶部30’t steps
41 排出管41 discharge pipe
42 固定螺钉42 set screw
43 固定装置43 Fixtures
201 气体分离膜组件201 Gas separation membrane module
210 盒210 boxes
211 筒状容器211 Cylindrical container
212 开口部212 opening
214 空心丝膜214 hollow fiber membrane
215 空心丝束215 hollow tow
217、218 内周槽217, 218 inner peripheral groove
219 外周槽219 peripheral groove
220、221 帽构件220, 221 Cap member
220A 端面220A end face
220B 圆筒部220B Cylindrical part
220f 平坦部220f flat part
220g 平坦部220g flat portion
220h 通孔220h through hole
223 排出口223 outlet
227a、227b 内周槽227a, 227b inner peripheral groove
230、231 管板230, 231 tube sheet
R1、R2 弹性环构件R1, R2 elastic ring members
245 固定杆245 fixed rod
246 螺母246 Nut
P1 气体导入口P1 Gas inlet
P2 非透过气体排出口P2 Non-permeable gas outlet
P3 气体流路P3 gas flow path
601 气体分离膜组件601 Gas separation membrane module
610 箱体610 cabinet
610a 混合气体入口610a Mixed gas inlet
610b 未透过气体出口610b Non-permeated gas outlet
610c 透过气体出口610c through gas outlet
611 筒状构件611 tubular member
612、613 帽612, 613 Caps
614 空心丝膜614 hollow fiber membrane
615 空心丝束615 hollow tow
618 密封空间618 Sealed space
619a 混合气体空间619a Mixed gas space
619b 未透过气体空间619b Non-permeable gas spaces
621、622 管板621, 622 tube sheet
631 膜构件631 Membrane components
631a、631b 端部631a, 631b ends
801 气体分离膜组件801 Gas Separation Membrane Module
810、910 箱体810, 910 cabinet
810a、910a 混合气体入口810a, 910a Mixed gas inlet
810b、910b 未透过气体出口810b, 910b Non-permeated gas outlet
810c、910c 透过气体出口810c, 910c through gas outlet
910d 净化气体入口910d purge gas inlet
811 筒状构件811 tubular member
813 管板保持构件813 tube sheet retaining member
813a 直线部813a Straight line
813b 大径部813b Large diameter part
813c 锥形部813c taper
814、914 空心丝膜814, 914 hollow fiber membrane
815、915 空心丝束815, 915 hollow tow
818、918 密封空间818, 918 sealed space
819a 混合气体空间819a Mixed gas space
819b 未透过气体空间819b Non-permeable gas spaces
821、822、921、922 管板821, 822, 921, 922 tube sheets
822a 空心丝膜埋设部822a Hollow fiber membrane embedding part
822b 管板无垢部822b tube sheet clean part
831 膜构件831 Membrane components
831a、831b 端部831a, 831b ends
850、950 密封结构850, 950 sealed structure
851、853 密封带851, 853 sealing tape
855 固定胶带855 Fixing Tape
857 固定装置857 Fixtures
891、893 填充材料891, 893 Filling materials
971 芯管971 core tube
971a 孔971a hole
A1 露出部分A1 exposed part
A31 间隙部A31 Clearance
1001 气体分离膜组件1001 Gas separation membrane module
1010 箱体1010 cabinet
1010a 混合气体入口1010a Mixed gas inlet
1010b 未透过气体出口1010b Non-permeated gas outlet
1010c 透过气体出口1010c through the gas outlet
1011 圆筒状构件1011 Cylindrical member
1011a、1011b 厚壁部1011a, 1011b thick wall part
1011d 凹部1011d recessed part
1012 帽构件1012 cap member
1014 空心丝膜1014 hollow fiber membrane
1015 空心丝束1015 hollow tow
1018 密封空间1018 Sealed Space
1019a 混合气体空间1019a Mixed gas space
1019b 未透过气体空间1019b Non-permeable gas spaces
1021、1022 管板1021, 1022 tube sheet
1021s 阶部1021s class department
1060 密封构件1060 sealing member
C1 环状的凹槽C1 ring groove
B11 混合气体入口B11 Mixed gas inlet
B12 透过气体排出口B12 through the gas outlet
B13 非透过气体排出口B13 Non-permeable gas outlet
B14 空心丝膜B14 hollow fiber membrane
B15 箱体B15 cabinet
B16a、16b 管板B16a, 16b tube sheet
B21 模具B21 mold
B22 箱体B22 cabinet
B23 管板B23 tube sheet
B24 空心丝膜B24 hollow fiber membrane
具体实施方式 Detailed ways
下面,关于本发明的实施方式,对部分A~部分G进行说明。Next, Part A to Part G will be described regarding embodiments of the present invention.
[部分A:由高温气体制造富氮空气的方法][Part A: Method for producing nitrogen-enriched air from high-temperature gas]
(背景技术)(Background technique)
对航空器而言,作为燃料罐的防爆方法之一,有使用搭载型惰性气体发生系统(OBIGGS:on board inert gas generating system)的方法。为了防止爆炸的危险性,燃料罐内的气相区域的氧浓度需要低于规定的浓度。因此,OBIGGS从空气中分离氧而制造氮浓度高的富氮空气,将其提供给燃料罐。For aircraft, there is a method of using an on board inert gas generating system (OBIGGS: on board inert gas generating system) as one of the explosion protection methods for fuel tanks. In order to prevent the risk of explosion, the oxygen concentration in the gas phase region inside the fuel tank needs to be lower than a prescribed concentration. Therefore, OBIGGS separates oxygen from air to produce nitrogen-enriched air with high nitrogen concentration, and supplies it to fuel tanks.
OBIGGS例如利用空气分离膜组件来制造富氮空气。关于空气分离膜,通常由于被供给的气体越高压、高温,处理量就越增多,因此,发动机的提取气体或周围的空气等用压缩器等压缩后被提供给空气分离膜组件。该压缩后的气体通常为149~260℃。OBIGGS, for example, utilizes air separation membrane modules to produce nitrogen-enriched air. Regarding the air separation membrane, since the higher the pressure and temperature of the gas to be supplied, the processing capacity will generally increase. Therefore, the extracted gas from the engine or the surrounding air is compressed by a compressor or the like and supplied to the air separation membrane module. The compressed gas is usually 149 to 260°C.
现有的空气分离膜组件在约82℃~约93℃下有效地工作,在如上所述的高温下,分离性能显著降低,因此无法使用。因此,通常而言,通过使用热交换器或将与低温的空气混合等,将压缩后的气体降温至该温度后,提供给空气分离膜组件(日本特开2010-142801号公报)。Existing air separation membrane modules operate efficiently at about 82°C to about 93°C, and at such high temperatures as described above, the separation performance is remarkably degraded and thus unusable. Therefore, generally, the compressed gas is cooled to the temperature by using a heat exchanger or mixing with low-temperature air, and then supplied to an air separation membrane module (JP-A-2010-142801).
(部分A的发明要解决的问题)(Problem to be solved by the invention of Part A)
部分A的发明的目的在于,提供一种将150℃以上的高温压缩空气提供给空气分离膜组件来制造富氮空气的方法。The object of the invention of Part A is to provide a method for producing nitrogen-enriched air by supplying high-temperature compressed air of 150° C. or higher to an air separation membrane module.
该部分所公开的主要发明要点如下所述。The main points of the invention disclosed in this section are as follows.
1、一种使用空气分离膜组件由空气制造富氮空气的方法,其特征在于,1. A method for producing nitrogen-enriched air from air using an air separation membrane module, characterized in that,
将150℃以上的空气提供给空气分离膜组件。Air above 150°C is supplied to the air separation membrane module.
(部分A的发明的效果)(Effects of the Invention of Part A)
根据部分A的发明的方法,可以将高温、例如150℃以上的空气提供给空气分离膜组件,得到提高了氮浓度的富氮空气。本部分的发明的特征在于使用空气分离膜,上述空气分离膜在高温下氧气的透过速率及氧和氮的分离性能高,进而,即使在高温下长时间使用也可以维持其性能。本部分的发明例如适于航空器的燃料罐的防爆系统。在该防爆系统中使用本部分的发明时,将空气提供给空气分离膜组件时,用于冷却高温空气的热交换器等可以轻量化。另外,对空气分离膜而言,被供给的空气越高温,透过速率越快,因此,根据可以处理高温空气的本部分的发明的方法,也可以有效地缩小膜面积。因此,可以进行航空器内的设备的简化、轻量化。According to the method of the invention of Part A, air at a high temperature, eg, 150°C or higher, can be supplied to the air separation membrane module to obtain nitrogen-enriched air with increased nitrogen concentration. The invention of this part is characterized by the use of an air separation membrane that has a high oxygen permeation rate and oxygen and nitrogen separation performance at high temperatures, and can maintain its performance even when used at a high temperature for a long time. The invention in this section is suitable, for example, for an explosion-proof system for fuel tanks of aircraft. When the invention of this section is used in the explosion-proof system, the heat exchanger and the like for cooling high-temperature air when supplying air to the air separation membrane module can be reduced in weight. In addition, for air separation membranes, the higher the temperature of the supplied air, the faster the permeation rate. Therefore, according to the method of the invention of this section, which can handle high-temperature air, the membrane area can also be effectively reduced. Therefore, it is possible to simplify and reduce the weight of the equipment in the aircraft.
(部分A中的实施方式)(implementation in part A)
该部分所公开的发明为一种使用空气分离膜组件由空气生成富氮空气的方法,其特征在于,将150℃以上的高温空气提供给空气分离膜组件。在本部分中,只要没有特别说明,“高温”是指150℃以上,优选175℃以上,更优选200℃以上。The invention disclosed in this section is a method for generating nitrogen-enriched air from air using an air separation membrane module, characterized in that high-temperature air of 150° C. or higher is supplied to the air separation membrane module. In this section, unless otherwise specified, "high temperature" means 150°C or higher, preferably 175°C or higher, more preferably 200°C or higher.
空气分离膜组件例如可以如下得到:捆束适当长度的空心丝膜100~1000000根左右,使空心丝的至少一端为保持有开口状态的状态,用由热固性树脂等构成的管板固着该空心丝束的两端部,在至少具备空气供给口、透过气体排出口和非透过气体排出口的容器内,收纳并安装由所得的空心丝束和管板等构成的空心丝膜元件以使通入空心丝膜内侧的空间和通向空心丝膜外侧的空间隔绝,由此而得到。在这样的空气分离膜组件中,从空气供给口向与空心丝膜的内侧或外侧相接的空间供给空气,在与空心丝膜相接并流动期间空气中的氧选择性透过膜,透过气体(富氧空气)从透过气体排出口排出,没有透过膜的非透过气体(富氮空气)从非透过气体排出口排出,由此进行气体分离。An air separation membrane module can be obtained, for example, by bundling about 100 to 1,000,000 hollow fiber membranes of appropriate length, keeping at least one end of the hollow fiber in an open state, and fixing the hollow fiber with a tube sheet made of thermosetting resin or the like. At both ends of the bundle, in a container provided with at least an air supply port, a permeable gas discharge port, and a non-permeable gas discharge port, the hollow fiber membrane elements composed of the obtained hollow fiber bundles and tube sheets are accommodated and installed so that The space leading to the inside of the hollow fiber membrane is isolated from the space leading to the outside of the hollow fiber membrane, thereby obtaining. In such an air separation membrane module, air is supplied from the air supply port to the space in contact with the inside or outside of the hollow fiber membrane, and oxygen in the air selectively permeates the membrane while flowing in contact with the hollow fiber membrane. The permeated gas (oxygen-enriched air) is discharged from the permeated gas discharge port, and the non-permeated gas (nitrogen-enriched air) that has not permeated the membrane is discharged from the non-permeated gas discharge port, thereby performing gas separation.
作为空气分离膜,没有特别限定,例如可以举出具有由主要担负空气分离性能的极薄的致密层(优选厚度为0.001~5μm)和支撑该致密层的较厚的多孔质层(优选厚度为10~2000μm)构成的非对称结构的非对称空气分离膜。优选内径为10~3000μm且外径为30~7000μm左右的空心丝膜。The air separation membrane is not particularly limited, and examples include an extremely thin dense layer (preferably 0.001 to 5 μm in thickness) mainly responsible for air separation performance and a relatively thick porous layer (preferably 0.001 μm in thickness) supporting the dense layer. 10 ~ 2000μm) asymmetric structure of the asymmetric air separation membrane. A hollow fiber membrane having an inner diameter of 10 to 3000 μm and an outer diameter of about 30 to 7000 μm is preferable.
空气分离膜优选在高温下具有如下所述的特性。The air separation membrane preferably has the characteristics described below at high temperature.
空气分离膜优选在高温下氧气的透过速率高。例如,在175℃的氧透过速率(P’O2)为20×10-5cm3(STP)/cm2·sec·cmHg以上,优选为25×10-5cm3(STP)/cm2·sec·cmHg 以上,更优选为30×10-5cm3(STP)/cm2·sec·cmHg以上。进而,空气分离膜优选即使在高温下分离性能也高,例如,在175℃下,显示膜的分离性能的氧气透过速率和氮气透过速率之比(P’O2/P’N2)为1.8以上,优选为2.0以上,更优选为2.5以上。需要说明的是,透过速率之比通常在低温下为更大的值。透过速率比即分离性能高时,目标富氮空气的回收率升高。The air separation membrane preferably has a high oxygen permeation rate at high temperature. For example, the oxygen transmission rate (P' O2 ) at 175°C is 20×10 -5 cm 3 (STP)/cm 2 ·sec·cmHg or more, preferably 25×10 -5 cm 3 (STP)/cm 2 ·sec·cmHg or more, more preferably 30×10 -5 cm 3 (STP)/cm 2 ·sec·cmHg or more. Furthermore, the air separation membrane preferably has high separation performance even at high temperatures. For example, at 175° C., the ratio (P' O2 /P' N2 ) of the oxygen permeation rate and the nitrogen permeation rate (P' O2 /P' N2 ), which shows the separation performance of the membrane, is 1.8. or more, preferably 2.0 or more, more preferably 2.5 or more. It should be noted that the ratio of the transmission rates generally takes a larger value at low temperatures. When the permeation rate ratio, that is, the separation performance is high, the recovery rate of the target nitrogen-enriched air increases.
另外,空气分离膜优选即使在高温下长时间使用,氧气的透过速率及膜的分离性能也不大大降低。例如,在175℃下使用了140小时时,氧透过速率(P’O2)及氧气的透过速率和氮气的透过速率之比(P’O2/P’N2)优选为使用前的P’O2及P’O2/P’N2的各自75%以上,更优选为80%以上,进一步优选为90%以上。In addition, it is preferable that the air separation membrane does not greatly reduce the oxygen permeation rate and the separation performance of the membrane even if it is used at high temperature for a long time. For example, when used at 175°C for 140 hours, the oxygen transmission rate (P' O2 ) and the ratio of the oxygen transmission rate to the nitrogen transmission rate (P' O2 /P' N2 ) are preferably P before use. Each of ' O2 and P'O2 / P'N2 is 75% or more, More preferably, it is 80% or more, More preferably, it is 90% or more.
进而,空气分离膜优选即便在高温状态下也在不损伤其功能的程度上保持形状。例如,构成空气分离膜的材质的玻璃化转变温度(Tg)优选高于225℃(即在225℃以下不显示),更优选为250℃以上,进一步优选为300℃以上(包含玻璃化转变温度无法测定的情况)。进而,优选在高温下长时间保持形状,在175℃放置了2小时时的形状保持率优选为95%以上,更优选为99%以上。在此,在本部分中,所谓形状保持率,表示用在175℃热处理2小时后的丝的长度除以热处理前的本来的长度的比例。Furthermore, the air separation membrane preferably maintains its shape to such an extent that its function is not impaired even in a high-temperature state. For example, the glass transition temperature (Tg) of the material constituting the air separation membrane is preferably higher than 225°C (that is, it does not show below 225°C), more preferably 250°C or higher, and even more preferably 300°C or higher (including the glass transition temperature cannot be determined). Furthermore, it is preferable to keep the shape at a high temperature for a long time, and the shape retention rate when left at 175° C. for 2 hours is preferably 95% or more, more preferably 99% or more. Here, in this section, the term "shape retention" means the ratio of dividing the length of the filament after heat treatment at 175° C. for 2 hours by the original length before heat treatment.
作为玻璃化转变温度高于225℃且在分离膜中优选的材料,可以举出聚酰亚胺、聚醚砜、聚酰胺、聚醚醚酮等,特别优选举出聚酰亚胺。Preferred materials for separation membranes with a glass transition temperature higher than 225° C. include polyimide, polyethersulfone, polyamide, polyetheretherketone, and the like, and particularly preferably polyimide.
作为形成非对称气体分离空心丝膜(以下也简称为空心丝膜)的材料,没有特别限定,对优选用作空气分离膜且玻璃化转变温度高于225℃的聚酰亚胺的组成的例子进行说明。以下组成的聚酰亚胺为下述通式(1)的重复单元所示的芳香族聚酰亚胺,玻璃化转变温度通常为250℃以上,优选为300℃以上(包含玻璃化转变温度无法测定的情况)。The material for forming the asymmetric gas separation hollow fiber membrane (hereinafter also simply referred to as the hollow fiber membrane) is not particularly limited, but an example of the composition of polyimide that is preferably used as an air separation membrane and has a glass transition temperature higher than 225°C Be explained. The polyimide of the following composition is an aromatic polyimide represented by the repeating unit of the following general formula (1), and the glass transition temperature is usually 250° C. or higher, preferably 300° C. or higher (including the glass transition temperature that cannot case of measurement).
[化1][chemical 1]
通式(1) Formula (1)
上述式中,B为起因于四羧酸成分的4价单元,A为起因于二胺成分的2价单元。以下,对构成芳香族聚酰亚胺的单元进行详细叙述。In the above formula, B is a tetravalent unit derived from a tetracarboxylic acid component, and A is a divalent unit derived from a diamine component. Hereinafter, the units constituting the aromatic polyimide will be described in detail.
单元B为起因于四羧酸成分4价单元,包含10~70摩尔%、优选20~60摩尔%的下述通式(B1)所示的具有二苯基六氟丙烷结构的单元B1和90~30摩尔%、优选80~40摩尔%的下述通式(B2)所示的具有联苯结构的单元B2,优选实质上具有单元B1及单元B2。在二苯基六氟丙烷结构低于10摩尔%且联苯结构超过90摩尔%时,所得的聚酰亚胺的气体分离性能降低,难以得到高性能气体分离膜。另一方面,二苯基六氟丙烷结构超过70摩尔%且联苯结构低于30摩尔%时,有时所得的聚酰亚胺的机械强度降低。Unit B is a tetravalent unit derived from a tetracarboxylic acid component, and contains 10 to 70 mol%, preferably 20 to 60 mol%, of units B1 having a diphenylhexafluoropropane structure represented by the following general formula (B1) and 90 -30 mol%, preferably 80 to 40 mol%, of unit B2 having a biphenyl structure represented by the following general formula (B2), preferably substantially has unit B1 and unit B2. When the diphenylhexafluoropropane structure is less than 10 mol % and the biphenyl structure exceeds 90 mol %, the gas separation performance of the obtained polyimide decreases, making it difficult to obtain a high-performance gas separation membrane. On the other hand, when the diphenylhexafluoropropane structure exceeds 70 mol% and the biphenyl structure is less than 30 mol%, the mechanical strength of the polyimide obtained may fall.
另外,单元B也可以含有下述式(B3)所示的基于苯基结构的4价单元。式(B3)所示的基于苯基结构的4价单元为0~30摩尔%,优选为10~20摩尔%。In addition, the unit B may contain a tetravalent unit based on a phenyl structure represented by the following formula (B3). The tetravalent unit based on the phenyl structure represented by the formula (B3) is 0 to 30 mol%, preferably 10 to 20 mol%.
进而,单元B可以含有单元B1、B2、B3以外的起因于其它四羧酸的4价单元B4。Furthermore, the unit B may contain the tetravalent unit B4 originating in other tetracarboxylic acid other than the unit B1, B2, B3.
[化2][Chem 2]
单元A为起因于二胺成分的2价单元,包含从由下述通式(A1a)、(A1b)及(A1c)构成的组中选择的单元A1和从由下述通式(A2a)及(A2b)构成的组中选择的单元A2。进而,单元A可以含有单元A1、A2以外的起因于其它二胺成分的2价单元A3。The unit A is a divalent unit derived from a diamine component, and includes a unit A1 selected from the group consisting of the following general formulas (A1a), (A1b) and (A1c) and a unit selected from the group consisting of the following general formulas (A2a) and (A2b) selected cell A2 in the group. Furthermore, unit A may contain the divalent unit A3 originating in another diamine component other than unit A1, A2.
单元A1a为式(A1a)所示的基于联苯结构的2价单元,单元A1b及A1c含有式(A1b)及式(A1c)所示的六氟取代结构,更详细而言,具有含有2个三氟甲基的结构单元。Unit A1a is a divalent unit based on a biphenyl structure represented by formula (A1a), and units A1b and A1c contain hexafluoro-substituted structures represented by formula (A1b) and formula (A1c), and more specifically, have two The structural unit of trifluoromethyl.
[化3][Chem 3]
(式中,X为氯原子或溴原子,n为1~3。)(In the formula, X is a chlorine atom or a bromine atom, and n is 1 to 3.)
[化4][chemical 4]
(式中,r为0或1,苯基环可以被OH基取代。)(In the formula, r is 0 or 1, and the phenyl ring may be substituted by an OH group.)
[化5][chemical 5]
(式中,Y表示O或单键。)(In the formula, Y represents O or a single bond.)
单元A1具有式(A1a)所示的单元时,在单元A中为30~70摩尔%,优选为30~60摩尔%。该联苯胺类有助于提高分离度,但其量过多时,聚合物变为不溶而难以制膜,当其过少时,分离度降低,故不优选。When unit A1 has the unit represented by formula (A1a), it is 30-70 mol% in unit A, Preferably it is 30-60 mol%. The benzidines contribute to improvement of the degree of separation, but when the amount is too large, the polymer becomes insoluble and film formation is difficult, and when the amount is too small, the degree of separation decreases, which is not preferable.
单元A1具有式(A1b)及/或式(A1c)所示的单元时,这些单元在单元A中被含有10~50摩尔%、优选20~40摩尔%。When unit A1 has a unit represented by formula (A1b) and/or formula (A1c), these units are contained in unit A in an amount of 10 to 50 mol%, preferably 20 to 40 mol%.
单元A2选自由含硫杂环结构,具体而言,选自由下述通式(A2a)及(A2b)所示的单元类构成的组。The unit A2 is selected from a sulfur-containing heterocyclic ring structure, specifically, from the group consisting of units represented by the following general formulas (A2a) and (A2b).
[化6][chemical 6]
(式中,R及R’为氢原子或有机基团,n为0、1或2。)(In the formula, R and R' are hydrogen atoms or organic groups, and n is 0, 1 or 2.)
[化7][chemical 7]
(式中,R及R’为氢原子或有机基团,X为-CH2-或-CO-。)(In the formula, R and R' are hydrogen atoms or organic groups, and X is -CH 2 - or -CO-.)
单元A2在单元A中被含有90~30摩尔%,优选90~40摩尔%,更优选90~50摩尔%,进一步优选80~60摩尔%。Unit A2 is contained in unit A in an amount of 90 to 30 mol%, preferably 90 to 40 mol%, more preferably 90 to 50 mol%, further preferably 80 to 60 mol%.
单元A3在单元A中以50摩尔%以下、优选40摩尔%以下、更优选20摩尔%以下的量含有。The unit A3 is contained in the unit A in an amount of 50 mol % or less, preferably 40 mol % or less, more preferably 20 mol % or less.
下面,对构成芳香族聚酰亚胺的上述各单元的单体成分进行说明。Next, the monomer components of the above-mentioned units constituting the aromatic polyimide will be described.
上述通式(B1)所示的具有二苯基六氟丙烷结构的单元,通过使用(六氟异亚丙基)二邻苯二甲酸、其二酸酐或其酯化物作为四羧酸成分来得到。作为上述(六氟异亚丙基)二邻苯二甲酸类,可以适当使用4,4’-(六氟异亚丙基)二邻苯二甲酸、3,3’-(六氟异亚丙基)二邻苯二甲酸、3,4’-(六氟异亚丙基)二邻苯二甲酸、它们的二酸酐或它们的酯化物,但特别优选4,4’-(六氟异亚丙基)二邻苯二甲酸、其二酸酐或其酯化物。The unit having a diphenylhexafluoropropane structure represented by the above general formula (B1) is obtained by using (hexafluoroisopropylidene) diphthalic acid, its dianhydride or its esterified product as a tetracarboxylic acid component . As the above-mentioned (hexafluoroisopropylidene) diphthalic acid, 4,4'-(hexafluoroisopropylidene)diphthalic acid, 3,3'-(hexafluoroisopropylene)diphthalic acid, base) diphthalic acid, 3,4'-(hexafluoroisopropylidene)diphthalic acid, their dianhydrides or their esters, but particularly preferred 4,4'-(hexafluoroisopropylidene)diphthalic acid Propyl) diphthalic acid, its dianhydride or its ester.
上述通式(B2)所示的具有联苯结构的单元,通过使用联苯四羧酸、其二酸酐或其酯化物等联苯四羧酸类作为四羧酸成分来得到。作为上述联苯四羧酸类,可以适当使用3,3’,4,4’-联苯四羧酸、2,3,3’,4’-联苯四羧酸、2,2’,3,3’-联苯四羧酸、它们的二酸酐或它们的酯化物,但特别优选3,3’,4,4’-联苯四羧酸、其二酸酐或其酯化物。The unit having a biphenyl structure represented by the above general formula (B2) is obtained by using biphenyltetracarboxylic acids such as biphenyltetracarboxylic acid, its dianhydride, or an esterified product thereof as a tetracarboxylic acid component. As the above-mentioned biphenyltetracarboxylic acids, 3,3',4,4'-biphenyltetracarboxylic acid, 2,3,3',4'-biphenyltetracarboxylic acid, 2,2',3 , 3'-biphenyltetracarboxylic acids, their dianhydrides or their esterified products, but particularly preferred are 3,3',4,4'-biphenyltetracarboxylic acids, their dianhydrides or their esterified products.
上述通式(B3)所示的基于苯基结构的4价单元,通过使用均苯四酸及其酸酐等均苯四酸类来得到。该均苯四酸类在提高机械性质方面优选,但其量过多时,引起制膜时的聚合物溶液凝固等,变得不稳定,难以形成空心丝。The tetravalent unit based on the phenyl structure represented by the said general formula (B3) is obtained by using pyromellitic acid, such as pyromellitic acid and its anhydride. The pyromellitic acid is preferable in terms of improving mechanical properties, but if the amount is too large, it will cause coagulation of the polymer solution at the time of membrane formation, etc., making it unstable and making it difficult to form a hollow fiber.
提供单元B4的其它四羧酸成分,为上述所示的化合物以外的四羧酸类,选择不损伤本部分的发明效果并可根据情况进一步改良性能的化合物。例如可以举出:二苯基醚四羧酸类、二苯甲酮四羧酸类、二苯基砜四羧酸类、萘四羧酸类、二苯基甲烷四羧酸类、二苯基丙烷四羧酸类等。The other tetracarboxylic acid component providing the unit B4 is a tetracarboxylic acid other than the above-mentioned compounds, and a compound that can further improve performance according to circumstances is selected without impairing the effects of the invention in this section. For example, diphenyl ether tetracarboxylic acids, benzophenone tetracarboxylic acids, diphenyl sulfone tetracarboxylic acids, naphthalene tetracarboxylic acids, diphenylmethane tetracarboxylic acids, diphenyl Propane tetracarboxylic acids, etc.
上述通式(A1a)所示的基于联苯结构的2价单元,通过使用通式(A1a-M)所示的卤素取代联苯胺类作为二胺成分来得到。The divalent unit based on the biphenyl structure represented by the said general formula (A1a) is obtained by using the halogen-substituted benzidine represented by the general formula (A1a-M) as a diamine component.
[化8][chemical 8]
(式中,X为氯原子或溴原子,n=1~3。)(In the formula, X is a chlorine atom or a bromine atom, and n=1 to 3.)
作为卤素取代联苯胺类,可以举出:二氯联苯胺(二氨基二氯联苯)类、四氯联苯胺(二氨基四氯联苯)类、六氯联苯胺类、四溴联苯胺类、二溴联苯胺类、六溴联苯胺类等。作为上述二氯联苯胺类,可以举出3,3’-二氯联苯胺(DCB),作为四氯联苯胺类,可以举出2,2’,5,5’-四氯联苯胺(TCB)等。Examples of halogen-substituted benzidines include dichlorobenzidines (diaminodichlorobiphenyls), tetrachlorobenzidines (diaminotetrachlorobiphenyls), hexachlorobenzidines, and tetrabromobenzidines. , dibromobenzidine, hexabromobenzidine, etc. Examples of the above-mentioned dichlorobenzidines include 3,3'-dichlorobenzidine (DCB), and examples of tetrachlorobenzidines include 2,2',5,5'-tetrachlorobenzidine (TCB )wait.
通式(A1b)所示的2价单元,通过使用通式(A1b-M)所示的六氟取代化合物类作为二胺成分来得到。The divalent unit represented by the general formula (A1b) is obtained by using hexafluoro-substituted compounds represented by the general formula (A1b-M) as a diamine component.
[化9][chemical 9]
(式中,r为0或1,苯基环可以被OH基取代。)(In the formula, r is 0 or 1, and the phenyl ring may be substituted by an OH group.)
(A1b-M)所示的六氟取代化合物类的优选化合物,由通式(A1b-M1)~(A1b-M3)表示。Preferred compounds of the hexafluoro-substituted compounds represented by (A1b-M) are represented by general formulas (A1b-M1) to (A1b-M3).
[化10][chemical 10]
作为通式(A1b-M1)所示的双[(氨基苯氧基)苯基]六氟丙烷类,例如可以举出:2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷、2,2-双[4-(3-氨基苯氧基)苯基]六氟丙烷。作为通式(A1b-M2)所示的双(氨基苯基)六氟丙烷类,例如可以举出2,2-双(4-氨基苯基)六氟丙烷。作为通式(A1b-M3)所示的羟基取代双(氨基苯基)六氟丙烷类,例如可以举出2,2-双(3-氨基-4-羟基)六氟丙烷。Examples of bis[(aminophenoxy)phenyl]hexafluoropropanes represented by the general formula (A1b-M1) include 2,2-bis[4-(4-aminophenoxy)phenyl ]hexafluoropropane, 2,2-bis[4-(3-aminophenoxy)phenyl]hexafluoropropane. Examples of bis(aminophenyl)hexafluoropropanes represented by the general formula (A1b-M2) include 2,2-bis(4-aminophenyl)hexafluoropropane. Examples of the hydroxy-substituted bis(aminophenyl)hexafluoropropanes represented by the general formula (A1b-M3) include 2,2-bis(3-amino-4-hydroxy)hexafluoropropane.
另外,通式(A1c)所示的2价单元,通过使用通式(A1c-M)所示的六氟取代化合物类作为二胺成分来得到。Moreover, the divalent unit represented by General formula (A1c) is obtained by using the hexafluoro compound represented by General formula (A1c-M) as a diamine component.
[化11][chemical 11]
(式中,Y表示O或单键。)(In the formula, Y represents O or a single bond.)
作为通式(A1c-M)所示的二胺化合物类,例如可以举出:2,2’-双(三氟甲基)-4,4’-二氨基二苯基醚、2,2’-双(三氟甲基)-4,4’-二氨基联苯等。Examples of diamine compounds represented by the general formula (A1c-M) include 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenylether, 2,2' - Bis(trifluoromethyl)-4,4'-diaminobiphenyl and the like.
另外,具有上述通式(A2a)或上述通式(A2b)所示的结构的单元,通过分别使用下述通式(A2a-M)及通式(A2b-M)所示的芳香族二胺作为二胺成分来得到。In addition, the unit having the structure represented by the above-mentioned general formula (A2a) or the above-mentioned general formula (A2b) is obtained by using an aromatic diamine represented by the following general formula (A2a-M) and general formula (A2b-M), respectively Available as a diamine component.
[化12][chemical 12]
(式中,R及R’为氢原子或有机基团,n为0、1或2。)(In the formula, R and R' are hydrogen atoms or organic groups, and n is 0, 1 or 2.)
[化13][chemical 13]
(式中,R及R’为氢原子或有机基团,X为-CH2-或-CO-。)(In the formula, R and R' are hydrogen atoms or organic groups, and X is -CH 2 - or -CO-.)
作为上述通式(A2a-M)所示的芳香族二胺,可以适当举出通式(A2a-M)的n为0的下述通式(A2a-M1)所示的二氨基二苯并噻吩类或通式(A2a-M)的n为2的下述通式(A2a-M2)所示的二氨基二苯并噻吩=5,5-二氧化物类。Examples of the aromatic diamine represented by the general formula (A2a-M) above include diaminodibenzos represented by the following general formula (A2a-M1) in which n is 0 in the general formula (A2a-M). Thiophenes or diaminodibenzothiophene=5,5-dioxides represented by the following general formula (A2a-M2) in which n is 2 in the general formula (A2a-M).
[化14][chemical 14]
(式中,R及R’为氢原子或有机基团。)(In the formula, R and R' are hydrogen atoms or organic groups.)
[化15][chemical 15]
(式中,R及R’为氢原子或有机基团。)(In the formula, R and R' are hydrogen atoms or organic groups.)
作为上述二氨基二苯并噻吩类(通式(A2a-M1)),可以举出例如:3,7-二氨基-2,8-二甲基二苯并噻吩、3,7-二氨基-2,6-二甲基二苯并噻吩、3,7-二氨基-4,6-二甲基二苯并噻吩、2,8-二氨基-3,7-二甲基二苯并噻吩、3,7-二氨基-2,8-二乙基二苯并噻吩、3,7-二氨基-2,6-二乙基二苯并噻吩、3,7-二氨基-4,6-二乙基二苯并噻吩、3,7-二氨基-2,8-二丙基二苯并噻吩、3,7-二氨基-2,6-二丙基二苯并噻吩、3,7-二氨基-4,6-二丙基二苯并噻吩、3,7-二氨基-2,8-二甲氧基二苯并噻吩、3,7-二氨基-2,6-二甲氧基二苯并噻吩、3,7-二氨基-4,6-二甲氧基二苯并噻吩等。Examples of the diaminodibenzothiophenes (general formula (A2a-M1)) include 3,7-diamino-2,8-dimethyldibenzothiophene, 3,7-diamino- 2,6-Dimethyldibenzothiophene, 3,7-diamino-4,6-dimethyldibenzothiophene, 2,8-diamino-3,7-dimethyldibenzothiophene, 3,7-diamino-2,8-diethyldibenzothiophene, 3,7-diamino-2,6-diethyldibenzothiophene, 3,7-diamino-4,6-di Ethyl dibenzothiophene, 3,7-diamino-2,8-dipropyl dibenzothiophene, 3,7-diamino-2,6-dipropyl dibenzothiophene, 3,7-di Amino-4,6-dipropyldibenzothiophene, 3,7-diamino-2,8-dimethoxydibenzothiophene, 3,7-diamino-2,6-dimethoxydi Benzothiophene, 3,7-diamino-4,6-dimethoxydibenzothiophene and the like.
作为上述二氨基二苯并噻吩=5,5-二氧化物类(通式(A2a-M2)),可以举出例如:3,7-二氨基-2,8-二甲基二苯并噻吩=5,5-二氧化物、3,7-二氨基-2,6-二甲基二苯并噻吩=5,5-二氧化物、3,7-二氨基-4,6-二甲基二苯并噻吩=5,5-二氧化物、2,8-二氨基-3,7-二甲基二苯并噻吩=5,5-二氧化物、3,7-二氨基-2,8-二乙基二苯并噻吩=5,5-二氧化物、3,7-二氨基-2,6-二乙基二苯并噻吩=5,5-二氧化物、3,7-二氨基-4,6-二乙基二苯并噻吩=5,5-二氧化物、3,7-二氨基-2,8-二丙基二苯并噻吩=5,5-二氧化物、3,7-二氨基-2,6-二丙基二苯并噻吩=5,5-二氧化物、3,7-二氨基-4,6-二丙基二苯并噻吩=5,5-二氧化物、3,7-二氨基-2,8-二甲氧基二苯并噻吩=5,5-二氧化物、3,7-二氨基-2,6-二甲氧基二苯并噻吩=5,5-二氧化物、3,7-二氨基-4,6-二甲氧基二苯并噻吩=5,5-二氧化物等。Examples of the diaminodibenzothiophene=5,5-dioxides (general formula (A2a-M2)) include 3,7-diamino-2,8-dimethyldibenzothiophene =5,5-dioxide, 3,7-diamino-2,6-dimethyldibenzothiophene =5,5-dioxide, 3,7-diamino-4,6-dimethyl Dibenzothiophene = 5,5-dioxide, 2,8-diamino-3,7-dimethyldibenzothiophene = 5,5-dioxide, 3,7-diamino-2,8 -Diethyldibenzothiophene=5,5-dioxide, 3,7-diamino-2,6-diethyldibenzothiophene=5,5-dioxide, 3,7-diamino -4,6-diethyldibenzothiophene=5,5-dioxide, 3,7-diamino-2,8-dipropyldibenzothiophene=5,5-dioxide, 3, 7-diamino-2,6-dipropyldibenzothiophene=5,5-dioxide, 3,7-diamino-4,6-dipropyldibenzothiophene=5,5-dioxide Compound, 3,7-diamino-2,8-dimethoxydibenzothiophene=5,5-dioxide, 3,7-diamino-2,6-dimethoxydibenzothiophene= 5,5-dioxide, 3,7-diamino-4,6-dimethoxydibenzothiophene=5,5-dioxide and the like.
在上述通式(A2b-M)中,作为X为-CH2-的二氨基噻吨-10,10-二酮类,例如可以举出:3,6-二氨基噻吨-10,10-二酮、2,7-二氨基噻吨-10,10-二酮、3,6-二氨基-2,7-二甲基噻吨-10,10-二酮、3,6-二氨基-2,8-二乙基-噻吨-10,10-二酮、3,6-二氨基-2,8-二丙基噻吨-10,10-二酮、3,6-二氨基-2,8-二甲氧基噻吨-10,10-二酮等。In the above general formula (A2b-M), examples of diaminothioxanthene-10,10-diones in which X is -CH 2 - include: 3,6-diaminothioxanthene-10,10- Diketone, 2,7-diaminothioxanthene-10,10-dione, 3,6-diamino-2,7-dimethylthioxanthene-10,10-dione, 3,6-diamino- 2,8-diethyl-thioxanthene-10,10-dione, 3,6-diamino-2,8-dipropylthioxanthene-10,10-dione, 3,6-diamino-2 , 8-dimethoxythioxanthene-10,10-dione, etc.
在上述通式(A2b-M)中,作为X为-CO-的二氨基噻吨-9,10,10-三酮类,例如可以举出:3,6-二氨基-噻吨-9,10,10-三酮、2,7-二氨基-噻吨-9,10,10-三酮等。In the above general formula (A2b-M), examples of diaminothioxanthene-9,10,10-triketones in which X is -CO- include: 3,6-diamino-thioxanthene-9, 10,10-trione, 2,7-diamino-thioxanthene-9,10,10-trione, etc.
提供单元A3的其它二胺成分,为上述所示的化合物以外的二胺化合物,选择不损伤本部分的发明的效果且可根据情况进一步改良性能的化合物。The other diamine component providing the unit A3 is a diamine compound other than the compounds shown above, and a compound that can further improve the performance depending on the situation is selected without impairing the effects of the invention in this section.
例如可以举出:3,3’-二氨基二苯基砜、3,4’-二氨基二苯基砜、4,4’-二氨基二苯基砜、4,4’-二氨基-3,3’-二甲基二苯基砜等二氨基二苯基砜类;Examples include: 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4,4'-diamino-3 , 3'-Dimethyldiphenylsulfone and other diaminodiphenylsulfones;
4,4’-二氨基二苯基醚、3,4’-二氨基二苯基醚、3,3’-二氨基二苯基醚、3,3’-二甲基-4,4’-二氨基二苯基醚、3,3’-二乙氧基-4,4’-二氨基二苯基醚等二氨基二苯基醚类;4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'- Diaminodiphenyl ether, 3,3'-diethoxy-4,4'-diaminodiphenyl ether and other diaminodiphenyl ethers;
4,4’-二氨基二苯基甲烷、3,3’-二氨基二苯基甲烷等二氨基二苯基甲烷类;4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane and other diaminodiphenylmethanes;
2,2-双(3-氨基苯基)丙烷、2,2-双(4-氨基苯基)丙烷等2,2-双(氨基苯基)丙烷类;2,2-bis(3-aminophenyl)propane, 2,2-bis(4-aminophenyl)propane and other 2,2-bis(aminophenyl)propanes;
2,2-双[4-(4-氨基苯氧基)苯基]丙烷、2,2-双[4-(3-氨基苯氧基)苯基]丙烷等2,2-双(氨基苯氧基苯基)丙烷类;2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, etc. 2,2-bis(aminophenoxy)propane Oxyphenyl) propanes;
4,4’-二氨基二苯甲酮、3,3’-二氨基二苯甲酮等二氨基二苯甲酮类;4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone and other diaminobenzophenones;
3,5-二氨基苯甲酸等二氨基苯甲酸类;3,5-diaminobenzoic acid and other diaminobenzoic acids;
1,3-苯二胺、1,4-苯二胺等苯二胺类;1,3-phenylenediamine, 1,4-phenylenediamine and other phenylenediamines;
2,2’-二氯-4,4’-二氨基二苯基醚等二氯二氨基二苯基醚类;2,2'-dichloro-4,4'-diaminodiphenyl ether and other dichlorodiaminodiphenyl ethers;
邻联甲苯胺、间联甲苯胺等联甲苯胺类;Toluidines such as o-toluidine and m-toluidine;
2,2’-二羟基-4,4’-二氨基联苯等二羟基二氨基联苯类等。Dihydroxydiaminobiphenyls such as 2,2'-dihydroxy-4,4'-diaminobiphenyl, etc.
其中,优选为二氨基二苯基砜类、二氨基二苯基醚类、二氨基苯甲酸类、二氯二氨基二苯基醚类、二羟基二氨基联苯类。Among them, diaminodiphenylsulfones, diaminodiphenyl ethers, diaminobenzoic acids, dichlorodiaminodiphenyl ethers, and dihydroxydiaminobiphenyls are preferable.
在非对称空气分离膜中使用通式(1)的重复单元所示的芳香族聚酰亚胺的情况下,例如,上述四羧酸成分优选组合使用作为提供单元B1的羧酸的4,4’-(六氟异亚丙基-双(邻苯二甲酸酐)、作为提供单元B2的羧酸的3,3’,4,4’-联苯四羧酸二酸酐、作为提供单元B3的羧酸的均苯四酸二酸酐,上述二胺成分优选组合使用作为提供单元A1的二胺的2,2’,5,5’-四氯联苯胺、作为提供单元A2的二胺的3,7-二氨基-二甲基二苯并噻吩=5,5-二氧化物。3,7-二氨基-二甲基二苯并噻吩=5,5-二氧化物是指以3,7-二氨基-2,8-二甲基二苯并噻吩=5,5-二氧化物为主要成分、包含甲基的位置不同的异构体3,7-二氨基-2,6-二甲基二苯并噻吩=5,5-二氧化物、3,7-二氨基-4,6-二甲基二苯并噻吩=5,5-二氧化物的混合物。In the case of using an aromatic polyimide represented by a repeating unit of the general formula (1) in an asymmetric air separation membrane, for example, the above-mentioned tetracarboxylic acid component is preferably used in combination with 4,4 '-(hexafluoroisopropylidene-bis(phthalic anhydride), 3,3',4,4'-biphenyltetracarboxylic dianhydride as the carboxylic acid providing unit B2, as the carboxylic acid providing unit B3 In the pyromellitic dianhydride of carboxylic acid, the above-mentioned diamine component is preferably used in combination with 2,2',5,5'-tetrachlorobenzidine as the diamine providing unit A1, and 3 as the diamine providing unit A2, 7-diamino-dimethyldibenzothiophene=5,5-dioxide. 3,7-diamino-dimethyldibenzothiophene=5,5-dioxide refers to 3,7- Diamino-2,8-dimethyldibenzothiophene = isomer 3,7-diamino-2,6-dimethyl containing 5,5-dioxide as the main component and containing a methyl group in a different position Dibenzothiophene = 5,5-dioxide, 3,7-diamino-4,6-dimethyldibenzothiophene = mixture of 5,5-dioxide.
上述芳香族聚酰亚胺溶液的制备,优选利用两步法或一步法进行,上述两步法是在有机极性溶剂中以规定的组成比加入四羧酸成分和二胺成分,在室温左右的低温下进行聚合反应而生成聚酰胺酸,接着进行加热而进行加热酰亚胺化或加入吡啶等进行化学酰亚胺化;上述一步法是在有机极性溶剂中以规定的组成比加入四羧酸成分和二胺成分,在100~250℃、优选130~200℃左右的高温下进行聚合酰亚胺化反应。在通过加热进行酰亚胺化反应时,优选边除去脱离的水或醇边进行。就四羧酸成分和二胺成分相对于有机极性溶剂的使用量而言,优选使溶剂中的聚酰亚胺的浓度为5~50重量%左右,优选5~40重量%。The preparation of the above-mentioned aromatic polyimide solution is preferably carried out by using a two-step method or a one-step method. The above-mentioned two-step method is to add a tetracarboxylic acid component and a diamine component in an organic polar solvent at a prescribed composition ratio, and the Polymerization is carried out at a low temperature to generate polyamic acid, followed by heating for imidization by heating or chemical imidation by adding pyridine, etc.; The carboxylic acid component and the diamine component are polymerized and imidized at a high temperature of 100 to 250°C, preferably about 130 to 200°C. When performing imidation reaction by heating, it is preferable to perform it, removing desorbed water or alcohol. It is preferable to make the density|concentration of the polyimide in a solvent about 5 to 50 weight% with respect to the usage-amount of a tetracarboxylic-acid component and a diamine component with respect to an organic polar solvent, Preferably it is 5 to 40 weight%.
进行聚合酰亚胺化而得到的芳香族聚酰亚胺溶液,也可以直接用于纺丝。另外,也可以例如在相对于芳香族聚酰亚胺为非溶解性的溶剂中投入所得的芳香族聚酰亚胺溶液,使芳香族聚酰亚胺析出而分离后,以成为规定浓度的方式重新溶解于有机极性溶剂,制备芳香族聚酰亚胺溶液,将其用于纺丝。The aromatic polyimide solution obtained by carrying out polymerization imidation can also be used for spinning as it is. In addition, for example, the obtained aromatic polyimide solution may be thrown into a solvent insoluble in the aromatic polyimide, and the aromatic polyimide may be precipitated and separated, and the concentration may be adjusted to a predetermined concentration. Redissolve in organic polar solvents to prepare aromatic polyimide solutions, which are used for spinning.
就用于纺丝的芳香族聚酰亚胺溶液而言,优选使聚酰亚胺的浓度为5~40重量%,进一步优选为8~25重量%,溶液粘度(旋转粘度)优选在100℃为100~15000泊,更优选200~10000泊,特别优选为300~5000泊。溶液粘度低于100泊时,有可能得到均质膜(膜),但难以得到机械强度大的非对称膜。另外,超过15000泊时,不易从纺丝喷嘴中挤出,因此,难以得到目标形状的非对称空心丝膜。For the aromatic polyimide solution used for spinning, the concentration of polyimide is preferably 5 to 40% by weight, more preferably 8 to 25% by weight, and the solution viscosity (rotational viscosity) is preferably 100°C It is 100 to 15000 poise, more preferably 200 to 10000 poise, particularly preferably 300 to 5000 poise. When the solution viscosity is lower than 100 poise, it is possible to obtain a homogeneous membrane (membrane), but it is difficult to obtain an asymmetric membrane with high mechanical strength. In addition, when it exceeds 15,000 poises, it is difficult to extrude from the spinning nozzle, so it is difficult to obtain an asymmetric hollow fiber membrane of the desired shape.
作为上述有机极性溶剂,只要是可以适当溶解所得的芳香族聚酰亚胺的溶剂就没有限定,但可以适当举出例如由苯酚、甲酚、二甲苯酚之类的苯酚类、苯环上直接具有2个羟基的儿茶酚、间苯二酚之类的儿茶酚类、3-氯苯酚、4-氯苯酚(与后述的对氯苯酚相同)、3-溴苯酚、4-溴苯酚、2-氯-5-羟基甲苯等卤代酚类等构成的酚系溶剂、或由N-甲基-2-吡咯烷酮、1,3-二甲基-2-咪唑啉酮、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、N,N-二甲基乙酰胺、N,N-二乙基乙酰胺等酰胺类构成的酰胺系溶剂或它们的混合溶剂等。The above-mentioned organic polar solvent is not limited as long as it is a solvent that can properly dissolve the obtained aromatic polyimide, but suitable examples include phenols such as phenol, cresol, and xylenol; Catechol directly having two hydroxyl groups, catechols such as resorcinol, 3-chlorophenol, 4-chlorophenol (same as p-chlorophenol described later), 3-bromophenol, 4-bromophenol Phenol solvents composed of phenol, 2-chloro-5-hydroxytoluene and other halogenated phenols, or N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolinone, N,N - Amide-based solvents composed of amides such as dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, or their mixed solvents, etc. .
空心丝膜可以通过使用上述芳香族聚酰亚胺溶液等、利用基于干湿式法的纺丝(干湿式纺丝法)来适当得到。干湿式法为使做成空心丝形状的聚合物溶液的表面的溶剂蒸发而形成薄的致密层(分离层)、进一步浸渍于凝固液(与聚合物溶液的溶剂相溶、聚合物为不溶的溶剂),利用此时产生的相分离现象,形成微细孔而使多孔质层(支承层)形成的方法(相转化法),该方法为Loeb等提出(例如美国专利3133132号)的方法。The hollow fiber membrane can be suitably obtained by spinning by a dry-wet method (dry-wet spinning method) using the above-mentioned aromatic polyimide solution or the like. The dry-wet method is to evaporate the solvent on the surface of the polymer solution made into a hollow fiber shape to form a thin dense layer (separation layer), and further immerse it in a coagulation liquid (compatible with the solvent of the polymer solution, and the polymer is insoluble). solvent), utilizes the phase separation phenomenon that occurs at this time to form micropores to form a porous layer (support layer) (phase inversion method), this method is proposed by Loeb et al. (for example, US Pat. No. 3,133,132).
干湿式纺丝法为使用纺丝用喷嘴利用干湿式法形成空心丝膜的方法,记载于例如日本特开昭61-133106号公报或日本特开平3-267130号公报等中。The dry-wet spinning method is a method of forming a hollow fiber membrane by a dry-wet method using a spinning nozzle, and is described in, for example, JP-A-61-133106 or JP-A-3-267130.
制造方法通常包含纺丝工序(纺丝浆料喷出工序)、凝固工序、清洗工序、干燥工序及热处理工序。The production method generally includes a spinning step (spinning slurry discharge step), a coagulation step, a washing step, a drying step, and a heat treatment step.
首先,在纺丝工序(纺丝浆料喷出工序)中,用于喷出纺丝浆料液的纺丝喷嘴只要是将纺丝浆料液挤出成空心丝状体的纺丝喷嘴即可,优选管在孔中型(tube-in-orifice type)喷嘴等。通常,挤出时的芳香族聚酰亚胺溶液的温度范围优选约为20℃~150℃,特别优选为30℃~120℃。优选的温度范围根据液体的溶剂种类、粘度等而不同。另外,边向从喷嘴挤出的空心丝状体的内部供给气体或液体边进行纺丝。First, in the spinning process (spinning slurry ejection process), the spinning nozzle used to discharge the spinning slurry liquid should be a spinning nozzle that extrudes the spinning slurry liquid into a hollow filament. Yes, preferably a tube-in-orifice type nozzle or the like. Usually, the temperature range of the aromatic polyimide solution during extrusion is preferably about 20°C to 150°C, particularly preferably 30°C to 120°C. The preferable temperature range differs depending on the solvent type, viscosity, etc. of the liquid. In addition, spinning is performed while supplying gas or liquid into the interior of the hollow filament extruded from the nozzle.
在从纺丝工序连续的凝固工序中,从喷嘴喷出的空心丝状体暂时被挤压于大气中或氮等惰性气体气氛中等,接着导入到凝固浴并浸渍于凝固液中。凝固液优选实质上不溶解芳香族聚酰亚胺成分且与芳香族聚酰亚胺溶液的溶剂具有相溶性的液体。没有特别限定,但优选使用水、甲醇、乙醇、丙醇等低级醇类或丙酮、二乙酮、甲基乙基酮等具有低级烷基的酮类等或它们的混合物。另外,芳香族聚酰亚胺溶液的溶剂为酰胺系溶剂时,也优选酰胺系溶剂的水溶液。In the coagulation process continuing from the spinning process, the hollow filaments ejected from the nozzle are once extruded in the air or in an inert gas atmosphere such as nitrogen, and then introduced into a coagulation bath and immersed in a coagulation liquid. The coagulation liquid is preferably a liquid that does not substantially dissolve the aromatic polyimide component and has compatibility with the solvent of the aromatic polyimide solution. Although not particularly limited, water, lower alcohols such as methanol, ethanol, and propanol, ketones having a lower alkyl group such as acetone, diethyl ketone, and methyl ethyl ketone, or a mixture thereof are preferably used. In addition, when the solvent of the aromatic polyimide solution is an amide-based solvent, an aqueous solution of an amide-based solvent is also preferable.
在以下的清洗工序中,根据需要用乙醇等清洗溶剂进行清洗,接着使用置换溶剂、例如异戊烷、正己烷、异辛烷、正庚烷等脂肪族烃来置换空心丝的外侧及内侧的凝固液及/或清洗溶剂。In the following cleaning process, if necessary, wash with a cleaning solvent such as ethanol, and then use a replacement solvent such as isopentane, n-hexane, isooctane, n-heptane and other aliphatic hydrocarbons to replace the outer and inner parts of the hollow fiber. Coagulant and/or cleaning solvent.
在以下的干燥工序中,将含有置换溶剂的空心丝在适当的温度下进行干燥。而且,在热处理工序中,优选在低于所使用的芳香族聚酰亚胺的软化点或二次转变点的温度下进行热处理,由此得到非对称气体分离空心丝膜。In the following drying step, the hollow fiber containing the replacement solvent is dried at an appropriate temperature. Furthermore, in the heat treatment step, it is preferable to perform heat treatment at a temperature lower than the softening point or secondary transition point of the aromatic polyimide used, thereby obtaining an asymmetric gas separation hollow fiber membrane.
(工业上的可利用性)(industrial availability)
根据本部分的发明,可以将高温例如150℃以上的空气提供给空气分离膜组件,得到提高了氮浓度的富氮空气。本部分的发明的方法例如可以应用于航空器的燃料罐的防爆系统。According to the invention of this part, high temperature air such as 150°C or higher can be supplied to the air separation membrane module to obtain nitrogen-enriched air with increased nitrogen concentration. The method of the invention of this section can be applied, for example, to an explosion protection system of a fuel tank of an aircraft.
(发明内容)(Content of invention)
涉及部分A的发明如下所述。The invention related to Part A is as follows.
1.一种使用空气分离膜组件由空气制造富氮空气的方法,其特征在于,1. A method of using an air separation membrane module to produce nitrogen-enriched air from air, characterized in that,
将150℃以上的空气提供给空气分离膜组件。Air above 150°C is supplied to the air separation membrane module.
2.如上述1所述的方法,其特征在于,上述空气分离膜组件在开始使用时,在175℃的氧气透过速率(P’O2)为20×10-5cm3(STP)/cm2·sec·cmHg以上,且在175℃的氧气透过速率和氮气透过速率之比(P’O2/P’N2)为1.8以上,以及2. The method as described in the above 1, characterized in that the oxygen transmission rate (P' O2 ) at 175°C is 20×10 -5 cm 3 (STP)/cm when the air separation membrane module starts to be used 2 sec cmHg or more, and the ratio of oxygen transmission rate to nitrogen transmission rate (P' O2 /P' N2 ) at 175°C is 1.8 or more, and
在175℃下使用了140小时时的P’O2及P’O2/P’N2保持上述开始使用前的P’O2及P’O2/P’N2的各自90%以上。 P'O2 and P'O2 / P'N2 when used at 175°C for 140 hours maintained 90% or more of the P'O2 and P'O2 / P'N2 before the start of use.
3.如上述1或2所述的方法,其特征在于,上述空气分离膜组件内的空气分离膜由在225℃以下不显示玻璃化转变温度的材料形成。3. The method according to 1 or 2 above, wherein the air separation membrane in the air separation membrane module is formed of a material that does not show a glass transition temperature below 225°C.
4.如上述1所述的方法,其特征在于,上述空气分离膜在175℃放置了2小时时,显示95%以上的形状保持率。4. The method according to the above 1, wherein the air separation membrane exhibits a shape retention rate of 95% or more when left at 175° C. for 2 hours.
5.一种航空器的防爆方法,其特征在于,利用上述1~4中任一项所述的制造方法制造富氮空气,提供给航空器用燃料罐。5. An explosion-proof method for aircraft, characterized in that nitrogen-enriched air is produced by the production method described in any one of 1 to 4 above, and supplied to fuel tanks for aircraft.
[部分B:在高温、高压下具有充分的耐热性及耐压性等且没有出现裂缝的气体分离膜组件][Part B: Gas separation membrane module having sufficient heat resistance, pressure resistance, etc. under high temperature and high pressure without occurrence of cracks]
(技术领域)(technical field)
本部分的发明涉及一种混合气体分离用的气体分离膜组件,其将由具有选择透过性的许多空心丝膜构成的丝束用经特定的环氧树脂组合物固化后的管板一体地固着。The invention in this part relates to a gas separation membrane module for the separation of mixed gases, which integrally fixes a bundle composed of many hollow fiber membranes with selective permeability with a tube sheet cured by a specific epoxy resin composition .
(背景技术)(Background technique)
空心丝型的气体分离膜组件,是在将由具有选择透过性的许多空心丝膜构成的丝束的至少一端通过铸型用的树脂的固化板(管板)一体地捆在一起并固着的状态下,收纳在至少具有混合气体导入口、透过气体排出口及非透过气体排出口的箱体的组件。管板除了具有一体地固着丝束的作用之外,具有通过密封空心丝和空心丝之间及空心丝和箱体之间来隔绝空心丝膜的内部空间和外部空间、保持内部空间和外部空间的气密性的作用。空心丝型的气体分离膜组件丧失上述管板引起的气密性时,不进行适合的分离。A hollow fiber type gas separation membrane module is integrally bundled and fixed by a cured plate (tube sheet) of resin for casting at least one end of a bundle of many hollow fiber membranes having selective permeability. In this state, it is an assembly housed in a case having at least a mixed gas inlet, a permeate gas discharge port, and a non-permeate gas discharge port. In addition to the function of integrally fixing the tow, the tube sheet has the function of isolating the inner space and the outer space of the hollow fiber membrane by sealing between the hollow fiber and the hollow fiber and between the hollow fiber and the box, and maintaining the inner space and the outer space. The role of airtightness. When the hollow fiber type gas separation membrane module loses the airtightness due to the above-mentioned tube sheet, proper separation cannot be performed.
在使用了分离膜的气体分离方法中,有时通过在高温、高压的状态下供给气体混合物来完成适合的气体分离。此时,就管板材料而言,要求高的耐热性、耐压性,其玻璃化转变温度或热变形温度必须比气体分离膜组件的运转温度高至少数十度。In a gas separation method using a separation membrane, appropriate gas separation may be achieved by supplying a gas mixture under high temperature and high pressure. At this time, the tube sheet material is required to have high heat resistance and pressure resistance, and its glass transition temperature or heat distortion temperature must be at least tens of degrees higher than the operating temperature of the gas separation membrane module.
作为用于实现高的耐热性、耐压性的管板材料,一般使用热固化型树脂,但在管板成形时,为了使热固化型树脂的固化反应完成,在显著高的温度下进行处理。这是因为,使用没有完成固化反应的管板时,使分离膜组件在高温下运转期间进行固化反应而管板收缩,管板和箱体之间的密封性能不充分。因此,对管板材料也要求相对于管板成形时的显著高的温度的耐热性。Thermosetting resins are generally used as tube sheet materials for achieving high heat resistance and pressure resistance. However, when forming tube sheets, the curing reaction of the thermosetting resin is completed at a significantly high temperature. deal with. This is because, when a tube sheet that has not completed the curing reaction is used, the curing reaction progresses during the operation of the separation membrane module at a high temperature and the tube sheet shrinks, resulting in insufficient sealing performance between the tube sheet and the tank. Therefore, the tube sheet material is also required to have heat resistance that is significantly higher than the temperature at which the tube sheet is formed.
作为可以用于高温、高压的混合气体的分离的气体分离膜组件,例如在日本特开昭62-74434号公报中记载有使用使酚醛型环氧树脂和端部具有反应性官能团的液状聚丁二烯发生反应而得到的改性环氧树脂制成的空心丝元件。As a gas separation membrane module that can be used for the separation of mixed gases at high temperature and high pressure, for example, Japanese Patent Application Laid-Open No. 62-74434 describes the use of a novolac epoxy resin and a liquid polybutylene resin having a reactive functional group at the end. A hollow fiber element made of a modified epoxy resin obtained by reacting a diene.
(部分B的发明要解决的课题)(Problems to be Solved by the Invention of Part B)
但是,现有的管板材料存在如下问题:在管板成型时固化收缩大,产生裂缝或管板破坏等。而且,存在如下问题:在仅重视耐压性及耐热性的情况下,管板材料的挠性不足,因此,例如在运转时受到冲击时,在管板上产生裂缝或管板破坏等。本部分的发明的目的在于,提供一种气体分离膜组件的管板,其在高温、高压下保持充分的耐热性及耐压性,不会出现裂缝。However, the existing tube sheet materials have the following problems: large solidification shrinkage during tube sheet molding, cracks or tube sheet damage, etc. In addition, there is a problem that when only the pressure resistance and heat resistance are emphasized, the flexibility of the tube sheet material is insufficient, so that, for example, when an impact is received during operation, cracks are generated on the tube sheet or the tube sheet is broken. The object of the invention in this part is to provide a tube sheet of a gas separation membrane module, which maintains sufficient heat resistance and pressure resistance under high temperature and high pressure without cracks.
该部分所公开的主要发明要点如下所述。The main points of the invention disclosed in this section are as follows.
1.一种气体分离膜组件,其具有:1. A gas separation membrane module, which has:
由具有气体分离性能的许多空心丝膜构成的丝束、A tow consisting of many hollow fiber membranes with gas separation properties,
具有混合气体入口、透过气体排出口及非透过气体排出口且所述空心丝束配置在内部的箱体、和a casing having a mixed gas inlet, a permeate gas discharge port, and a non-permeate gas discharge port in which the hollow fiber bundle is disposed; and
固定所述空心丝束的至少一个端部的管板,a tube sheet securing at least one end of said hollow tow,
其中,所述管板由铸型树脂组合物固化成的环氧固化物形成,该铸型树脂组合物包含:将(a)酚醛型环氧化合物和(b)末端具有可以与环氧基反应的官能团的丁二烯-丙烯腈共聚物发生反应而得到的改性环氧树脂、及(c)固化剂。Wherein, the tube sheet is formed by an epoxy cured product cured from a casting resin composition, and the casting resin composition includes: (a) a novolak type epoxy compound and (b) an epoxy compound at the end that can react with an epoxy group. The modified epoxy resin obtained by reacting the functional group of butadiene-acrylonitrile copolymer, and (c) curing agent.
(部分B的发明效果)(Invention Effects of Part B)
本部分的发明的气体分离膜组件中的管板,通过使用末端具有可以与环氧基反应的官能团的丁二烯-丙烯腈共聚物而制造,与现有的管板相比,具有挠性。而且,在管板成形时或气体分离膜组件的运转时暴露于高温、高压的气体时,在管板上不产生裂缝,与空心丝的密合性或管板和箱体之间的密闭性能也没有问题。The tube sheet in the gas separation membrane module of the invention of this section is manufactured by using a butadiene-acrylonitrile copolymer having a functional group that can react with an epoxy group at the end, and is more flexible than the existing tube sheet . Moreover, when the tube sheet is formed or exposed to high temperature and high pressure gas during the operation of the gas separation membrane module, no cracks will occur on the tube sheet, and the tightness with the hollow wire or the sealing performance between the tube sheet and the box No problem either.
(部分B中的实施方式)(implementation in Part B)
形成本部分发明的空心丝元件的管板的环氧固化物,可以通过对铸型树脂组合物进行热处理并使其固化来得到,该铸型树脂组合物至少包含:将(a)酚醛型环氧化合物和(b)末端具有可以与环氧基反应的官能团的丁二烯-丙烯腈共聚物反应而得到的改性环氧树脂、及(c)固化剂。下面,详细地进行说明。The epoxy cured product forming the tube sheet of the hollow fiber element of this part of the invention can be obtained by heat-treating and curing a casting resin composition comprising at least: (a) a phenolic ring An oxygen compound, (b) a modified epoxy resin obtained by reacting a butadiene-acrylonitrile copolymer having a functional group capable of reacting with an epoxy group at the terminal, and (c) a curing agent. Below, it demonstrates in detail.
<改性环氧树脂><Modified epoxy resin>
改性环氧树脂可以使酚醛型环氧化合物{以下,有时也记载为环氧化合物(a)}和末端具有可以与环氧基反应的官能团的丁二烯-丙烯腈共聚物{以下,也有时记载为化合物(b)}反应来得到。Modified epoxy resin can make novolac type epoxy compound {hereinafter, sometimes also described as epoxy compound (a)} and butadiene-acrylonitrile copolymer {hereinafter, also have When recorded as compound (b)} reaction to get.
用于本部分的发明的酚醛型环氧化合物(a)为下述通式(a)表示的化合物。The novolac epoxy compound (a) used in the invention of this section is a compound represented by the following general formula (a).
【化16】【Chemical 16】
(式中,R”表示碳数1~3的烷基或氢原子,n表示0~500、优选0~20的整数。)(In the formula, R" represents an alkyl group or a hydrogen atom having 1 to 3 carbon atoms, and n represents an integer of 0 to 500, preferably 0 to 20.)
式(a)中,R”优选为甲基或氢原子。就上述通式(a)表示的环氧化合物(a)而言,分子量优选为300~2000,另外,环氧当量优选为150~250。作为环氧化合物(a),可列举:三菱化学(株)制的jER152、jER154;DIC(株)制的EPICLON-N740、N-770、N-775等;东都化成(株)制的YDPN-638、YDCN-700系列等;陶氏化学公司制的D.E.N.438等。In the formula (a), R "is preferably a methyl group or a hydrogen atom. For the epoxy compound (a) represented by the above general formula (a), the molecular weight is preferably 300-2000, and the epoxy equivalent is preferably 150-2000. 250. Examples of the epoxy compound (a) include jER152 and jER154 manufactured by Mitsubishi Chemical Co., Ltd.; EPICLON-N740, N-770, and N-775 manufactured by DIC Corporation; YDPN-638, YDCN-700 series, etc.; D.E.N.438 manufactured by Dow Chemical Company, etc.
在用于本部分的发明的末端具有可以与环氧基反应的官能团的丁二烯-丙烯腈共聚物{化合物(b)}中,作为可以与环氧基反应的官能团,可列举例如羧基、氨基、羟基等,特别优选羧基。通过含有化合物(b),可以对所形成的管板赋予挠性。In the butadiene-acrylonitrile copolymer {compound (b)} having a functional group reactive with an epoxy group at the terminal used in the invention of this section, examples of the functional group reactive with an epoxy group include carboxyl, Amino group, hydroxyl group, etc., carboxyl group is particularly preferable. By containing the compound (b), flexibility can be imparted to the formed tube sheet.
作为末端具有可以与环氧基反应的官能团的丁二烯-丙烯腈共聚物,例如优选下述通式(b)表示的羧基末端丁二烯-丙烯腈共聚物(CTBN)。As the butadiene-acrylonitrile copolymer having a functional group capable of reacting with an epoxy group at the end, for example, a carboxyl-terminated butadiene-acrylonitrile copolymer (CTBN) represented by the following general formula (b) is preferable.
【化17】【Chemical 17】
式(b)中,m表示丁二烯单体单元的重复数的总计,n表示丙烯腈单体单元的重复数的总计,[]内的结构存在2个以上时,m、n表示各自的单元的重复数的总和,无论作为嵌段存在,还是以无规存在,哪一个都可以。In formula (b), m represents the total number of repetitions of butadiene monomer units, n represents the total number of repetitions of acrylonitrile monomer units, and when there are two or more structures in [ ], m and n represent each The sum of the repeating numbers of the units may exist either as a block or randomly.
上述通式(b)表示的CTBN的分子量优选2000~4000,例如CTBN中,优选含有5~50重量%的丙烯腈单体单元。作为市售品,可列举例如Emerald功能材料制HyproTMCTBN1300×8、CTBN1300×13、CTBN1300×31等。The molecular weight of CTBN represented by the above general formula (b) is preferably 2,000 to 4,000, and for example, CTBN preferably contains 5 to 50% by weight of acrylonitrile monomer units. As a commercial item, Hypro ™ CTBN1300×8, CTBN1300×13, CTBN1300×31, etc. manufactured by Emerald Functional Materials are mentioned, for example.
关于改性环氧树脂,通过相对环氧化合物(a)100重量份、以优选5~50重量份、进一步优选5~20重量份的方式混合化合物(b)并使其反应来得到。使用各化合物的含量为上述范围内的改性环氧树脂时,所形成的管板在高温、高压下不产生裂缝,另外,也不产生玻璃化转变温度大大降低而变形的问题。另外,只要不损害本部分的发明目的,也可以混合其它化合物。制备该改性环氧树脂时的反应条件没有特别限定,但反应温度优选为100~200℃,反应时间优选为2~5小时。The modified epoxy resin is obtained by mixing compound (b) in an amount of preferably 5 to 50 parts by weight, more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the epoxy compound (a), and reacting it. When using the modified epoxy resin with the content of each compound within the above range, the formed tube sheet does not produce cracks under high temperature and high pressure, and in addition, the glass transition temperature is greatly lowered and the problem of deformation does not occur. In addition, other compounds may also be mixed as long as the object of the invention in this section is not impaired. The reaction conditions for preparing the modified epoxy resin are not particularly limited, but the reaction temperature is preferably 100 to 200° C., and the reaction time is preferably 2 to 5 hours.
<固化剂><curing agent>
用于本部分的发明的固化剂,只要是环氧树脂的热固化剂,就没有特别限定,可列举胺类、酚类、酸酐等,更优选使用酸酐。作为酸酐,可列举例如:邻苯二甲酸酐、均苯四甲酸二酐、甲基-5-降冰片烯-2,3-二羧酸酐(甲基纳迪克酸酐)、二苯甲酮四羧酸二酐等,特别优选甲基-5-降冰片烯-2,3-二羧酸酐。The curing agent used in the invention of this section is not particularly limited as long as it is a thermosetting agent for epoxy resins, and examples thereof include amines, phenols, and acid anhydrides, and acid anhydrides are more preferably used. Examples of acid anhydrides include: phthalic anhydride, pyromellitic dianhydride, methyl-5-norbornene-2,3-dicarboxylic anhydride (methyl nadic anhydride), benzophenone tetracarboxylic Acid dianhydrides and the like, and methyl-5-norbornene-2,3-dicarboxylic anhydride is particularly preferable.
<固化促进剂><Curing Accelerator>
用于本部分的发明的铸型树脂组合物,可以根据需要含有固化促进剂,作为固化促进剂,可列举例如咪唑化合物。作为咪唑化合物,可列举例如:2-甲基咪唑、2-乙基咪唑、2-乙基-4-甲基咪唑、2-十一烷基咪唑、2-十七烷基咪唑、2-苯基咪唑、1-苄基-2-甲基咪唑、1-氰基乙基-2-甲基咪唑、1-氰基乙基-2-乙基-4-甲基咪唑等,特别优选2-乙基-4-甲基咪唑。The casting resin composition used in the invention of this section may contain a curing accelerator if necessary, and examples of the curing accelerator include imidazole compounds. Examples of imidazole compounds include 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-benzene imidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, etc., particularly preferably 2- Ethyl-4-methylimidazole.
<环氧固化物><Epoxy cured product>
形成本部分的发明的管板的环氧固化物,可以通过将混合有上述改性环氧树脂、固化剂和根据需要的固化促进剂的铸型树脂组合物(以下,有时也记载为铸型树脂组合物)进行热处理并使其固化来得到。铸型树脂组合物的制备中的改性环氧树脂和固化剂等的混合比例,可以根据改性环氧树脂的环氧官能团数和固化剂的官能团数、同时根据铸型树脂组合物的粘度等适当调整。需要说明的是,相对于改性环氧树脂100重量份,固化促进剂优选为0~5重量份,更优选为0.1~3重量份。The epoxy cured product of the tube sheet of the invention of this section can be formed by mixing the above-mentioned modified epoxy resin, curing agent and, if necessary, a curing accelerator. Resin composition) is obtained by heat treatment and curing. The mixing ratio of the modified epoxy resin and curing agent in the preparation of the casting resin composition can be based on the number of epoxy functional groups of the modified epoxy resin and the number of functional groups of the curing agent, and at the same time according to the viscosity of the casting resin composition Wait for appropriate adjustments. In addition, it is preferable that it is 0-5 weight part with respect to 100 weight part of modified epoxy resins, and, as for a hardening accelerator, it is more preferable that it is 0.1-3 weight part.
就热处理而言,例如优选将铸型树脂组合物进行加热并一次固化至铸型树脂组合物的流动性丧失的程度,接着,将一次固化的树脂进一步在高温下进行后固化。进行后固化时,优选以在组件运转中管板材料不发生物性变化的方式将铸型树脂组合物在组件的最终操作温度以上的温度、例如优选100℃~250℃、更优选120℃以上热处理2~10小时。另外,对一次固化没有特别限定,例如优选在低于100℃、更优选在50~85℃下进行2~24小时。需要说明的是,一次固化的树脂以5℃/min以下的升温速度加热至后固化温度时,没有由于在铸型树脂组合物内部急剧地产生的反应热发生热失控的问题,优选。对管板的制作方法进行后述。For the heat treatment, for example, it is preferable to heat and primary cure the casting resin composition to such an extent that the casting resin composition loses its fluidity, and then further post-cure the primary cured resin at high temperature. When performing post-curing, it is preferable to heat-treat the casting resin composition at a temperature higher than the final operating temperature of the module, for example, preferably 100°C to 250°C, more preferably 120°C or higher, so that the physical properties of the tube sheet material do not change during the operation of the module. 2 to 10 hours. In addition, primary curing is not particularly limited. For example, it is preferably performed at less than 100° C., more preferably at 50 to 85° C. for 2 to 24 hours. It should be noted that when the primary-cured resin is heated to the post-curing temperature at a temperature increase rate of 5°C/min or less, there is no problem of thermal runaway due to the heat of reaction rapidly generated inside the casting resin composition, which is preferable. The method of producing the tube sheet will be described later.
<气体分离膜组件><Gas separation membrane module>
下面,对本部分的发明的气体分离膜组件的结构进行说明。Next, the structure of the gas separation membrane module of the present invention will be described.
作为由空心丝膜形成的气体分离膜组件,已知有所谓的Bore Feed型和shell feed型。例如,在Bore Feed型的气体分离膜组件中,如图3(A)所示,将空心丝膜B14的许多根(例如数百根~数十万根)集束而做成空心丝束,将该空心丝束收纳在至少具有混合气体入口B11、透过气体排出口B12及非透过气体排出口B13的箱体B15内,在该空心丝束的两个端部以空心丝膜B14为开口状态的方式固着于箱体B15,构成管板B16a及B16b,以从混合气体入口B11供给气体并通过空心丝膜B14的内侧而通向非透过气体排出口B13的空间(非透过侧)和从空心丝膜B14的外侧通向透过气体排出口B12的空间(透过侧)隔绝的方式构成。箱体B15用例如不锈钢等金属材料、塑料材料、纤维强化塑料材料及陶瓷等材料进行制造。在shell feed型气体分离膜组件中,例如,如图3(B)所示,在空心丝束的一个端部构成管板,从混合气体入口B11供给气体并通向非透过气体排出口B13的非透过侧的空间为空心丝膜B14的外侧,通向透过气体排出口B12的透过侧的空间在空心丝膜B14的内侧构成。So-called Bore Feed type and Shell Feed type are known as gas separation membrane modules formed of hollow fiber membranes. For example, in a Bore Feed type gas separation membrane module, as shown in FIG. The hollow fiber bundle is housed in a box B15 having at least a mixed gas inlet B11, a permeable gas discharge port B12, and a non-permeable gas discharge port B13, and the hollow fiber membranes B14 are used as openings at both ends of the hollow fiber bundle. The state is fixed to the box body B15, and the tube plates B16a and B16b are formed, so that the gas is supplied from the mixed gas inlet B11 and passes through the inner side of the hollow fiber membrane B14 to the space of the non-permeable gas outlet B13 (non-permeable side) It is constructed so as to be isolated from the space (permeation side) leading from the outside of the hollow fiber membrane B14 to the permeated gas outlet B12. The box body B15 is made of materials such as metal materials such as stainless steel, plastic materials, fiber-reinforced plastic materials, and ceramics. In the shell feed type gas separation membrane module, for example, as shown in Fig. 3(B), a tube sheet is formed at one end of the hollow fiber bundle, and the gas is supplied from the mixed gas inlet B11 and leads to the non-permeable gas discharge port B13 The space on the non-permeate side is formed outside the hollow fiber membrane B14, and the space on the permeate side leading to the permeate gas outlet B12 is formed inside the hollow fiber membrane B14.
在图3(A)及(B)中,从气体分离膜组件的混合气体入口B11供给的混合气体在气体分离膜组件内的空心丝膜B14相接而流动期间,高透过气体优先透过空心丝膜B14,被分离为大量含有高透过气体的气体(透过气体)、和较少含有高透过气体的、没有透过的残留的气体(非透过气体)。透过气体从透过气体排出口B12排出,非透过气体从非透过气体排出口B13排出。从气体分离膜组件排出的非透过气体和透过气体,根据用途,仅一方被回收或双方都被回收。In Fig. 3 (A) and (B), while the mixed gas supplied from the mixed gas inlet B11 of the gas separation membrane module is in contact with the hollow fiber membrane B14 in the gas separation membrane module and flows, the high permeable gas preferentially permeates The hollow fiber membrane B14 is separated into a gas containing a large amount of highly permeable gas (permeable gas) and a non-permeable residual gas containing a small amount of highly permeable gas (non-permeable gas). The permeated gas is discharged from the permeated gas discharge port B12, and the non-permeated gas is discharged from the non-permeated gas discharge port B13. Only one or both of the non-permeate gas and permeate gas discharged from the gas separation membrane module are recovered depending on the application.
作为用于气体分离膜的空心丝,厚度薄且直径小的许多根空心丝,即便是小型装置也形成为高膜面积,可以提高分离效率,且在经济方面也是优选的。上述空心丝可以列举例如膜厚为10~500μm且外径为50~2000μm的空心丝,没有特别限定。另外,气体分离膜可以为均质性,也可以为复合膜或非对称膜等不均匀性,还可以为微多孔性或非多孔性。As a hollow fiber used for a gas separation membrane, a large number of hollow fibers having a thin thickness and a small diameter can form a high membrane area even in a small device, which can improve separation efficiency and is also economically preferable. Examples of the above-mentioned hollow fibers include those having a film thickness of 10 to 500 μm and an outer diameter of 50 to 2000 μm, and are not particularly limited. In addition, the gas separation membrane may be homogeneous or heterogeneous such as a composite membrane or an asymmetric membrane, and may be microporous or nonporous.
气体分离膜可以列举由例如聚酰亚胺、聚醚酰亚胺、聚酰胺、聚酰胺酰亚胺、聚砜、聚碳酸酯、硅酮树脂、纤维素系聚合物等聚合物材料、沸石等陶瓷材料等形成的气体分离膜。作为由聚酰亚胺形成的气体分离膜,优选例如芳香族聚酰亚胺空心丝分离膜,更优选芳香族聚酰亚胺非对称空心丝分离膜。Examples of the gas separation membrane include polymer materials such as polyimide, polyetherimide, polyamide, polyamideimide, polysulfone, polycarbonate, silicone resin, cellulose-based polymer, zeolite, etc. Gas separation membranes formed of ceramic materials, etc. As the gas separation membrane formed of polyimide, for example, an aromatic polyimide hollow fiber separation membrane is preferable, and an aromatic polyimide asymmetric hollow fiber separation membrane is more preferable.
作为空心丝束的配丝形态,可列举:平行排列、交叉排列、织物状、螺旋状等。另外,空心丝束在大致中心部可以具有芯管,在空心丝束的外周部可以卷绕膜。而且,空心丝束的形态可以为圆柱状、平板状、角柱状等,可以在箱体内直接以上述形态或弯曲成U字状、或卷绕成螺旋状而收纳。Examples of the arrangement form of the hollow fiber bundles include parallel arrangement, cross arrangement, fabric form, spiral form, and the like. In addition, the hollow fiber bundle may have a core tube at a substantially central portion, and a film may be wound around the outer peripheral portion of the hollow fiber bundle. Furthermore, the shape of the hollow fiber bundle may be cylindrical, flat, or prismatic, and may be stored in the above-mentioned shape directly in the box, bent into a U-shape, or wound into a helical shape.
下面,对本部分的发明的气体分离膜组件的制造方法进行说明。Next, a method for manufacturing the gas separation membrane module of the invention of this part will be described.
首先,对将空心丝膜作为空心丝束进行集束的方法进行说明。First, a method of bundling hollow fiber membranes as hollow fiber bundles will be described.
作为使空心丝膜以相对轴方向具有5~30度的角度交替进行交叉排列的方式集束的方法,可列举例如下述的方法。1~100根空心丝膜利用在成为芯的管状物(芯管)的轴方向以一定的速度往返的配丝导向装置在芯管上进行配丝,同时,芯管以一定的速度旋转。因此,空心丝膜不与轴平行地进行配丝,具有相对轴方向仅旋转芯管的角度而进行配丝。配丝至一个端部时,在此空心丝膜被固定,配丝导向装置向逆方向折回,进一步进行配丝。芯管继续向同方向旋转,因此,这次具有相对轴方向与上次角度相同且为正好相反的方向的角度而进行配丝。将其重复进行时,被配丝的空心丝膜在以相反的角度进行配丝的空心丝膜上交替交叉排列,集束成空心丝束。As a method of bundling the hollow fiber membranes so that they are alternately arranged at an angle of 5 to 30 degrees with respect to the axial direction, the following methods are mentioned. 1 to 100 hollow fiber membranes are distributed on the core tube by a wire distribution guide device that reciprocates at a constant speed in the axial direction of the tubular object (core tube) that becomes the core, and at the same time, the core tube rotates at a constant speed. Therefore, the hollow fiber membranes are not arranged parallel to the axis, but are arranged at an angle at which only the core tube is rotated with respect to the axial direction. When the wire is distributed to one end, the hollow fiber membrane is fixed here, and the wire distribution guide is turned back in the opposite direction, and further wire distribution is performed. The core tube continues to rotate in the same direction. Therefore, this time, the relative axis direction is the same as that of the last time and the angle of the opposite direction is used for wire distribution. When this is repeated, the aligned hollow fiber membranes are arranged alternately and crosswise on the hollow fiber membranes aligned at opposite angles, and bundled into hollow fiber bundles.
下面,对形成本部分的发明中的管板的方法进行说明。作为形成管板的方法,可列举离心成形法及静置成形法,但静置成形法由于装置简便且可以提高生产率,因此优选。以下,对静置成形法的一例进行说明。Next, a method of forming the tube sheet in the invention of this part will be described. Examples of methods for forming the tube sheet include a centrifugal forming method and a static forming method, but the static forming method is preferable because the apparatus is simple and productivity can be improved. Hereinafter, an example of the static molding method will be described.
用上述方法等将集束有规定长度及根数的空心丝膜B24的空心丝束以去掉芯管或将芯管原封不动在束的大致中心部具有的状态收纳于箱体B22后,设置于在端部成形管板的模具B21内的规定位置,将上述空心丝束和圆柱状的箱体B22以端部为下而基本上保持垂直。图4b表示该状态的示意图。After the hollow fiber bundle with the hollow fiber membranes B24 of predetermined length and number bundled together is stored in the box B22 with the core tube removed or the core tube intact in the approximate center of the bundle by the above-mentioned method, it is placed in the At a predetermined position in the die B21 for forming the tube sheet at the end, the hollow fiber bundle and the cylindrical box B22 are held substantially vertically with the end facing downward. Figure 4b shows a schematic diagram of this state.
在模具B21内注入规定量的用于形成管板B23的铸型树脂组合物。图4c表示已注入铸型树脂组合物的状态的示意图。铸型树脂组合物的注入方法没有特别限定,但由于在模具B21内以及空心丝膜B24之间容易均匀注入铸型树脂组合物,因此优选从模具下部使用注射器注入。铸型树脂组合物的注入速度过快时,难以在应该填充铸型树脂组合物的部位均等地注入,因此,优选用充分时间进行注入。将铸型树脂组合物注入于模具B21期间,优选适当控制模具B21的温度。同样地,优选控制铸型树脂组合物的温度。A predetermined amount of casting resin composition for forming the tube sheet B23 is injected into the mold B21. Fig. 4c is a schematic diagram showing a state where the casting resin composition has been injected. The injection method of the casting resin composition is not particularly limited, but since it is easy to uniformly inject the casting resin composition into the mold B21 and between the hollow fiber membranes B24, it is preferably injected from the lower part of the mold using a syringe. When the injection rate of the casting resin composition is too fast, it becomes difficult to uniformly inject the casting resin composition into the portion where the casting resin composition should be filled. Therefore, it is preferable to perform the injection for a sufficient time. During injection of the casting resin composition into the mold B21, it is preferable to properly control the temperature of the mold B21. Likewise, it is preferable to control the temperature of the casting resin composition.
就固化前的铸型树脂组合物而言,从成型性方面考虑,优选在树脂注入时的温度下为液体状。The cast resin composition before curing is preferably liquid at the temperature at the time of resin injection from the viewpoint of moldability.
对铸型树脂组合物的粘度没有特别限制,但在树脂注入时通常所使用的温度70~90℃时的粘度优选低于120poise,特别优选低于20poise。在此,树脂组合物的粘度使用旋转粘度计适当测定。The viscosity of the casting resin composition is not particularly limited, but the viscosity is preferably less than 120 poise, particularly preferably less than 20 poise, at a temperature of 70 to 90°C, which is usually used for resin injection. Here, the viscosity of the resin composition is appropriately measured using a rotational viscometer.
存在如下问题:铸型树脂组合物的70~90℃时的粘度为120poise以上时,管板成型时的树脂注入需要长时间,而且在树脂注入时产生的气泡不易消失,而且,树脂不充分地浸透于空心丝膜间而产生空隙。There are following problems: when the viscosity of the casting resin composition is 120 poise or more at 70 to 90° C., it takes a long time to inject the resin at the time of tube sheet molding, and the bubbles generated at the time of resin injection are not easy to disappear, and the resin is insufficient. It penetrates between the hollow fiber membranes and creates voids.
在模具B21中注入铸型树脂组合物后,通过将模具B21及空心丝束保持在一定温度而使铸型树脂组合物进行一次固化,形成管板B23。此时的温度低于100℃,优选50~85℃。该阶段中的温度高时,铸型树脂组合物的固化反应变得激烈,对最终得到的管板的强度产生影响,因此不优选。After injecting the casting resin composition into the mold B21, the casting resin composition is primarily cured by keeping the mold B21 and the hollow fiber bundle at a constant temperature to form a tube sheet B23. The temperature at this time is lower than 100°C, preferably 50 to 85°C. When the temperature at this stage is high, the curing reaction of the casting resin composition becomes violent, which affects the strength of the finally obtained tube sheet, which is not preferable.
在使管板的耐久性、机械特性提高方面,优选在铸型树脂组合物固化后,将铸型树脂组合物进一步进行加热,由此进行后固化。后固化时的温度优选100℃~250℃。后固化时的温度低于100℃时,铸型树脂组合物的固化不充分,因此不优选。另外,后固化时的温度过高时,铸型树脂组合物的固化反应变得激烈,在管板的强度方面出现问题,因此不优选。在使铸型树脂组合物进行后固化时,可以分成多次,分别在各自的温度进行加热。In order to improve the durability and mechanical properties of the tube sheet, after the casting resin composition is cured, it is preferable to post-cure the casting resin composition by further heating. The temperature at the time of post-curing is preferably 100°C to 250°C. When the temperature at the time of post-curing is lower than 100 degreeC, hardening of a casting resin composition becomes insufficient, and it is unpreferable. In addition, when the temperature at the time of post-curing is too high, the curing reaction of the molded resin composition becomes violent, which causes a problem in the strength of the tube sheet, which is not preferable. When post-curing the casting resin composition, it may be divided into multiple times and heated at respective temperatures.
使铸型树脂组合物进行后固化后,通过将管板切断并使空心丝膜在端部开口,在端部空心丝保持开口状态,做成用管板固着的空心丝元件。After the casting resin composition is post-cured, the tube sheet is cut to open the hollow fiber membrane at the end, and the hollow fiber remains open at the end to form a hollow fiber element fixed with the tube sheet.
在此,在空心丝束的两端部形成管板的情况下,通过利用上述步骤在空心丝束的一个端部形成管板后、在另一个端部利用同样的步骤形成管板来进行。所谓在一个端部形成管板后,可以是将管板切断、使空心丝膜开口后。另外,也优选在将一个端部设置于模具内并注入铸型树脂组合物,进行一次固化后且进行后固化之前,在另一个端部形成管板,在两端部同时进行后固化以后的步骤。Here, in the case of forming the tube sheet at both ends of the hollow fiber bundle, it is performed by forming the tube sheet at one end of the hollow fiber bundle by the above-mentioned procedure, and then forming the tube sheet at the other end by the same procedure. After the tube sheet is formed at one end, it may be after the tube sheet is cut and the hollow fiber membrane is opened. In addition, it is also preferable to form a tube sheet at the other end after setting one end in a mold and injecting the casting resin composition for primary curing and before performing post-curing, and post-curing simultaneously at both ends. step.
在将使用了本部分的发明的气体分离膜组件对混合气体进行分离的方法中,分离的混合气体只要是2种以上的气体混合物,就没有特别限制。本部分的发明的气体分离膜组件可以适当用于例如来自空气的富氮气体和富氧气体的分离、来自包含氢气的混合气体的氢气的分离、来自水蒸气和有机蒸气的混合蒸气的水蒸气的分离(有机蒸气的脱水)等。In the method of separating a mixed gas using the gas separation membrane module of the invention of this section, the mixed gas to be separated is not particularly limited as long as it is a gas mixture of two or more types. The gas separation membrane module of the invention of this section can be suitably used for, for example, separation of nitrogen-rich gas and oxygen-rich gas from air, separation of hydrogen from a mixed gas containing hydrogen, water vapor from a mixed vapor of water vapor and organic vapor Separation (dehydration of organic vapor), etc.
(技术方案)(Technical solutions)
部分B涉及的发明如下所述。The inventions covered by Section B are as follows.
1.一种气体分离膜组件,其具有:1. A gas separation membrane module, which has:
由具有气体分离性能的许多空心丝膜构成的丝束、A tow consisting of many hollow fiber membranes with gas separation properties,
具有混合气体入口、透过气体排出口及非透过气体排出口且所述空心丝束配置在内部的箱体、和a casing having a mixed gas inlet, a permeate gas discharge port, and a non-permeate gas discharge port in which the hollow fiber bundle is disposed; and
固定所述空心丝束的至少一个端部的管板,a tube sheet securing at least one end of said hollow tow,
其中,所述管板由铸型树脂组合物固化成的环氧固化物形成,该铸型树脂组合物包含:将(a)酚醛型环氧化合物和(b)末端具有可以与环氧基反应的官能团的丁二烯-丙烯腈共聚物反应而得到的改性环氧树脂、及(c)固化剂。Wherein, the tube sheet is formed by an epoxy cured product cured from a casting resin composition, and the casting resin composition includes: (a) a novolak type epoxy compound and (b) an epoxy compound at the end that can react with an epoxy group. The modified epoxy resin obtained by reacting the functional group of butadiene-acrylonitrile copolymer, and (c) curing agent.
2.如上述1所述的气体分离膜组件,其中,所述铸型树脂组合物还含有固化促进剂。2. The gas separation membrane module according to the above 1, wherein the casting resin composition further contains a curing accelerator.
3.如上述1或2所述的气体分离膜组件,其中,所述可以与环氧基反应的官能团为羧基。3. The gas separation membrane module according to 1 or 2 above, wherein the functional group capable of reacting with an epoxy group is a carboxyl group.
4.如上述1~3中任一项所述的气体分离膜组件,其中,所述固化剂为酸酐。4. The gas separation membrane module according to any one of 1 to 3 above, wherein the curing agent is an acid anhydride.
5.如上述2~4中任一项所述的气体分离膜组件,其中,所述固化促进剂为咪唑化合物。5. The gas separation membrane module according to any one of 2 to 4 above, wherein the curing accelerator is an imidazole compound.
[部分C:即使在高温下也可以良好地工作的分离膜组件等][Part C: Separation membrane modules that work well even at high temperatures, etc.]
(技术领域)(technical field)
该部分所公开的发明涉及一种分离膜组件,上述分离膜组件具有将由具有选择透过性的许多空心丝膜构成的空心丝束用经特定的环氧树脂组成物固化后的管板一体地固着的空心丝元件。特别涉及一种抑制管板的热膨胀产生的影响、即使在高温下也可良好地工作的分离膜组件等。The invention disclosed in this part relates to a separation membrane module, which has a hollow fiber bundle composed of many hollow fiber membranes having selective permeability and a tube sheet cured with a specific epoxy resin composition. Fixed hollow fiber elements. In particular, it relates to a separation membrane module capable of suppressing the influence of thermal expansion of a tube sheet and operating well even at high temperatures.
(背景技术)(Background technique)
空心丝型的气体分离膜组件通常具备具有由具有选择透过性的许多空心丝膜构成的丝束的空心丝元件和收容该元件的空心的容器。空心丝元件的空心丝束,其一端或两端利用树脂的固化板(管板)固定于容器的端部。另外,在容器中至少设有原料气体导入口、透过气体排出口及非透过气体排出口。A hollow fiber type gas separation membrane module generally includes a hollow fiber element having a bundle of many hollow fiber membranes having permselectivity, and a hollow container for accommodating the element. The hollow fiber bundle of the hollow fiber element is fixed at one or both ends to the end of the container by a cured sheet (tube sheet) of resin. In addition, the container is provided with at least a raw material gas inlet, a permeate gas discharge port, and a non-permeate gas discharge port.
就气体分离膜而言,一般而言,所供给的气体越为高温高压,气体的透过速率越大。因此,在使用气体分离膜组件的情况下,有时研究用压缩器等将原料气体压缩后提供给组件。该压缩后的气体有时根据情况在149℃~260℃的非常高的温度下被供给。In terms of gas separation membranes, in general, the higher the temperature and pressure of the supplied gas, the greater the gas permeation rate. Therefore, in the case of using a gas separation membrane module, a compressor or the like is used for research to compress the source gas and supply it to the module. This compressed gas may be supplied at a very high temperature of 149°C to 260°C in some cases.
但是,在如上所述的高温条件下使用分离膜组件时,例如有可能因管板发生热膨胀而在管板构件内产生了应力集中,或者,产生因起因于该集中的管板的裂缝而丧失分离膜组件的气密性等问题。因此,一般而言,将用压缩器等压缩后的高温的气体特意冷却提供给气体分离膜组件。关于高温下的使用,现有的分离膜组件还残留有改善的余地(例如,基于高温的特殊条件的高效部件设计等)。进而,不管是否为高温用的分离膜组件,正在谋求开发一种将分离膜组件的结构进一步简化并可有助于小型化的结构。However, when the separation membrane module is used under high temperature conditions as described above, for example, stress concentration may occur in the tube sheet member due to thermal expansion of the tube sheet, or cracks in the tube sheet caused by the concentration may cause loss. The airtightness of the separation membrane module and other issues. Therefore, in general, high-temperature gas compressed by a compressor or the like is deliberately cooled and supplied to the gas separation membrane module. Regarding use at high temperatures, conventional separation membrane modules still have room for improvement (for example, design of high-efficiency components based on special conditions at high temperatures, etc.). Furthermore, regardless of whether it is a separation membrane module for high temperature use, the development of a structure that further simplifies the structure of the separation membrane module and contributes to miniaturization is being sought.
本部分的发明是鉴于上述课题而完成的,其目的在于提供一种分离膜组件,上述分离膜组件抑制管板的热膨胀产生的影响,即使在高温下也可以良好地工作。另外,其它目的在于,提供一种谋求分离膜组件的结构的简化、对小型化/轻量化有利的结构。The present invention has been made in view of the above problems, and an object of the invention is to provide a separation membrane module that suppresses the influence of thermal expansion of the tube sheet and can operate well even at high temperatures. Another object is to provide a structure that simplifies the structure of the separation membrane module and contributes to size reduction and weight reduction.
该部分所公开的主要发明要点如下所述。The main points of the invention disclosed in this section are as follows.
1.一种分离膜组件,具备:1. A separation membrane module, comprising:
将具有选择透过性的许多空心丝膜集束成的空心丝束;Hollow fiber bundles that bundle many hollow fiber membranes with selective permeability;
收容该空心丝束的筒状容器;a cylindrical container containing the hollow tow;
设置于上述空心丝束的端部并具有将该束的端部固定于上述筒状容器的端部同时将上述筒状容器的内部和外部隔绝的功能的管板;和a tube plate provided at the end of the above-mentioned hollow fiber bundle and having a function of fixing the end of the bundle to the end of the above-mentioned cylindrical container while insulating the inside and outside of the above-mentioned cylindrical container; and
将上述管板的外周面和上述筒状容器的内周面之间密封的环状密封构件;an annular sealing member that seals between the outer peripheral surface of the tube sheet and the inner peripheral surface of the cylindrical container;
所述分离膜组件在高温条件下使用,其中,The separation membrane module is used under high temperature conditions, wherein,
在安装有上述环状密封构件的周边,在上述管板上没有设置台阶部。In the periphery where the annular seal member is attached, no step portion is provided on the tube sheet.
根据这样的构成,由于在安装环状密封构件(详细下述)的周边在管板上没有设置台阶部,因此,与在管板的台阶部配置有O环的现有结构相比,抑制在高温下使用时的应力集中产生的影响。According to such a configuration, since no step is provided on the tube sheet around the periphery where the annular seal member (described in detail below) is attached, compared with the conventional structure in which an O-ring is arranged on the step of the tube sheet, the Effects of stress concentration during use at high temperatures.
该部分中的“环状密封构件”是指将管板外周面和筒状容器内周面之间密封的环状的密封构件,其截面形状没有特别限定。作为环状密封构件,可以为例如O环(截面形状为大致圆形),或可以分别是截面形状为大致V型、大致U型的V型密封件、U型密封件等。进而,也包含椭圆形、矩形、多角形、X型等截面形状的情况。The "annular sealing member" in this section refers to an annular sealing member that seals between the outer peripheral surface of the tube sheet and the inner peripheral surface of the cylindrical container, and its cross-sectional shape is not particularly limited. The ring-shaped sealing member may be, for example, an O-ring (substantially circular in cross-section), or a V-seal or U-seal having a substantially V-shaped cross-section or a substantially U-shaped cross-section, respectively. Furthermore, cross-sectional shapes such as an ellipse, a rectangle, a polygon, and an X shape are also included.
“高温条件下”是指在80℃~300℃的范围内。"Under high temperature conditions" means within the range of 80°C to 300°C.
“筒状容器”并不限定于两端开口的容器,也包含仅一端开口的容器。The "cylindrical container" is not limited to a container that is open at both ends, but also includes a container that is open at only one end.
气体分离膜组件可用于例如氧分离、氮分离、氢分离、水蒸气分离、二氧化碳分离、有机蒸气分离的用途。Gas separation membrane modules can be used for applications such as oxygen separation, nitrogen separation, hydrogen separation, water vapor separation, carbon dioxide separation, and organic vapor separation.
(部分C中的第1实施方式)(1st embodiment in part C)
图5是表示气体分离膜组件的基本构成的示意图。需要说明的是,在以下的说明中,例示若干实施方式,但各实施方式不是分别独立,各实施方式的内容可以适宜组合。Fig. 5 is a schematic diagram showing the basic configuration of a gas separation membrane module. In addition, in the following description, although some embodiment is illustrated, each embodiment is not independent, and the content of each embodiment can be combined suitably.
如图5所示,该气体分离膜组件1具备作为具有选择透过性的许多空心丝膜14的束的空心丝束15和收容该空心丝束15的大致筒型的容器10。作为一例,筒状容器10为金属制,其两端部开口。筒状容器10可以为圆形截面,也可以为椭圆形截面,还可以为多角形截面。在以下的说明中,以圆形截面(即容器10为圆筒状)的情况为例进行说明。As shown in FIG. 5 , the gas
空心丝膜14可以利用目前公知的空心丝膜,只要具有气体分离性能就可以为任意材料的空心丝膜。由例如高分子材料、特别是聚酰亚胺、聚砜、聚醚酰亚胺、聚苯醚、聚碳酸酯等在常温(23℃)下为玻璃状的高分子材料形成的空心丝膜的气体分离性能良好,故优选。The
空心丝束15是将例如100~1000000根左右的空心丝膜集束成的丝束。集束成的空心丝束的形状没有特别限制,但从制造的容易度及容器的耐压性的观点考虑,优选集束为圆柱状的空心丝束。另外,在图5中例示有空心丝膜实质上平行排列的形态,但也可以为各空心丝膜交叉排列的形态。The
再次参照图5,在容器10的各端部,在空心丝束15的端部设有管板30,在其外周部配置有环状密封构件17。作为环状密封构件17,例如可以为O环(截面形状为大致圆形),或也可以分别是截面形状为大致V型、大致U型的V型密封件、U型密封件等。在以下的说明中,以O环的情况为例进行说明。Referring again to FIG. 5 , at each end of the
作为一例,管板30由环氧树脂组成物的固化物(详细下述)形成,形成为嵌入于容器10的端部那样的大致圆盘状。多个空心丝膜14在其厚度方向贯穿该管板30,各空心丝膜14的端部在管板30的外侧面开口。管板具有一体固着许多空心丝膜的功能。另外,管板通过与环状密封构件协动而密封空心丝膜彼此之间及空心丝膜和容器内周面之间,具有隔绝空心丝膜的内部空间和外部空间、保持气密性的功能。As an example, the
作为形成管板30的固化树脂,只要为具备高温耐性、可以保持空心丝组件内的气密的物质,就没有特别限制。在用于有机蒸气的脱水用途或加湿用途的情况下,优选同时具备对水蒸气的耐久性。通常优选使用聚氨酯、环氧树脂等热固性树脂。从高温耐性及强度方面考虑,特别优选使用环氧树脂。对环氧树脂而言,例如在氮膜组件的情况下,可以利用日本特公平2-36287等中所记载的环氧树脂,另外,在有机蒸气分离组件的情况下,可以利用WO2009/044711等中所记载的环氧树脂。The cured resin forming the
如图5所示,在该分离膜组件1中,在筒状容器10的两端分别设置有帽20、21。在帽20上形成有混合气体导入口22A,在帽21上形成有非透过气体排出口22B。在容器10的周壁的一部分上形成有透过气体的排出口12。需要说明的是,如后所述,本部分的发明的主要特征部在于管板30的周边结构,只要可以采用这样的结构,分离膜组件的类型就没有任何限定。As shown in FIG. 5 , in the
下面,参照图6对管板的周边结构进行说明。图6(a)表示本部分的发明涉及的组件端部的结构的一例,图6(b)表示其它结构。Next, the peripheral structure of the tube sheet will be described with reference to FIG. 6 . FIG. 6( a ) shows an example of the structure of the end portion of the module according to the present invention, and FIG. 6( b ) shows another structure.
就图6(b)所示的气体分离膜组件而言,在筒状容器10的内周面和管板530的外周面之间设有O环18,由此确保两构件间的气密性。具体而言,在管板530的外周部的一部分上形成台阶部530s,在该台阶部530s上嵌合有O环18。在这样的结构的情况下,在高温下使用气体分离膜组件101时,根据条件有可能产生在管板530的该台阶部530s附近发生应力集中,管板破损或者伴随该破损而损伤气密性的不良情况。In the case of the gas separation membrane module shown in FIG. 6( b ), an O-
为了与其相对应,如图6(a)所示,在本实施方式的结构中,使用在外周面没有设置台阶部的管板30。对管板30的直径而言,在该例中,其总长度一定(关于其它方式,参照图7进行后述)。在筒状容器10的端部设有阶部10s,由此,在该台阶部分形成用于嵌合O环18的槽。作为一例,槽的截面形状为矩形。O环18嵌合于该槽内,确保管板的外周面和筒状容器的内周面之间的气密性。In order to cope with this, as shown in FIG. 6( a ), in the structure of the present embodiment, a
另外,O环18也与帽20的内面密合,由此,也可以确保容器端部和帽内面的气密性。根据这样的构成,用1个O环18进行(i)管板和筒状容器之间及(ii)帽和筒状容器之间两者的密封,因此,不需要追加的O环。In addition, the O-
需要说明的是,将帽20固定于筒状容器10的装置没有特别限定,可以采用目前公知的各种方式(例如,利用粘接的固定、使用有固定装置的固定等)。It should be noted that the means for fixing the
在如上构成的本实施方式的气体分离膜组件1中,在安装有O环18的周边,在管板30上没有设置台阶部。因此,与图6(b)那样的现有结构相比,不易受到在高温下使用时的应力集中导致的影响。其结果,可以提高作为气体分离膜组件1整体的高温耐性及可靠性。In the gas
这样的优点不限于图6(a),即使在图7那样的结构的情况下,也可以同样地得到。即,在图6(a)的形态中,为了使说明变简单,对限制管板30的轴方向的移动的装置没有特殊说明,但在图7的构成中设有该装置。Such an advantage is not limited to FIG. 6( a ), and can be similarly obtained even in the case of the structure shown in FIG. 7 . That is, in the form of FIG. 6( a ), in order to simplify the description, the means for restricting the axial movement of the
如图7所示,在该气体分离膜组件1’中,在以规定距离从容器10的端部进入内侧处形成台阶10t。为了与其相对应,在管板30’的端部也设有台阶30’t。关于其它的结构,与图6(a)相同。根据这样的构成,管板30’的端部(图示右侧)与该台阶10t抵接而限制轴方向的移动,因此,管板不会进入其以上的内部。As shown in Fig. 7, in this gas separation membrane module 1', a
需要说明的是,以上举出图5的气体分离膜组件为例进行了说明,当然,本部分的发明也可以应用于其它的构成。例如,也可以优选应用于壳进料型(shell feed type)的组件或在筒状容器上进一步设有净化气体导入口的进行净化的类型的组件。It should be noted that the gas separation membrane module in FIG. 5 was taken as an example for description above, and of course, the invention of this part can also be applied to other configurations. For example, it can also be preferably applied to a module of a shell feed type or a module of a type for purging in which a purge gas inlet is further provided in a cylindrical container.
(部分C中的第2实施方式)(2nd embodiment in part C)
图8表示第2实施方式涉及的组件端部的结构的一例,图8(a)表示常温时的状态,图8(b)表示使用时即高温时的状态。FIG. 8 shows an example of the structure of the end portion of the module according to the second embodiment. FIG. 8( a ) shows the state at room temperature, and FIG. 8( b ) shows the state at high temperature during use.
图8的气体分离膜组件与上述实施方式相同,具备捆束有具有选择透过性的许多空心丝膜的空心丝束15和收容该空心丝束的筒状容器10。另外,具备在空心丝束15的端部设置的管板38和在筒状容器10的端部安装的帽20。在与上述实施方式同样的结构部附加与上述附图相同的符号,省略重复说明。The gas separation membrane module in FIG. 8 is the same as the above-mentioned embodiment, and includes a
如图8(a)所示,在该气体分离膜组件中,以常温时的管板38的直径稍微小于筒状容器10的内周面10a的内径的方式形成,在管板38的外周面和筒状容器的内周面10a之间产生间隙。需要说明的是,管板38的材质与上述实施方式相同,为环氧树脂等树脂材料,为比筒状容器10的材质(作为一例是金属)的热膨胀系数大的材质。As shown in FIG. 8( a ), in this gas separation membrane module, the diameter of the
该气体分离膜组件在例如80℃~300℃的范围内使用。如图8(b)所示,构成为在使用时管板38被加热至规定温度,通过热膨胀进行扩径,由此其外周面与筒状容器的内周面10a密合。利用该密合,可以确保两构件间的气密性。The gas separation membrane module is used, for example, in the range of 80°C to 300°C. As shown in FIG. 8( b ), the
在使用该气体分离膜组件时,使组件充分升温,确保管板38和筒状容器10的气密性后,进行混合气体的供给。When this gas separation membrane module is used, the temperature of the module is sufficiently raised to secure the airtightness of the
在上述构成中,通过使管板38发生热膨胀而在管板和筒状容器之间发挥密封效果。因此,为了将两构件间密封,不需要另外设置O环或将管板的外周面与筒状容器的内周面进行粘接。另外,在使管板38进行热膨胀时,施加于筒状容器10的应力也变小,因此,在可以防止筒状容器10的破损等方面也是有利的。In the above configuration, the thermal expansion of the
需要说明的是,在以上的说明中,假设管板为环氧树脂且筒状容器为金属的情况进行了说明,但关于筒状容器的材质,只要是热膨胀系数比管板的小的材质就并不限定于金属。另外,在图8中没有图示,但也可以设置用于将帽20和筒状容器10之间密封的密封装置。例如,可以利用在帽20的内周面和筒状容器10的外周面之间配置的环状密封构件或在帽20的内面和筒状容器10的端面之间配置的环状密封构件。It should be noted that, in the above description, the case where the tube sheet is made of epoxy resin and the cylindrical container is made of metal has been described. It is not limited to metal. In addition, although not shown in FIG. 8 , a sealing device for sealing between the
(部分C中的第3实施方式)(3rd embodiment in part C)
图9表示第3实施方式涉及的组件端部的结构的一例。需要说明的是,第1及第2实施方式的组件意图在高温下使用,关于图9的气体分离膜组件,对使用温度没有特别限定。FIG. 9 shows an example of the structure of the end portion of the module according to the third embodiment. It should be noted that the modules of the first and second embodiments are intended to be used at high temperatures, and the usage temperature of the gas separation membrane module shown in FIG. 9 is not particularly limited.
图9的气体分离膜组件与上述2个实施方式同样,具备:捆束有具有选择透过性的许多空心丝膜的空心丝束15;收容所述空心丝束的筒状容器10;在空心丝束15的端部设置的管板30和安装于筒状容器10的端部的帽20。另外,也设有将管板和筒状容器之间密封的O环18。在与上述实施方式同样的结构部附加与上述附图相同的符号,省略重复说明。The gas separation membrane module of FIG. 9 is the same as the above-mentioned two embodiments, and includes: a
在图9的构成中,在筒状容器10的周壁的一部分,形成用于将已透过空心丝膜的透过气体排出到该筒状容器外的开口部10h。另外,在帽20的周壁的一部分,也在与其相对应的位置形成有开口部20h。以通过两开口部10h、20h的方式安装有空心的排出管41。在图9的气体分离膜组件中,该排出管41起到作为图5的透过气体排出口12的作用,因此,没有设置图5那样的透过气体排出口12。In the configuration of FIG. 9 , an
该排出管41另外也具有作为将帽20和筒状容器10固定的装置的功能。即,通过使排出管41通到两开口部10h、20h,限制帽20和筒状容器10之间的轴方向的移动及旋转方向的移动。The
为了更牢固地固定两构件10、20,可以利用图9所示的追加的固定螺钉42。该固定螺钉42与在帽20的周壁形成的螺纹孔连通,其前端进入筒状容器10的周壁的一部分。将固定螺钉42进行固定的阴螺纹可以在帽20上形成,也可以在筒状容器上形成。需要说明的是,也可以利用固定销代替固定螺钉。In order to fix both
需要说明的是,也可以设置用于将帽20的周壁的内周面和筒状容器10的外周面之间密封的环状密封构件(未图示)。由此,可以更充分地确保帽20和筒状容器10之间的气密性。在用1个O环18充分进行管板-筒状容器间和帽-筒状容器间两者的密封时,可以省略该密封构件。It should be noted that an annular sealing member (not shown) may be provided for sealing between the inner peripheral surface of the peripheral wall of the
在以上说明那样的构成中,用于形成用于排出透过气体的流路的构件41,也兼备固定帽20和筒状容器10的作用。因此,组件的结构简化,进而可以谋求组件的轻量化、小型化。In the configuration described above, the
需要说明的是,在图9的例子中,以将已透过空心丝膜的透过气体排出到筒状容器外的排出管41为例进行了说明。但是,也可以使用形成将筒状容器的内部和外部连通的流路的其它管状构件代替该排出管41。In addition, in the example of FIG. 9, the
另外,也可以采用如下构成:省略将排出管41通过容器及帽的开口部10h、20h,仅用固定螺钉42或固定销等固定构件将帽20固定于筒状容器10。在这样的构成的情况下,与参照图10(b)进行将后述的凸缘部彼此固定的构成相比时,不需要设置凸缘部,因此,对组件的小型化有利。Alternatively, a configuration may be employed in which the passage of the
该固定构件可以仅为1个,也可以为2个以上,但在2个以上的情况下,优选固定构件均等地配置在圆周方向上。There may be only one fixing member, or there may be two or more fixing members, but when there are two or more fixing members, it is preferable that the fixing members are evenly arranged in the circumferential direction.
(部分C中的其它实施方式)(Other implementations in Part C)
除上述实施方式之外,本部分的发明也可以为图10(a)、(b)所示那样的方式。这些气体分离膜组件与上述实施方式同样,具备:捆束有空心丝膜的空心丝束15;收容该空心丝束的筒状容器10;在空心丝束15的端部设置的管板30;在筒状容器的端部安装的帽26、27。另外,也具备将管板的外周面和筒状容器的内周面之间密封的O环18。In addition to the above-mentioned embodiment, the invention of this part may also be the form shown to Fig.10 (a), (b). These gas separation membrane modules are the same as the above-mentioned embodiment, and include: a
在图10(a)的构成中,帽26以拧入方式固定于筒状容器10。即,构成为在帽26的内周面的一部分形成的阴螺纹部和在筒状容器10的外周面的一部分形成的阳螺纹部卡合。在帽26旋转至规定的固定位置的状态下(参照图10(a)),O环18的一部分与帽26的内面抵接,由此,可以确保筒状容器端部和帽内面的气密性。与上述的实施方式同样,O环18也确保管板的外周面和筒状容器的内周面之间的气密性。In the configuration of FIG. 10( a ), the
在图10(b)的构成中,在帽27上形成凸缘部27f,同时,在筒状容器10上也形成有与其相对应的凸缘部10f。帽27和筒状容器10的固定通过用固定装置43固定这些凸缘27f、10f来进行。作为固定装置43,例如可以使用螺栓及螺母。另外,也可以使用在凸缘10f形成的螺纹孔和螺栓。用固定装置43紧固凸缘部彼此的场所没有特别限定,但紧固场所优选涉及凸缘部的圆周方向,并等间隔地设置。In the structure of FIG.10(b), the
(部分C中的又一其它实施方式)(yet another embodiment in part C)
本部分的发明的气体分离膜组件也可以为图11所示那样的构成。图11(a)是表示气体分离膜组件的一例的截面图,图11(b)是将图11(a)的一部分放大后的图。The gas separation membrane module of the invention of this part may also have the configuration shown in FIG. 11 . FIG. 11( a ) is a cross-sectional view showing an example of a gas separation membrane module, and FIG. 11( b ) is an enlarged view of a part of FIG. 11( a ).
图11的气体分离膜组件具备:捆束有空心丝膜的空心丝束115;收容空心丝束的筒状容器110;在空心丝束115的两端部设置的管板130A、130A;在筒状容器110的端部安装的帽120、121。另外,也具备在各管板130A的外周面设置的O环118。The gas separation membrane module of FIG. 11 includes: a
在该例中,筒状容器110具有沿组件的长度方向延伸的管材111和安装于其两端的端部构件112、112。在图示左侧(气体导入侧)的端部构件112的周壁上形成有透过气体(一例)的排出口112h。In this example, a
在各端部构件112上形成有凸缘部112f。另一方面,在各帽120、121上也形成有凸缘部120f、121f。通过使端部构件的凸缘部112f和帽的凸缘部120f对接,与图10的方式同样,使用例如螺栓及螺母等(在图11中省略图示),可以将帽120固定于端部构件112(关于帽121,也相同)。A
如图11(b)所示,在该例中,管板130A以与帽120的内周面的一部分和筒状容器110的内周面的一部分密合的方式进行配置。各管板130A与图7的管板30’同样,其外周面形成为阶形状,管板外周面的阶部与筒状容器内周面的阶部抵接,由此限制管板130A的轴线方向(图示横方向)的位置。As shown in FIG. 11( b ), in this example, the
在帽120的凸缘部120f的径向内侧,台阶部120s形成为环状。在由该台阶部120s和端部构件112的凸缘部112f的一部分形成的环状的槽(截面形状为矩形)内配置有O环118。O环118确保管板130A和帽120之间的气密性,同时确保帽120和端部构件112之间的气密性。On the radially inner side of the
以帽120的结构为例,对O环118的周边结构进行了说明,关于帽121侧,也为同样的结构。作为固定凸缘部的装置,并不限于利用螺栓和螺母的装置,例如,可以为相对于在凸缘部112f、120f的任一个上形成的螺纹孔拧入螺栓前端的构成。Taking the structure of the
在上述的图11那样的构成中,与第1实施方式同样,在安装O环118的周边,在管板130A上没有设置台阶部。因此,与图6(b)所示的现有结构相比,不易受到在高温下使用时的应力集中产生的影响。其结果,可以提高作为气体分离膜组件整体的高温耐性及可靠性。In the configuration shown in FIG. 11 described above, similarly to the first embodiment, no step portion is provided on the
另外,在图11的构成中,筒状容器110由管材111和端部构件112、112构成,根据这样的构成,在可以根据各构件的性状适宜选择各个构件的材质方面是有利的。需要说明的是,本部分的发明并不限定与此,也可以利用将管材111和端部构件112一体化那样的单一的筒状容器。In addition, in the structure of FIG. 11, the
本部分的发明的气体分离膜组件还可以为图12所示的组件。该组件基本上与图10(b)的构成同样,以使帽127的凸缘部127f和筒状容器110’的凸缘部110f对接的方式将帽127固定于筒状容器110’。O环数及配置位置等与图10(b)的组件不同。管板130B与图11的组件同样,与帽127的内周面的一部分和筒状容器110’的内周面的一部分密合。The gas separation membrane module of this part of the invention may also be the module shown in FIG. 12 . This assembly is basically the same as the configuration of FIG. 10(b), and the
第一O环118配置于在帽127的内周面上所形成的环状的槽127g内,确保管板130B和帽127之间的气密性。对环状的槽127g没有限定,但在帽127的内周面中,在从凸缘部127f侧的端面稍稍进入内侧(图示左侧)的位置上形成。The first O-
第二O环119配置在凸缘部110f和凸缘部127f之间。在该例中,在筒状容器110的凸缘部110f上所形成的环状的槽110g上配置有O环119。这样的O环119不是必需的构成,利用该O环119,可以防止气体通过凸缘部110f、127f间而泄漏到外部。The second O-
需要说明的是,当然,这样的O环118、119的构成不仅是图12所描述的形态,而且还可以与上述的实施方式适宜组合而利用。另外,配置第二O环119的槽也可以形成于帽127的凸缘部127f。It should be noted that, of course, the configuration of such O-
(发明内容)(Content of invention)
涉及部分C的发明如下所述。The invention relating to Part C is as follows.
1.一种气体分离膜组件,具备:1. A gas separation membrane module, comprising:
将具有选择透过性的许多空心丝膜集束成的空心丝束;Hollow fiber bundles that bundle many hollow fiber membranes with selective permeability;
收容该空心丝束的筒状容器;a cylindrical container containing the hollow tow;
设置于上述空心丝束的端部并具有将该束的端部固定于上述筒状容器的端部、同时隔绝上述筒状容器的内部和外部的功能的管板;和a tube plate provided at the end of the above-mentioned hollow fiber bundle and having the function of fixing the end of the bundle to the end of the above-mentioned cylindrical container while insulating the inside and outside of the above-mentioned cylindrical container; and
密封上述管板的外周面和上述筒状容器的内周面之间的环状密封构件;an annular sealing member that seals between the outer peripheral surface of the tube sheet and the inner peripheral surface of the cylindrical container;
所述气体分离膜组件在高温条件下使用,其中,The gas separation membrane module is used under high temperature conditions, wherein,
在安装有上述环状密封构件的周边,在上述管板上没有设置台阶部。In the periphery where the annular seal member is attached, no step portion is provided on the tube sheet.
2.一种气体分离膜组件,具备:2. A gas separation membrane module, comprising:
将具有选择透过性的许多空心丝膜集束成的空心丝束;Hollow fiber bundles that bundle many hollow fiber membranes with selective permeability;
收容该空心丝束的筒状容器;和a cylindrical container containing the hollow tow; and
设置于上述空心丝束的端部并具有将该束的端部固定于上述筒状容器的端部、同时隔绝上述筒状容器的内部和外部的功能的管板;a tube sheet provided at the end of the above-mentioned hollow fiber bundle and having the function of fixing the end of the bundle to the end of the above-mentioned cylindrical container and simultaneously isolating the inside and outside of the above-mentioned cylindrical container;
所述气体分离膜组件在高温条件下使用,其中,The gas separation membrane module is used under high temperature conditions, wherein,
上述管板由比上述筒状容器的材质的热膨胀系数大的材质形成,且The tube sheet is formed of a material having a higher coefficient of thermal expansion than the material of the cylindrical container, and
在常温下,在上述管板的外周面和上述筒状容器的内周面之间产生间隙,升温至规定温度时,上述管板膨胀,其外周面与上述筒状容器的内周面密合而发挥密封效果。At normal temperature, a gap is formed between the outer peripheral surface of the tube sheet and the inner peripheral surface of the cylindrical container, and when the temperature rises to a predetermined temperature, the tube sheet expands and its outer peripheral surface is in close contact with the inner peripheral surface of the cylindrical container. And play a sealing effect.
3.一种气体分离膜组件,具备:3. A gas separation membrane module, comprising:
将具有选择透过性的许多空心丝膜集束成的空心丝束;Hollow fiber bundles that bundle many hollow fiber membranes with selective permeability;
收容该空心丝束的筒状容器;a cylindrical container containing the hollow tow;
设置于上述空心丝束的端部并具有将该束的端部固定于上述筒状容器的端部、同时隔绝上述筒状容器的内部和外部的功能的管板;和a tube plate provided at the end of the above-mentioned hollow fiber bundle and having the function of fixing the end of the bundle to the end of the above-mentioned cylindrical container while insulating the inside and outside of the above-mentioned cylindrical container; and
在上述筒状容器安装的端部的帽;其中,A cap mounted on the end of the above-mentioned cylindrical container; wherein,
形成连通上述筒状容器的内部和外部的流路的管状构件,(在径向上)贯穿上述筒状容器的一部分和上述帽的一部分而设置。A tubular member forming a flow path communicating the inside and outside of the cylindrical container is provided (in the radial direction) through a part of the cylindrical container and a part of the cap.
4.如上述3上述的气体分离膜组件,其还具备:4. The gas separation membrane module as described in the above 3, which also has:
与上述帽的周壁的一部分连通并起到固定该帽和上述筒状容器的作用的固定构件。A fixing member communicates with a part of the peripheral wall of the cap and functions to fix the cap and the cylindrical container.
5.一种气体分离膜组件,具备:5. A gas separation membrane module, comprising:
将具有选择透过性的许多空心丝膜集束成的空心丝束;Hollow fiber bundles that bundle many hollow fiber membranes with selective permeability;
收容该空心丝束的筒状容器;a cylindrical container containing the hollow tow;
设置于上述空心丝束的端部并具有将该束的端部固定于上述筒状容器的端部、同时隔绝上述筒状容器的内部和外部的功能的管板;和a tube plate provided at the end of the above-mentioned hollow fiber bundle and having the function of fixing the end of the bundle to the end of the above-mentioned cylindrical container while insulating the inside and outside of the above-mentioned cylindrical container; and
在上述筒状容器的端部安装的帽;其中,A cap mounted on the end of the above-mentioned cylindrical container; wherein,
具备与上述帽的周壁的一部分连通并起到固定该帽和上述筒状容器的作用的固定构件。A fixing member communicating with a part of the peripheral wall of the cap and functioning to fix the cap and the cylindrical container is provided.
6.一种气体分离膜组件,具备:6. A gas separation membrane module, comprising:
将具有选择透过性的许多空心丝膜集束成的空心丝束;Hollow fiber bundles that bundle many hollow fiber membranes with selective permeability;
收容该空心丝束的筒状容器;a cylindrical container containing the hollow tow;
设置于上述空心丝束的端部并具有将该束的端部固定于上述筒状容器的端部、同时隔绝上述筒状容器的内部和外部的功能的管板;a tube sheet provided at the end of the above-mentioned hollow fiber bundle and having the function of fixing the end of the bundle to the end of the above-mentioned cylindrical container and simultaneously isolating the inside and outside of the above-mentioned cylindrical container;
安装于上述筒状容器的端部的帽;和a cap mounted on the end of the above-mentioned cylindrical container; and
密封上述管板的外周面和上述筒状容器的内周面之间的环状密封构件;an annular sealing member that seals between the outer peripheral surface of the tube sheet and the inner peripheral surface of the cylindrical container;
其中,将上述帽固定于上述筒状容器的方式如下:Wherein, the mode of fixing the above-mentioned cap to the above-mentioned cylindrical container is as follows:
(i)利用在上述帽的内周面的一部分形成的螺纹部及在与其对置的上述筒状容器的外周面的一部分形成的螺纹部进行固定的方式;或or
(ii)将上述帽的凸缘部和与其对置的上述筒状容器的凸缘部用固定装置连结而进行固定的方式。(ii) A form in which the flange portion of the cap and the flange portion of the cylindrical container opposed thereto are connected and fixed by a fixing device.
7.如上述3~6中任一项所述的气体分离膜组件,其中,上述环状密封构件还密封上述帽和上述筒状容器之间。7. The gas separation membrane module according to any one of 3 to 6 above, wherein the annular sealing member also seals between the cap and the cylindrical container.
[部分D:可以控制更换时的成本、对结构的简化也有利的气体分离膜组件][Part D: The gas separation membrane module that can control the cost of replacement and is also advantageous for the simplification of the structure]
(技术领域)(technical field)
该部分所公开的发明涉及一种利用具有选择透过性的许多空心丝膜进行气体分离的气体分离膜组件。特别涉及一种可以控制更换时的成本、而且对结构的简化也有利的分离膜组件。The invention disclosed in this section relates to a gas separation membrane module for gas separation using a plurality of hollow fiber membranes having selective permeability. In particular, it relates to a separation membrane module which can control the cost of replacement and is also advantageous for simplification of the structure.
(背景技术)(Background technique)
空心丝型的气体分离膜组件通常具备具有由具有选择透过性的许多空心丝膜构成的丝束的空心丝元件和收容该元件的筒状容器。空心丝元件的空心丝束,其一端或两端利用树脂的固化板(管板)固定于容器的端部。在筒状容器的端部安装有帽构件,由此将容器内密闭。A hollow fiber type gas separation membrane module generally includes a hollow fiber element having a bundle of many hollow fiber membranes having selective permeability, and a cylindrical container for accommodating the element. The hollow fiber bundle of the hollow fiber element is fixed at one or both ends to the end of the container by a cured sheet (tube sheet) of resin. A cap member is attached to an end portion of the cylindrical container, thereby sealing the inside of the container.
在现有的气体分离膜组件中,如上所述,在筒状容器的端部安装有帽构件,这些帽构件作为整体形成1个主体,因此,在更换分离膜组件时,需要更换组件整体。因此,存在如下问题:原本不需要更换的帽构件等也一起更换,更换部件的成本升高。In the conventional gas separation membrane module, cap members are attached to the ends of the cylindrical container as described above, and these cap members form a single main body as a whole. Therefore, when replacing the separation membrane module, the whole module needs to be replaced. Therefore, there is a problem in that cap members and the like that do not need to be replaced originally are also replaced together, and the cost of replacement parts increases.
另一方面,也可以考虑可仅更换主体内的空心丝元件,但此时,例如需要在主体内内置使空心丝元件装卸的结构等,招致组件结构的复杂化,对轻量化也不利。On the other hand, it is also conceivable that only the hollow fiber element in the main body can be replaced, but in this case, for example, a structure for attaching and detaching the hollow fiber element needs to be built in the main body, which leads to a complicated module structure and is also disadvantageous for weight reduction.
本部分的发明是鉴于上述课题而完成的,其目的在于,提供一种可以控制更换时的成本、而且对结构的简化也有利且小型轻量化容易的气体分离膜组件。The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a gas separation membrane module that can control the cost at the time of replacement, is also advantageous for simplification of the structure, and can be easily reduced in size and weight.
该部分主要公开的主要发明要点如下所述。The main points of the invention mainly disclosed in this part are as follows.
1.一种气体分离膜组件,具备:1. A gas separation membrane module, comprising:
将由许多空心丝膜构成的空心丝束收容于筒状容器内的盒(cartridge);A cartridge in which a hollow fiber bundle composed of many hollow fiber membranes is accommodated in a cylindrical container;
在该盒的两端部安装的帽构件;cap members mounted on both ends of the box;
将上述各帽构件和上述盒之间密封的密封构件;和a sealing member sealing between each of the above-mentioned cap members and the above-mentioned case; and
将上述帽构件相互固定的固定装置;fixing means for fixing said cap members to each other;
其中,上述盒构成为在上述帽构件彼此之间以能更换的方式进行安装。However, the cartridge is configured to be replaceably attached between the cap members.
根据这样的构成,提供一种可以控制更换时的成本、而且对结构的简化也有利且小型轻量化容易的气体分离膜组件。According to such a configuration, it is possible to provide a gas separation membrane module in which the replacement cost can be suppressed, the structure can be simplified, and the size and weight can be easily reduced.
(部分D中的实施方式)(implementation in part D)
以下,参照附图,对本部分的发明的一个实施方式进行说明。需要说明的是,本部分的发明并不限定于以下形态所示的构成,可以根据需要进行部件的追加或省略、形状的变更等。Hereinafter, one embodiment of the invention of this part will be described with reference to the drawings. It should be noted that the inventions of this section are not limited to the configurations shown in the following embodiments, and addition or omission of components, changes in shape, and the like may be performed as necessary.
如图13所示,该气体分离膜组件201(以下,也简称为分离膜组件)具备:在内部收容有空心丝束215的筒状的盒210;在其两端部安装的帽构件220、221;和将这些帽构件220、221固定的固定杆245等。As shown in FIG. 13 , this gas separation membrane module 201 (hereinafter also simply referred to as a separation membrane module) includes: a
盒210具有两端开口的筒状容器211、在其内部收纳的空心丝束215和管板230、231。管板230、231保持空心丝束215的端部,同时隔绝筒状容器211的内部和外部。The
空心丝束215可以利用目前公知的空心丝束。空心丝束215例如可以将100~1000000根左右的空心丝膜214集束成的空心丝束。空心丝膜214只要具有气体分离性能,就可以为任意材料的空心丝束。例如,由高分子材料、特别是聚酰亚胺、聚砜、聚醚酰亚胺、聚苯醚、聚碳酸酯等在常温(23℃)下为玻璃状的高分子材料形成的空心丝膜,其气体分离性能良好,故优选。对集束成的空心丝束的形状没有特别限制,从制造的容易度及容器的耐压性的观点考虑,可以为集束成圆柱状的空心丝束。需要说明的是,在图13中例示有空心丝膜214实质上平行排列的形态,但也可以为各空心丝膜交叉排列的形态。As the
筒状容器211的截面形状可以为圆形、椭圆形或多角形等任意形状。在以下的说明中,对圆形的例子进行说明。作为一例,筒状容器211可以通过将1根金属制的管进行加工来制作。在本实施方式中,作为一例,优选在作为盒侧的筒状容器211上不设置用于将帽构件220、221固定于筒状容器211的装置(即,为在筒状容器上没有固定帽构件的结构)。由此,不需要对筒状容器211的加工、例如凸缘的制作、螺纹孔的形成、固定销的配置等。The cross-sectional shape of the
如图14所示,在筒状容器211的内部中的端部附近形成有内周槽217,内径部分变大。如后所述,在内周槽217上嵌入管板230、231的一部分。从该内周槽217空出规定的间隔,进一步在内侧(远离端部的方向)形成有另一个内周槽218。关于各内周槽217、218,挖入而成的槽的截面形状例如可以为矩形型、大致矩形型、梯形型或大致梯形型。As shown in FIG. 14 , an inner
在形成有内周槽218的部分形成有多个用于将容器内的气体排出到外部的开口部212。对开口部212的数目及位置没有特别限定。作为一例,可以在筒状容器211的周围以等间隔形成多个开口212。如图14所示,在筒状构件211的外周且比内周槽218稍微靠内侧(远离筒端部的方向)形成有用于嵌合后述的弹性环构件R2的外周槽219。In the portion where the inner peripheral groove 218 is formed, a plurality of
对盒210的管板230及231(参照图13)而言,作为一例为环氧树脂,形成为嵌入容器211的端部那样的大致圆盘状。由于管板230和管板231基本上为同样的结构,因此,以下仅对一个管板230进行说明。各空心丝膜214沿其厚度方向贯穿该管板230,各空心丝膜214的端部开口于管板230的外侧。管板230将许多空心丝膜214一体地固着,另外,隔绝筒状容器211的内部和外部。形成管板的固化树脂只要具备充分的耐久性且可以保持空心丝组件内的气密,就没有特别限制。在用于脱水用途或加湿用途的情况下,优选同时具备对水蒸气的耐久性。通常优选使用聚氨酯、环氧树脂等热固性树脂。从耐久性方面及强度方面考虑,特别优选使用环氧树脂。环氧树脂例如在氮膜组件的情况下,可以利用日本特公平2-36287等中所记载那样的环氧树脂,另外,在有机蒸气分离组件的情况下,可以利用WO2009/044711等中所记载那样的环氧树脂。管板优选利用离心成型、静置成型等公知的方法形成。The
需要说明的是,在上述中,管板“隔绝”筒状容器的内部和外部是指利用管板进行实质上的隔绝即可,管板的外周部未必需要粘接于筒状容器的内面。It should be noted that, in the above, the tube sheet "isolates" the inside and outside of the cylindrical container means that the tube sheet can be used to substantially isolate, and the outer peripheral portion of the tube sheet does not necessarily need to be bonded to the inner surface of the cylindrical container.
如图13所示,管板230的一部分从筒状容器211的端部稍微突出,沿管板230的端部的外周形成倒角面(锥形面)。作为制作管板230的工序,作为一例,首先,在筒状容器211内配置空心丝束215,在该状态下在筒状容器211的端部安装未图示的模具(一例)。接着,向该模具内及筒状容器211内注入树脂并使其固化。树脂固化后,摘下模具,切断固化后的树脂的端部,由此形成管板230的端面,同时使空心丝膜214端部开口。管板230的倒角面可以利用模具形成,也可以通过树脂固化后的二次加工来形成。As shown in FIG. 13 , a part of the
由于在筒状容器211内形成有内周槽217,因此,管板230的树脂也被填充于该槽217内。其结果,管板230的一部分与内周槽217卡合,进行管板230相对于筒状容器211的轴方向的定位。通常,在使用分离膜组件201时,相对于管板230将其挤入到筒状容器211内的方向的压力起作用。根据本实施方式的构成,由于管板230的一部分与内周槽217卡合,因此,未因使用时的压力将管板230挤入到筒状容器211内。Since the inner
接着,参照图13、图15,对帽构件220、221的结构进行说明。在该例中,由于帽构件220、221基本上为同样的结构,因此,以下仅对一个帽构件220进行说明,仅对帽构件221的不同部分进行说明。对帽构件220、221的材质没有特别限定,例如也可以为金属制。需要说明的是,当然,每个帽构件220、221可以具有不同的形状,各帽构件220、221的形状可以根据分离膜组件的用途或规格适宜变更。Next, the structures of the
如图13、图15所示,帽构件220具有有底圆筒状的形状。具体而言,如图15(A)所示,具有覆盖筒状容器211的开口部的端面220A和从其周缘部延伸的圆筒部220B。As shown in FIGS. 13 and 15 , the
在端面220A上形成有用于导入混合气体的气体导入口P1。在圆筒部220B的内侧形成有内周槽227a、227b。如图13所示,在内周槽227a上嵌入用于密封的弹性环构件R1(详细内容如下所述)。在将帽构件220嵌合于筒状容器211时,另一个内周槽227b用于形成在筒状容器211中往复一周的气体流路P3。需要说明的是,在另一个帽构件221上形成有非透过气体排出口P2。A gas introduction port P1 for introducing a mixed gas is formed on the end surface 220A. Inner
气体流路P3(图13)与筒状容器211的多个开口部212连通,容器内部的气体通过各开口部212而流入到气体流路P3中。该气体从帽的圆筒部220B上所形成的1个排出口223排出到外部。需要说明的是,在图13的形态中,在帽构件221上没有形成相当于排出口223的结构(开口部)。但是,根据组件的用途等,在帽构件221上设置开口部,同时,与其相对应,可以在筒状容器211上设置1个或多个开口部212。The gas flow path P3 ( FIG. 13 ) communicates with a plurality of
再参照图15时,在圆筒部220B上形成有用于使固定杆245(图13、详细下述)插通的多个通孔220h。在该例中,6个通孔220h在圆周方向上以等间隔配置。这样,在圆筒部220B上形成有通孔220h并在其中通过固定杆245的构成的情况下,在如下方面有利。即,根据这样的构成,作为帽220的一部分的圆筒部220B保持固定杆245,因此,不需要在帽构件220上另外设置用于保持固定杆的特别结构。因此,可以谋求帽构件220进而分离膜组件201的小型化,也有助于组件的轻量化。Referring again to FIG. 15 , a plurality of through
需要说明的是,固定杆245的根数不限于6根,也可以为1~5根或7根以上。作为一例,如图16所示,也可以为3根、4根、或8根等。固定杆245的材质没有特别限定,作为一例,可以为金属制。It should be noted that the number of fixing
如图15(B)所示,在圆筒部220B中,在排出口223开口的部分,圆筒部220B的一部分被切割,形成平坦部220f。另外,在圆筒部220B的底部,作为一例,形成有用于防止分离膜组件滚动的平坦部220g。As shown in FIG. 15(B), in the cylindrical portion 220B, a part of the cylindrical portion 220B is cut at a portion where the
如图13所示,在帽构件的内周槽227a上嵌入有密封管板230和帽构件220之间的弹性密封构件R1。弹性环构件R1构成为在更换时从帽构件220摘下上述盒210时均残留于帽构件220侧。作为弹性环构件R1,例如也可以为O环(截面形状为大致圆形)。或者,可以分别是截面形状为大致V型的V型密封件、截面形状为大致U字型的U型密封件等。进而,截面形状也可以为椭圆形、矩形、多角形、X形等。As shown in FIG. 13 , an elastic seal member R1 that seals between the
在筒状容器211和圆筒部220B之间,其它弹性环构件R2配置成嵌入在筒状容器211的外周槽219内,由此两构件间被密封。该弹性环构件R2也与上述同样,可以利用O环、V型密封件或U型密封件等各种密封件。Between the
如图13、图15所示,帽构件220、221彼此利用6根(一例)固定杆245及在其两端安装的螺母246相互固定。在本实施方式中,如上所述,是利用相对于盒210作为其它部件准备的固定装置相互固定帽构件220、221的结构。因此,不需要设置用于在盒210侧(特别是筒状构件211)固定的凸缘等,可以将盒210的结构简化。As shown in FIGS. 13 and 15 , the
需要说明的是,用于固定帽构件220、221的固定装置并不限定于此,可以利用各种固定装置。例如,可以是固定杆的一端为大直径的头部,在另一端安装螺母。或者,可以在帽构件220的通孔220h的内周切削螺纹,同时,与其相对应,在杆端部也切削螺纹,杆端部拧入到通孔220h内。或者,可以利用机械连结固定帽构件彼此的其它机械装置,例如以使用夹具夹持组件的两端(帽构件220、221)的方式进行固定的机械装置。In addition, the fixing means for fixing the
进而,并不限定于固定于帽构件220、221彼此的机械装置,也可以利用为将各帽构件220、221固定于规定的固定位置的机械装置且在帽构件220、221间以能装卸的方式设置盒210的机械装置。例如,搭载有分离膜组件的装置或设备的一部分作为基体构件(未图示)起作用,可以利用各帽构件220、221相对其基础构件被固定那样的构成。Furthermore, it is not limited to the mechanical device fixed to each other of the
在本实施方式的分离膜组件201中,进行例如如下的气体分离:加压状态的空气通过气体导入口P1被导入到容器内部,该空气从空心丝膜214的开口端部被送入到其内部。在加压空气在空心丝膜214内流动期间,富氧空气选择性地透过到膜外,已透过的富氧空气移动到收纳有管板间的空心丝束的空间内(透过侧空间)。该透过气体从作为透过气体排出口的开口部212及开口部223排出到外部。另一方面,没有透过的富氮空气经由空心丝膜214的另一个开口从作为非透过气体排出口的非透过气体排出口P2排出到外部。In the
在以上说明的气体分离膜组件201中,收容有空心丝束215的盒210构成为以可更换的方式安装于帽构件220、221之间。因此,在更换时仅替换盒即可,不需要更换组件整体,因此,可以控制更换部件的成本。In the gas
另一方面,也可以考虑仅更换相当于内部的空心丝元件215的元件那样的结构,但此时,需要在筒状容器211内内置使该更换部件装卸的结构等。与其相对,在组件201中,作为盒210的一部分的筒状容器211直接作为组件201的主体起作用,因此,不需要复杂的结构。其对分离膜组件201整体的轻量化有利,特别是可以在例如航空领域等期望组件的轻量化的领域中特别优选应用。On the other hand, it is conceivable to replace only the element corresponding to the inner
进而,上述构成是用与盒210不同的部件的固定装置(245、246)连结帽构件220、221而成的。因此,不需要在筒状容器211上形成用于连结帽构件的结构部(例如凸缘部等)。因此,可以简化盒210的结构,另外,也可以控制制造成本。Furthermore, the above-mentioned structure is formed by connecting the
另外,上述构成如下:弹性环构件R1保持在帽构件220、221的内周,在更换时摘下盒210时环构件R1均残留于帽构件侧。这样的构成与在盒210侧设置环构件R1相比,对控制盒210的制造成本有利。In addition, the above configuration is such that the elastic ring member R1 is held on the inner circumference of the
如图13所示,在本实施方式的构成中,由于沿管板230的端部的外周形成有倒角面(锥形面),因此,可以在弹性环构件R1内顺利地插入管板230的端部。As shown in FIG. 13, in the structure of this embodiment, since the chamfered surface (tapered surface) is formed along the outer periphery of the end portion of the
以上,参照附图对本部分的发明的实施方式进行了说明,但本部分的发明不限于图示的形态,可以进行各种变更。例如,关于用于密封各构件间的密封构件,其形状及配置位置可以进行适当变更。除弹性环构件R1、R2之外,也可以设置追加的密封构件。As mentioned above, although embodiment of the invention of this part was demonstrated referring drawings, the invention of this part is not limited to the form of illustration, Various changes are possible. For example, the shape and arrangement position of the sealing member for sealing between the members can be appropriately changed. In addition to the elastic ring members R1, R2, additional sealing members may be provided.
如图13所示,在上述实施方式中,例示了在筒状容器211的外周上嵌合有弹性环构件R2的构成,但本部分的发明不限于此,可以采用如下构成:在帽构件220、221的内周上设有弹性环构件R2并在盒的更换时该弹性环构件R2残留于帽构件220、221侧。此时,由于不需要在盒210的筒状容器211上形成外周槽219,因此,可以进一步控制盒211的制造成本。As shown in FIG. 13 , in the above-mentioned embodiment, the configuration in which the elastic ring member R2 is fitted on the outer periphery of the
在上述实施方式中,例示了构成所谓的钻孔进料型(Bore Feed type)的分离膜组件的例子,但本部分的发明也可以应用于构成壳进料型(shell feedType)的分离膜组件。此时,与壳进料型(shell feed Type)相对应的盒构成为上述说明那样的以能更换的方式安装于帽构件彼此之间即可。In the above-mentioned embodiments, an example constituting a separation membrane module of a so-called bore feed type (Bore Feed Type) was exemplified, but the invention of this section can also be applied to a separation membrane module constituting a shell feed type (shell feed type) . In this case, the cartridge corresponding to the shell feed type may be configured to be replaceably attached between the cap members as described above.
(技术方案)(Technical solutions)
涉及部分D的发明如下所述。The invention relating to Section D is as follows.
1.一种气体分离膜组件,具备:1. A gas separation membrane module, comprising:
将由许多空心丝膜构成的空心丝束收容于筒状容器内的盒;A box containing hollow fiber bundles composed of many hollow fiber membranes in a cylindrical container;
安装于该盒的两端部的帽构件;cap members fitted to both ends of the box;
密封上述各帽构件和上述盒之间的密封构件;和sealing a sealing member between each of the above-mentioned cap members and the above-mentioned case; and
将上述帽构件相互固定的固定装置;fixing means for fixing said cap members to each other;
其中,上述盒构成为以能更换的方式安装于上述帽构件彼此之间。Among them, the cartridge is configured to be replaceably attached between the cap members.
2.如上述1所述的气体分离膜组件,其中,作为上述固定装置,具有连结上述帽构件彼此的至少1根固定杆,2. The gas separation membrane module according to the above 1, wherein at least one fixing rod for connecting the cap members to each other is provided as the fixing means,
在各帽构件上形成有上述固定杆插通的通孔。A through hole through which the above-mentioned fixing rod is inserted is formed in each cap member.
3.如上述1或2所述的气体分离膜组件,其中,上述帽构件以覆盖于上述筒状容器的端部的方式安装,3. The gas separation membrane module according to 1 or 2 above, wherein the cap member is attached so as to cover the end of the cylindrical container,
上述密封构件为在上述盒的外周和上述帽构件的内周之间配置的弹性环构件。The sealing member is an elastic ring member disposed between the outer periphery of the case and the inner periphery of the cap member.
4.如上述3所述的气体分离膜组件,其中,上述弹性环构件保持在上述帽构件的内周,以在更换时从上述帽构件摘下上述盒时均残留于上述帽构件侧的方式构成。4. The gas separation membrane module according to 3 above, wherein the elastic ring member is held on the inner periphery of the cap member so as to remain on the cap member side when the cartridge is detached from the cap member during replacement. constitute.
5.如上述1~4中任一项所述的气体分离膜组件,其中,上述盒具有用于保持上述空心丝束的端部同时隔绝上述筒状容器的内部和外部的管板,5. The gas separation membrane module according to any one of 1 to 4 above, wherein the cassette has a tube sheet for holding the end of the hollow fiber bundle while isolating the inside and outside of the cylindrical container,
在上述筒状容器的内部并面向上述管板的区域形成内周槽,an inner peripheral groove is formed in the interior of the above-mentioned cylindrical container and faces the region of the above-mentioned tube sheet,
上述管板的一部分与该内周槽卡合。A part of the tube sheet is engaged with the inner peripheral groove.
[部分E:可以高效地实施气体分离的气体分离膜组件][Part E: Gas Separation Membrane Modules That Can Efficiently Perform Gas Separation]
(技术领域)(technical field)
本部分的发明涉及一种利用空心丝膜进行气体分离的气体分离膜组件,特别涉及一种在所谓的钻孔进料型(bore feed type)的组件中可以高效地实施气体分离的气体分离膜组件。The invention in this section relates to a gas separation membrane module utilizing a hollow fiber membrane for gas separation, and in particular to a gas separation membrane capable of efficiently implementing gas separation in a so-called bore feed type module components.
(背景技术)(Background technique)
空心丝型的气体分离膜组件通常具备:具有由具有选择透过性的许多空心丝膜构成的空心丝束的空心丝元件和收容该空心丝束的空心的箱体。空心丝元件的空心丝束,其一端或两端利用树脂的固化板(管板)被固定。另外,在箱体上设有混合气体入口、透过气体出口及未透过气体出口等。A hollow fiber type gas separation membrane module generally includes a hollow fiber element having a hollow fiber bundle composed of a large number of hollow fiber membranes having selective permeability, and a hollow housing for accommodating the hollow fiber bundle. A hollow fiber bundle of a hollow fiber element is fixed at one or both ends by a cured sheet (tube sheet) of resin. In addition, a mixed gas inlet, a permeated gas outlet, and a non-permeated gas outlet are provided on the box.
以有效分离气体为目的,例如在日本特开2000-262838中公开有一种气体分离膜组件,所述气体分离膜组件如下构成:在将混合气体提供给空心丝膜内的所谓的钻孔进料型(bore feed Type)的组件中,用膜构件被覆空心丝束的一部分,以载气的流动和混合气体的流动夹持空心丝膜而成为对流。For the purpose of effectively separating gases, for example, Japanese Patent Application Laid-Open No. 2000-262838 discloses a gas separation membrane module, which is constituted as follows: a so-called borehole feed is supplied to a mixed gas in a hollow fiber membrane. In the bore feed type module, a part of the hollow fiber bundle is covered with a membrane member, and the hollow fiber membrane is sandwiched by the flow of the carrier gas and the flow of the mixed gas to form convection.
在上述的专利文献1的气体分离膜组件中,通过限制载气的流动方向,可以谋求气体分离的有效化,但在为钻孔进料型(bore feed Type)且没有利用载气(净化气体)的气体分离膜组件中,改善气体分离的效率也是重要的。本部分的发明是鉴于上述课题而完成的,其目的在于提供一种在钻孔进料型(bore feed Type)的组件中可以高效地实施气体分离的气体分离膜组件。In the gas separation membrane module of the above-mentioned
该部分所公开的主要发明要点如下所述。The main points of the invention disclosed in this section are as follows.
1.一种气体分离膜组件,具备:1. A gas separation membrane module, comprising:
将具有气体分离性能的许多空心丝膜集束成的空心丝束;A hollow fiber bundle formed by bundling many hollow fiber membranes with gas separation performance;
具有混合气体入口、透过气体出口及未透过气体出口且在内部配置有上述空心丝束的箱体;和a casing having a mixed gas inlet, a permeated gas outlet, and a non-permeated gas outlet, and having the aforementioned hollow fiber bundles disposed therein; and
将上述空心丝束的两端部固定的2个管板;2 tube sheets for fixing both ends of the above-mentioned hollow fiber bundle;
所述气体分离膜组件将从上述混合气体入口导入的混合气体提供给上述空心丝膜内,通过使该混合气体的一部分透过来进行气体分离,其中,In the gas separation membrane module, the mixed gas introduced from the mixed gas inlet is supplied into the hollow fiber membrane, and a part of the mixed gas is permeated to perform gas separation, wherein,
(i)没有设置用于供给用于排出透过上述空心丝膜的透过气体的净化气体的结构,(i) There is no structure for supplying purge gas for discharging the permeated gas permeating the hollow fiber membrane,
(ii)还具备一种膜构件,其为卷绕于上述空心丝束的外周面的气体不透过性(也包含实质上气体不透过性的膜构件)的膜构件,其中,以其一端部实质上与混合气体供给方向下游侧的上述管板抵接、另一端部从混合气体供给方向上游侧的上述管板离开的方式配置。(ii) A membrane member is further provided which is a gas-impermeable (including a substantially gas-impermeable membrane member) wound on the outer peripheral surface of the hollow fiber bundle, wherein the One end portion is substantially in contact with the tube sheet on the downstream side in the mixed gas supply direction, and the other end portion is arranged so as to be separated from the above-mentioned tube sheet on the upstream side in the mixed gas supply direction.
根据本部分的发明,利用卷绕于空心丝束的膜构件控制透过气体的流动方向,与混合气体的供给方向逆向地流动(详细内容如后所述),因此,可以在钻孔进料型(bore feed Type)的组件中高效地实施气体分离。According to the invention of this part, the flow direction of the permeated gas is controlled by the membrane member wound around the hollow fiber bundle, and it flows in the opposite direction to the supply direction of the mixed gas (details will be described later). Efficient gas separation in bore feed type components.
(部分E中的实施方式)(Implementation in Part E)
下面,参照附图,对本部分的发明的一个实施方式进行说明。图17是示意性地表示本实施方式的气体分离膜组件的基本构成的截面图。Hereinafter, one embodiment of the invention of this part will be described with reference to the drawings. Fig. 17 is a cross-sectional view schematically showing the basic configuration of the gas separation membrane module of this embodiment.
图17所示的气体分离膜组件601为钻孔进料型(bore feed Type)的气体分离膜组件,具备:将许多空心丝膜614集束成的空心丝束615;收容该空心丝束的箱体610;和在空心丝束615的两端部设置的管板621、622。The gas
空心丝膜614可以利用目前公知的空心丝膜,只要具有气体分离性能,就可以为任意材料的空心丝膜。作为一例,由高分子材料、特别是聚酰亚胺、聚砜、聚醚酰亚胺、聚苯醚、聚碳酸酯等在常温(23℃)下为玻璃状的高分子材料形成的空心丝膜,其气体分离性能良好,故优选。The
空心丝束615是将例如100~1000000根左右的空心丝膜614集束成的空心丝束。集束成的空心丝束615的形状没有特别限制,但从制造的容易度及箱体的耐压性的观点考虑,作为一例,优选圆柱状。在图17中例示有空心丝膜614实质上平行排列的形态,但也可以为各空心丝膜交叉排列的形态。The
利用空心丝膜614分离的混合气体没有特别限定,例如,也可以为包含相对于分离膜的透过速率之比为2以上的透过性大的气体和透过性小的气体的气体混合物。本实施方式的气体分离膜组件601可以用于以各种方式从混合气体中分离特定气体成分。例如,可以进行各种气体的除湿、各种气体的加湿、富氮或富氧等。The gas mixture to be separated by the
管板621、622与箱体截面形状相对应并设置成圆盘状,在保持了各空心丝膜614的开口的状态下固着空心丝束615的端部。管板621、622可以为聚乙烯或聚丙烯等热塑性树脂或者含有环氧树脂或聚氨酯树脂等的热固性树脂。管板621、622起到一体地固着许多空心丝膜614的作用。另外,起到密封空心丝膜614彼此之间及空心丝束615和箱体610的内面之间的作用。如图17所示,由箱体610和2个管板621、622形成1个密闭空间618(如后所述,具有透过气体排出口610c),在该密闭空间618内导入已透过空心丝膜614的透过气体。进而,由箱体610及管板621形成混合气体空间619a,由箱体610及管板622形成未透过气体空间619b。需要说明的是,为了密封管板621、622和箱体610的内面之间,可以设置其它的密封装置。The
需要说明的是,作为用于管板621、622的环氧树脂,例如在氮膜组件的情况下,可以利用日本特公平2-36287等中所记载那样的环氧树脂,另外,在有机蒸气分离组件的情况下,可以利用WO2009/044711等中所记载那样的环氧树脂。It should be noted that, as the epoxy resin used for the
如图17所示,箱体610作为整体设置成大致圆筒状。箱体610在上游侧(图的左侧)具有用于将混合气体导入到箱体610内的混合气体入口610a,在下游侧(图的右侧)具有未透过气体出口610b,在侧壁部具有透过气体出口610c。透过气体出口610c的数目可以为1个,也可以为多个。多个透过气体出口610c可以沿箱体610的侧壁部以等间隔配置。在该例中,透过气体出口610c形成于与上游侧的管板621接近的位置(具体而言,没有后述的膜构件631存在的空心丝束615的露出部分A1的位置)。As shown in FIG. 17 , the
从混合气体入口610a导入的混合气体,从管板621的端面进入各空心丝膜614内,在其内部朝向下游侧流动。此时,混合气体中的一部分透过到空心丝膜614外,该透过气体被送入密闭空间618内,接着,经由透过气体出口610c排出到箱体外。另一方面,没有透过空心丝膜的未透过气体直接在空心丝膜614内朝向下游侧流动,从下游侧的端面被送出到膜外,接着,经由未透过气体出口610b排出到箱体外。The mixed gas introduced from the
需要说明的是,图17示意性地表示箱体610,具体而言,可以为图19那样的箱体的构成。在该例中,箱体610具有两端部开口的圆筒状构件611和安装于其两端部的帽612、613。筒状构件611及帽612、613作为一例,可以为金属制、塑料制或陶瓷制。在各帽612、613上分别形成有混合气体入口610a、未透过气体出口610b。作为一例,混合气体入口610a及未透过气体出口610b可以形成于帽612、613的中心部(从帽正面方向看为中心部)。It should be noted that FIG. 17 schematically shows the
如图17、图18所示,在本实施方式的气体分离膜组件601中,在空心丝束615的外周卷绕有膜构件631。膜构件631以其一端部631a实质上与管板622抵接、另一端部631b从管板621离开规定的距离的方式进行配置。在图17中,没有用膜构件631覆盖的空心丝束615的区域用符号A1(露出部分)表示。膜构件631可以以覆盖空心丝束的外表面的50%~95%、优选75%~92%的方式构成。另外,膜构件631也可以以如下方式构成:两端部与各个管板接近并固盖空心丝束的整个外表面,在管板621的附近在膜构件631上打开1个或多个孔。As shown in FIGS. 17 and 18 , in the gas
需要说明的是,膜构件的端部“实质上抵接”是指:(i)膜端部完全与管板抵接的情况;(ii)例如,根据制造上的情况等,在膜端部和管板之间产生稍微的缝隙的状态下膜端部与管板接近的情况两者。另一方面,在管板为环氧树脂等的情况下,膜端部进入管板内时(例如,使膜端部埋设于管板并使管板固化的情况等),有可能以该部分为起点,管板破裂或产生损伤。因此,有时优选以膜端部不进入管板内部的方式构成。It should be noted that "substantially abutting" the end of the membrane member refers to: (i) the case where the end of the membrane is completely in contact with the tube sheet; Both cases where the end of the membrane is close to the tube sheet with a slight gap between the tube sheet and the tube sheet are formed. On the other hand, when the tube sheet is made of epoxy resin, etc., when the end of the film enters the tube sheet (for example, when the end of the film is buried in the tube sheet and the tube sheet is cured, etc.), the part may As the starting point, the tubesheet is cracked or damaged. Therefore, it may be preferable to configure so that the end portion of the film does not enter the inside of the tube sheet.
膜构件631只要是实质上气体不透过性的材质,就可以为任意材质。需要说明的是,“实质上气体不透过性”是指:膜构件631的气体透过足够小,可以限制气体的流路。例如可以为聚酰亚胺、聚乙烯、聚丙烯、聚酰胺、聚酯等塑料膜。其中,在耐热性、耐溶剂性、加工性方面,优选聚酰亚胺。除塑料膜之外,也可以为铝或不锈钢等金属箔。膜的厚度可以在数十μm~数mm的范围内。膜构件631可以通过固着一张膜的侧缘彼此来形成为筒状,或可以使用没有接缝的筒状构件。作为固着膜彼此的装置,可以利用例如粘接剂、胶带等。The
假设在没有配置膜构件631的情况下,如图18的箭头f3所示,来自空心丝膜614的透过气体的前进方向为十字流方向(即与空心丝膜614交叉的方向)。另一方面,如本实施方式那样在空心丝束615上卷绕有膜构件631的情况下,防止透过气体的散失,如箭头f2所示,透过气体在相对混合气体的供给方向f1为逆流的方向流动。Assuming that the
下面,对如上构成的本实施方式的分离膜组件的使用方法的一例进行说明。需要说明的是,本实施方式的组件的使用方法并不限定于下述方法。Next, an example of a method of using the separation membrane module of the present embodiment configured as above will be described. It should be noted that the method of using the components of this embodiment is not limited to the following methods.
首先,将混合气体从混合气体入口610a导入到箱体610内的混合气体空间619a。所导入的该混合气体从管板621的端面进入到各空心丝膜614内并在其内部朝向下游侧移动。此时,优选空心丝膜614内的压力高于密闭空间618的压力,例如,优选以0.01MPaG~10MPaG的压力供给混合气体;使密闭空间618为减压状态等。此时,混合气体的一部分选择性地透过空心丝膜614,送出到空心丝膜614外的密闭空间618。另一方面,未透过的气体直接在空心丝膜614内向下游侧流动,从下游侧的端面送出到空心丝膜614外的未透过气体空间619b。First, the mixed gas is introduced from the
已透过空心丝膜614的气体被导入到箱体610内的密闭空间618内。如图18所示,特别是在卷绕有膜构件631的区域内,利用膜构件631的作用,可以防止透过气体的散失,透过气体在与混合气体的供给方向f1逆向的箭头f2方向流动。接着,透过气体经由透过气体出口610c(参照图17)排出到箱体610的外部。未透过的气体从空心丝膜614的下游侧端部送出后,经由未透过气体出口610b排出到外部。The gas that has passed through the
在以上说明的分离膜组件601中,利用膜构件631防止透过气体的散失,同时,透过气体在相对混合气体供给方向为逆流的方向流动。因此,可以谋求提高气体的分离效率。In the
(发明内容)(Content of invention)
涉及部分E的发明如下所述。The invention relating to Part E is as follows.
1.一种气体分离膜组件,具备:1. A gas separation membrane module, comprising:
将具有气体分离性能的许多空心丝膜集束成的空心丝束;A hollow fiber bundle formed by bundling many hollow fiber membranes with gas separation performance;
具有混合气体入口、透过气体出口及未透过气体出口并在内部配置有上述空心丝束的箱体;和a housing having a mixed gas inlet, a permeated gas outlet, and a non-permeated gas outlet, and having the aforementioned hollow fiber bundles disposed therein; and
固定上述空心丝束的两端部的2个管板;2 tube sheets for fixing the two ends of the above-mentioned hollow fiber bundle;
将从上述混合气体入口导入的混合气体提供给上述空心丝膜内,通过使该混合气体的一部分透过来进行气体分离,其中,The mixed gas introduced from the mixed gas inlet is supplied into the hollow fiber membrane, and a part of the mixed gas is permeated to perform gas separation, wherein,
(i)没有设置用于供给净化气体的结构,所述净化气体用于排出已透过上述空心丝膜的透过气体,(i) No structure is provided for supplying purge gas for discharging the permeated gas which has permeated the above-mentioned hollow fiber membrane,
(ii)还具备一种膜构件,其为卷绕于上述空心丝束的外周面的气体不透过性的膜构件,其中,以其一端部实质上与混合气体供给方向下游侧的上述管板抵接、另一端部远离混合气体供给方向上游侧的上述管板的方式进行配置。(ii) There is further provided a membrane member which is a gas-impermeable membrane member wound on the outer peripheral surface of the hollow fiber bundle, wherein one end thereof is substantially connected to the tube on the downstream side in the mixed gas supply direction. The plates are arranged so that the other end portion is in contact with the above-mentioned tube plate on the upstream side in the mixed gas supply direction.
2.如上述1所述的气体分离膜组件,其中,以膜构件的上述一端部不进入上述管板的内部的方式构成。2. The gas separation membrane module according to the above 1, wherein the one end portion of the membrane member does not penetrate into the inside of the tube sheet.
3.如上述1或2所述的气体分离膜组件,其中,上述透过气体出口设置于包围没有上述膜构件存在的上述空心丝束的露出部分的上述箱体的一部分。3. The gas separation membrane module according to the above 1 or 2, wherein the permeated gas outlet is provided in a part of the casing surrounding an exposed portion of the hollow fiber bundle where the membrane member is not present.
4.如上述1~3中任一项所述的气体分离膜组件,其中,上述膜构件构成为在从一个上述管板至另一管板的区域内覆盖上述空心丝束的外表面的50%~95%。4. The gas separation membrane module according to any one of 1 to 3 above, wherein the membrane member is configured to cover the outer surface of the hollow fiber bundle 50 in the region from one of the tube sheets to the other tube sheet. %~95%.
5.如上述1~4中任一项所述的气体分离膜组件,其中,上述膜构件的材质为聚酰亚胺。5. The gas separation membrane module according to any one of 1 to 4 above, wherein the material of the membrane member is polyimide.
[部分F:防止气体从膜端部和管板之间的间隙部漏出的气体分离膜组件][Part F: Gas Separation Membrane Module Preventing Gas Leakage from the Gap Between Membrane End and Tube Sheet]
(技术领域)(technical field)
本部分的发明涉及一种利用空心丝膜进行气体分离的气体分离膜组件,特别涉及一种在钻孔进料型(bore feed Type)的组件中,防止气体从膜端部和管板之间的间隙部漏出而可以高效地实施气体分离的气体分离膜组件。The invention in this part relates to a gas separation membrane module using a hollow fiber membrane for gas separation, and in particular to a method for preventing gas from flowing from between the end of the membrane and the tube sheet in a bore feed type module. A gas separation membrane module in which gas separation can be efficiently performed by leakage of the gap portion.
(背景技术)(Background technique)
空心丝型的气体分离膜组件通常具备:具有由具有选择透过性的许多空心丝膜构成的空心丝束的空心丝元件和收容该空心丝元件的空心的箱体。空心丝元件的空心丝束,其一端或两端利用树脂的固化板(管板)被固定。另外,在箱体上设有混合气体入口、透过气体出口及未透过气体出口等。A hollow fiber type gas separation membrane module generally includes a hollow fiber element having a hollow fiber bundle composed of a large number of hollow fiber membranes having selective permeability, and a hollow housing for accommodating the hollow fiber element. A hollow fiber bundle of a hollow fiber element is fixed at one or both ends by a cured sheet (tube sheet) of resin. In addition, a mixed gas inlet, a permeated gas outlet, and a non-permeated gas outlet are provided on the box.
以有效地分离气体为目的,例如在日本特开2000-262838中公开有一种气体分离膜组件,所述气体分离膜组件在将混合气体提供给空心丝膜内的所谓钻孔进料型(bore feed Type)的组件中,用膜构件被覆空心丝束的一部分并以载气的流动和混合气体的流动夹持空心丝膜而成为对流的方式构成。For the purpose of efficiently separating gases, for example, Japanese Patent Application Laid-Open No. 2000-262838 discloses a gas separation membrane module in which a so-called borehole feed type (bore-feeding type) is used to supply a mixed gas into a hollow fiber membrane. Feed Type) module, a part of the hollow fiber bundle is covered with a membrane member, and the hollow fiber membrane is sandwiched by the flow of the carrier gas and the flow of the mixed gas to form a convection flow.
在上述文献的气体分离膜组件中,可以通过限制载气的流动方向来谋求气体分离的有效化,但在没有利用载气(净化气体)的气体分离膜组件中,改善气体分离的效率也是重要的。另一方面,不管有无利用净化气体,为了谋求气体分离的进一步有效化,防止气体从膜端部和管板之间的间隙部(详细内容如后所述)漏出是有效的。In the gas separation membrane module of the above document, the efficiency of gas separation can be achieved by restricting the flow direction of the carrier gas, but in the gas separation membrane module that does not use the carrier gas (purge gas), it is also important to improve the efficiency of gas separation of. On the other hand, regardless of the use of the purge gas, it is effective to prevent gas leakage from the gap between the membrane end and the tube sheet (details will be described later) in order to further enhance gas separation.
本部分的发明是鉴于上述课题而完成,其目的在于提供一种气体分离膜组件,所述气体分离膜组件在钻孔进料型(bore feed Type)的组件中,防止气体从膜端部和管板之间的间隙部漏出,可以高效地实施气体分离。The invention of this part is made in view of the above-mentioned problems, and its object is to provide a gas separation membrane module which, in a bore feed type module, prevents gas from flowing from the membrane end and The gap between the tube sheets leaks out, enabling efficient gas separation.
该部分所公开的主要发明要点如下所述。The main points of the invention disclosed in this section are as follows.
1.一种气体分离膜组件,具备:1. A gas separation membrane module, comprising:
将具有气体分离性能的许多空心丝膜集束成的空心丝束;A hollow fiber bundle formed by bundling many hollow fiber membranes with gas separation performance;
具有混合气体入口、透过气体出口及未透过气体出口并在内部配置有上述空心丝束的箱体;A box with a mixed gas inlet, a permeated gas outlet and a non-permeated gas outlet, and the above-mentioned hollow fiber bundle inside;
固定上述空心丝束的两端部的2个管板;2 tube sheets for fixing the two ends of the above-mentioned hollow fiber bundle;
卷绕于上述空心丝束的外周面的气体不透过性(也包含实质上气体不透过性的膜构件)的膜构件,所述膜构件以其一端部与混合气体供给方向下游侧的上述管板接近且另一端部从混合气体供给方向上游侧的上述管板远离的方式进行配置;和A gas-impermeable (including substantially gas-impermeable membrane member) membrane member wound on the outer peripheral surface of the above-mentioned hollow fiber bundle, wherein one end of the membrane member is connected to the downstream side of the mixed gas supply direction. The tube sheet is arranged so that the other end portion is away from the tube sheet on the upstream side in the mixed gas supply direction; and
密封膜构件的上述一端部和上述管板之间的间隙部的密封结构。A sealing structure for sealing a gap between the one end portion of the film member and the tube sheet.
根据本部分的发明,可以提供一种气体分离膜组件,所述气体分离膜组件在钻孔进料型(bore feed Type)的组件中,防止气体从膜端部和管板之间的间隙部漏出,可以高效地实施气体分离。According to the invention of this section, it is possible to provide a gas separation membrane module which, in a bore feed type module, prevents gas from passing through the gap between the membrane end and the tube sheet. Leakage enables efficient gas separation.
(部分F中的实施方式)(implementation in section F)
下面,参照附图对本部分的发明的一个实施方式进行说明。需要说明的是,在图21中,作为一例,更具体地显示箱体(详细内容如下所述)的形状。Next, one embodiment of the invention of this part will be described with reference to the drawings. In addition, in FIG. 21, the shape of a box (details are mentioned below) is shown more concretely as an example.
图20、图21所示的气体分离膜组件(以下,简称为组件)801具备:许多空心丝膜814集束成的空心丝束815、收容该空心丝束的箱体810和设置于空心丝束815的两端部的管板821、822。该组件801为所谓的钻孔进料型(bore feed Type)的组件,混合气体(原料气体)被提供给空心丝膜814的内侧。The gas separation membrane module (hereinafter referred to simply as the module) 801 shown in Fig. 20 and Fig. 21 includes: a
空心丝膜814可以利用目前公知的空心丝膜,只要具有气体分离性能,就可以为任意材料。作为一例,由高分子材料、特别是聚酰亚胺、聚砜、聚醚酰亚胺、聚苯醚、聚碳酸酯等在常温(23℃)下为玻璃状的高分子材料形成的空心丝膜,其气体分离性能良好,故优选。As the
空心丝束815是将例如100~1000000根左右的空心丝膜814集束成的空心丝束。集束成的空心丝束的形状没有特别限制,但从制造的容易度及容器的耐压性的观点考虑,作为一例,优选圆柱状。另外,在图20中例示有空心丝膜814实质上平行排列的形态,但可以为各空心丝膜交叉排列的形态。The
利用空心丝膜814分离的混合气体没有特别限定,例如,可以为包含相对于分离膜的透过速率之比为2以上的透过性大的气体和透过性小的气体的气体混合物。本实施方式的气体分离膜组件801可以用于以各种方式从混合气体分离特定气体成分。例如,可以进行各种气体的除湿、各种气体的加湿、富氮或富氧等。The mixed gas separated by the
管板821、822与箱体810的形状相对应并设置为大致圆盘状,在保持了各空心丝膜814的开口的状态下固定空心丝束815的端部。管板821、822可以为聚乙烯或聚丙烯等热塑性树脂或者含有环氧树脂或聚氨酯树脂等的热固性树脂。管板821、822起到一体地固着许多空心丝膜814的作用。另外,起到密封空心丝膜814彼此之间及空心丝束815和箱体810的内面之间的作用。如图20所示,由箱体810和2个管板821、822形成1个密闭空间818(如后所述,具有透过气体排出口810c),在该密闭空间818内导入已透过空心丝膜814的透过气体。进而,由箱体810及管板821形成混合气体空间819a,由箱体810及管板822形成未透过气体空间819b。需要说明的是,为了密封管板821、822和箱体810的内面之间,也可以设置其它密封装置。The
需要说明的是,作为用于管板821、822的环氧树脂,例如在氮膜组件的情况下,可以利用日本特公平2-36287等中所记载那样的环氧树脂,另外,在有机蒸气分离组件的情况下,可以利用WO2009/044711等中所记载那样的环氧树脂。It should be noted that, as the epoxy resin used for the
如图20所示,箱体810作为整体设置为大致圆筒状。箱体810在上游侧(图的左侧)具有用于将混合气体导入箱体810内的混合气体入口810a,在下游侧(图的右侧)具有未透过气体出口810b,在侧壁部具有透过气体出口810c。透过气体出口810c的数目可以为1个,也可以为多个。多个透过气体出口810c可以沿箱体810的侧壁部以等间隔配置。在该例中,透过气体出口810c形成于与上游侧的管板821接近的位置(具体而言,没有后述的膜构件831存在的空心丝束815的露出部分A1的位置)。As shown in FIG. 20 , the
从混合气体入口810a导入的混合气体,从管板821的端面进入各空心丝膜814内并在其内部朝向下游侧流动。此时,混合气体中的一部分透过到空心丝膜814外,该透过气体被送入到密闭空间818内,接着,经由透过气体出口810c排出到箱体外。另一方面,没有透过空心丝膜的未透过气体直接在空心丝膜814内朝向下游侧流动,从下游侧的端面被送出到膜外,接着,经由未透过气体出口810b排出到箱体外。The mixed gas introduced from the
需要说明的是,混合气体入口810a及/或未透过气体出口810b,可以配置成其中心轴与箱体810的中心轴(即空心丝束815的中心轴)一致。另外,如图21(A)的例子所示,箱体810可以具有圆筒状构件811和安装于其两端部的管板保持构件813(一者未图示)。筒状构件811和管板保持构件813的连接部可以进行焊接。作为一例,管板保持构件813的内周面包含直径尺寸为一定的直线部813a、直径尺寸大于该直线部813a的大径部813b和直径尺寸缓慢变小的锥形部813c。需要说明的是,如图21(A)所示,管板822具有存在空心丝膜814的空心丝膜埋设部822a和其周边的没有空心丝膜814存在的无垢部822b。It should be noted that, the
如图20、图21所示,在本实施方式的气体分离膜组件801中,在空心丝束815的外周面卷绕有膜构件831。膜构件831以其一端部831a(也称为膜端部831a)与管板822接近、另一端部831b从管板821离开规定的距离的方式进行配置。在图20中,没有用膜构件831被覆的空心丝束815的区域由符号A1(露出部分)表示。膜构件831可以以被覆空心丝束的外表面的50%~95%、优选70%~92%的方式构成。另外,膜构件831可以如下方式构成:两端部与各个管板接近并覆盖空心丝束的整个外表面,在管板821的附近,在膜构件831上打开1个或多个孔。As shown in FIGS. 20 and 21 , in the gas
膜构件831只要为实质上气体不透过性的材质,就可以为任意材质。需要说明的是,“实质上气体不透过性”是指膜构件的气体透过足够小,可以限制气体的流路。例如可以为聚酰亚胺、聚乙烯、聚丙烯、聚酰胺、聚酯等塑料膜。其中,在耐热性、耐溶剂性、加工性方面,优选聚酰亚胺。除塑料膜之外,也可以为铝或不锈钢等金属箔。膜的厚度可以在数十μm~数mm的范围内。The
膜构件831可以通过固着一张膜的侧缘彼此来形成为筒状,或也可以使用没有接缝的筒状构件。作为固着膜的侧缘彼此的装置,可以利用例如粘接剂、胶带等。The
需要说明的是,例如在管板为环氧树脂的情况下,膜端部进入管板内时(例如,使膜端部埋设于管板材料而进行固化的情况等),有可能以该部分为起点,管板破裂或产生损伤。因此,在本实施方式中,膜端部以不埋设于管板内的方式构成。另一方面,在为这样的构成的情况下,如图21所示,有可能在膜端部831a和管板822之间产生间隙部A31(为了说明,夸大间隙部A31的大小来描述)。It should be noted that, for example, when the tube sheet is made of epoxy resin, when the end of the film enters the tube sheet (for example, when the end of the film is embedded in the tube sheet material and cured, etc.), the part may be As the starting point, the tubesheet is cracked or damaged. Therefore, in the present embodiment, the membrane end is configured so as not to be embedded in the tube sheet. On the other hand, in such a configuration, as shown in FIG. 21 , a gap A31 may be formed between the
如图20、图21所示,在本实施方式中,设置有密封膜端部831a和管板822之间的间隙部A31的密封结构850。在该例中,密封结构850以夹持膜831a的方式配置在膜两面,且具有以包围空心丝束815的方式形成为筒状的2个密封带851、853(参照图21)。As shown in FIGS. 20 and 21 , in this embodiment, a sealing
密封带851、853均由可浸透液体状的树脂材料(作为一例为环氧)的材料形成,换言之,由具有规定的毛细管力的材料形成。密封带851、853只要是具有这样的功能的材料,就可以为任意材料,例如,可以为编入纤维而制作的网眼材料(例如布状或网状的材料)。纤维例如可以为化学纤维或天然纤维,也可以利用玻璃纤维或碳纤维等。Both the
如图21所示,第1密封带851配置在膜构件831的外周面,第2密封带853配置在膜构件831的内周面。各密封带851、853以从膜端部831a延伸至管板822侧的方式配置。各密封带851、853的延伸出的一部分埋设于管板822内的无垢部822b。As shown in FIG. 21 , the
如图21(A)所示,在第1密封带851上贴附有将该密封带851固定于膜构件831的固定胶带855。作为一例,固定胶带855可以以在空心丝束815的外周部往复一周的方式进行贴附。可以将固定胶带855卷绕两圈以上,或可以仅在外周部的一部分贴附固定胶带855。As shown in FIG. 21(A) , a fixing
如图21(B)所示,2个密封带851、853的重叠部可以用固定装置857固定。作为固定装置857,作为一例,可以为机械固定两构件的装置,也可以为例如订书机的针。此外,例如也可以利用丝或金属丝等。As shown in FIG. 21(B), the overlapping portion of the two
如后所述,密封带851、853具有防止透过气体从间隙部A31漏出的功能。为了高效地防止漏出,密封带851、853中的面向至少间隙部A31的区域为树脂材料浸透并固化的状态。由此,对密封带851、853赋予气体不透过性,其结果,可以进一步防止气体的漏出。需要说明的是,如上所述的处理可以仅对2张密封带851、853中的一个实施。As will be described later, the
膜构件831及密封结构850例如可以如下制作。需要说明的是,下述工序为简单的一例,本部分的发明不受该工序顺序等任何限定。The
首先,准备空心丝束815及箱体(例如图21的材料)。另外,准备形成为规定的尺寸的1张膜构件831,同时,以夹持其端部831a附近的方式在膜两面重叠密封带851、853,用订书机(一例)固定密封带851、853的重叠部。First, a
接着,将该状态的膜构件831卷绕于空心丝束815并用例如胶带(未图示)加以固定。然后,在箱体810内的规定位置上配置空心丝束815,在空心丝束815的两端部形成管板821、822。管板821、822可以通过将环氧材料填充于空心丝束815的端部并使其固化来形成。Next, the
用图21的例子进行具体说明。作为一例,环氧材料的填充在如下状态下进行:将有空心丝束815进入的箱体810保持在垂直方向并在箱体下端部安装有模具(未图示)。此时,如图21(A)所示,所填充的环氧材料的液面设定在密封带851、853的前端埋设于管板822内但没有埋设端部831a那样的位置。密封带851、853的端部浸渍于环氧材料时,利用毛细管力,在密封带851、853(至少包含面向间隙部A31的部分的区域)中浸透环氧材料。A concrete description will be given using an example in FIG. 21 . As an example, the filling of the epoxy material is carried out in a state where the
然后,通过在规定位置上切断使管板材料固化的固化后的管板822,使空心丝膜814开口。接着,根据需要,进行与现有工序同样的组装工序(例如用于使箱体810完成的工序等),使组件完成。Then, the
需要说明的是,可以以如下的顺序配置膜构件831及密封带851、853:首先,将第2密封带853卷绕于空心丝束815,接着,卷绕膜构件831,然后,卷绕第1密封带851。It should be noted that the
下面,对如上构成的本实施方式的分离膜组件的使用方法的一例进行说明。需要说明的是,本实施方式的组件的使用方法并不限定于下述方法。Next, an example of a method of using the separation membrane module of the present embodiment configured as above will be described. It should be noted that the method of using the components of this embodiment is not limited to the following methods.
首先,将混合气体从混合气体入口810a导入到箱体810内的混合气体空间819a。所导入的该混合气体从管板821的端面进入到各空心丝膜814内并在其内部朝向下游侧移动。此时,优选空心丝膜814内的压力高于密闭空间818的压力,例如,优选以0.01MPaG~10MPaG的压力供给混合气体;使密闭空间818为减压状态等。此时,混合气体的一部分选择性地透过空心丝膜814,被送出到空心丝膜814外的密闭空间818。另一方面,未透过的气体直接在空心丝膜814内朝向下游侧流动,从下游侧的端面放出到空心丝膜814外的未透过气体空间819b。First, the mixed gas is introduced from the
假设在没有配置膜构件831的情况下,如图21(B)的箭头f3所示,来自空心丝膜814的透过气体的前进方向为十字流方向(即与空心丝膜814交叉的方向)。或者,如f4所示,透过气体的前进方向为与f2相反的流动那样的并流方向,而且,为f3那样的流动。另一方面,如本实施方式那样,在空心丝束815上卷绕有膜构件831的情况下,可以防止透过气体的散失,透过气体在相对混合气体的供给方向f1为逆流的箭头f2的方向流动,其结果,可以提高气体分离的效率。特别是在本实施方式中,设有对间隙部A31进行密封的密封结构850,可以防止透过气体通过该间隙部A31漏出到外部。因此,可以更可靠地防止透过气体的散失,可以更良好地进行气体分离的有效化。Assuming that no
防止透过气体漏出可土通过制成膜端部831a直接埋设于管板822内的结构来实现,此时,有可能如上述那样产生以膜端部831a附近为起点的管板822的破裂或损伤。与其相对,在本实施方式中,为埋设与膜构件831不同的构件的密封带851、853的构成,因此,通过适宜选择密封带的材料,可以防止这样的管板822的破裂或损伤的产生。The prevention of leakage of the permeated gas can be achieved by making the
如上所述,即使密封带851、85为网眼材料,与没有设置任何密封带的情况相比,也可以抑制透过气体的漏出。但是,在本实施方式中,进而,树脂材料浸透密封带851、853并在此固化,因此,可以更可靠地防止透过气体的漏出。As described above, even if the
(其它实施方式)(Other implementations)
以上,对本部分的发明的一个方式进行了说明,但本部分的发明并不限定于上述内容,可以进行各种变更。As mentioned above, although one form of the invention of this part was demonstrated, the invention of this part is not limited to the said content, Various changes are possible.
例如,可以为仅具有第1及第2密封带851、853中的任一者的方式。另外,将第1密封带851固定于膜构件831的固定胶带855也可以省略。另外,固定2张密封带851、853的重叠部的固定装置857(参照图21(B))也可以省略。For example, only one of the first and
图22表示其它的密封环结构,图22(A)为组件整体的示意性截面图,图22(B)为其部分放大图。在该例中,对密封结构而言,例示有以填埋膜构件831和管板822之间的间隙部A31的方式配置的填充材料891。对填充材料891而言,作为一例,可以为以包围膜构件831的方式注入的树脂材料(作为一例为耐热硅酮)。利用这样的填充材料891,也可以防止透过气体从间隙部A31漏出,其结果,可以得到能够实施有效的气体分离的组件。填充材料891例如可以通过如下方法来形成:在箱体内形成管板822后,在箱体侧壁上形成1个或多个孔,从孔中注入填充材料891并使其固化。Fig. 22 shows other sealing ring structures, Fig. 22(A) is a schematic sectional view of the whole assembly, and Fig. 22(B) is a partially enlarged view thereof. In this example, for the sealing structure, a
设置这样的填充材料891的场所并不限定于图22所示的位置。例如图23所示,在膜构件831和箱体810之间且从间隙部A31离开规定距离的位置,可以配置填充材料893。如图23所示,填充材料893也可以配置在膜构件831的长度方向上的一处。这样的填充材料893以可以遮挡气体的流动的方式并以在膜构件831的外周往复一周的方式配置,对其宽度而言,作为一例,可以为3mm~5mm左右(例如膜的外表面的0.5%)以上。The places where
或者,在膜构件831的外周往复一周的填充材料,可以以填埋膜构件831和箱体810之间的缝隙的方式遍及更宽广(长)范围内进行填充,例如,可以占覆盖膜构件的外表面的10%以上的范围。Or, the filling material that reciprocates one week on the outer periphery of the
另外,如图24所示,本部分的发明的气体分离膜组件可以具有用于使净化气体流动的结构。该气体分离膜组件具备空心丝束915、箱体910、固定空心丝束915的两端部的2个管板921、922、卷绕于空心丝束的外周面的气体不透过性的膜构件931和密封膜构件931的端部和管板922之间的间隙部的密封结构950。该气体分离膜组件还具备用于输送净化气体的芯管971。In addition, as shown in FIG. 24, the gas separation membrane module of the invention of this section may have a structure for flowing the purified gas. This gas separation membrane module includes a
与图20的组件同样,箱体910在上游侧(图的左侧)具有混合气体入口910a,在侧壁部具有透过气体出口910c。比管板922更靠下游侧的结构与图20的组件稍微不同,在箱体910的侧壁部形成未透过气体出口910b,在箱体910的中心部通过芯管971。20, the
芯管971为两端中的一者闭塞且另一者开口的构件,开口部在成为下游侧(管板922侧)的方向配置。芯管971贯穿管板922并延伸,其前端部分埋设于上游侧的管板921。芯管971在成为2个管板921、922之间的区域具有孔971a。The
对如上构成的组件而言,基本的气体分离的原理与图20的组件相同。从芯管971的开口部(净化气体入口910d)供给净化气体,该净化气体通过孔971a放出到箱体910内的密闭空间918内。该净化气体在空心丝膜914之间在f2方向(相对混合气体供给方向为逆流的方向)流动,将放出到同空间内的透过气体挤压到透过气体出口910c侧,由此促进透过气体的排出。For an assembly constructed as above, the basic principles of gas separation are the same as for the assembly of FIG. 20 . The purge gas is supplied from the opening of the core pipe 971 (purge
在利用这样的净化气体的组件中,也优选设置密封膜构件931和管板922之间的间隙部的密封结构950。密封结构950也可以使用上述的各种结构中的任一种。由此,防止透过气体及净化气体从间隙部漏出,使透过气体及净化气体在f2方向良好地流动,其结果,可以谋求气体分离的进一步有效化。Also in a module using such a purge gas, it is preferable to provide a sealing
(发明内容)(Content of invention)
涉及部分F的发明如下所述。The invention relating to Section F is as follows.
1.一种气体分离膜组件,具备:1. A gas separation membrane module, comprising:
将具有气体分离性能的许多空心丝膜集束成的空心丝束;A hollow fiber bundle formed by bundling many hollow fiber membranes with gas separation performance;
具有混合气体入口、透过气体出口及未透过气体出口并在内部配置有上述空心丝束的箱体;A box with a mixed gas inlet, a permeated gas outlet and a non-permeated gas outlet, and the above-mentioned hollow fiber bundle inside;
固定上述空心丝束的两端部的2个管板;2 tube sheets for fixing the two ends of the above-mentioned hollow fiber bundle;
卷绕于上述空心丝束的外周面的气体不透过性的膜构件,所述膜构件以其一端部与混合气体供给方向下游侧的上述管板接近且另一端部从混合气体供给方向上游侧的上述管板离开的方式进行配置;和A gas-impermeable membrane member wound on the outer peripheral surface of the hollow fiber bundle, wherein one end of the membrane member is close to the tube sheet on the downstream side in the mixed gas supply direction and the other end is upstream in the mixed gas supply direction The side of the above tube sheet is configured in such a way that it leaves; and
对膜构件的上述一端部和上述管板之间的间隙部进行密封的密封结构。A sealing structure that seals a gap between the one end portion of the membrane member and the tube sheet.
2.如上述1所述的气体分离膜组件,其中,上述密封结构具有密封带,所述密封带在膜构件的上述一端部中卷绕于上述膜构件的径向内侧或外侧,且从该端部朝向上述管板侧延伸,延伸出的一部分埋设于上述管板内。2. The gas separation membrane module according to the above 1, wherein the sealing structure has a sealing tape wound on the radially inner or outer side of the membrane member at the one end portion of the membrane member, and The end portion extends toward the tube sheet side, and a part of the extension is embedded in the tube sheet.
3.如上述2所述的气体分离膜组件,其中,作为上述密封带,具有第1密封带和第2密封带,3. The gas separation membrane module according to the above 2, wherein, as the sealing band, there are a first sealing band and a second sealing band,
所述第1密封带由液状的树脂材料可浸透的材料形成,卷绕于上述膜构件的径向外侧;The first sealing tape is formed of a material permeable to a liquid resin material, and is wound on the radially outer side of the film member;
所述第2密封带由液状的树脂材料可浸透的材料形成,卷绕于上述膜构件的径向内侧。The second seal tape is formed of a material permeable to a liquid resin material, and is wound radially inward of the film member.
4.如上述2或3所述的气体分离膜组件,其中,上述密封带为网眼材料。4. The gas separation membrane module according to the above 2 or 3, wherein the sealing tape is a mesh material.
5.如上述3或4所述的气体分离膜组件,其中,在上述密封带中的至少面向上述间隙部的区域内,树脂材料浸透并固化,由此密封上述间隙部。5. The gas separation membrane module according to 3 or 4 above, wherein the resin material is impregnated and cured in at least a region of the sealing tape facing the gap, thereby sealing the gap.
6.如上述3所述的气体分离膜组件,其中,上述密封结构还具有将上述第1密封带固定于上述膜构件的固定胶带。6. The gas separation membrane module according to the above 3, wherein the sealing structure further includes a fixing tape for fixing the first sealing tape to the membrane member.
7.如上述3所述的气体分离膜组件,其中,上述密封结构还具有固定装置,所述固定装置用于固定从膜构件的上述一端部延伸出的上述第1密封带的延伸部和从膜构件的上述一端部延伸出的上述第2密封带的延伸部。7. The gas separation membrane module according to the above 3, wherein the above-mentioned sealing structure further has a fixing device for fixing the extension part of the first sealing band extending from the above-mentioned one end of the membrane member and the extension part from the first end of the membrane member. An extension portion of the second seal tape extending from the one end portion of the film member.
8.如上述1所述的气体分离膜组件,其中,上述密封结构具有以填埋膜构件的上述一端部和上述管板之间的上述间隙部的方式配置的填充材料。8. The gas separation membrane module according to the above 1, wherein the sealing structure has a filler arranged to fill the gap between the one end of the membrane member and the tube sheet.
9.如上述1~8中任一项所述的气体分离膜组件,其以膜构件的上述一端部不进入上述管板的内部的方式构成。9. The gas separation membrane module according to any one of 1 to 8 above, which is configured such that the one end portion of the membrane member does not enter the interior of the tube sheet.
10.如上述1~9中任一项所述的气体分离膜组件,其中,上述膜构件的材料为聚酰亚胺。10. The gas separation membrane module according to any one of 1 to 9 above, wherein the material of the membrane member is polyimide.
[部分G:充分确保管板周边的密封性能的气体分离膜组件][Part G: Gas Separation Membrane Module Ensuring Sufficient Sealing Performance Around Tube Sheet]
(技术领域)(technical field)
本发明涉及一种利用空心丝膜进行气体分离的气体分离膜组件,特别涉及一种气体分离膜组件等,所述气体分离膜组件即使在使用固化收缩比较容易的管板材料的情况下,也可以充分地确保管板周边的密封性能,进而可以在高温下良好地使用。The present invention relates to a gas separation membrane module using a hollow fiber membrane for gas separation, in particular to a gas separation membrane module, etc. The sealing performance around the tube sheet can be sufficiently ensured, and it can be used favorably at high temperatures.
(背景技术)(Background technique)
空心丝型的气体分离膜组件通常具备:具有由具有选择透过性的许多空心丝膜构成的空心丝束的空心丝元件和收容该空心丝元件的空心的箱体。空心丝束的一端或两端利用树脂的固化板(管板)被固定。A hollow fiber type gas separation membrane module generally includes a hollow fiber element having a hollow fiber bundle composed of a large number of hollow fiber membranes having selective permeability, and a hollow housing for accommodating the hollow fiber element. One or both ends of the hollow fiber bundle are fixed with a cured sheet (tube sheet) of resin.
气体分离膜通常所供给的气体越为高温高压,气体的透过速率越大。因此,在使用气体分离膜组件的情况下,有时研究将原料气体用压缩器等压缩后提供给组件。该压缩后的气体根据情况有时为149℃~260℃左右。Generally, the higher the temperature and pressure of the gas supplied to the gas separation membrane, the greater the gas permeation rate. Therefore, when a gas separation membrane module is used, it may be considered to supply the raw material gas to the module after being compressed by a compressor or the like. This compressed gas may be about 149° C. to 260° C. depending on circumstances.
但是,存在如下问题:在进行如上所述的高温的混合气体的分离的组件的情况下,需要使用具有耐热性的管板材料,但这样的管板材料通常在进行固化时容易固化收缩,其结果,管板周边的密封性能有可能不充分。本部分的发明是鉴于该方面而完成的,其目的在于提供一种分离膜组件等,所述分离膜组件即使在使用固化收缩比较容易的管板材料的情况下,也可以充分地确保管板周边的密封性能,进而可以在高温下良好地使用。However, there is a problem that in the case of a module that separates the high-temperature mixed gas as described above, it is necessary to use a heat-resistant tube sheet material, but such a tube sheet material is generally easy to solidify and shrink when it is cured, As a result, the sealing performance around the tube sheet may be insufficient. The invention of this section was made in view of this point, and its object is to provide a separation membrane module, etc., which can sufficiently secure the tube sheet even when using a tube sheet material that is relatively easy to cure and shrink. Peripheral sealing performance, and thus can be used well at high temperature.
该部分所公开的主要发明要点如下所述。The main points of the invention disclosed in this section are as follows.
本部分的发明的一个方式的气体分离膜组件具备:A gas separation membrane module according to one aspect of the invention of this part has:
将具有气体分离性能的许多空心丝膜集束成的空心丝束;A hollow fiber bundle formed by bundling many hollow fiber membranes with gas separation performance;
在内部配置有上述空心丝束的箱体;和a housing having the hollow tows disposed therein; and
固定上述空心丝束的至少一端部的管板;a tube sheet securing at least one end of said hollow fiber bundle;
所述气体分离膜组件以上述管板的外周面不与上述箱体的内周面粘接的方式构成,The gas separation membrane module is configured such that the outer peripheral surface of the tube sheet is not bonded to the inner peripheral surface of the casing,
其中,所述气体分离膜组件还具备将上述管板的外周面和上述箱体的内周面之间密封的密封构件。Wherein, the gas separation membrane module further includes a sealing member that seals between the outer peripheral surface of the tube sheet and the inner peripheral surface of the case.
另外,本部分的发明的一个方式的气体分离膜组件的制造方法,所述气体分离膜组件具备:将具有气体分离性能的许多空心丝膜集束成的空心丝束、在内部配置有上述空心丝束的箱体、和固定上述空心丝束的至少一端部的管板,其中,所述制造方法包含如下步骤:In addition, a method for manufacturing a gas separation membrane module according to an aspect of the invention of this section, the gas separation membrane module includes: a hollow fiber bundle in which a plurality of hollow fiber membranes having gas separation performance are bundled; A box body for a bundle, and a tube sheet for fixing at least one end of the above-mentioned hollow fiber bundle, wherein the manufacturing method includes the following steps:
在上述箱体的内周面中的至少上述管板相接的部分涂敷脱模剂的步骤、A step of applying a mold release agent on at least the part where the tube sheet is in contact with the inner peripheral surface of the above-mentioned box,
在上述箱体内的一部分填充热固性树脂的步骤、A step of filling a part of the above box with a thermosetting resin,
通过使上述热固性树脂固化来形成上述管板的步骤、和the step of forming the above-mentioned tube sheet by curing the above-mentioned thermosetting resin, and
在上述热固性树脂固化后在上述管板的外周面和上述箱体的内周面之间设置密封构件的步骤。A step of providing a sealing member between the outer peripheral surface of the tube sheet and the inner peripheral surface of the box after the thermosetting resin is cured.
需要说明的是,本说明书中的用语的定义如下所述。In addition, the definition of the term in this specification is as follows.
“高温条件”或“高温”是指例如80℃~300℃的范围内。"High temperature condition" or "high temperature" means, for example, within the range of 80°C to 300°C.
“筒状容器”并不限定于两端开口的容器,也包含仅一端开口的容器。The "cylindrical container" is not limited to a container that is open at both ends, but also includes a container that is open at only one end.
根据本部分的发明,可以提供一种气体分离膜组件等,所述气体分离膜组件即使在使用固化收缩比较容易的管板材料的情况下,也可以充分确保管板周边的密封性能,而且,即使在高温下,也可以良好地使用。According to the invention of this section, it is possible to provide a gas separation membrane module, etc., which can sufficiently ensure the sealing performance around the tube sheet even when using a tube sheet material that is relatively easy to cure and shrink, and furthermore, Even at high temperatures, it can be used well.
(部分G中的实施方式)(implementation in section G)
下面,参照附图对本部分的发明的一个实施方式进行说明。需要说明的是,在图25中,作为一例,更具体地显示箱体(详细下述)的形状。另外,下述说明的构成归根到底为表示一例的构成,本发明的气体分离膜组件并不限定于这些构成。Next, one embodiment of the invention of this part will be described with reference to the drawings. In addition, in FIG. 25, the shape of a box (details are mentioned later) is shown more concretely as an example. In addition, the configuration described below is a configuration showing an example in the final analysis, and the gas separation membrane module of the present invention is not limited to these configurations.
图25、图26所示的气体分离膜组件(以下,也简称为组件)1001具备:将许多空心丝膜1014集束成的空心丝束1015、收容该空心丝束的箱体1010、和在空心丝束1015的两端部设置的管板1021、1022。作为一例,该组件1001为所谓的钻孔进料型(bore feed Type)的组件,混合气体(原料气体)被提供给空心丝膜1014的内侧。The gas separation membrane module (hereinafter also simply referred to as the module) 1001 shown in Fig. 25 and Fig. 26 includes: a
空心丝膜1014可以利用目前公知的空心丝膜,只要具有气体分离性能,就可以为任意材料的空心丝膜。作为一例,由高分子材料、特别是聚酰亚胺、聚砜、聚醚酰亚胺、聚苯醚、聚碳酸酯等在常温(23℃)下为玻璃状的高分子材料形成的空心丝膜,气体分离性能良好,故优选。The
空心丝束1015是将例如100~1000000根左右的空心丝膜1014集束成的空心丝束。集束成的空心丝束1015的形状没有特别限制,但从制造的容易度及容器的耐压性的观点考虑,作为一例,优选圆柱状。另外,在图25中例示有空心丝膜1014实质上平行排列的形态,但可以为各空心丝膜交叉排列的形态。The
利用空心丝膜1014分离的混合气体没有特别限定,例如,可以为包含相对于分离膜的透过速率之比为2以上的透过性大的气体和透过性小的气体的气体混合物。本实施方式的气体分离膜组件1001可以用于以各种方式从混合气体分离特定气体成分。例如,可以进行各种气体的除湿、各种气体的加湿、富氮或富氧等。The gas mixture to be separated by the
管板1021、1022与箱体1010的形状相对应而形成为大致圆盘状(详细内容如下所述),在保持了各空心丝膜1014的开口的状态下固定空心丝束1015的端部。管板在该例中起到密封空心丝膜彼此之间的作用。管板还可以为聚乙烯或聚丙烯等热塑性树脂或者含有环氧树脂或聚氨酯树脂等的热固性树脂。下面,对管板为热固性树脂的例子进行说明。The
需要说明的是,作为用于管板1021、1022的环氧树脂,例如在氮膜组件的情况下,可以利用日本特公平2-36287等中所记载那样的环氧树脂,另外,在有机蒸气分离组件的情况下,可以利用WO2009/044711等中所记载那样的环氧树脂。It should be noted that, as the epoxy resin used for the
如图25所示,在本实施方式中,由箱体1010和2个管板1021、1022形成1个密闭空间1018(如后所述,具有透过气体排出口1010c),在该密闭空间1018内导入已透过空心丝膜1014的透过气体。进而,由箱体1010及管板1021形成混合气体空间1019a,由箱体1010及管板1022形成未透过气体空间1019b。As shown in FIG. 25, in this embodiment, a
如图25所示,箱体1010作为整体设置为大致圆筒状。箱体1010在上游侧(图的左侧)具有用于在箱体1010内导入混合气体的混合气体入口1010a,在下游侧(图的右侧)具有未透过气体出口1010b,在侧壁部具有透过气体出口1010c。透过气体出口1010c的数目可以为1个,也可以为多个。多个透过气体出口1010c可以沿箱体1010的侧壁以等间隔配置。As shown in FIG. 25 , the
从混合气体入口1010a导入的混合气体,从管板1021的端面进入各空心丝膜1014内,在其内部朝向下游侧流动。此时,混合气体中的一部分为已透过到空心丝膜1014外的透过气体,该透过气体被送入密闭空间1018内,接着,经由透过气体出口1010c排出到箱体外。另一方面,没有透过空心丝膜的未透过气体直接在空心丝膜1014内向下游侧流动,从下游侧的端面被送出到膜外,接着,经由未透过气体出口1010b排出到箱体外。The mixed gas introduced from the
需要说明的是,混合气体入口1010a及/或未透过气体出口1010b可以配置成其中心轴与箱体1010的中心轴(即空心丝束1015的中心轴)一致。另外,如图26的例子所示,箱体1010可以具有圆筒状构件1011和安装于其两端部的帽构件1012(一者未图示)。筒状构件1011及帽构件1012作为一例可以为金属制。It should be noted that, the
具体而言,圆筒状构件1011是内径为d0的空心构件且在其端部形成厚壁部1011a、1011b。第1厚壁部1011a设置于圆筒状构件1011的端面附近,该部分的内径形成为比内径d0小。第2厚壁部1011b设置于比第1厚壁部1011a更靠轴方向内侧,该部分的内径也形成为比内径d0小。厚壁部1011a和厚壁部1011b之间的部分的内径大于两厚壁部1011a、1011b的内径,作为一例可以为d0。Specifically, the
与圆筒状构件1011的这样的结构相对应,管板1021形成为如下的形状。即,如图26所示,管板1021广义上具有直径不同的3个部分(从外侧起依次为第1部分1021a、第2部分1021b及第3部分1021c),其中,以中间部分1021b的直径为最大的方式进行设置。在该例中,第1部分1021a和第2部分1021b的界限为锥形面。另外,第2部分1021b和第3部分1021c的界限为直面(在与圆筒状构件的中心轴正交的方向扩展的面)。Corresponding to such a structure of the
使用分离膜组件1001时,利用混合气体的压力,在管板1021上施加将该管板挤入到圆筒状构件1011内的方向的力。但是,根据图26那样的构成,管板1021的一部分和厚壁部1011b抵接,由此可以限制管板1021的移动,因此,管板1021不会挤入到内部。When the
需要说明的是,没有限定,但可以在管板的第2部分1021b和第3部分1021c的连接部1021f设置有R形状。由此,可以缓和该部分中的应力集中并防止管板的破损等。In addition, although it does not limit, R shape may be provided in the
图26的例子表示管板1021为热固性树脂、且因固化收缩使管板1021的直径收缩若干的状态。在这样的构成的情况下,有可能不能充分确保管板1021和圆筒状构件1011之间的密封,因此,在本实施方式中,设置有用于将两构件间密封的环状的密封构件1060。The example in FIG. 26 shows a state where the
如图26所示,在管板的第1部分1021a的外周部形成有环状的阶部1021s。该阶部1021s和圆筒状构件1011的内周面协动,整体地形成环状的凹槽C1,在该凹槽C1中配置有环状的密封构件1060。As shown in FIG. 26, an
密封构件1060为由弹性构件形成的环状零件,也可以为嵌入于凹槽C1内的零件(例如O环等)。或者,可以为将密封用的树脂材料填充在凹槽C1内并通过该树脂材料固化而作为密封构件起作用的零件。O环的截面形状可以为圆形,也可以为椭圆形。作为“由弹性构件构成的环状的零件”,除O环之外,可以为截面形状是大致V型的V型密封件、大致U型的U型密封件等。进而,例如可以为矩形、多角形或X型等截面形状的零件。需要说明的是,在图26的例子中,密封构件1060对管板1021和箱体1010之间进行密封,同时也对管板1021和帽构件1012之间进行密封。The sealing
另外,图26所示的结构归根到底为一例,对本部分的发明没有任何限定。例如,管板的第1部分1021a和第3部分1021c的直径可以相同。或者,可以使用由第1部分1021a和第3部分1021c构成那样的管板。另外,第1部分1021a和第2部分1021b之间的面可以不是图26那样的锥形面而是直面。同样,第2部分1021b和第3部分1021c之间的面可以不是图26那样的直面而是锥形面。进而,密封构件1060对管板1021、箱体1010和帽构件1012之间进行密封,但也可以与管板1021和箱体1010之间的密封构件不同,另外具备箱体1010和帽构件1012之间的密封构件。In addition, the structure shown in FIG. 26 is an example at all, and does not limit the invention of this part at all. For example, the
图27为图26的A-A线中的截面图。如该图所示,也可以在圆筒状构件1011的内周面的两处形成有凹部1011d、1011d。此时,管板构件进入到该凹部1011d、1011d中而进行固化(详细内容如下所述),其结果,可以防止管板1021的旋转。需要说明的是,对凹部1011d的数目没有特别限定,可以仅为1个,也可以为3个以上。Fig. 27 is a sectional view taken along line A-A of Fig. 26 . As shown in the figure, recessed
制造如上所述构成的气体分离膜组件1001的方法,作为一例可以为如下所述的方法。即,本实施方式的制造方法包含如下步骤:An example of a method of manufacturing the gas
(a)在箱体的内周面中至少在管板相接的部分涂敷脱模剂的步骤;(a) a step of applying a release agent on at least the part where the tube sheet meets the inner peripheral surface of the tank;
(b)在箱体内的一部分填充固化前的热固性树脂的步骤;(b) a step of filling a part of the box with a thermosetting resin before curing;
(c)通过使被填充后的热固性树脂固化来形成管板的步骤;和(c) the step of forming the tube sheet by curing the filled thermosetting resin; and
(d)在热固性树脂固化后在管板的外周面和箱体的内周面之间设置环状的密封构件的步骤。(d) A step of providing an annular sealing member between the outer peripheral surface of the tube sheet and the inner peripheral surface of the box after the thermosetting resin is cured.
通过如上述(a)的步骤那样涂敷脱模剂,在步骤(c)的固化工序中,管板(作为一例为环氧树脂)从箱体(作为一例为金属)上良好地脱模。假设在不使用脱模剂的情况下,在树脂固化时,有可能管板不从主体离开,根据情况在管板上产生裂缝等。By applying a release agent as in the step (a) above, the tube sheet (epoxy resin as an example) is well released from the casing (metal as an example) in the curing step of step (c). Assuming that no release agent is used, the tube sheet may not separate from the main body when the resin is cured, and cracks may occur on the tube sheet in some cases.
在上述(b)的步骤中,可以将未图示的模具安装于圆筒状构件1011的端部,在该状态下实施管板树脂的注入。此时,模具具有与管板的阶部1021s(参照图26)相对应的环状的凸部,利用该凸部,可以在管板上形成阶部1021s。In the step (b) above, a mold (not shown) may be attached to the end of the
在上述(d)的步骤中,如上所述,可以在凹槽C1中嵌入例如O环等环状弹性构件,或者在凹槽C1中注入树脂并使其固化,由此可以形成密封构件1060。In the above step (d), as described above, an annular elastic member such as an O-ring may be embedded in the groove C1, or resin may be injected into the groove C1 and cured to form the sealing
根据以上说明那样的本实施方式的气体分离膜组件1001,即使在因管板1021的固化收缩不能确保管板外周面和箱体内周面之间的密封的情况下,也另行设置有密封构件1060,因此,可以充分地确保两构件间的密封。According to the gas
其对特别是在高温下使用的气体分离膜组件的情况有利。即,一般而言,不易固化收缩的材料有具有弹性且玻璃化转变温度低、缺乏耐热性的趋势。另一方面,耐热性优异的管板材料有容易固化收缩的趋势。假设在使用这样耐热性的材料且管板与箱体粘接那样的构成的情况下,有可能因管板材料的固化收缩而施加延伸应力,在管板上产生裂缝。与其相对,根据本实施方式,通过在箱体内涂敷脱模剂来防止管板材料的粘接,同时,利用环状密封构件来确保管板和箱体之间的密封。因此,可以提供一种防止在管板上产生裂缝且也充分地确保密封性能的气体分离膜组件。It is advantageous especially in the case of gas separation membrane modules used at high temperatures. That is, in general, a material that is difficult to cure and shrink tends to have elasticity, have a low glass transition temperature, and tend to lack heat resistance. On the other hand, tubesheet materials with excellent heat resistance tend to shrink when cured. If such a heat-resistant material is used and the tube sheet is bonded to the case, elongation stress may be applied due to curing shrinkage of the tube sheet material, and cracks may be generated in the tube sheet. On the other hand, according to this embodiment, the sticking of the tube sheet material is prevented by applying a release agent in the box, and the sealing between the tube sheet and the box is ensured by the ring-shaped sealing member. Therefore, it is possible to provide a gas separation membrane module that prevents cracks from being generated on the tube sheet and also sufficiently ensures sealing performance.
需要说明的是,在上述说明中,主要对2个管板1021、1022中的一个管板1021(图26)进行了说明,但两个管板1021、1022可以具有同样的构成。或者,可以仅在一个管板上设置图26那样的结构。进而,本实施方式那样的管板、环状密封构件及箱体的结构不限定于钻孔进料型(borefeed Type)的组件,也可应用于壳进料型(shell feed Type)的组件,还可以应用于其它类型的组件。In the above description, one tube sheet 1021 ( FIG. 26 ) among the two
(发明内容)(Content of invention)
部分G涉及的发明如下所述。The inventions covered by Section G are as follows.
1.一种气体分离膜组件,具备:1. A gas separation membrane module, comprising:
将具有气体分离性能的许多空心丝膜集束成的空心丝束、A hollow fiber bundle in which many hollow fiber membranes with gas separation performance are bundled together,
在内部配置有上述空心丝束的箱体、和A housing having the above-mentioned hollow fiber bundle disposed therein, and
固定上述空心丝束的至少一端部的管板;a tube sheet securing at least one end of said hollow fiber bundle;
所述气体分离膜组件以上述管板的外周面不与上述箱体的内周面粘接的方式构成,The gas separation membrane module is configured such that the outer peripheral surface of the tube sheet is not bonded to the inner peripheral surface of the casing,
其中,所述气体分离膜组件还具备对上述管板的外周面和上述箱体的内周面之间进行密封的密封构件。Wherein, the gas separation membrane module further includes a sealing member that seals between the outer peripheral surface of the tube sheet and the inner peripheral surface of the box.
2.如上述1所述的气体分离膜组件,其中,上述管板具有与上述箱体的内周面协动而形成环状的凹槽的阶部。2. The gas separation membrane module according to the above 1, wherein the tube sheet has a stepped portion that forms an annular groove in cooperation with the inner peripheral surface of the casing.
3.如上述1或2所述的气体分离膜组件,其中,上述箱体具有包围上述空心丝束的筒状构件和在该筒状构件的端部设置的帽构件,3. The gas separation membrane module according to the above 1 or 2, wherein the casing has a cylindrical member surrounding the hollow fiber bundle and a cap member provided at an end of the cylindrical member,
在上述筒状构件上形成有内径部分变小的厚壁部,上述管板与该厚壁部抵接,由此防止上述管板向上述筒状构件的轴方向内侧的移动。A thick portion having a partially reduced inner diameter is formed on the cylindrical member, and the tube plate abuts against the thick portion, thereby preventing the tube plate from moving axially inward of the cylindrical member.
4.如上述1~3中任一项所述的气体分离膜组件,其中,上述密封构件为嵌入于上述环状的凹槽的环状弹性构件。4. The gas separation membrane module according to any one of 1 to 3 above, wherein the sealing member is an annular elastic member fitted into the annular groove.
5.一种气体分离膜组件的制造方法,所述气体分离膜组件具备:将具有气体分离性能的许多空心丝膜集束成的空心丝束、在内部配置有上述空心丝束的箱体、和固定上述空心丝束的至少一端部的管板,其中,所述气体分离膜组件包含如下步骤:5. A method for manufacturing a gas separation membrane module, the gas separation membrane module comprising: a hollow fiber bundle formed by bundling a plurality of hollow fiber membranes having gas separation performance, a housing in which the hollow fiber bundle is arranged, and Fixing the tube sheet at least one end of the above-mentioned hollow fiber bundle, wherein the gas separation membrane module comprises the following steps:
在上述箱体的内周面中的至少上述管板相接的部分涂敷脱模剂的步骤、A step of applying a mold release agent on at least the part where the tube sheet is in contact with the inner peripheral surface of the above-mentioned box,
在上述箱体内的一部分填充热固性树脂的步骤、A step of filling a part of the above box with a thermosetting resin,
通过使上述热固性树脂固化来形成上述管板的步骤、和the step of forming the above-mentioned tube sheet by curing the above-mentioned thermosetting resin, and
在上述热固性树脂固化后在上述管板的外周面和上述箱体的内周面之间设置密封构件的步骤。A step of providing a sealing member between the outer peripheral surface of the tube sheet and the inner peripheral surface of the box after the thermosetting resin is cured.
[实施例][Example]
[涉及部分A的实施例][Example involving Part A]
下面,利用实施例对部分A的发明进行进一步说明。需要说明的是,部分A的发明并不限定于以下的实施例。Next, the invention of Part A will be further described using examples. In addition, the invention of part A is not limited to the following examples.
<空心丝膜的玻璃化转变温度(Tg)的测定方法><Measuring method of glass transition temperature (Tg) of hollow fiber membrane>
按照JIS K7121的外插玻璃转变起始温度的测定方法,使用岛津制作所DSC50装置,在试样量2mg、氮气氛气体下以10℃/min从室温至400℃实施玻璃化转变温度(Tg)的测定。According to JIS K7121's extrapolated glass transition onset temperature measurement method, Shimadzu Corporation's DSC50 device is used to measure the glass transition temperature (Tg ) determination.
<空心丝膜的形状保持率的测定方法><Measuring method of shape retention rate of hollow fiber membrane>
在形状保持率的测定中,对将200mm长度的空心丝在175℃的热风式恒温器中保持了2小时的热处理前后的长度进行测定。将热处理后的长度相对于热处理前的原本的长度的比例设为形状保持率。In the measurement of the shape retention rate, the length before and after heat treatment of a 200 mm long hollow fiber held in a hot-air thermostat at 175° C. for 2 hours was measured. The ratio of the length after the heat treatment to the original length before the heat treatment was defined as the shape retention rate.
<溶液粘度的测定方法><Measuring method of solution viscosity>
聚酰亚胺溶液的溶液粘度使用旋转粘度计(转子的剪切速率1.75sec-1)在温度100℃下进行测定。The solution viscosity of the polyimide solution was measured at a temperature of 100° C. using a rotational viscometer (shear rate of the rotor: 1.75 sec −1 ).
<制造例1><Manufacturing example 1>
在安装有搅拌机和氮气导入管的可拆式烧瓶中,与溶剂4-氯苯酚1882g一起加入4,4’-(六氟异亚丙基)-双(邻苯二甲酸酐)200毫摩尔、3,3’,4,4’-联苯四羧酸二酸酐225毫摩尔、均苯四酸二酸酐75毫摩尔、2,2’,5,5’-四氯联苯胺250毫摩尔和3,7-二氨基-二甲基二苯并噻吩=5,5-二氧化物250毫摩尔,边在烧瓶内通入氮气边在搅拌下在反应温度190℃下进行聚合酰亚胺化反应20小时,制备聚酰亚胺浓度为17重量%的芳香族聚酰亚胺溶液。该芳香族聚酰亚胺溶液的100℃时的溶液粘度为1940泊。In a detachable flask equipped with a stirrer and a nitrogen inlet pipe, add 4,4'-(hexafluoroisopropylidene)-bis(phthalic anhydride) 200 millimoles together with 1882 g of solvent 4-chlorophenol, 225 mmoles of 3,3',4,4'-biphenyltetracarboxylic dianhydride, 75 mmoles of pyromellitic dianhydride, 250 mmoles of 2,2',5,5'-tetrachlorobenzidine and 3 , 7-diamino-dimethyldibenzothiophene=5,5-dioxide 250 millimoles, carry out the polymerization imidation reaction at a reaction temperature of 190° C. under stirring while feeding nitrogen in the flask for 20 hours, an aromatic polyimide solution having a polyimide concentration of 17% by weight was prepared. The solution viscosity at 100° C. of this aromatic polyimide solution was 1940 poise.
将上述制备成的芳香族聚酰亚胺溶液用400网眼的金属网进行过滤,将其作为掺杂液,使用具备空心丝纺丝用喷嘴的纺丝装置,从空心丝纺丝用喷嘴(圆形开口部外径1000μm、圆形开口部狭缝宽度200μm、芯部开口部外径400μm)的圆形开口部喷出掺杂液,同时从芯部开口部喷出氮气,形成空心丝状体,将其在氮气氛中通过后,浸渍于凝固液使其凝固,利用牵引辊进行牵引,得到了湿润空心丝膜。接着,干燥该空心丝膜,进一步在250℃下加热处理30分钟,得到了空心丝膜1。The aromatic polyimide solution prepared above was filtered through a 400-mesh metal mesh, and used as a doping solution, and the hollow fiber spinning nozzle (circular The outer diameter of the circular opening is 1000 μm, the slit width of the circular opening is 200 μm, and the outer diameter of the core opening is 400 μm), and the dopant liquid is sprayed from the circular opening, and nitrogen gas is sprayed from the core opening at the same time to form a hollow filament , after passing it in a nitrogen atmosphere, it was immersed in a coagulation solution to coagulate it, and it was pulled by a pulling roll to obtain a wet hollow fiber membrane. Next, the hollow fiber membrane was dried and further heat-treated at 250° C. for 30 minutes to obtain a
所得的空心丝膜1大致外径为410μm,内径为280μm。由空心丝膜形成丝束元件,接着,由这些各空心丝膜的丝束元件形成气体分离膜组件。The obtained
以下在实施例1、2中,使用采用了上述制造的空心丝膜1的空气分离膜组件1,在比较例1、2中,使用采用了下述空心丝膜2的空气分离膜组件2或采用了空心丝膜3的空气分离膜组件3。In Examples 1 and 2, air
将关于各空心丝膜的特性等示于表1。玻璃化转变温度、形状保持率利用上述方法测定。Table 1 shows properties and the like of each hollow fiber membrane. The glass transition temperature and the shape retention rate were measured by the above-mentioned methods.
【表1】【Table 1】
*1:空心丝膜1在玻璃化转变温度为300度以下不存在,不能用上述方法进行测定。 * 1:
*2:P’O2表示40℃时的氧透过速率。 * 2: P'O2 indicates the oxygen transmission rate at 40°C.
将关于各空气分离膜组件的各种情况示于表2。Table 2 shows various conditions of each air separation membrane module.
【表2】【Table 2】
<部分A的实施例1><Example 1 of Part A>
以压力0.2MPaG将175℃的空气提供给空气分离膜组件1,以非透过气体即富氮空气中的氧气浓度为12%的方式调整空气供给量,在该条件下连续运转。在开始运转后的各经过时间内,测定所制成的富氮空气的流量。将测定结果示于图1。另外,根据测定结果,算出从运转开始经过0小时、140小时、2069小时后的空气分离膜的氧透过速率(P’O2)、显示分离性能的氧气透过速率和氮气透过速率之比(P’O2/P’N2)。将其结果示于表3。Air at 175°C was supplied to the air
在已开始运转的时刻(0小时),P’O2为35.4×10-5cm3(STP)/cm2·sec·cmHg,由空气分离膜组件1得到的富氮空气的流量为0.748Nm3/h。在运转开始后经过140小时时,P’O2为33.4×10-5cm3(STP)/cm2·sec·cmHg,比运转开始时仅降低了5.6%。运转开始后经过2069小时后的P’O2为31.4×10-5cm3(STP)/cm2·sec·cmHg,比运转开始时降低了11%。由运转开始后经过2069小时后的空气分离膜组件1得到的富氮空气的流量为0.65Nm3/h,比运转开始的时刻仅减少了13%。由该结果可知,即使在175℃运转2000小时,空气分离膜组件1也维持气体分离膜能力。At the moment when the operation has started (0 hour), P'O2 is 35.4×10 -5 cm 3 (STP)/cm 2 ·sec·cmHg, and the flow rate of nitrogen-enriched air obtained from the air
<部分A的比较例1><Comparative Example 1 of Part A>
使用空气分离膜组件2,尝试与实施例1同样的测定,但在175℃空心丝膜的收缩剧烈,不能得到富氮空气。在保持于175℃的空气分离膜组件2中观察到空心的破碎、断线、管板的形变等。Using the air separation membrane module 2, the same measurement as in Example 1 was attempted, but the shrinkage of the hollow fiber membrane was severe at 175°C, and nitrogen-enriched air could not be obtained. In the air separation membrane module 2 maintained at 175° C., broken hollows, broken wires, deformation of tube sheets, and the like were observed.
<部分A的比较例2><Comparative Example 2 of Part A>
除了使用空气分离膜组件3之外,在与实施例1同样的条件下进行运转,测定各经过时间的富氮空气的流量。将测定结果示于图1。已开始运转的时刻的P’O2为19.3×10-5cm3(STP)/cm2·sec·cmHg,由空气分离膜组件得到的富氮空气的流量为0.625Nm3/h。在运转开始后经过140小时后,分离膜的P’O2为11.3×10-5cm3(STP)/cm2·sec·cmHg,比开始使用时减少了41%,由空气分离膜组件得到的富氮空气的流量为0.419Nm3/h,比开始使用时减少了35%。Except for using the air separation membrane module 3, operation was performed under the same conditions as in Example 1, and the flow rate of nitrogen-enriched air was measured for each elapsed time. The measurement results are shown in Fig. 1 . The P'O2 at the start of operation was 19.3×10 -5 cm 3 (STP)/cm 2 ·sec·cmHg, and the flow rate of nitrogen-enriched air obtained from the air separation membrane module was 0.625Nm 3 /h. After 140 hours from the start of operation, the P'O2 of the separation membrane was 11.3×10 -5 cm 3 (STP)/cm 2 ·sec·cmHg, which was 41% lower than that at the beginning of operation. The P'O2 obtained from the air separation membrane module The flow rate of nitrogen-enriched air is 0.419Nm 3 /h, which is 35% less than that at the beginning of use.
<部分A的实施例2><Example 2 of Part A>
以所制造的富氮空气中的氧气浓度为5%的方式调整空气供给量,除此之外,与实施例1同样地进行测定。将测定结果示于图2。已开始运转的时刻的富氮空气的流量为0.18Nm3/h。运转开始后经过2069小时后的富氮空气的流量为0.15Nm3/h,止于减少16%。由该结果可知,与实施例1同样,即使在175℃经过2000小时,空气分离膜组件1也维持气体分离膜能力。Measurement was performed in the same manner as in Example 1 except that the air supply rate was adjusted so that the oxygen concentration in the produced nitrogen-enriched air was 5%. The measurement results are shown in FIG. 2 . The flow rate of nitrogen-enriched air at the time of starting operation was 0.18 Nm 3 /h. The flow rate of nitrogen-enriched air 2069 hours after the start of operation was 0.15 Nm 3 /h, which was reduced by 16%. From these results, it can be seen that, similarly to Example 1, the air
[涉及部分B的实施例][Example involving Part B]
以下,利用实施例对部分B的发明进行说明,但本发明并不限定于实施例。Hereinafter, although the invention of part B is demonstrated using an Example, this invention is not limited to an Example.
<实施例1><Example 1>
(铸型树脂组合物的制造)(Manufacture of casting resin composition)
混合酚醛清漆的聚缩水甘油醚100重量份和羧基末端丁二烯-丙烯腈共聚物(分子量3100)10重量份,在150℃下加热3~4小时,制备改性环氧树脂。混合制所制备的改性环氧树脂100重量份、甲基-5-降冰片烯-2,3-二羧酸酐80重量份和2-乙基-4-甲基咪唑0.3重量份,进行搅拌而制备了铸型树脂组合物。100 parts by weight of polyglycidyl ether of novolac and 10 parts by weight of carboxyl-terminated butadiene-acrylonitrile copolymer (molecular weight: 3100) were mixed, and heated at 150° C. for 3 to 4 hours to prepare a modified epoxy resin. 100 parts by weight of modified epoxy resin prepared by mixing system, 80 parts by weight of methyl-5-norbornene-2,3-dicarboxylic acid anhydride and 0.3 parts by weight of 2-ethyl-4-methylimidazole are stirred Thus, a casting resin composition was prepared.
(管板的成形性的评价)(Evaluation of Formability of Tube Sheet)
如图4b所示那样在的模具内配置有将12000根聚酰亚胺空心丝膜(长度:100cm、外径:500μm)集束成的丝束。使丝束的前端为下而实质上直立,将通过上述手法制备的铸型树脂组合物慢慢注入到保温为70℃的模具内。铸型树脂组合物的量被控制成厚度为90mm左右。注入后,在70℃下进行12小时一次固化后,加热至142℃并进行4小时后固化,由此进行管板的成形。固化后,从箱体中取出空心丝元件并通过目视进行观察,进而将管板切开为大致两半并对中心部的状态也通过进行目视观察。As shown in Figure 4b in A bundle of 12,000 polyimide hollow fiber membranes (length: 100 cm, outer diameter: 500 μm) was arranged in the mold. The casting resin composition prepared by the above-mentioned method was slowly poured into a mold kept at 70° C. with the front end of the tow pointing down and substantially upright. The amount of the casting resin composition is controlled so that the thickness is about 90 mm. After pouring, after performing primary curing at 70 degreeC for 12 hours, it heats at 142 degreeC and performs post-curing for 4 hours, and the shaping|molding of a tube sheet is performed. After curing, the hollow fiber element was taken out from the box and observed visually, and the tube sheet was cut into roughly two halves and the state of the central part was also visually observed.
其结果,在成形后的管板上没有观察到裂缝。As a result, no cracks were observed in the formed tube sheet.
[涉及部分E的实施例][Example related to Part E]
以下,表示对卷绕有膜构件的情况和没有卷绕的情况的气体分离膜组件的应答进行模拟的结果。表1表示组件的应答,“样式A(十字流)”为没有卷绕膜构件的情况,“样式B(逆流)”为卷绕有膜构件的情况。温度设为t=25℃、混合气体的供给压力设为PF=0.7MPaG进行计算。需要说明的是,在此,对供给作为混合气体的空气、以富氮空气为制品而得到的分离膜组件进行模拟。该富氮空气作为通过空心丝膜内从其下游侧端部排出的未透过气体被取出。表中的供给压力及供给流量表示分别为混合气体的空气的供给压力及流量,制品浓度及制品流量表示分别作为未透过气体得到的制品的富氮空气的氮浓度及流量,回收率表示在供给的混合气体中作为制品的未透过气体得到的比例((制品流量/供给流量)*100)。The results of simulations of the responses of the gas separation membrane modules with and without the membrane member wound up are shown below. Table 1 shows the responses of the modules, "pattern A (cross flow)" is the case where the membrane member is not wound, and "pattern B (counterflow)" is the case where the membrane member is wound. The temperature was set at t=25° C., and the supply pressure of the mixed gas was set at PF=0.7 MPaG for calculation. It should be noted that, here, the simulation was performed on a separation membrane module obtained by supplying air as a mixed gas and using nitrogen-enriched air as a product. This nitrogen-enriched air is taken out as non-permeated gas that passes through the hollow fiber membrane and is discharged from the downstream side end thereof. The supply pressure and supply flow rate in the table represent the supply pressure and flow rate of the air which is the mixed gas respectively, the product concentration and the product flow rate represent the nitrogen concentration and flow rate of the nitrogen-enriched air which is the product obtained without permeating the gas, respectively, and the recovery rate is expressed in The ratio ((product flow rate/supply flow rate)*100) obtained as non-permeated gas of the product in the mixed gas supplied.
【表4】【Table 4】
如表4所示,就相同的供给流量FF而言(参照主体1、2),卷绕有膜构件的主体2的情况可以提高制品浓度XR。另一方面,就相同的制品浓度XR而言(参照主体1、3),卷绕有膜构件的主体3的情况可以提高制品流量FR及回收率。即,由这些结果可知,卷绕膜构件对气体分离的效率化是有效的。As shown in Table 4, at the same supply flow rate FF (refer to the
Claims (5)
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010247779 | 2010-11-04 | ||
JP2010247931A JP6067205B2 (en) | 2010-11-04 | 2010-11-04 | Method for producing nitrogen-enriched air from hot gas |
JP2010-247779 | 2010-11-04 | ||
JP2010-247931 | 2010-11-04 | ||
JP2010-274619 | 2010-12-09 | ||
JP2010274619A JP5740952B2 (en) | 2010-11-04 | 2010-12-09 | Separation membrane module |
JP2011122285 | 2011-05-31 | ||
JP2011-122285 | 2011-05-31 | ||
JP2011-207647 | 2011-09-22 | ||
JP2011207538A JP5825007B2 (en) | 2011-09-22 | 2011-09-22 | Gas separation membrane module |
JP2011-207538 | 2011-09-22 | ||
JP2011207647A JP5825008B2 (en) | 2011-09-22 | 2011-09-22 | Gas separation membrane module |
JP2011-227101 | 2011-10-14 | ||
JP2011227101A JP5825032B2 (en) | 2011-10-14 | 2011-10-14 | Gas separation membrane module |
JP2011-239388 | 2011-10-31 | ||
JP2011239388A JP5794110B2 (en) | 2011-10-31 | 2011-10-31 | Gas separation membrane module |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102527241A true CN102527241A (en) | 2012-07-04 |
CN102527241B CN102527241B (en) | 2015-11-04 |
Family
ID=46336000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110345156.XA Active CN102527241B (en) | 2010-11-04 | 2011-11-04 | Gas separation membrane module and gas separation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102527241B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104703674A (en) * | 2012-08-10 | 2015-06-10 | 宇部兴产株式会社 | Gas-separating membrane module |
CN105636670A (en) * | 2013-10-09 | 2016-06-01 | 乔治洛德方法研究和开发液化空气有限公司 | Air-separation device, inerting device and aircraft comprising such a device |
CN106132522A (en) * | 2014-03-27 | 2016-11-16 | 宇部兴产株式会社 | Asymmetric gas separation membrane and the method for separation and recovery gas |
CN113813800A (en) * | 2021-10-19 | 2021-12-21 | 中国科学院山西煤炭化学研究所 | Preparation of polyimide membrane containing chlorine polar group and gas separation application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5051114A (en) * | 1989-06-15 | 1991-09-24 | Du Pont Canada Inc. | Perfluorodioxole membranes |
US6491739B1 (en) * | 1999-11-09 | 2002-12-10 | Litton Systems, Inc. | Air separation module using a fast start valve for fast warm up of a permeable membrane air separation module |
CN101450792A (en) * | 2007-12-06 | 2009-06-10 | 中国科学院大连化学物理研究所 | Method for preparing oxygen and nitrogen by air separation |
WO2010038810A1 (en) * | 2008-09-30 | 2010-04-08 | 宇部興産株式会社 | Asymmetric gas separation membrane, and gas separation method |
US20100155046A1 (en) * | 2008-12-18 | 2010-06-24 | Eric Surawski | Temperature control system for an on board inert gas generation systems |
-
2011
- 2011-11-04 CN CN201110345156.XA patent/CN102527241B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5051114A (en) * | 1989-06-15 | 1991-09-24 | Du Pont Canada Inc. | Perfluorodioxole membranes |
US5051114B1 (en) * | 1989-06-15 | 1995-05-02 | Du Pont Canada | Perfluorodioxole membranes. |
US5051114B2 (en) * | 1989-06-15 | 1996-01-16 | Du Pont Canada | Perfluorodioxole membranes |
US6491739B1 (en) * | 1999-11-09 | 2002-12-10 | Litton Systems, Inc. | Air separation module using a fast start valve for fast warm up of a permeable membrane air separation module |
CN101450792A (en) * | 2007-12-06 | 2009-06-10 | 中国科学院大连化学物理研究所 | Method for preparing oxygen and nitrogen by air separation |
WO2010038810A1 (en) * | 2008-09-30 | 2010-04-08 | 宇部興産株式会社 | Asymmetric gas separation membrane, and gas separation method |
US20100155046A1 (en) * | 2008-12-18 | 2010-06-24 | Eric Surawski | Temperature control system for an on board inert gas generation systems |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104703674A (en) * | 2012-08-10 | 2015-06-10 | 宇部兴产株式会社 | Gas-separating membrane module |
CN104703674B (en) * | 2012-08-10 | 2017-08-15 | 宇部兴产株式会社 | Gas Separation Membrane Module |
CN105636670A (en) * | 2013-10-09 | 2016-06-01 | 乔治洛德方法研究和开发液化空气有限公司 | Air-separation device, inerting device and aircraft comprising such a device |
CN106132522A (en) * | 2014-03-27 | 2016-11-16 | 宇部兴产株式会社 | Asymmetric gas separation membrane and the method for separation and recovery gas |
CN113813800A (en) * | 2021-10-19 | 2021-12-21 | 中国科学院山西煤炭化学研究所 | Preparation of polyimide membrane containing chlorine polar group and gas separation application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102527241B (en) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10765992B2 (en) | Gas separation membrane module and method for gas separation | |
JP5472114B2 (en) | Asymmetric gas separation membrane and gas separation method | |
CN102527241B (en) | Gas separation membrane module and gas separation method | |
JPH03267130A (en) | Gas separation hollow fiber membrane and its manufacturing method | |
JP2874741B2 (en) | Asymmetric hollow fiber polyimide gas separation membrane | |
JP6142730B2 (en) | Asymmetric hollow fiber gas separation membrane and gas separation method | |
JP5359957B2 (en) | Polyimide gas separation membrane and gas separation method | |
JP5348026B2 (en) | Method for producing an asymmetric hollow fiber gas separation membrane | |
JP6500893B2 (en) | Asymmetric gas separation membrane and method for separating and recovering gas | |
JP5359914B2 (en) | Polyimide gas separation membrane and gas separation method | |
JP6067205B2 (en) | Method for producing nitrogen-enriched air from hot gas | |
JPS6328424A (en) | Polyimide gas separation membrane | |
EP2554248A1 (en) | Asymmetrical hollow fibre gas separation membrane | |
JP7676874B2 (en) | Asymmetric hollow fiber gas separation membrane | |
JP4978602B2 (en) | Asymmetric hollow fiber gas separation membrane and gas separation method | |
JPH08243367A (en) | Method for manufacturing polyimide composite film | |
JP2011161442A (en) | Unsymmetrical hollow fiber gas separation membrane and gas separation method | |
JP5794110B2 (en) | Gas separation membrane module | |
WO2012077810A1 (en) | Asymmetric gas separating membrane and method for separating methanol from mixed organic vapor using same | |
CN117654291A (en) | Homogeneous hollow fiber polybenzimidazole separation membrane and preparation method and application thereof | |
JP4857588B2 (en) | Asymmetric hollow fiber gas separation membrane and gas separation method | |
JP5136666B2 (en) | Asymmetric hollow fiber gas separation membrane and gas separation method | |
JP2015186804A (en) | Method for manufacturing nitrogen-enriched air from hot gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: Yamaguchi Prefecture, Japan Patentee after: Ube Co.,Ltd. Address before: Yamaguchi Japan Patentee before: UBE INDUSTRIES, Ltd. |
|
CP03 | Change of name, title or address |