CN102525431A - Cardiovascular physiology signal detection device and method - Google Patents
Cardiovascular physiology signal detection device and method Download PDFInfo
- Publication number
- CN102525431A CN102525431A CN2010105828034A CN201010582803A CN102525431A CN 102525431 A CN102525431 A CN 102525431A CN 2010105828034 A CN2010105828034 A CN 2010105828034A CN 201010582803 A CN201010582803 A CN 201010582803A CN 102525431 A CN102525431 A CN 102525431A
- Authority
- CN
- China
- Prior art keywords
- signal
- cardiovascular physiology
- pulse
- adaptive processing
- cardiovascular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 40
- 230000037198 cardiovascular physiology Effects 0.000 title claims abstract 40
- 238000000034 method Methods 0.000 title abstract description 26
- 230000003044 adaptive effect Effects 0.000 claims description 80
- 238000001914 filtration Methods 0.000 claims description 32
- 230000000747 cardiac effect Effects 0.000 claims description 23
- 238000004458 analytical method Methods 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 16
- 230000036772 blood pressure Effects 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 241001124569 Lycaenidae Species 0.000 claims 4
- 230000002526 effect on cardiovascular system Effects 0.000 description 93
- 238000010586 diagram Methods 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 208000006011 Stroke Diseases 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 206010003658 Atrial Fibrillation Diseases 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010008479 Chest Pain Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 206010033557 Palpitations Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000001121 heart beat frequency Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 201000002859 sleep apnea Diseases 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
技术领域 technical field
本发明涉及医疗器械的技术领域,具体地,涉及一种心血管生理信号的检测装置及方法。The present invention relates to the technical field of medical devices, in particular to a detection device and method for cardiovascular physiological signals.
背景技术 Background technique
有些心率异常(房颤)患者会规律地出现心悸、头晕、胸痛和呼吸困难等症状,但是也有些患者很少或从不出现症状,所以只凭主观感觉,患者因此常常得不到及时诊断和治疗,从而增加了卒中风险。Some patients with abnormal heart rhythm (atrial fibrillation) will regularly experience symptoms such as palpitations, dizziness, chest pain and dyspnea, but some patients rarely or never have symptoms, so they only rely on subjective feelings, so patients often do not receive timely diagnosis and treatment. treatment, which increases the risk of stroke.
为了提升患者对于心率异常(房颤)及其卒中风险的知晓率,为患者能得到及时诊断和治疗以及减少卒中风险提供一种客观保障手段,因此需要能及时发现心脏节律和脉波速度等心血管生理信号的变化,如突然出现心率过快、过慢、不齐、脉搏短绌(脉搏次数少于心搏次数)、心搏强弱不等以及血压变化等症候。因此需要一种不依赖患者的主观感觉,可以在日常活动中无拘束地及时检测心率变化、脉波速度及血压等心血管生理信号变化的装置。In order to improve patients' awareness of abnormal heart rate (atrial fibrillation) and its risk of stroke, and provide an objective guarantee for patients to receive timely diagnosis and treatment and reduce the risk of stroke, it is necessary to detect heart rhythm and pulse wave velocity in time. Changes in vascular physiological signals, such as sudden rapid heart rate, too slow, irregular, short pulse (pulse frequency is less than heartbeat frequency), heartbeat ranging from strong to weak, and blood pressure changes and other symptoms. Therefore, there is a need for a device that does not rely on the patient's subjective feeling and can detect changes in cardiovascular physiological signals such as heart rate changes, pulse wave velocity, and blood pressure in time without restraint during daily activities.
然而,现有技术中使用的常规检测心率、脉波、血压等心血管生理信号的检测装置,通常需要将检测装置安放、夹持或者佩戴在被检测人的身体上,容易造成用户身体上的不适或心理上的紧张,并且检测到的心血管生理信号容易受到环境的影响而噪声信号过多,使检测到的心血管生理信号不准确,容易造成用户的病情延误。However, conventional detection devices used in the prior art to detect heart rate, pulse wave, blood pressure and other cardiovascular physiological signals usually need to place, clamp or wear the detection device on the body of the person to be detected, which is likely to cause physical injury to the user. Discomfort or psychological tension, and the detected cardiovascular physiological signals are easily affected by the environment and there are too many noise signals, which makes the detected cardiovascular physiological signals inaccurate and easily causes delays in the user's condition.
发明内容 Contents of the invention
为解决上述问题,本发明提供一种心血管生理信号的检测装置及方法,用于解决现有技术中检测心血管生理信号不准确的问题。In order to solve the above problems, the present invention provides a device and method for detecting cardiovascular physiological signals, which are used to solve the problem of inaccurate detection of cardiovascular physiological signals in the prior art.
为此,本发明提供一种心血管生理信号的检测装置,其中,包括:采集单元和自适应处理单元;To this end, the present invention provides a detection device for cardiovascular physiological signals, including: an acquisition unit and an adaptive processing unit;
所述采集单元用于采集心血管生理信号;The collection unit is used to collect cardiovascular physiological signals;
所述自适应处理单元与所述采集单元连接,用于对所述心血管生理信号进行自适应处理,得到信干噪比最大的心血管生理信号;The adaptive processing unit is connected to the acquisition unit, and is used for adaptively processing the cardiovascular physiological signal to obtain the cardiovascular physiological signal with the largest signal-to-interference-noise ratio;
其中,还包括分析单元和输出单元;Among them, an analysis unit and an output unit are also included;
所述分析单元与所述自适应处理单元连接,用于根据所述信干噪比最大的心血管生理信号对心血管生理参数作出分析判断;The analysis unit is connected to the adaptive processing unit, and is used to analyze and judge cardiovascular physiological parameters according to the cardiovascular physiological signal with the largest signal-to-interference-noise ratio;
所述输出单元与所述分析单元连接,用于将所述分析单元的判断结果输出。The output unit is connected to the analysis unit for outputting the judgment result of the analysis unit.
其中,所述采集单元包括:心搏信号采集模块和至少一个脉搏信号采集模块;Wherein, the acquisition unit includes: a heartbeat signal acquisition module and at least one pulse signal acquisition module;
所述心搏信号采集模块用于采集心血管生理信号中的心搏信号,所述心搏信号采集模块包括至少两个心搏信号采集器;The heartbeat signal collection module is used to collect heartbeat signals in cardiovascular physiological signals, and the heartbeat signal collection module includes at least two heartbeat signal collectors;
所述脉搏信号采集模块用于采集心血管生理信号中的脉搏信号,每个所述脉搏信号采集模块包括至少两个脉搏信号采集器。The pulse signal acquisition modules are used to acquire pulse signals in cardiovascular physiological signals, and each pulse signal acquisition module includes at least two pulse signal collectors.
其中,所述心搏信号采集器中包括模数转换通道,所述模数变换通道用于将所述心搏信号转换为数字信号;Wherein, the heartbeat signal collector includes an analog-to-digital conversion channel, and the analog-to-digital conversion channel is used to convert the heartbeat signal into a digital signal;
所述脉搏信号采集器中包括模数转换通道,所述模数变换通道用于将所述脉搏信号转换为数字信号。The pulse signal collector includes an analog-to-digital conversion channel for converting the pulse signal into a digital signal.
其中,所述自适应处理单元包括:心搏自适应处理模块和脉搏自适应处理模块;Wherein, the adaptive processing unit includes: a heartbeat adaptive processing module and a pulse adaptive processing module;
所述心搏自适应处理模块用于对所述心搏信号进行自适应处理;The heartbeat adaptive processing module is used to perform adaptive processing on the heartbeat signal;
所述脉搏自适应处理模块用于对所述脉搏信号进行自适应处理。The pulse adaptive processing module is used for performing adaptive processing on the pulse signal.
其中,所述心搏自适应处理模块包括:相位调整子模块、均衡处理子模块和信号合成子模块;Wherein, the heartbeat adaptive processing module includes: a phase adjustment submodule, an equalization processing submodule and a signal synthesis submodule;
所述均衡处理子模块包括滤波通道组,用于对所述心搏信号采集模块采集的心搏信号以由所述相位调整模块输出设定的滤波系数进行匹配滤波;所述相位调整子模块的输入端分别与所述滤波器组的心搏信号的输入端和输出端连接,用于计算所述心搏信号的滤波系数,所述均衡滤波器组根据所述滤波系数对所述心搏信号进行匹配滤波;The equalization processing submodule includes a filter channel group, which is used to perform matching filtering on the heartbeat signal collected by the heartbeat signal acquisition module with the filter coefficient set by the output of the phase adjustment module; the phase adjustment submodule The input terminals are respectively connected to the input terminal and the output terminal of the heartbeat signal of the filter bank, and are used to calculate the filter coefficient of the heartbeat signal, and the equalization filter bank is used to filter the heartbeat signal according to the filter coefficient. Perform matched filtering;
所述信号合成子模块用于将经过匹配滤波后的所述心搏信号进行求和计算,得到信干噪比最大的心搏信号。The signal synthesizing sub-module is used for summing the matched-filtered heartbeat signals to obtain the heartbeat signal with the largest signal-to-interference-noise ratio.
其中,所述相位调整子模块包括自适应滤波器和通道选择部;Wherein, the phase adjustment sub-module includes an adaptive filter and a channel selection unit;
其中,所述脉搏自适应处理模块包括:参数估计算法子模块和空间自适应滤波子模块;Wherein, the pulse adaptive processing module includes: a parameter estimation algorithm submodule and a space adaptive filtering submodule;
所述参数估计算法子模块用于计算所述脉搏信号传导延迟时间估计值和滤波权值;The parameter estimation algorithm submodule is used to calculate the estimated value of the pulse signal conduction delay time and the filtering weight;
所述空间自适应滤波子模块根据所述滤波权值对所述脉搏信号进行加权求和计算,得到信干噪比最大的脉搏信号。The spatial adaptive filtering sub-module performs weighted summation calculation on the pulse signal according to the filtering weight to obtain the pulse signal with the largest signal-to-interference-noise ratio.
其中,所述参数估计算法子模块包括:演算通道选择部、通道选通部和估计算法部;Wherein, the parameter estimation algorithm sub-module includes: a calculation channel selection part, a channel gating part and an estimation algorithm part;
所述演算通道选择部用于选择演算通道;The calculation channel selection unit is used to select a calculation channel;
所述估计算法部用于计算脉搏信号传导延迟时间估计值和滤波权值。The estimation algorithm part is used for calculating the pulse signal propagation delay time estimation value and the filtering weight value.
其中,所述分析单元分析的心血管生理参数包括心搏信号强度、脉搏信号强度、脉波传导速度和血压变化值中的至少一种。Wherein, the cardiovascular physiological parameters analyzed by the analysis unit include at least one of heartbeat signal strength, pulse signal strength, pulse wave velocity and blood pressure change value.
其中,所述采集单元为心搏信号采集模块,所述心搏信号采集模块用于采集心血管生理信号中的心搏信号,所述心搏信号采集模块包括至少两个心搏信号采集器。Wherein, the collection unit is a heartbeat signal collection module, the heartbeat signal collection module is used to collect heartbeat signals in cardiovascular physiological signals, and the heartbeat signal collection module includes at least two heartbeat signal collectors.
其中,所述采集单元由至少一个脉搏信号采集模块组成,所述脉搏信号采集模块用于采集心血管生理信号中的脉搏信号,每个所述脉搏信号采集模块包括至少两个脉搏信号采集器。Wherein, the acquisition unit is composed of at least one pulse signal acquisition module, and the pulse signal acquisition module is used to acquire pulse signals in cardiovascular physiological signals, and each pulse signal acquisition module includes at least two pulse signal collectors.
本发明还提供了一种心血管生理信号的检测方法,其中,包括:The present invention also provides a detection method of cardiovascular physiological signals, including:
采集单元采集心血管生理信号;The acquisition unit acquires cardiovascular physiological signals;
自适应处理单元对所述心血管生理信号进行自适应处理,得到信干噪比最大的心血管生理信号。The adaptive processing unit performs adaptive processing on the cardiovascular physiological signal to obtain the cardiovascular physiological signal with the largest signal-to-interference-noise ratio.
其中,分析单元根据所述信干噪比最大的心血管生理信号对心血管生理参数作出分析判断;Wherein, the analysis unit makes an analysis and judgment on the cardiovascular physiological parameters according to the cardiovascular physiological signal with the largest signal-to-interference-noise ratio;
输出单元将所述分析单元的判断结果输出。The output unit outputs the judgment result of the analysis unit.
本发明具有下述有益效果:The present invention has following beneficial effect:
本发明实施例心血管生理信号的检测装置,通过自适应处理单元对心血管生理信号例如心搏信号、脉搏信号等进行自适应处理,获得高增益的心血管生理信号,减少环境噪声的影响,抗干扰能力强,提高了对心血管生理信号检测精度,用户可以在床上或座椅进行检测,确保用户检测时能够在放松、无心理或生理负担的情况下无拘束地完成心血管生理信号的检测。The device for detecting cardiovascular physiological signals in the embodiment of the present invention uses an adaptive processing unit to perform adaptive processing on cardiovascular physiological signals such as heartbeat signals and pulse signals to obtain high-gain cardiovascular physiological signals and reduce the impact of environmental noise. Strong anti-interference ability, which improves the detection accuracy of cardiovascular physiological signals. Users can perform detection on the bed or seat to ensure that the user can complete the detection of cardiovascular physiological signals without restraint in relaxation and without psychological or physical burden. detection.
本发明实施例心血管生理信号的检测方法,通过对心血管生理信号例如心搏信号、脉搏信号等进行自适应处理,获得高增益的心血管生理信号,提高了对心血管生理信号检测精度,用户可以在床上或座椅进行检测,确保用户检测时能够在放松、无心理或生理负担的情况下完成心血管生理信号的检测。The method for detecting cardiovascular physiological signals in the embodiment of the present invention obtains high-gain cardiovascular physiological signals by adaptively processing cardiovascular physiological signals such as heartbeat signals and pulse signals, thereby improving the detection accuracy of cardiovascular physiological signals. The user can perform detection on the bed or seat, ensuring that the user can complete the detection of cardiovascular physiological signals in a relaxed state without psychological or physical burden.
附图说明 Description of drawings
图1为本发明提供的心血管生理信号的检测装置第一实施例的结构示意图;FIG. 1 is a schematic structural view of a first embodiment of a detection device for cardiovascular physiological signals provided by the present invention;
图2为本发明提供的心血管生理信号的检测装置第二实施例的结构示意图;2 is a schematic structural diagram of a second embodiment of a detection device for cardiovascular physiological signals provided by the present invention;
图3为本发明提供的心血管生理信号的检测装置第三实施例的结构示意图;3 is a schematic structural diagram of a third embodiment of a detection device for cardiovascular physiological signals provided by the present invention;
图4为图3中的心搏自适应处理模块的结构示意图;Fig. 4 is a schematic structural diagram of the heartbeat adaptive processing module in Fig. 3;
图5为图4中的均衡处理子模块结构示意图;Fig. 5 is a schematic structural diagram of the equalization processing sub-module in Fig. 4;
图6为图4中的相位合成模块的结构示意图;Fig. 6 is a schematic structural diagram of the phase synthesis module in Fig. 4;
图7为图4所示的心搏自适应处理模块的工作流程图;Fig. 7 is the working flow chart of the heart beat adaptive processing module shown in Fig. 4;
图8为图3中的脉搏自适应处理模块的结构示意图;Fig. 8 is a schematic structural diagram of the pulse adaptive processing module in Fig. 3;
图9为图8所示的脉搏自适应处理模块的工作流程图;Fig. 9 is the workflow diagram of the pulse adaptive processing module shown in Fig. 8;
图10为本发明提供的心血管生理信号的检测装置第四实施例的结构示意图;Fig. 10 is a schematic structural diagram of a fourth embodiment of a device for detecting cardiovascular physiological signals provided by the present invention;
图11为本发明提供的心血管生理信号的检测装置第五实施例的结构示意图;Fig. 11 is a schematic structural diagram of a fifth embodiment of a detection device for cardiovascular physiological signals provided by the present invention;
图12为本发明提供的心血管生理信号的检测方法第一实施例的流程图;Fig. 12 is a flow chart of the first embodiment of the method for detecting cardiovascular physiological signals provided by the present invention;
图13为本发明提供的心血管生理信号的检测方法第二实施例的流程图。Fig. 13 is a flow chart of the second embodiment of the method for detecting cardiovascular physiological signals provided by the present invention.
具体实施方式 Detailed ways
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的心血管生理信号的检测装置及方法进行详细描述。In order to enable those skilled in the art to better understand the technical solution of the present invention, the device and method for detecting cardiovascular physiological signals provided by the present invention will be described in detail below with reference to the accompanying drawings.
图1为本发明提供的心血管生理信号的检测装置第一实施例的结构示意图。如图1所示,本发明实施例心血管生理信号的检测装置包括:采集单元10和自适应处理单元20,其中,采集单元10用于采集心血管生理信号,心血管生理信号包括脉搏、心搏等,自适应处理单元20与采集单元10连接,自适应处理单元20对采集单元10采集的心血管生理信号进行自适应处理,自适应处理有助于减少环境噪声的影响,提高抗干扰能力强,得到信干噪比最大的心血管生理信号。FIG. 1 is a schematic structural diagram of a first embodiment of a device for detecting cardiovascular physiological signals provided by the present invention. As shown in Figure 1, the detection device of cardiovascular physiological signal of the embodiment of the present invention comprises:
图2为本发明提供的心血管生理信号的检测装置第二实施例的结构示意图。如图2所示,在第一实施例的基础上,本发明实施例心血管生理信号的检测装置还包括分析单元30和输出单元40,其中,分析单元30根据自适应处理单元20得到的信干噪比最大的心血管生理信号,对心血管生理参数及身体状况作出分析判断,分析人体的心血管生理参数是否异常,如是否心率不齐、心颤等;还可以来分析被检测人的睡眠状况,例如:睡眠障碍、无呼吸症等症状。输出单元40将分析单元30的分析结果输出,例如通过手机、电脑显示器或打印机等数字终端输出给用户端。Fig. 2 is a schematic structural diagram of a second embodiment of a device for detecting cardiovascular physiological signals provided by the present invention. As shown in FIG. 2 , on the basis of the first embodiment, the device for detecting cardiovascular physiological signals in the embodiment of the present invention further includes an
图3为本发明提供的心血管生理信号的检测装置第三实施例的结构示意图。如图3所示,在本发明实施例中,采集单元10包括心搏信号采集模块11和至少一个脉搏信号采集模块12,其中,心搏信号采集模块11用于采集心血管生理信号中的心搏信号,心搏信号采集模块11中包括至少两个心搏信号采集器111,脉搏信号采集模块12用于采集心血管生理信号中的脉搏信号,脉搏信号采集模块12中包括至少两个脉搏信号采集器121,在本发明实施例中,心搏信号采集模块11中包括N个心搏信号采集器111,脉搏信号采集模块12的数量为D(D>0),每个脉搏信号采集模块12中包括M个脉搏信号采集器121。心搏信号采集器111和脉搏信号采集器121中都包括有模数转换通道,模数转换通道用于将心搏信号和脉搏信号进行放大滤波和模数转换,分别将心搏信号和脉搏信号转换为可以进行数字处理的心搏信号和脉搏信号,心搏信号采集器111和脉搏信号采集器121可以采用光纤式采集器、压电式采集器、驻极电容式采集器、气囊压力式采集器、微机电系统(Micro-Electro-Mechanical SystemsMEMS)加速度式采集器或超声波采集器等。Fig. 3 is a schematic structural diagram of a third embodiment of a device for detecting cardiovascular physiological signals provided by the present invention. As shown in FIG. 3 , in the embodiment of the present invention, the
在实际采集心血管生理信号如心搏信号或脉搏信号时,可以将N个心搏信号采集器111和M*D个脉搏信号采集器121按照血液的流动方向依次排列,将用户的心脏部位与心搏信号采集器111接触、将用户的心脏以外部位的动脉与脉搏信号采集器121接触即可。在本发明实施例中,将N个心搏信号采集器111和M*D个脉搏信号采集器121按照下行大动脉中血液的流动方向依次排列铺设在床上或座椅上,用户可以躺在床上或坐在座椅上,只需要将用户的心脏部位与心搏信号采集器111接触和将用户的心脏以下部位与脉搏信号采集器121接触即可,不需要将采集单元中的心搏信号采集器111或脉搏信号采集器121佩戴或夹持在用户身体上,确保用户可以在放松的状态下,无心理负担、无拘束地进行检测,有利于获得用户的更精准的心搏信号或脉搏信号等心血管生理信号。在实际应用中,信号采集频率f可以设置为45000次/秒,心搏信号采集器111或脉搏信号采集器121排列的间隔距离可以设置为10mm,心搏信号采集器111或脉搏信号采集器121也可以不是等距离排列,只要排列距离分别小于心搏信号或脉搏信号的波长即可。When actually collecting cardiovascular physiological signals such as heartbeat signals or pulse signals, N
图3所示的心血管生理信号的检测装置中的自适应处理单元20包括心搏自适应处理模块21和脉搏自适应处理模块22,心搏自适应处理模块21与心搏信号采集模块11连接,心搏自适应处理模块21对心搏信号采集模块11采集的心搏信号进行自适应处理,获得信干噪比最大的心搏信号,并将信干噪比最大的心搏信号发送到的分析单元30,脉搏自适应处理模块22与D个脉搏信号采集模块12连接,脉搏自适应处理模块22用于对D个脉搏信号采集模块采集的脉搏信号进行自适应处理,获得信干噪比最大的脉搏信号,并将信干噪比最大的脉搏信号发送到的分析单元30。The
图4为图3中的心搏自适应处理模块的结构示意图。如图4所示并结合图3,心搏自适应处理模块21包括均衡处理子模块211、相位调整子模块212和相位合成模块213,其中,相位调整子模块212用于设定心搏信号的滤波系数,相位调整子模块212的输入端分别连接在均衡处理子模块211的心搏信号的输入端和输出端,相位调整子模块212的输出端与均衡处理子模块211的滤波系数输入端连接,均衡处理子模块211根据相位调整子模块212得到的滤波系数对心搏信号进行匹配,信号合成子模块213与均衡处理子模块211连接,信号合成子模块213对均衡处理子模块211输入的心搏信号进行合成求和计算以得到信干噪比最大的心搏信号。FIG. 4 is a schematic structural diagram of the heart beat adaptive processing module in FIG. 3 . As shown in Figure 4 and in conjunction with Figure 3, the heartbeat
图5为图4中的均衡处理子模块结构示意图。如图5所示并结合图3,均衡处理子模块211包括脉冲响应长度为L的N路滤波通道,滤波通道由加法器2111等组成,N路滤波通道的输入端分别连接到心搏信号采集模块11中的N个心搏信号采集器111,用于接收心搏信号X1~XN,N路滤波通道的输出端Y1~YN将经过均衡处理的心搏信号输出到信号合成子模块213。FIG. 5 is a schematic structural diagram of the equalization processing sub-module in FIG. 4 . As shown in Figure 5 and in conjunction with Figure 3, the
图6为图4中的相位合成模块的结构示意图。如图6所示并结合图5,相位调整子模块212包括自适应滤波器2121和通道选择部2122,其中,自适应滤波器2121可以采用维纳(Wiener)最优滤波方法、递归最小二乘(RLS)自适应滤波方法等自适应滤波方法。本发明实施例中,自适应滤波器2121采用最小均方(Least MeanSquade,LMS)自适应滤波方法,构成最小均方(Least Mean Squade,LMS)自适应滤波器。LMS自适应滤波器的收敛系数μ,满足收敛条件0<μ<2/R=λmax,其中R=λmax为输入心搏信号Xj的自相关矩阵最大特征值。FIG. 6 is a schematic structural diagram of the phase combining module in FIG. 4 . As shown in Figure 6 and in conjunction with Figure 5, the
图7为图4所示的心搏自适应处理模块的工作流程图。如图7所示并结合图5和图6,本发明实施例中的心搏自适应处理模块的工作流程具体包括如下工作步骤:Fig. 7 is a working flow chart of the heart beat adaptive processing module shown in Fig. 4 . As shown in Figure 7 and in conjunction with Figure 5 and Figure 6, the workflow of the heartbeat adaptive processing module in the embodiment of the present invention specifically includes the following working steps:
步骤601、设置N路滤波通道的初始滤波系数。
在实施例中,均衡处理子模块211中N路滤波通道的脉冲响应长度为L,相位调整子模块212设定N路滤波通道的初始滤波系数,N路滤波通道的初始滤波系数为:W11~W1L,...WN1~WNL。In an embodiment, the impulse response length of the N-way filter channels in the
步骤602、通道选择子模块选择参考滤波通道。
在本发明实施例中,通道选择子模块来2122选择均衡处理子模块211中的第i路滤波通道作为参考滤波通道,第i路滤波通道的滤波系数为Wi1~WiL,第i路滤波通道的输入和输出的滤波信号为Xi和Yi,然后进入步骤603In the embodiment of the present invention, the channel selection submodule 2122 selects the i-th filter channel in the
在本步骤中,如果i>N,则选择第1路滤波通道作为参考滤波通道。In this step, if i>N, select the first filtering channel as the reference filtering channel.
步骤603、选择调整滤波通道。
通道选择部2122选择第j路滤波通道作为调整滤波通道,第j路滤波通道的输入和输出的滤波信号为Xj和Yj,其中,如果j=i,则选择第j+1条滤波通道作为调整滤波通道,如果j>N,则选择第1路滤波通道作为调整滤波通道,然后,进入步骤604。The channel selection unit 2122 selects the jth filter channel as the adjustment filter channel, and the input and output filter signals of the jth filter channel are X j and Y j , wherein, if j=i, then select the j+1th filter channel As the adjustment filter channel, if j>N, select the first filter channel as the adjustment filter channel, and then go to step 604 .
步骤604、判断参考滤波通道输出的心搏信号和调整滤波通道输出的心搏信号的偏差值是否收敛。
参考滤波通道输出的心搏信号Yi和调整滤波通道输出的心搏信号Yj的偏差值e,预设最大偏差值为ε,如果e<ε,说明收敛,预设最大偏差值为ε根据以往的偏差值e(n)发散收敛的经验值取得,然后进入步骤605,否则,则进入步骤602。The deviation value e of the heartbeat signal Y i output by the reference filter channel and the heartbeat signal Y j output by the adjustment filter channel, the preset maximum deviation value is ε, if e<ε, it indicates convergence, and the preset maximum deviation value is ε according to The previous deviation value e(n) diverges and converges to obtain empirical values, and then enters
步骤605、计算调整滤波通道的滤波系数。
在本发明实施例中,自适应滤波器2121采用LMS自适应滤波器,自适应滤波器2121对接收到的调整滤波通道输入的心搏信号Xi和输出的心搏信号Yi以及参考滤波通道输出的心搏信号Yj进行时域自适应处理,得到的调整滤波通道的滤波系数Wj1~WjL,然后进入步骤606。In the embodiment of the present invention, the
步骤606、更新调整滤波通道的滤波系数。
步骤605中计算得到的作为调整滤波通道的第j路滤波通道的滤波系数Wj1~WjL更新到第j路滤波通道中,然后进入步骤607。The filter coefficients W j1 ˜W jL of the jth filter channel as the adjustment filter channel calculated in
选择第j+1条滤波通道作为调整滤波通道,循环进行步骤603-606的时域自适应处理。The j+1th filter channel is selected as the adjustment filter channel, and the time-domain adaptive processing of steps 603-606 is performed in a loop.
步骤607、根据调整滤波通道的滤波系数进行匹配滤波。Step 607: Perform matched filtering according to the filter coefficients of the adjusted filter channel.
均衡处理子模块211根据调整滤波通道的滤波系数进行匹配滤波,然后将经过匹配滤波之后的心搏信号输出到信号合成子模块213,然后进入步骤608。The
步骤608、获取信干噪比最大的心搏信号。
信号合成子模块213对均衡处理子模块211输入的心搏信号进行合成求和计算以获取信干噪比最大的心搏信号。The
需要指出的是,心搏自适应处理模块的工作流程也可以通过其它自适应滤波的方式来实现,在此不再对其它自适应滤波的方式进行一一论述。It should be pointed out that the workflow of the heart beat adaptive processing module can also be realized by other adaptive filtering methods, and the other adaptive filtering methods will not be discussed here.
图8为图3中的脉搏自适应处理模块的结构示意图。如图8所示并结合图3,脉搏自适应处理模块22包括:参数估计算法子模块221和空间自适应滤波子模块222,其中,参数谱估计算法子模块221计算脉搏信号的滤波权值和脉搏传导速度(pulse wave averagevelocity,PWV),空间自适应滤波子模块222根据参数估计算法子模块221计算得到的滤波权值对脉搏信号进行加权求和计算,得到信干噪比最大的脉搏信号,然后将信干噪比最大的脉搏信号和脉搏传导速度输出到分析单元30。参数估计算法子模块221包括:演算通道选择部2211、通道选通部2212和估计算法部2213,其中,演算通道选择部2211用于循环选择演算通道,估计算法部2213用于计算脉搏信号的滤波权值和脉波传导速度,第d路脉搏信号的脉波传导速度为PWVd,通道选通部2212用于选通传输通道。估计算法部2213可以采用最小均方误差(Minimum Mean Squared Error,MMSE)估计方法、恒模算法(Constant Modulus Algorithm,CMA)估计方法、超分辨谱估计算法的多重信号分类(Multi SignalClassification,MUSIC)估计方法和旋转不变技术(Estimating signalparameter via rotational invariance techniques,ESPRIT)估计方法等空间自适应滤波的参数估计方法。空间自适应滤波子模块222包括D路滤波通道,D路滤波通道分别连接到D个脉搏信号采集模块,每一路滤波通道具有M路输入端,分别连接到M个脉搏信号采集器121。FIG. 8 is a schematic structural diagram of the pulse adaptive processing module in FIG. 3 . As shown in Figure 8 and in conjunction with Figure 3, the pulse
图9为图8所示的脉搏自适应处理模块的工作流程图。如图9所示,脉搏自适应处理模块的工作流程具体包括如下步骤:FIG. 9 is a flowchart of the pulse adaptive processing module shown in FIG. 8 . As shown in Figure 9, the workflow of the pulse adaptive processing module specifically includes the following steps:
步骤801、计算脉搏信号传导延迟时间估计值。Step 801. Calculate the estimated value of pulse signal transmission delay time.
在本发明实施例中,通过估计算法部2213利用超分辨谱估计算法的多重信号分类(Multi Signal Classification,MUSIC)计算方法计算脉搏信号传导延迟时间估计值。首先从脉搏信号的中心频率提取出MUSIC计算方法所需要的窄带信号,该脉搏信号的中心频率的波长大于在检测用户时的两个脉搏信号采集器121之间排列距离。演算通道选择部2211选择接通D路滤波通道中的第d路滤波通道,估计算法部2213接收通过第d路滤波通道传输的第d个脉搏信号采集模块12采集到的脉搏信号Yd1~YdM,然后提取第d个脉搏信号采集模块12中M个脉搏信号Yd1~YdM的中心频率下的窄带信号Q和I值,生成M维的信号矢量X(t),脉搏信号矢量X及其协方差矩阵R分别如公式(1)和公式(2)所示:In the embodiment of the present invention, the
X(t)=[X1(t),...Xm(t),...XM(t)]T (1)X(t)=[X 1 (t), . . . X m (t), . . . X M (t)] T (1)
R=E[X(t)X(t)H] (2)R=E[X(t)X(t) H ] (2)
其中,T表示矢量转置,H表示复共轭转置,信号矢量X(t)中的元素Xm(t)(1≤m≤M,m为自然数)的虚部和实部分别为Q和I,Xm(t)为第m个脉搏信号Ydm的复数值,t为脉搏信号一定时间间隔的采样时刻。Among them, T represents the vector transpose, H represents the complex conjugate transpose, the imaginary part and the real part of the element X m (t) (1≤m≤M, m is a natural number) in the signal vector X(t) are respectively Q and I, X m (t) is the complex value of the mth pulse signal Y dm , and t is the sampling moment of the pulse signal at a certain time interval.
在实际应用中,协方差矩阵R的最大拟然函数如公式(3)所示,In practical applications, the maximum likelihood function of the covariance matrix R is shown in formula (3),
公式(3)中的χ=[X(1),...X(T)],χ为脉搏信号的向量矩阵,T为采集到的脉搏信号的段数,T可以为1280。χ=[X(1), .
计算协方差矩阵R的最大拟然函数Rxx的本征值λ1~λM(其中,λ1≥λ2≥…≥λM),根据超过预设噪声功率的Rxx的本征值设置脉搏信号入射波数量,计算对应于本征值λ1~λM的本征矢量e1~eM。然后得到噪声本征矢量EN,EN为低于噪声功率的(M-G)个本征值对应的本征矢量,G为脉搏信号的入射波数量,即信号源数量,其中,EN如公式(4)所示,Calculate the eigenvalues λ 1 ~λ M of the maximum likelihood function R xx of the covariance matrix R (among them, λ 1 ≥ λ 2 ≥…≥ λ M ), set according to the eigenvalues of R xx exceeding the preset noise power Calculate the number of incident waves of the pulse signal, and calculate the eigenvectors e 1 -e M corresponding to the eigenvalues λ 1 -λ M. Then obtain the noise eigenvector E N , E N is the eigenvector corresponding to the (MG) eigenvalues lower than the noise power, G is the incident wave quantity of the pulse signal, that is, the number of signal sources, wherein, E N is as the formula As shown in (4),
EN=(eG+1,...eM) (4)E N =(e G+1 ,...e M ) (4)
根据窄带远场的数学模型,可以将公式(1)所示的信号矢量X(t)表示用公式(5)表示,According to the mathematical model of the narrow-band far field, the signal vector X(t) shown in formula (1) can be represented by formula (5),
X(t)=AF(t)+N(t) (5)X(t)=AF(t)+N(t) (5)
其中,N(t)表示M维的噪声信号矢量,F(t)表示G维的空间信号矢量,A为M*G维的导向矢量矩阵,A如公式(6)所示:Among them, N(t) represents the noise signal vector of M dimension, F(t) represents the spatial signal vector of G dimension, A is the steering vector matrix of M*G dimension, and A is shown in formula (6):
A=[a(τ1),a(τ2),...,a(τG)] (6)A=[a(τ 1 ), a(τ 2 ),..., a(τ G )] (6)
其中,导向矢量如公式(7)所示:Among them, the steering vector is shown in formula (7):
A(τi)=[exp(-jω0τi2),...,exp(-jω0τiM)]T (7)A(τ i )=[exp(-jω 0 τ i2 ),..., exp(-jω 0 τ iM )]T (7)
其中,ω0=2πf,f为脉搏信号的频率,脉搏信号采集器121的延迟时间τi为如公式(8)所示:Wherein, ω 0 =2πf, f is the frequency of the pulse signal, and the delay time τ i of the
其中,j为脉搏信号采集器的序列号码,sj为第j号脉搏信号采集器与第一个脉搏信号采集器之间的距离,i为被脉搏信号采集器检测到的脉搏信号源序列号码,Vi为脉搏信号源的信号传输速度,θ为脉搏信号的方向,在本实施例中,脉搏信号采集器的排列方向与脉搏信号的传播方向相同,取θ为90°,公式(8)可以用公式(9)和(10)来表示:Among them, j is the serial number of the pulse signal collector, sj is the distance between the jth pulse signal collector and the first pulse signal collector, and i is the serial number of the pulse signal source detected by the pulse signal collector , Vi is the signal transmission speed of the pulse signal source, θ is the direction of the pulse signal, in the present embodiment, the arrangement direction of the pulse signal collector is the same as the propagation direction of the pulse signal, and θ is 90°, formula (8) It can be expressed by formulas (9) and (10):
τi=[(s2+…+sj)/((j-1)*Vi)] (10)τ i =[(s 2 +...+s j )/((j-1)*V i )] (10)
根据公式(4)和(7)可以获得评价函数PMU(τ),评价函数PMU(τ)如公式(11)所示,According to the formulas (4) and (7), the evaluation function P MU (τ) can be obtained, and the evaluation function P MU (τ) is shown in the formula (11),
其中,a(τ)表示脉搏信号采集器关于延迟时间τ的复响应。Among them, a(τ) represents the complex response of the pulse signal collector with respect to the delay time τ.
根据公式(11)找出评价函数PMU(τ)的极大值点对应的延迟时间就是相邻脉搏信号采集器的脉搏信号传导延迟时间估计值τP,然后进入步骤802。Find out the delay time corresponding to the maximum point of the evaluation function P MU (τ) according to the formula (11), which is the estimated value τ P of the pulse signal transmission delay time of the adjacent pulse signal collector, and then enter step 802 .
步骤802,计算脉搏信号的滤波权值。Step 802, calculating the filtering weight of the pulse signal.
滤波系数的计算公式如公式(12)所示,The calculation formula of the filter coefficient is shown in formula (12),
WH=(AHA)-1AH≡[W1,W2,...,WM]H (12)W H = (A H A) -1 A H ≡ [W 1 , W 2 , . . . , W M ] H (12)
然后根据公式(6)、公式(7)和公式(12)以及脉搏信号传导延迟时间估计值τP计算第d路滤波通道的滤波权值Wk1~WkM,然后进入步骤803。Then calculate the filter weights W k1 ˜W kM of the d-th filter channel according to formula (6), formula (7) and formula (12) and the pulse signal transmission delay time estimate τ P , and then enter step 803 .
步骤803、获取信干噪比最大的脉搏信号。Step 803, acquiring the pulse signal with the largest signal-to-interference-noise ratio.
根据脉搏信号采集模块采集到的脉搏信号Y1~YM以及滤波权值Wk1~WkM进行复共轭相乘加权求和运算,获取信干噪比最大的脉搏信号,然后将信干噪比最大的脉搏信号输送到分析单元。According to the pulse signal Y 1 ~ Y M collected by the pulse signal acquisition module and the filter weight W k1 ~ W kM , the complex conjugate multiplication weighted sum operation is performed to obtain the pulse signal with the largest signal-to-interference-noise ratio, and then the signal-to-interference noise The pulse signal with the largest ratio is sent to the analysis unit.
以图3所示的心血管生理信号的检测装置为例,当分析单元30接收到如图7和如图9得到的信干噪比最大的心搏信号和脉搏信号,提取单位时间内心搏信号和脉搏信号出现的峰值次数分别作为心搏信号次数和脉搏信号次数,计算心搏信号和脉搏信号在单位时间内信号强度作为心搏信号强度和脉搏信号强度,并提取第d路脉搏信号的脉波传导速度PWVd,然后根据PWV计算心搏信号和脉搏信号的平均脉波传导速度(pulse wave average velocity,PWAV),单位为m/s,计算PWV与PWAV的差值,计算出血压变化值(Press Diff,PD),单位为mmHg,其中,平均脉波传导速度PWAV和血压变化值PD分别公式(13)和公式(14)所示:Take the cardiovascular physiological signal detection device shown in Figure 3 as an example, when the
PWAV(t+1)=β*PWAV(t)+(1-β)*PWV(t)PWAV(t+1)=β*PWAV(t)+(1-β)*PWV(t)
PD=γ*(PWV(t)-PWAV(t)PD=γ*(PWV(t)-PWAV(t)
其中,β为脉波传导速度的移动平均系数(0.01<β<0.98),γ为脉波传导速度变化与血压值变化比例系数(10<γ<60),t为脉波传导速度检测时刻,通常以一定的时间间隔进行脉波信号的检测。Wherein, β is the moving average coefficient of the pulse wave conduction velocity (0.01<β<0.98), γ is the proportional coefficient between the change of the pulse wave conduction velocity and the blood pressure value (10<γ<60), and t is the detection time of the pulse wave conduction velocity, The detection of the pulse wave signal is usually performed at certain time intervals.
分析单元根据信干噪比最大的心血管生理信号对心血管生理参数及身体状况作出分析判断。本发明实施例,根据心搏信号强度、脉搏信号强度、脉波传导速度和血压变化值等中的一种或多种心血管生理参数来分析被检测人是否发生心血管疾病,例如心率异常、血压异常等。然后将分析结果发送到显示终端,显示终端可以是手机、打印机或电脑等数字终端。The analysis unit analyzes and judges cardiovascular physiological parameters and physical conditions according to the cardiovascular physiological signal with the largest signal-to-interference-noise ratio. In the embodiment of the present invention, according to one or more cardiovascular physiological parameters in heartbeat signal strength, pulse signal strength, pulse wave velocity and blood pressure change value, etc., it is analyzed whether the detected person has cardiovascular disease, such as abnormal heart rate, Abnormal blood pressure, etc. Then the analysis result is sent to the display terminal, which can be a digital terminal such as a mobile phone, a printer or a computer.
本发明实施例通过自适应处理单元对心血管生理信号例如心搏信号、脉搏信号等进行自适应处理,获得高增益的心血管生理信号,减少环境噪声的影响,抗干扰能力强,提高了对心血管生理信号检测精度,用户可以在床上或座椅进行检测,确保用户检测时能够在放松、无心理或生理负担的情况下完成心血管生理信号的检测。The embodiment of the present invention uses an adaptive processing unit to perform adaptive processing on cardiovascular physiological signals such as heartbeat signals and pulse signals, so as to obtain high-gain cardiovascular physiological signals, reduce the influence of environmental noise, and have strong anti-interference ability, and improve the Cardiovascular physiological signal detection accuracy, users can perform detection on the bed or seat, to ensure that the user can complete the detection of cardiovascular physiological signals in the case of relaxation, no psychological or physical burden.
图10为本发明提供的心血管生理信号的检测装置第四实施例的结构示意图。如图10所示,本发明实施例心血管生理信号的检测装置可以只包括心搏信号采集模块11和心搏自适应处理模块21,其中,心搏自适应处理模块21的工作流程如图7所示,在此不再赘述。FIG. 10 is a schematic structural diagram of a fourth embodiment of a device for detecting cardiovascular physiological signals provided by the present invention. As shown in FIG. 10 , the device for detecting cardiovascular physiological signals in the embodiment of the present invention may only include a heartbeat
图11为本发明提供的心血管生理信号的检测装置第五实施例的结构示意图。如图11所示,本发明实施例心血管生理信号的检测装置也可以只包括脉搏信号采集模块12和脉搏自适应处理模块22,其中,脉搏自适应处理模块22的具体工作流程如图9所述,在此不再赘述。Fig. 11 is a schematic structural diagram of a fifth embodiment of a device for detecting cardiovascular physiological signals provided by the present invention. As shown in Figure 11, the detection device of the cardiovascular physiological signal of the embodiment of the present invention may also only include the pulse
图12为本发明提供的心血管生理信号的检测方法第一实施例的流程图。如图12所示,本发明实施例心血管生理信号的检测方法的具体工作流程图包括如下步骤:Fig. 12 is a flow chart of the first embodiment of the method for detecting cardiovascular physiological signals provided by the present invention. As shown in Figure 12, the specific workflow of the method for detecting cardiovascular physiological signals in the embodiment of the present invention includes the following steps:
步骤121、采集心血管生理信号。
在本发明实施例中,采用如图1所示的心血管生理信号的检测装置,采集单元10用于采集心血管生理信号,心血管生理信号包括脉搏、心搏等,然后进入步骤122。In the embodiment of the present invention, the cardiovascular physiological signal detection device as shown in FIG.
步骤122、对心血管生理信号进行自适应处理,得到信干噪比最大的心血管生理信号。
自适应处理单元20对采集单元10采集的心血管生理信号进行自适应处理,自适应处理有助于减少环境噪声的影响,提高抗干扰能力强,得到信干噪比最大的心血管生理信号。The
图13为本发明提供的心血管生理信号的检测方法第二实施例的流程图。如图13所示,本发明实施例心血管生理信号的检测方法的具体工作流程图包括如下步骤:Fig. 13 is a flow chart of the second embodiment of the method for detecting cardiovascular physiological signals provided by the present invention. As shown in Figure 13, the specific workflow of the method for detecting cardiovascular physiological signals in the embodiment of the present invention includes the following steps:
步骤131、采集心血管生理信号;
在本发明实施例中,采用如图2所示的心血管生理信号的检测装置,采集单元10用于采集心血管生理信号,心血管生理信号包括脉搏、心搏等,然后进入步骤132。In the embodiment of the present invention, the cardiovascular physiological signal detection device as shown in FIG.
步骤132、对心血管生理信号进行自适应处理,得到信干噪比最大的心血管生理信号。
自适应处理单元20对采集单元10采集的心血管生理信号进行自适应处理,得到信干噪比最大的心血管生理信号。The
步骤133、根据信干噪比最大的心血管生理信号对心血管生理参数作出分析判断;
步骤134、将判断结果输出。
本发明实施例通过对心血管生理信号例如心搏信号、脉搏信号等进行自适应处理,获得高增益的心血管生理信号,提高了对心血管生理信号检测精度,用户可以在床上或座椅进行检测,确保用户检测时能够在放松、无心理或生理负担的情况下完成心血管生理信号的检测。The embodiment of the present invention obtains high-gain cardiovascular physiological signals by adaptively processing cardiovascular physiological signals such as heartbeat signals and pulse signals, and improves the detection accuracy of cardiovascular physiological signals. Detection, to ensure that the user can complete the detection of cardiovascular physiological signals in a relaxed state without psychological or physical burden.
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。It can be understood that, the above embodiments are only exemplary embodiments adopted for illustrating the principle of the present invention, but the present invention is not limited thereto. For those skilled in the art, various modifications and improvements can be made without departing from the spirit and essence of the present invention, and these modifications and improvements are also regarded as the protection scope of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010582803.4A CN102525431B (en) | 2010-12-10 | 2010-12-10 | Device and method for detecting cardiovascular physiological signals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010582803.4A CN102525431B (en) | 2010-12-10 | 2010-12-10 | Device and method for detecting cardiovascular physiological signals |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102525431A true CN102525431A (en) | 2012-07-04 |
CN102525431B CN102525431B (en) | 2014-01-08 |
Family
ID=46334405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010582803.4A Expired - Fee Related CN102525431B (en) | 2010-12-10 | 2010-12-10 | Device and method for detecting cardiovascular physiological signals |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102525431B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106333655A (en) * | 2015-07-09 | 2017-01-18 | 三星电子株式会社 | Apparatus And Method For Analyzing Living Body Information |
CN108567417A (en) * | 2018-04-24 | 2018-09-25 | 深圳还是威健康科技有限公司 | A kind of cardiovascular monitoring method and system based on intelligent folding fan |
CN110960199A (en) * | 2019-12-24 | 2020-04-07 | 中国人民解放军陆军军医大学第一附属医院 | System for double-variable measurement of arteriosclerosis degree |
CN113257418A (en) * | 2021-03-29 | 2021-08-13 | 广州科克里特生命科技有限公司 | Risk detection system and method for low back pain |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1111121A (en) * | 1994-08-30 | 1995-11-08 | 中国科学院上海技术物理研究所 | Self-adaptation analytical method and apparatus for electrocardiac and pulse signal |
CN1121798A (en) * | 1994-08-16 | 1996-05-08 | 北京工业大学 | Cardiovascular function dynamic parameter testing analysis method and apparatus |
US6647293B2 (en) * | 2000-01-19 | 2003-11-11 | Biotronik Mess-und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin | Method for predictively calculating a cardiac signal course and for controlling the delivery of a stimulation pulse by an implantable cardiac device |
CN1665443A (en) * | 2001-09-13 | 2005-09-07 | 康曼德公司 | A signal processing method and device for signal-to-noise improvement |
JP4120100B2 (en) * | 1999-07-09 | 2008-07-16 | オムロンヘルスケア株式会社 | Non-invasive continuous blood pressure estimation device and non-invasive continuous blood pressure prediction device |
CN101732040A (en) * | 2009-12-24 | 2010-06-16 | 中国科学院力学研究所 | Non-invasive multipath pulse wave detection device, system and analytical system |
-
2010
- 2010-12-10 CN CN201010582803.4A patent/CN102525431B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1121798A (en) * | 1994-08-16 | 1996-05-08 | 北京工业大学 | Cardiovascular function dynamic parameter testing analysis method and apparatus |
CN1111121A (en) * | 1994-08-30 | 1995-11-08 | 中国科学院上海技术物理研究所 | Self-adaptation analytical method and apparatus for electrocardiac and pulse signal |
JP4120100B2 (en) * | 1999-07-09 | 2008-07-16 | オムロンヘルスケア株式会社 | Non-invasive continuous blood pressure estimation device and non-invasive continuous blood pressure prediction device |
US6647293B2 (en) * | 2000-01-19 | 2003-11-11 | Biotronik Mess-und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin | Method for predictively calculating a cardiac signal course and for controlling the delivery of a stimulation pulse by an implantable cardiac device |
CN1665443A (en) * | 2001-09-13 | 2005-09-07 | 康曼德公司 | A signal processing method and device for signal-to-noise improvement |
CN101732040A (en) * | 2009-12-24 | 2010-06-16 | 中国科学院力学研究所 | Non-invasive multipath pulse wave detection device, system and analytical system |
Non-Patent Citations (1)
Title |
---|
张昕等: "《用自适应AR模型提高血氧饱和度测量中的脉搏波信号的检出率》", 《生物医学工程学杂志》, vol. 17, no. 3, 31 December 2000 (2000-12-31), pages 285 - 287 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106333655A (en) * | 2015-07-09 | 2017-01-18 | 三星电子株式会社 | Apparatus And Method For Analyzing Living Body Information |
CN106333655B (en) * | 2015-07-09 | 2021-06-15 | 三星电子株式会社 | Apparatus and method for analyzing living body information |
CN108567417A (en) * | 2018-04-24 | 2018-09-25 | 深圳还是威健康科技有限公司 | A kind of cardiovascular monitoring method and system based on intelligent folding fan |
CN110960199A (en) * | 2019-12-24 | 2020-04-07 | 中国人民解放军陆军军医大学第一附属医院 | System for double-variable measurement of arteriosclerosis degree |
CN110960199B (en) * | 2019-12-24 | 2022-05-27 | 中国人民解放军陆军军医大学第一附属医院 | System for double-variable measurement of arteriosclerosis degree |
CN113257418A (en) * | 2021-03-29 | 2021-08-13 | 广州科克里特生命科技有限公司 | Risk detection system and method for low back pain |
Also Published As
Publication number | Publication date |
---|---|
CN102525431B (en) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Venkatesan et al. | A novel LMS algorithm for ECG signal preprocessing and KNN classifier based abnormality detection | |
CN110236518B (en) | Electrocardio and heart-shock signal combined classification method and device based on neural network | |
JP6457117B2 (en) | Continuous non-invasive monitoring of pregnant subjects | |
CN105877723B (en) | Non-invasive continuous blood pressure measurement device | |
JP4848524B2 (en) | Auscultation heart sound signal processing method and auscultation apparatus | |
CN109157202A (en) | A kind of cardiovascular disease early warning system based on more physiological signal depth integrations | |
CN103038772A (en) | Method of predicting the survivability of a patient | |
CN104244127B (en) | A kind of heart rate detection method applied to earphone and the earphone that heart rate can be detected | |
CN107958213A (en) | A kind of cospace pattern based on the medical treatment of brain-computer interface recovering aid and deep learning method | |
CN102525431B (en) | Device and method for detecting cardiovascular physiological signals | |
CN104203088A (en) | Reduction of physiological metric error due to inertial cadence | |
CN104173043A (en) | A ECG data analysis method suitable for mobile platforms | |
CN104490390A (en) | Electrophysiological signal conjoint analysis-based human exercise ability determination method | |
CN111329462B (en) | Real-time non-binding heart rate extraction method | |
EP2501277A1 (en) | Apparatus and methods for monitoring heart rate and respiration | |
WO2011068687A1 (en) | Methods and apparatus for sensing blood flow and hemodynamic parameters | |
CN103892829A (en) | Eye movement signal identification system based on common spatial mode and identification method thereof | |
JP2011076177A (en) | Method and device for controlling equipment using brain wave induced by contact of teeth | |
Shi et al. | Neural network based real-time heart sound monitor using a wireless wearable wrist sensor | |
CN114469041B (en) | Characteristic analysis method for heart rate variation data in exercise process | |
CN116369886A (en) | Atrial fibrillation detection device, equipment and storage medium based on millimeter wave radar | |
CN109288515A (en) | Method and device for periodic monitoring of premature beats in wearable ECG signals | |
EP1648295A2 (en) | Radiation stress non-invasive blood pressure method | |
CN115089206B (en) | Method for predicting heart sound signal and heart auscultation device using same | |
CN205866733U (en) | There is not continuous blood pressure measuring device of wound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140108 |
|
CF01 | Termination of patent right due to non-payment of annual fee |