CN102510095B - Combined cycle and straight condensing thermal power combined dispatching system and method - Google Patents
Combined cycle and straight condensing thermal power combined dispatching system and method Download PDFInfo
- Publication number
- CN102510095B CN102510095B CN2011103238291A CN201110323829A CN102510095B CN 102510095 B CN102510095 B CN 102510095B CN 2011103238291 A CN2011103238291 A CN 2011103238291A CN 201110323829 A CN201110323829 A CN 201110323829A CN 102510095 B CN102510095 B CN 102510095B
- Authority
- CN
- China
- Prior art keywords
- gas
- heating
- heating boiler
- user
- combined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 389
- 230000005611 electricity Effects 0.000 claims abstract description 22
- 238000005265 energy consumption Methods 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 140
- 230000001105 regulatory effect Effects 0.000 claims description 13
- 230000001276 controlling effect Effects 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 9
- 238000004378 air conditioning Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 7
- 239000003245 coal Substances 0.000 claims description 7
- 230000009194 climbing Effects 0.000 claims description 6
- 239000013307 optical fiber Substances 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000007619 statistical method Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims 52
- 230000005619 thermoelectricity Effects 0.000 claims 9
- 230000001351 cycling effect Effects 0.000 claims 4
- 239000000567 combustion gas Substances 0.000 claims 2
- 230000008676 import Effects 0.000 claims 1
- 230000005855 radiation Effects 0.000 claims 1
- 238000006467 substitution reaction Methods 0.000 claims 1
- 239000000446 fuel Substances 0.000 abstract description 7
- 238000010248 power generation Methods 0.000 description 44
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Steam Or Hot-Water Central Heating Systems (AREA)
Abstract
本发明提供一种联合循环与纯凝汽火电联合调度系统与方法,包括燃气供暖锅炉与燃气联合循环、纯凝汽式火电机组、空调器热泵、电能表、散热器、耗热计量表及采集所述电能表检测的耗电数据及耗热计量表检测的采暖耗热数据的第二远程集中控制器、通过第一~三远程集中控制器控制所述燃气供暖锅炉与燃气联合循环、纯凝汽式火电机组、空调器热泵及散热器运行的调度控制装置。本发明通过采集用户至热源的管道距离,利用该管道距离合理将原本独立运行的凝气式火电机组和燃气供暖锅炉与燃气联合循环进行联合调度,有效的减少燃气供暖锅炉与燃气联合循环与纯凝气式火电机组的总能源消耗,避免浪费燃料资源,同时使得调度更加的及时、准确。
The invention provides a combined dispatching system and method of combined cycle and pure condensing steam thermal power, including gas heating boiler and gas combined cycle, pure condensing thermal power unit, air conditioner heat pump, electric energy meter, radiator, heat consumption meter and collection The second remote centralized controller of the electricity consumption data detected by the electric energy meter and the heating heat consumption data detected by the heat consumption meter controls the gas heating boiler, the gas combined cycle, and the pure condensate through the first to third remote centralized controllers. Dispatching and control devices for the operation of steam-type thermal power units, air conditioner heat pumps and radiators. The present invention collects the pipeline distance from the user to the heat source, and uses the pipeline distance to rationally schedule the condensing thermal power unit, the gas heating boiler and the gas combined cycle that originally operated independently, effectively reducing the gas heating boiler and the gas combined cycle. The total energy consumption of condensing gas thermal power units avoids wasting fuel resources, and at the same time makes scheduling more timely and accurate.
Description
技术领域 technical field
本发明涉及城市综合能源供应系统,尤其涉及一种利用对采暖负荷的调度实现电力系统最优化控制的方法。The invention relates to an urban comprehensive energy supply system, in particular to a method for realizing optimal control of a power system by scheduling heating loads.
背景技术 Background technique
现有的电网中包括两种发电模式:一种是单独由热电联产机组发电出力提供电能,另一种是单独由凝汽式火电机组发电出力提供电能。这两种发电机组各自独立运行。其中热电联产机组为终端用户供应电能的同时提供采暖热能。而凝汽式火电机组只能提供给终端用户电能,热能则需要靠另外的热能厂来供应。The existing power grid includes two power generation modes: one is to provide electric energy solely from the power generated by the combined heat and power unit, and the other is to provide electric energy solely from the power generated by the condensing thermal power unit. These two generator sets operate independently. Among them, the combined heat and power unit supplies electric energy to end users and provides heating energy at the same time. The condensing steam thermal power unit can only provide electric energy to end users, and heat energy needs to be supplied by another thermal energy plant.
燃气供暖锅炉与燃气联合循环运行的物理状态为减少发热,只能增加发电。针对一定的电网总负荷,在满足一定的采暖负荷的情况下,燃气供暖锅炉与燃气联合循环出力是多少才是节能的呢?The physical state of gas heating boiler and gas combined cycle operation is to reduce heat generation and only increase power generation. For a certain total load of the power grid, under the condition of meeting a certain heating load, what is the output of the gas heating boiler and the gas combined cycle to save energy?
公告号为CN1259834C的中国发明专利揭示了一种双源供暖空调系统及利用该系统采暖供热/供冷的方法。该专利解决了将热电联产生产的电能与采暖热能充分利用的问题。The Chinese invention patent with the notification number CN1259834C discloses a dual-source heating and air-conditioning system and a heating/cooling method using the system. This patent solves the problem of fully utilizing the electric energy and heating heat energy produced by combined heat and power generation.
公告号为CN100580327C的中国发明专利揭示了一种热电联产供能方法及系统。该专利将居民采暖用户划分为空调器热泵采暖和散热器供暖用户,由热电联产机组单独向上述采暖用户分别提供电能和采暖热能供其冬季采暖需要,以提高能源利用。The Chinese invention patent with the notification number CN100580327C discloses a cogeneration energy supply method and system. This patent divides residential heating users into air conditioner heat pump heating users and radiator heating users, and the combined heat and power unit provides electric energy and heating heat energy to the above heating users separately for their winter heating needs, so as to improve energy utilization.
由此可见,上述两件专利都只是解决了单独如何有效利用热电联产机组产出的电能和热能的问题。而并未解决与纯凝汽式火电机组配合情况下如何控制热电联产机组应该承担的采暖和发电出力为多少才能够节能的问题。It can be seen that the above two patents only solve the problem of how to effectively utilize the electric energy and heat energy produced by the combined heat and power unit. However, the problem of how to control the heating and power generation output that the combined heat and power unit should undertake under the condition of cooperating with the pure condensing thermal power unit is not solved to save energy.
燃气供暖锅炉与燃气联合循环产出的采暖热水,由于输送距离及热水流速的限制,送达用户具有一定的距离,而产出的电力则可以瞬间到达用户;现有技术中,没有根据燃气供暖锅炉与燃气联合循环与采暖用户之间的距离,合理对燃气供暖锅炉与燃气联合循环和燃煤纯凝汽式火电机组进行联合调度控制的系统及方法,使得调度更加的及时、准确,避免浪费能源。The heating hot water produced by the gas-fired heating boiler and the gas-fired combined cycle has a certain distance to reach the user due to the limitation of the transmission distance and the flow rate of the hot water, while the generated electricity can reach the user in an instant; in the prior art, there is no basis The distance between the gas heating boiler and the gas combined cycle and the heating user, the system and method for the joint scheduling control of the gas heating boiler, the gas combined cycle and the coal-fired pure condensing steam thermal power unit, making the scheduling more timely and accurate, Avoid wasting energy.
发明内容 Contents of the invention
本发明的目的是建立热电联合调度系统及其调度方法,使得该系统根据燃气供暖锅炉与燃气联合循环与采暖用户之间的距离,合理对燃气供暖锅炉与燃气联合循环和燃煤纯凝汽式火电机组进行联合调度,以满足终端用户的采暖供热量和非采暖用电量的需求,并减少总能耗达到节能目的。The purpose of the present invention is to establish a heat and power combined dispatching system and its dispatching method, so that the system can reasonably adjust the gas heating boiler, gas combined cycle and coal-fired pure condensing steam according to the distance between the gas heating boiler, the gas combined cycle and the heating user. Thermal power units are jointly dispatched to meet end-user heating heat supply and non-heating electricity consumption needs, and reduce total energy consumption to achieve energy conservation.
为了实现上述目的,本发明一种联合循环与纯凝汽火电联合调度系统采用如下技术方案:In order to achieve the above object, a combined cycle and pure condensing steam thermal power dispatching system of the present invention adopts the following technical scheme:
一种联合循环与纯凝汽火电联合调度系统,包括:A joint dispatching system of combined cycle and pure condensing steam thermal power, including:
用于产出电力和采暖热水的燃气供暖锅炉与燃气联合循环;Gas heating boiler and gas combined cycle for generating electricity and heating hot water;
用于产出电能的燃煤纯凝汽式火电机组;Coal-fired pure condensing steam thermal power units for generating electric energy;
通过电力电缆与所述燃气供暖锅炉与燃气联合循环和燃煤纯凝汽式火电机组并联的空调器热泵,所述空调器热泵由所述燃气供暖锅炉与燃气联合循环和燃煤纯凝汽式火电机组产生的电能驱动而产生采暖热能;An air conditioner heat pump connected in parallel with the gas heating boiler, gas combined cycle and coal-fired pure condensing thermal power unit through a power cable, and the air conditioner heat pump is composed of the gas heating boiler, gas combined cycle and coal-fired pure condensing The electric energy generated by the thermal power unit is driven to generate heating heat;
控制空调器热泵的空调器热泵遥控开关;Air conditioner heat pump remote control switch for controlling the air conditioner heat pump;
采集用户非采暖用电的电表;The electric meter that collects the non-heating electricity of users;
通过供热管道与所述燃气供暖锅炉与燃气联合循环相连接的热水式采暖散热器,所述燃气供暖锅炉与燃气联合循环生产的热水流入所述热水式采暖散热器中产生采暖热能;The hot water heating radiator connected to the gas heating boiler and the gas combined cycle through the heating pipeline, the hot water produced by the gas heating boiler and the gas combined cycle flows into the hot water heating radiator to generate heating heat energy ;
热水式采暖散热器热水消耗计量表,用于检测所述热水式采暖散热器热水消耗的数据;The hot water consumption meter of the hot water heating radiator is used to detect the hot water consumption data of the hot water heating radiator;
控制热水式采暖散热器的热水式采暖散热器流水阀门遥控开关;Control the remote control switch of the water flow valve of the hot water heating radiator;
第一远程集中控制器,采集燃气供暖锅炉与燃气联合循环的供暖出力热水流量,发电出力电量;并将采集的燃气供暖锅炉与燃气联合循环的供暖出力热水流量,发电出力电量传送给综合调度控制装置;The first remote centralized controller collects the heating output hot water flow and power generation output of the gas heating boiler and the gas combined cycle; and transmits the collected heating output hot water flow and power generation output of the gas heating boiler and the gas combined cycle to the comprehensive Dispatch control device;
第二远程集中控制器,其记载热水式采暖散热器与燃气供暖锅炉与燃气联合循环之间的管道距离信息;第二远程集中控制器采集热水式采暖散热器热水消耗计量表检测的热水消耗数据,采集用户的非采暖用电,然后将管道距离信息、用户的非采暖用电、热水消耗数据传送给综合调度控制装置;The second remote centralized controller, which records the pipeline distance information between the hot water heating radiator and the gas heating boiler and the gas combined cycle; the second remote centralized controller collects the hot water consumption meter detection of the hot water heating radiator Hot water consumption data, collect the user's non-heating electricity consumption, and then transmit the pipeline distance information, the user's non-heating electricity consumption, and hot water consumption data to the comprehensive dispatching control device;
第三远程集中控制器,采集燃煤纯凝汽式火电机组的发电出力电量;并将采集的燃煤纯凝汽式火电机组的发电出力电量传送给综合调度控制装置;The third remote centralized controller collects the power generation output of the coal-fired pure condensing steam thermal power unit; and transmits the collected power generation output of the coal-fired pure condensing steam thermal power unit to the comprehensive dispatching control device;
综合调度控制装置,由燃气供暖锅炉与燃气联合循环的供暖出力热水流量、燃气供暖锅炉与燃气联合循环的发电出力电量、燃煤纯凝汽式火电机组的发电出力电量、用户的热水式采暖散热器的管道距离信息、用户的非采暖用电数据和用户的热水消耗数据,生成调度控制信号;The comprehensive scheduling control device consists of the heating output and hot water flow of the gas heating boiler and the gas combined cycle, the power generation output of the gas heating boiler and the gas combined cycle, the power generation output of the coal-fired pure condensing steam thermal power unit, and the hot water type of the user. The pipeline distance information of the heating radiator, the user's non-heating electricity consumption data and the user's hot water consumption data generate a dispatch control signal;
第一远程集中控制器接收综合调度控制装置所发出的调度控制信号,并用该调度控制信号控制燃气供暖锅炉与燃气联合循环的燃气供暖锅炉与燃气联合循环控制执行装置动作;The first remote centralized controller receives the dispatching control signal sent by the comprehensive dispatching control device, and uses the dispatching control signal to control the action of the gas heating boiler and the gas combined cycle control executive device of the gas heating boiler and the gas combined cycle;
第二远程集中控制器接收综合调度控制装置所发出的调度控制信号,并用该调度控制信号分别驱动空调器热泵遥控开关、热水式采暖散热器流水阀门遥控开关执行动作;The second remote centralized controller receives the scheduling control signal sent by the integrated scheduling control device, and uses the scheduling control signal to respectively drive the remote control switch of the heat pump of the air conditioner and the remote control switch of the flow valve of the hot water heating radiator to perform actions;
第三远程集中控制器接收综合调度控制装置所发出的调度控制信号,并用该调度控制信号控制燃煤纯凝汽式火电机组的燃煤纯凝汽式火电机组控制执行装置动作。The third remote centralized controller receives the dispatching control signal sent by the comprehensive dispatching control device, and uses the dispatching control signal to control the action of the coal-fired pure condensing steam thermal power unit control actuator.
综合调度控制装置分别用于:计算得到燃气供暖锅炉与燃气联合循环在每个时刻的供暖出力热水流量和发电出力电量的调度控制信号;计算得到燃煤纯凝汽式火电机组在每个时刻的发电出力电量的调度控制信号;计算得到终端用户处的空调器热泵在每个时刻的采暖电力消耗量的调度控制信号;计算得到终端用户处在每个时刻的热水式采暖散热器消耗采暖热水数量的调度控制信号;The comprehensive scheduling control device is used to: calculate the scheduling control signals of the heating output hot water flow and power generation output of the gas heating boiler and the gas combined cycle at each moment; calculate the coal-fired pure condensing steam thermal power unit at each moment The scheduling control signal of the power generation output of the power generation; the scheduling control signal of the heating power consumption of the air conditioner heat pump at the end user at each time is calculated; the heating consumption of the hot water heating radiator at the end user at each time is calculated Scheduling control signal of hot water quantity;
所述热水式采暖散热器流水阀门遥控开关,通过第二远程集中控制器以遥控方式与所述综合调度控制装置耦合;The remote control switch of the water flow valve of the hot water heating radiator is coupled with the comprehensive dispatching control device in a remote manner through the second remote centralized controller;
空调器热泵遥控开关,通过第二远程集中控制器以遥控方式与所述综合调度控制装置耦合;The heat pump remote control switch of the air conditioner is coupled with the comprehensive dispatching control device in a remote manner through the second remote centralized controller;
燃气供暖锅炉与燃气联合循环控制执行装置,通过第一远程集中控制器以遥控方式与所述综合调度控制装置耦合;所述燃气供暖锅炉与燃气联合循环控制执行装置根据获得的调度控制信号,控制与其连接的阀门动作。The gas-fired heating boiler and the gas-fired combined cycle control execution device are coupled with the comprehensive scheduling control device in a remote manner through the first remote centralized controller; the gas-fired heating boiler and the gas combined cycle control execution device control according to the obtained scheduling control signal The action of the valve connected to it.
所述综合调度控制装置包括:The integrated dispatch control device includes:
接收用户非采暖耗电数据、用户热水消耗数据、用户管道距离信息、燃气供暖锅炉与燃气联合循环的供暖出力热水流量、燃气供暖锅炉与燃气联合循环的发电出力电量和燃煤纯凝汽式火电机组的发电出力电量的第一数据接收单元;Receive user non-heating power consumption data, user hot water consumption data, user pipeline distance information, heating output of gas heating boiler and gas combined cycle hot water flow, power generation output of gas heating boiler and gas combined cycle, and coal-fired pure condensate The first data receiving unit of the power generation output of the thermal power unit;
将接收到的所有数据进行解码的数据解码器单元;a data decoder unit that decodes all received data;
对解码后的所有数据进行存储的数据存储器单元;a data memory unit storing all decoded data;
生成调度控制信号的调度控制信号计算单元;a dispatch control signal calculation unit generating a dispatch control signal;
将所述调度控制信号进行编码的信号编码器;及a signal encoder for encoding the dispatch control signal; and
将编码后的调度控制信号传递给第一远程集中控制器、第二远程集中控制器、第三远程集中控制器的发送单元。The encoded scheduling control signal is transmitted to the sending units of the first remote centralized controller, the second remote centralized controller, and the third remote centralized controller.
所述燃气供暖锅炉与燃气联合循环控制执行装置包括调度控制信号收发编码存储器、驱动电路及机械齿轮控制装置,所述调度控制信号经调度控制信号收发编码存储器解码以后生成燃气供暖锅炉与燃气联合循环调度控制指令,经过驱动电路输出的电力拖动信号触发机械齿轮控制装置,机械齿轮控制装置再控制燃气供暖锅炉与燃气联合循环的阀门动作。The gas heating boiler and gas combined cycle control execution device includes a scheduling control signal transceiving code memory, a drive circuit and a mechanical gear control device. The scheduling control signal is decoded by the scheduling control signal transmitting and receiving coding memory to generate a gas heating boiler and a gas combined cycle Scheduling control instructions, the electric drag signal output by the drive circuit triggers the mechanical gear control device, and the mechanical gear control device then controls the valve action of the gas heating boiler and the gas combined cycle.
所述燃煤纯凝汽式火电机组控制执行装置包括调度控制信号收发编码存储器、驱动电路及机械齿轮控制装置,所述调度控制信号经调度控制信号收发编码存储器解码以后生成燃煤纯凝汽式火电机组调度控制指令,经过驱动电路输出的电力拖动信号触发机械齿轮控制装置,机械齿轮控制装置再控制燃煤纯凝汽式火电机组的燃煤进料阀门动作及发电蒸汽流量阀门动作。The control execution device of the coal-fired pure condensing steam thermal power unit includes a scheduling control signal transceiving code memory, a drive circuit and a mechanical gear control device. The thermal power unit scheduling control command, the electric drag signal output by the drive circuit triggers the mechanical gear control device, and the mechanical gear control device controls the action of the coal-fired feed valve and the power generation steam flow valve of the coal-fired pure condensing steam thermal power unit.
综合调度控制装置通过电力光纤与云计算计算服务系统连接,并驱动云计算计算服务系统计算,以获得调度控制信号;综合调度控制装置通过电力光纤接收云计算计算服务系统计算获得的调度控制信号,然后经由电力电缆或无线传输方式发布该调度控制信号给第一远程集中控制器、第二远程集中控制器、第三远程集中控制器。The integrated dispatching control device is connected to the cloud computing computing service system through the power optical fiber, and drives the computing of the cloud computing computing service system to obtain the dispatching control signal; the comprehensive dispatching control device receives the dispatching control signal calculated by the cloud computing computing service system through the power optical fiber, Then issue the scheduling control signal to the first remote centralized controller, the second remote centralized controller, and the third remote centralized controller via power cables or wireless transmission.
所述第二远程集中控制器包括非采暖电表脉冲计数器、采暖热水流量脉冲计数器、脉冲信号编码转换器、计量信号放大发射器,及相互连接的控制信号接收解码器和控制信号遥控发射器;The second remote centralized controller includes a non-heating electric meter pulse counter, a heating hot water flow pulse counter, a pulse signal code converter, a measurement signal amplification transmitter, and a control signal receiving decoder and a control signal remote control transmitter connected to each other;
非采暖电表脉冲计数器连接用户非采暖电表,用于检测用户非采暖耗电数据,用户非采暖耗电数据经过脉冲信号编码转换器及计量信号放大发射器处理后传送至综合调度控制装置;The non-heating meter pulse counter is connected to the user’s non-heating meter to detect the user’s non-heating power consumption data. The user’s non-heating power consumption data is processed by the pulse signal code converter and the metering signal amplifier transmitter and then sent to the comprehensive dispatching control device;
采暖热水流量脉冲计数器连接热水式采暖散热器热水消耗计量表,用于检测热水式采暖散热器热水消耗计量表的采暖流量数据,采暖热水流量脉冲计数器检测得到的采暖流量数据经过脉冲信号编码转换器及计量信号放大发射器处理后和热水式采暖散热器与燃气供暖锅炉与燃气联合循环之间的管道距离信息传送至综合调度控制装置;The heating hot water flow pulse counter is connected to the hot water consumption meter of the hot water heating radiator, which is used to detect the heating flow data of the hot water consumption meter of the hot water heating radiator, and the heating flow data detected by the heating hot water flow pulse counter After being processed by the pulse signal code converter and the metering signal amplifier transmitter, the pipeline distance information between the hot water heating radiator, the gas heating boiler and the gas combined cycle is transmitted to the comprehensive dispatching control device;
控制信号接收解码器,接收综合调度控制装置发出的调度控制信息并进行解码,然后通过控制信号遥控发射器将控制信号发送给空调器热泵遥控开关、热水式采暖散热器流水阀门遥控开关执行动作。The control signal receiving decoder receives and decodes the scheduling control information sent by the integrated scheduling control device, and then sends the control signal to the remote control switch of the heat pump of the air conditioner and the remote control switch of the flow valve of the hot water heating radiator through the control signal remote transmitter to perform actions .
所述第二远程集中控制器还用于采集用户输入的热惯性时间数据,并将该数据传送给综合调度控制装置。The second remote centralized controller is also used to collect thermal inertia time data input by the user, and transmit the data to the comprehensive scheduling control device.
一种联合循环与纯凝汽火电联合调度系统的调度方法,包括以下步骤:A dispatching method for a joint dispatching system of combined cycle and pure condensing steam thermal power, comprising the following steps:
1)、测量:1), measurement:
1.1)、测量供给侧:1.1), measuring the supply side:
第一远程集中控制器采集0~T×ΔT时间段燃气供暖锅炉与燃气联合循环的联合循环电出力PCOMB(t)、联合循环的热出力HCOMB(t)和供暖锅炉的热出力HBOIL(t);采样周期为ΔT;T为采集的次数,T为自然数;The first remote centralized controller collects the combined cycle electrical output P COMB (t) of the gas heating boiler and the gas combined cycle, the thermal output H COMB (t) of the combined cycle, and the thermal output H BOIL of the heating boiler during the time period of 0 to T×ΔT (t); The sampling period is ΔT; T is the number of times collected, and T is a natural number;
第三远程集中控制器采集0~T×ΔT时间段燃煤纯凝汽式火电机组的发电出力电量PCON(t);The third remote centralized controller collects the power generation output power P CON (t) of the coal-fired pure condensing steam thermal power unit during the period of 0~T×ΔT;
1.2)、测量用户侧:i=0~N,N为用户个数;每个用户均具有空调器热泵和热水式采暖散热器;1.2), measure the user side: i=0~N, N is the number of users; each user has an air conditioner heat pump and a hot water heating radiator;
1.2.1)、第二远程集中控制器采集N个用户距热源燃气供暖锅炉与燃气联合循环的管道距离Si;1.2.1), the second remote centralized controller collects the pipeline distance S i of N users from the heat source gas heating boiler and the gas combined cycle;
1.2.2)、第二远程集中控制器采集0~T×ΔT时间段N个用户非采暖耗电量Pi(t),采样频率为ΔT;1.2.2), the second remote centralized controller collects the non-heating power consumption P i (t) of N users in the period of 0~T×ΔT, and the sampling frequency is ΔT;
1.2.3)、第二远程集中控制器采集0~T×ΔT时间段N个用户的热水式采暖散热器的耗热量Hi(t),采样频率为ΔT;1.2.3), the second remote centralized controller collects the heat consumption H i (t) of the hot water heating radiators of N users in the period of 0~T×ΔT, and the sampling frequency is ΔT;
1.2.4)、第二远程集中控制器采集N个用户的空调器热泵装机容量 1.2.4), the second remote centralized controller collects the installed capacity of air conditioners and heat pumps of N users
1.2.5)、第二远程集中控制器采集N个用户输入的热惯性时间Ti;1.2.5), the second remote centralized controller collects the thermal inertia time T i input by N users;
2)、计算2), calculation
2.1)、综合调度控制装置计算所有用户各时段总的用电量:2.1), the integrated dispatching control device calculates the total power consumption of all users in each period:
2.2)、根据步骤2.1)中计算出的各时段总用电量Psum(t),利用统计分析方法,预测未来一段时间段的电力负荷Pload(t);根据步骤1)采集的燃气供暖锅炉与燃气联合循环的联合循环的热出力HCOMB(t)和供暖锅炉的热出力HBOIL(t),预测未来一段时间的燃气供暖锅炉与燃气联合循环的联合循环的热出力HCOMB(t)和供暖锅炉的热出力HBOIL(t);2.2), according to the total power consumption P sum (t) of each period calculated in step 2.1), use the statistical analysis method to predict the power load P load (t) for a period of time in the future; according to the gas heating collected in step 1) The thermal output H COMB (t) of the combined cycle of the boiler and the gas-fired combined cycle and the thermal output H BOIL (t) of the heating boiler, predict the thermal output H COMB (t) of the combined cycle of the gas-fired heating boiler and the gas-fired combined cycle in the future ) and the thermal output H BOIL (t) of the heating boiler;
2.3)、用户分组:计算每个用户到热源的等效距离做取整运算,使将相同的si的用户分为同一组,si=l,总计为L组,L为自然数;v为热水在管道中的流速;2.3), user grouping: calculate the equivalent distance from each user to the heat source Do the rounding operation, so that Divide users with the same s i into the same group, s i =l, the total is L groups, L is a natural number; v is the flow rate of hot water in the pipeline;
2.4)、对步骤2.3)中分得的L个组,分别求出各组所有用户的总采暖负荷Hload(l)和热泵容量PEHP(l);2.4), for the L groups obtained in step 2.3), obtain the total heating load H load (l) and heat pump capacity P EHP (l) of all users in each group respectively;
Hload(l)=∑Hi(t,l);Hi(t,l)为第1组用户i在t时刻的采暖负荷;H load (l)=∑H i (t, l); H i (t, l) is the heating load of user i in the first group at time t;
为第1组用户i的热泵容量; is the heat pump capacity of user i in the first group;
3)、控制计算3), control calculation
3.1)、目标函数:3.1), objective function:
目标函数总能耗f为:The total energy consumption f of the objective function is:
fCOMB为燃气供暖锅炉与燃气联合循环的联合循环的功率能耗,单位为MWH;fBOIL为燃气供暖锅炉与燃气联合循环的燃气供暖锅炉的功率能耗,单位为MWH;fCON为纯凝汽火电机组功率能耗,单位为MWH;为纯凝汽火电机组爬坡能耗,单位为MWH;f COMB is the power consumption of the combined cycle of the gas heating boiler and the gas combined cycle, the unit is MWH; f BOIL is the power consumption of the gas heating boiler and the gas heating boiler of the gas combined cycle, the unit is MWH; f CON is the pure condensate Power consumption of steam-thermal power unit, unit is MWH; is the ramp-up energy consumption of the pure condensing steam thermal power unit, the unit is MWH;
其中:in:
为燃气供暖锅炉与燃气联合循环的联合循环热效率;hCOMB(t)为调节后燃气供暖锅炉与燃气联合循环的联合循环热出力; is the thermal efficiency of the combined cycle of the gas-fired heating boiler and the gas-fired combined cycle; h COMB (t) is the combined cycle heat output of the adjusted gas-fired heating boiler and the gas-fired combined cycle;
ηBOIL为燃气供暖锅炉与燃气联合循环的燃气供暖锅炉热效率;hBOIL(t)为调节后燃气供暖锅炉与燃气联合循环的燃气供暖锅炉热出力;η BOIL is the thermal efficiency of the gas-fired heating boiler and the gas-fired combined cycle; h BOIL (t) is the thermal output of the adjusted gas-fired heating boiler and the gas-fired combined cycle;
a)、火电机组功率能耗:a), thermal power unit power consumption:
bCON(t)为调节后纯凝汽火电机组发电煤耗量,单位为g/kWh;pCON(t)为调节后纯凝汽火电机组发电出力,单位为MW;b CON (t) is the coal consumption of the regulated pure condensing steam thermal power unit in g/kWh; p CON (t) is the power generation output of the regulated pure condensing steam thermal power unit in MW;
b)、火电机组爬坡能耗:b), thermal power unit climbing energy consumption:
dCON为火电机组(B)的爬坡煤耗系数;d CON is the climbing coal consumption coefficient of the thermal power unit (B);
3.2)、约束方程3.2), constraint equation
3.2.1)、电力负荷平衡3.2.1), power load balance
Pload(t)+pEHPs(t)=pCON(t)+pCOMB(t)(7)P load (t)+p EHPs (t)=p CON (t)+p COMB (t)(7)
pEHPs(t)为调节后t时段所有用户热泵采暖耗电功率之和,单位为MW;pCOMB(t)为调节后t时段燃气供暖锅炉与燃气联合循环的联合循环电出力;p EHPs (t) is the sum of heating power consumption of all user heat pumps in t period after adjustment, in MW; p COMB (t) is the combined cycle power output of gas heating boiler and gas combined cycle in t period after adjustment;
3.2.2)、热负荷平衡方程3.2.2), heat load balance equation
Δh(t)=|HCOMB(t)+HBOIL(t)-hCOMB(t)+hBOIL(t)| (8)Δh(t)=|H COMB (t)+H BOIL (t)-h COMB (t)+h BOIL (t)| (8)
其中:hEHP(t+l,l)为t+l时段第l组用户热泵的供暖功率之和,单位为MW;hEHP(t,l)为t时段第l组用户热泵的供暖功率之和,单位为MW;HCOMB(t)为步骤2.2)预测的燃气供暖锅炉与燃气联合循环t时段的燃气联合循环热出力;HBOIL(t)为步骤2.2)预测的燃气供暖锅炉与燃气联合循环t时段的燃气供暖锅炉热出力;hCOMB(t)为调节后t时段燃气供暖锅炉与燃气联合循环的燃气联合循环热出力;hBOIL(t)为调节后t时段燃气供暖锅炉与燃气联合循环的燃气供暖锅炉热出力;Among them: hEHP (t+l, l) is the sum of the heating power of user heat pumps in group l during t+l, in MW; hEHP (t, l) is the sum of heating power of user heat pumps in group l during t and, the unit is MW; H COMB (t) is the heat output of the gas-fired combined cycle of the gas-fired heating boiler and the gas-fired combined cycle predicted in step 2.2); H BOIL (t) is the predicted gas-fired heating boiler and the gas-fired combined cycle h COMB (t) is the heat output of the gas heating boiler and the gas combined cycle in the t period after adjustment; h BOIL (t) is the combined gas heating boiler and gas combined cycle in the t period after adjustment Circulating gas heating boiler thermal output;
3.2.3)、燃气供暖锅炉与燃气联合循环约束:3.2.3), gas heating boiler and gas combined cycle constraints:
为燃气供暖锅炉与燃气联合循环的联合循环热效率;为燃气供暖锅炉与燃气联合循环的联合循环发电效率;pCOMB(t)为调节后t时段燃气供暖锅炉与燃气联合循环的联合循环电出力;fCOMB(t)为调节后t时段燃气供暖锅炉与燃气联合循环的联合循环的功率能耗; is the thermal efficiency of the combined cycle of the gas-fired heating boiler and the gas-fired combined cycle; is the combined cycle power generation efficiency of the gas-fired heating boiler and the gas-fired combined cycle; p COMB (t) is the combined cycle power output of the gas-fired heating boiler and the gas-fired combined cycle in the t period after adjustment; f COMB (t) is the adjusted gas-fired heating boiler Power consumption of combined cycle with gas combined cycle;
3.2.4)、纯凝式火电机组约束:3.2.4), Constraints of pure condensing thermal power units:
其中为纯凝汽火电机组发电出力上限,单位为MW;为纯凝汽火电机组发电出力下限,单位为MW;in is the upper limit of power generation output of the pure condensing steam thermal power unit, the unit is MW; is the lower limit of power generation output of pure condensing steam thermal power unit, the unit is MW;
3.2.5)、用户侧热泵约束:3.2.5), user-side heat pump constraints:
热电比约束:Thermoelectric ratio constraints:
hEHP(t,l)=COPEHP·pEHP(t,l) (13)h EHP (t, l) = COP EHP p EHP (t, l) (13)
热泵出力上限:Heat pump output upper limit:
0≤pEHP(t,l)≤min(PEHP(l),Hload(l)/COPEHP)(14)0≤p EHP (t, l)≤min(P EHP (l), H load (l)/COP EHP )(14)
其中,PEHP(l)为第1组用户的热泵容量之和,单位为MW;Hload(l)为第1组用户的采暖负荷,单位为MW;COPEHP为热泵性能系数;pEHP(t,l)为第1组用户的热泵耗电量之和,单位为MW;Among them, P EHP (l) is the sum of the heat pump capacity of the first group of users, in MW; H load (l) is the heating load of the first group of users, in MW; COP EHP is the coefficient of performance of the heat pump; p EHP ( t, l) is the sum of the heat pump power consumption of the first group of users, the unit is MW;
各时段所有用户组的空调热泵耗电量之和:The sum of the air-conditioning heat pump power consumption of all user groups in each period:
将步骤1)中直接采集变量PCOMB(t),PCON(t);步骤2)中计算变量Pload(t),HCOMB(t),HBOIL(t),Hload(l),PEHP(l)代入公式1~15中并进行联合求解,在目标函数总能耗f为最小值时,求得优化后所得执行变量燃气供暖锅炉与燃气联合循环的燃气联合循环热出力hCOMB(t)、燃气供暖锅炉与燃气联合循环的燃气供暖锅炉热出力hBOIL(t)、燃气供暖锅炉与燃气联合循环(A)的联合循环电出力pCOMB(t)、用户不同时刻热泵耗电量pEHP(t,l)和供暖功率hEHP(t,l)、火电机组发电出力pCON(t);In the step 1), directly collect the variable P COMB (t), P CON (t); in the step 2), calculate the variable P load (t), H COMB (t), H BOIL (t), H load (l), P EHP (l) is substituted into formulas 1-15 and jointly solved. When the total energy consumption f of the objective function is the minimum value, the gas-fired combined cycle heat output h COMB of the gas-fired heating boiler and the gas-fired combined cycle obtained after optimization is obtained. (t), thermal output h BOIL (t) of gas heating boiler and gas combined cycle gas heating boiler, combined cycle electric output p COMB (t) of gas heating boiler and gas combined cycle (A), power consumption of heat pumps at different times for users Quantity p EHP (t, l) and heating power h EHP (t, l), thermal power generation output p CON (t);
4)、发送控制信号到供给和用户执行动作:4), Send control signals to suppliers and users to perform actions:
综合调度控制装置根据步骤3)的优化后所得执行变量,将变量信号发送至供给侧的第一远程集中控制器、第三远程集中控制器和用户的第二远程集中控制器,具体执行如下动作:The comprehensive dispatching control device sends the variable signal to the first remote centralized controller, the third remote centralized controller and the user's second remote centralized controller on the supply side according to the execution variable obtained after the optimization in step 3), and specifically performs the following actions :
A、燃气供暖锅炉与燃气联合循环的燃气联合循环热出力hCOMB(t)、燃气供暖锅炉与燃气联合循环的燃气供暖锅炉热出力hBOIL(t)、燃气供暖锅炉与燃气联合循环(A)的联合循环电出力pCOMB(t)信号,控制燃气供暖锅炉与燃气联合循环在未来调节时间内各时段的动作;A. Heat output h COMB (t) of gas heating boiler and gas combined cycle gas heating boiler, gas heating boiler heat output h BOIL (t) of gas heating boiler and gas combined cycle gas heating boiler and gas combined cycle (A) Combined cycle power output p COMB (t) signal to control the actions of the gas heating boiler and the gas combined cycle in each period of the future adjustment time;
B、用户不同时刻热泵耗电量pEHP(t,l)和供暖功率hEHP(t,l),控制用户侧不同距离用户使用热泵供暖量,以及关闭散热器量;B. Heat pump power consumption p EHP (t, l) and heating power h EHP (t, l) at different times of the user, control the heating amount of the heat pump used by the user at different distances from the user side, and the amount of closing the radiator;
C、火电机组发电出力pCON(t)信号,控制火电机组在未来调节时间内各时段的动作。C. The output p CON (t) signal of the thermal power unit controls the action of the thermal power unit in each period of the future adjustment time.
现对于现有技术,本发明的有益效果在于:本发明采用燃气供暖锅炉与燃气联合循环与纯凝气式火电机组联合产出发电出力提供电能给终端用户;燃气供暖锅炉与燃气联合循环产出的热水提供给终端用户的散热器;本发明通过采集用户至热源的管道距离,利用该管道距离合理将原本独立运行的凝气式火电机组和燃气供暖锅炉与燃气联合循环进行联合调度,使得涉及电力负荷非高峰时段节能调度和低谷时段节能调峰时,根据终端用户的负荷能耗的需求调节燃气供暖锅炉与燃气联合循环发电出力和采暖供热出力、纯凝气式火电机组的燃料消耗量及发电出力、终端用户的空调热泵采暖的电力消耗量、及终端用户的散热器的采暖供热量,实现电网与热网的综合节能调度与调峰;并有效的减少热燃气供暖锅炉与燃气联合循环与纯凝气式火电机组的总能源消耗,避免浪费燃料资源,同时使得调度更加的及时、准确。Now for the prior art, the beneficial effect of the present invention is that: the present invention adopts the joint output of gas heating boiler and gas combined cycle and pure condensing thermal power unit to generate power and provide electric energy to end users; the output of gas heating boiler and gas combined cycle The hot water is provided to the radiator of the end user; the invention collects the pipeline distance from the user to the heat source, and uses the pipeline distance to rationally schedule the condensing thermal power unit, the gas heating boiler and the gas combined cycle that originally operated independently, so that When it involves energy-saving scheduling during off-peak hours and energy-saving peak shaving during off-peak periods, adjust the power generation output of gas heating boilers and gas combined cycle and heating output, and the fuel consumption of pure condensing thermal power units according to the end user's demand for energy consumption The amount and power generation output, the power consumption of the end-user's air-conditioning heat pump heating, and the heating heat of the end-user's radiator, realize the comprehensive energy-saving scheduling and peak regulation of the power grid and the heating network; and effectively reduce the hot gas heating boiler and The total energy consumption of gas combined cycle and pure condensing thermal power unit avoids waste of fuel resources, and at the same time makes scheduling more timely and accurate.
附图说明 Description of drawings
图1为本发明热电联合调度系统的连接示意图;Fig. 1 is the connection schematic diagram of the combined heat and power dispatching system of the present invention;
图2为第二远程集中控制器的结构示意图;Fig. 2 is the structural representation of the second remote centralized controller;
图3为热电联产机组执行装置的结构示意图;Fig. 3 is a structural schematic diagram of the executive device of the combined heat and power unit;
图4为纯凝气式火电机组执行装置的结构示意图;Fig. 4 is a structural schematic diagram of the executive device of the pure condensing gas thermal power unit;
图5为综合调度控制装置的结构示意图;Fig. 5 is a structural schematic diagram of an integrated dispatching control device;
图6为综合调度控制装置与云计算计算服务系统构成的控制信号生成单元的结构示意图;6 is a schematic structural diagram of a control signal generating unit composed of an integrated dispatching control device and a cloud computing service system;
图7为使用本发明调度方法后不同性能热泵的节能效率图。Fig. 7 is a graph of energy saving efficiency of heat pumps with different performances after using the scheduling method of the present invention.
具体实施方式 Detailed ways
下面结合附图说明本发明的具体实施方式。The specific implementation manner of the present invention will be described below in conjunction with the accompanying drawings.
请参照图1所示,本发明一种联合循环与纯凝汽火电联合调度系统包括:Please refer to Figure 1, a joint dispatching system of combined cycle and pure condensing steam thermal power of the present invention includes:
用于产出电力和采暖热水的燃气供暖锅炉与燃气联合循环A;Gas heating boiler and gas combined cycle A for generating electricity and heating hot water;
用于产出电能的燃煤纯凝汽式火电机组B;Coal-fired pure condensing steam thermal power unit B used to generate electric energy;
通过电力电缆113与所述燃气供暖锅炉与燃气联合循环A和燃煤纯凝汽式火电机组B并联的空调器热泵108,所述空调器热泵108由所述燃气供暖锅炉与燃气联合循环A和燃煤纯凝汽式火电机组B产生的电能驱动而产生采暖热能;The air
空调器热泵专用电能表109,用于检测所述空调器热泵108采暖的耗电数据;An
控制空调器热泵108的空调器热泵遥控开关117;An air conditioner heat pump
采集用户非采暖用电的电表(未图示);The electric meter (not shown) that collects the non-heating electricity of users;
通过供热管道114与所述燃气供暖锅炉与燃气联合循环A相连接的热水式采暖散热器110,所述燃气供暖锅炉与燃气联合循环A生产的热水流入所述热水式采暖散热器110中产生采暖热能;The hot
热水式采暖散热器热水消耗计量表111,用于检测所述热水式采暖散热器110热水消耗的数据;Hot water heating radiator hot
控制热水式采暖散热器110的热水式采暖散热器流水阀门遥控开关116;Control the hot water heating radiator flow valve
第一远程集中控制器1121,采集燃气供暖锅炉与燃气联合循环A的供暖出力热水流量和发电出力电量;并将采集的燃气供暖锅炉与燃气联合循环A的供暖出力热水流量和发电出力电量传送给综合调度控制装置115;The first remote
第二远程集中控制器1122,采集所述空调器热泵专用电能表109检测的耗电数据;记载热水式采暖散热器110与燃气供暖锅炉与燃气联合循环A之间的管道距离信息;采集热水式采暖散热器热水消耗计量表111检测的热水消耗数据;采集用户输入的热惯性时间(热惯性时间即用户可以接受的停止供暖时间)数据;然后再将空调器热泵的耗电数据、热水式采暖散热器110的管道距离信息、热水消耗数据和热惯性时间数据传送给综合调度控制装置115;The second remote
第三远程集中控制器1123,采集燃煤纯凝汽式火电机组B的燃料投入量,蒸汽进气量和发电出力电量;并将采集的燃煤纯凝汽式火电机组B的燃料投入量,蒸汽进气量和发电出力电量传送给综合调度控制装置115;The third remote
综合调度控制装置115,由燃气供暖锅炉与燃气联合循环A的供暖出力热水流量、燃气供暖锅炉与燃气联合循环A的发电出力电量、燃煤纯凝汽式火电机组B的发电出力电量、用户的热水式采暖散热器110的管道距离信息、用户的非采暖用电数据和用户的热水消耗数据和用户输入的热惯性时间,生成调度控制信号;The comprehensive
第一远程集中控制器1121接收综合调度控制装置115所发出的调度控制信号,并用该调度控制信号控制燃气供暖锅炉与燃气联合循环A的燃气供暖锅炉与燃气联合循环控制执行装置118动作;The first remote
第二远程集中控制器1122接收综合调度控制装置115所发出的调度控制信号,并用该调度控制信号分别驱动空调器热泵遥控开关117、热水式采暖散热器流水阀门遥控开关116执行开关机动作;The second remote
第三远程集中控制器1123接收综合调度控制装置115所发出的调度控制信号,并用该调度控制信号控制燃煤纯凝汽式火电机组B的燃煤纯凝汽式火电机组控制执行装置119动作。The third remote
燃煤纯凝汽式火电机组B用于产出电能。燃煤纯凝汽式火电机组B包括锅炉101、透平102及交流发电机103。锅炉101燃烧燃料获得采暖热能通过管道送至透平102获得机械能,该机械能驱动交流发电机103发出电能。交流发电机103发出的电能通过输电线路113输送给终端用户的空调器热泵108和其他电器。其中终端用户处的空调器热泵108可在电能的驱动下为空调用户提供采暖供热。燃煤纯凝汽式火电机组B还包括控制输入蒸汽量的阀门④。Coal-fired pure condensing steam thermal power unit B is used to generate electric energy. The coal-fired pure condensing steam thermal power unit B includes a
终端用户处的空调器热泵108通过输电线路113与燃气供暖锅炉与燃气联合循环A与燃煤纯凝汽式火电机组B并联,可由燃气供暖锅炉与燃气联合循环A和燃煤纯凝汽式火电机组B产生的电能联合驱动空调器热泵108产生采暖热能,进而为空调用户提供采暖供热。空调器热泵108还包括空调器热泵开关⑤。The
请参照图1,所述电能表109与所述空调器热泵108耦合;空调器热泵遥控开关117连接空调器热泵108,用于控制空调器热泵108的开关。电能表109通过导线与空调器热泵108单独连接,用于检测所述空调器热泵108采暖的耗电数据。散热器110,通过供热管道114与燃气供暖锅炉与燃气联合循环A相连接,并由燃气供暖锅炉与燃气联合循环A产出的热水流入所述散热器110中产生采暖热能。热水消耗计量表111,与散热器110相耦合,用于检测散热器110的采暖耗热数据。散热器110设有开关阀门⑥。第二远程集中控制器1122,采集空调器热泵专用电能表109检测的耗电数据并传送给综合调度控制装置115;采集热水式采暖散热器热水消耗计量表111检测的热水消耗数据,并记载该热水式采暖散热器110与燃气供暖锅炉与燃气联合循环A之间管道距离信息,然后再将热水消耗数据和管道距离信息传送给综合调度控制装置115。Please refer to FIG. 1 , the
请参照图2所示,第二远程集中控制器1122包括空调电表脉冲计数器、非采暖电表脉冲计数器(未图示)、采暖热水流量脉冲计数器、脉冲信号编码转换器、计量信号放大发射器,控制信号接收解码器和控制信号遥控发射器;空调电表脉冲计数器连接空调器热泵专用电能表109,用于检测空调器热泵专用电能表109检测的耗电数据,空调电表脉冲计数器检测得到的耗电数据脉冲信号编码转换器及计量信号放大发射器处理后传送至综合调度控制装置115;Please refer to Figure 2, the second remote
非采暖电表脉冲计数器连接用户非采暖电表,用于检测用户非采暖耗电数据(即,除空调热泵耗电以外的用户耗电数据),用户非采暖耗电数据经过脉冲信号编码转换器及计量信号放大发射器处理后传送至综合调度控制装置115;The non-heating meter pulse counter is connected to the non-heating meter of the user to detect the non-heating power consumption data of the user (that is, the power consumption data of the user except the power consumption of the air conditioner and heat pump), and the non-heating power consumption data of the user is passed through the pulse signal code converter and metered After the signal is amplified and processed by the transmitter, it is sent to the integrated
采暖热水流量脉冲计数器连接热水式采暖散热器热水消耗计量表111,用于检测热水式采暖散热器热水消耗计量表111的采暖流量数据,采暖热水流量脉冲计数器检测得到的采暖流量数据经过脉冲信号编码转换器及计量信号放大发射器处理后和热水式采暖散热器110与燃气供暖锅炉与燃气联合循环A之间的管道距离信息传送至综合调度控制装置115;The heating hot water flow pulse counter is connected to the hot
控制信号接收解码器,接收综合调度控制装置115发出的调度控制信息并进行解码,然后通过控制信号遥控发射器将控制信号发送给空调器热泵遥控开关117、热水式采暖散热器流水阀门遥控开关116执行动作。The control signal receiving decoder receives and decodes the scheduling control information sent by the integrated
第一远程集中控制器1121,采集燃气供暖锅炉与燃气联合循环A的供暖出力热水流量和发电出力电量,并将采集的燃气供暖锅炉与燃气联合循环A的燃发电出力电量传送给综合调度控制装置115。The first remote
第三远程集中控制器1123,采集燃煤纯凝汽式火电机组B的燃料投入量,蒸汽进气量和发电出力电量,并将采集的燃煤纯凝汽式火电机组B的燃料投入量,蒸汽进气量和发电出力电量传送给综合调度控制装置115。The third remote
请参照图3所示,燃气供暖锅炉与燃气联合循环控制执行装置118包括调度控制信号收发编码存储器302、驱动电路303及机械齿轮控制装置304,所述调度控制信号经调度控制信号收发编码存储器302解码以后生成燃煤热电联产机组调度控制指令,经过驱动电路303输出的电力拖动信号触发机械齿轮控制装置304,机械齿轮控制装置304再控制燃气供暖锅炉与燃气联合循环A的阀门动作。从而控制燃气供暖锅炉与燃气联合循环A的发电出力和热出力。Please refer to FIG. 3 , the gas heating boiler and gas combined cycle
请参照图4,燃煤纯凝汽式火电机组控制执行装置119包括调度控制信号收发编码存储器402、驱动电路403及机械齿轮控制装置404,所述调度控制信号经调度控制信号收发编码存储器402解码以后生成燃煤纯凝汽式火电机组调度控制指令,经过驱动电路403输出的电力拖动信号触发机械齿轮控制装置404,机械齿轮控制装置404再控制燃煤纯凝汽式火电机组B的输入蒸汽量阀门④动作。从而控制燃煤纯凝汽式火电机组B的发电出力。Please refer to FIG. 4 , the
请参照图5,综合调度控制装置115包括:Please refer to Fig. 5, the comprehensive
接收用户非采暖耗电数据、用户热水消耗数据、用户管道距离信息、燃气供暖锅炉与燃气联合循环A的供暖出力热水流量、燃气供暖锅炉与燃气联合循环A的发电出力电量和燃煤纯凝汽式火电机组B的发电出力电量的第一数据接收单元201;将接收到的所有数据进行解码的数据解码器单元202;对解码后的所有数据进行存储的数据存储器单元203;生成调度控制信号的调度控制信号计算单元204;将所述调度控制信号进行编码的信号编码器205;及将编码后的调度控制信号传递给第一远程集中控制器1121、第二远程集中控制器1122、第三远程集中控制器1123的发送单元206。Receive user non-heating power consumption data, user hot water consumption data, user pipeline distance information, heating output and hot water flow of gas heating boiler and gas combined cycle A, power generation output of gas heating boiler and gas combined cycle A, and coal-fired pure The first
请参照图6,综合调度控制装置115通过电力光纤120与云计算计算服务系统917连接,并驱动云计算计算服务系统917计算,以获得调度控制信号;综合调度控制装置115通过电力光纤120接收云计算计算服务系统917计算获得的调度控制信号,然后经由电力电缆或无线传输方式发布该调度控制信号给第一远程集中控制器、第二远程集中控制器、第三远程集中控制器。Please refer to Fig. 6, the integrated
请参阅图1至图7所示,本发明热电联合调度系统的调度方法包括以下步骤:Please refer to Fig. 1 to Fig. 7, the dispatching method of the combined heat and power dispatching system of the present invention includes the following steps:
1)、测量:1), measurement:
1.1)、测量供给侧:1.1), measuring the supply side:
第一远程集中控制器1121采集0~T×ΔT时间段燃气供暖锅炉与燃气联合循环(A)的联合循环电出力PCOMB(t)、联合循环的热出力HCOMB(t)和供暖锅炉的热出力HBOIL(t);采样周期为ΔT;T为采集的次数,T为自然数;The first remote
第三远程集中控制器(1123)采集0~T×ΔT时间段燃煤纯凝汽式火电机组(B)的发电出力电量PCON(t);The third remote centralized controller (1123) collects the power generation output power P CON (t) of the coal-fired pure condensing steam thermal power unit (B) in the time period of 0~T×ΔT;
1.2)、测量用户侧:i=0~N,N为用户个数;每个用户均具有空调器热泵(108)和热水式采暖散热器(110);1.2), measuring the user side: i=0~N, N is the number of users; each user has an air conditioner heat pump (108) and a hot water heating radiator (110);
1.2.1)、第二远程集中控制器(1122)采集N个用户距热源燃气供暖锅炉与燃气联合循环(A)的管道距离Si;1.2.1), the second remote centralized controller (1122) collects the pipe distance S i of N users from the heat source gas heating boiler and the gas combined cycle (A);
1.2.2)、第二远程集中控制器(1122)采集0~T×ΔT时间段N个用户非采暖耗电量Pi(t),采样频率为ΔT;1.2.2), the second remote centralized controller (1122) collects the non-heating power consumption P i (t) of N users in the period of 0~T×ΔT, and the sampling frequency is ΔT;
1.2.3)、第二远程集中控制器(1122)采集0~T×ΔT时间段N个用户的热水式采暖散热器(110)的耗热量Hi(t),采样频率为ΔT;1.2.3), the second remote centralized controller (1122) collects the heat consumption H i (t) of the hot water heating radiators (110) of N users in the period of 0~T×ΔT, and the sampling frequency is ΔT;
1.2.4)、第二远程集中控制器(1122)采集N个用户的空调器热泵(108)装机容量 1.2.4), the second remote centralized controller (1122) collects the installed capacity of the air conditioner heat pump (108) of N users
1.2.5)、第二远程集中控制器(1122)采集N个用户输入的热惯性时间Ti;1.2.5), the second remote centralized controller (1122) collects the thermal inertia time T i input by N users;
2)、计算2), calculation
2.1)、综合调度控制装置115计算所有用户各时段总的用电量:2.1), the integrated
2.2)、根据步骤2.1中计算出的各时段总用电量Psum(t),利用已知的SPSS(Statistical Product and Service Solutions)统计分析方法或多元回归统计分析方法,预测(T~2T)×ΔT时间段的电力负荷Plload(t);根据步骤1)采集的燃气供暖锅炉与燃气联合循环(A)的联合循环的热出力HCOMB(t)和供暖锅炉的热出力HBOIL(t),预测未来一段时间的燃气供暖锅炉与燃气联合循环(A)的联合循环的热出力HCOMB(t)和供暖锅炉的热出力HBOIL(t);2.2), according to the total power consumption P sum (t) of each period calculated in step 2.1, use the known SPSS (Statistical Product and Service Solutions) statistical analysis method or multiple regression statistical analysis method to predict (T ~ 2T) Power load P lload (t) in the time period ×ΔT; the heat output H COMB (t) of the combined cycle of the gas heating boiler and the gas combined cycle (A) collected according to step 1) and the heat output HBOIL (t) of the heating boiler , to predict the thermal output H COMB (t) of the combined cycle of the gas-fired heating boiler and the gas-fired combined cycle (A) and the thermal output H BOIL (t) of the heating boiler in the future;
2.3)、用户分组:计算每个用户到热源的等效距离做取整运算,使将相同的si的用户分为同一组,si=l,分为0,,,l,,,L组,计为L组,L为自然数;v为热水在管道中的流速;ΔT为单位调节时间min,即综合调度控制装置发出控制信号的周期,本发明中单位调节时间等于采样周期;2.3), user grouping: calculate the equivalent distance from each user to the heat source Do the rounding operation, so that Divide users with the same s i into the same group, s i = l, divided into 0,,, l,,, L groups, counted as L groups, L is a natural number; v is the flow rate of hot water in the pipeline; ΔT It is the unit adjustment time min, i.e. the cycle of the control signal sent by the comprehensive scheduling control device, and the unit adjustment time is equal to the sampling period in the present invention;
2.4)、对步骤2.3)中分得的L个组,分别求出各组所有用户的总采暖负荷Hload(l)和热泵容量PEHP(l);2.4), for the L groups obtained in step 2.3), obtain the total heating load H load (l) and heat pump capacity P EHP (l) of all users in each group respectively;
Hi(t,l)为第1组用户i在t时刻的采暖负荷; H i (t, l) is the heating load of user i in the first group at time t;
为第1组用户i的热泵容量; is the heat pump capacity of user i in the first group;
3)、控制计算3), control calculation
3.1)、目标函数:3.1), objective function:
目标函数总能耗f为:The total energy consumption f of the objective function is:
fCOMB为燃气供暖锅炉与燃气联合循环的联合循环的功率能耗,单位为MWH;fBOIL为燃气供暖锅炉与燃气联合循环的燃气供暖锅炉的功率能耗,单位为MWH;fCON为纯凝汽火电机组功率能耗,单位为MWH;为纯凝汽火电机组爬坡能耗,单位为MWH;f COMB is the power consumption of the combined cycle of the gas heating boiler and the gas combined cycle, the unit is MWH; f BOIL is the power consumption of the gas heating boiler and the gas heating boiler of the gas combined cycle, the unit is MWH; f CON is the pure condensate Power consumption of steam-thermal power unit, unit is MWH; is the ramp-up energy consumption of the pure condensing steam thermal power unit, the unit is MWH;
其中:in:
为燃气供暖锅炉与燃气联合循环的联合循环热效率;hCOMB(t)为调节后燃气供暖锅炉与燃气联合循环的联合循环热出力; is the thermal efficiency of the combined cycle of the gas-fired heating boiler and the gas-fired combined cycle; h COMB (t) is the combined cycle heat output of the adjusted gas-fired heating boiler and the gas-fired combined cycle;
ηBOIL为燃气供暖锅炉与燃气联合循环的燃气供暖锅炉热效率;hBOIL(t)为调节后燃气供暖锅炉与燃气联合循环的燃气供暖锅炉热出力;η BOIL is the thermal efficiency of the gas-fired heating boiler and the gas-fired combined cycle; h BOIL (t) is the thermal output of the adjusted gas-fired heating boiler and the gas-fired combined cycle;
a)、火电机组功率能耗:a), thermal power unit power consumption:
bCON(t)为调节后纯凝汽火电机组发电煤耗量g/kWh;pCON(t)为调节后纯凝汽火电机组B的发电出力MW;b CON (t) is the adjusted coal consumption of pure condensing steam thermal power unit in g/kWh; p CON (t) is the MW of power generation output of pure condensing steam thermal power unit B after adjustment;
b)、火电机组爬坡能耗:b), thermal power unit climbing energy consumption:
dCON为火电机组(B)的爬坡煤耗系数;d CON is the climbing coal consumption coefficient of the thermal power unit (B);
3.2)、约束方程3.2), constraint equation
3.2.1)、电力负荷平衡3.2.1), power load balance
Pload(t)+pEHPs(t)=pCON(t)+pCOMB(t) (7)P load (t)+p EHPs (t)=p CON (t)+p COMB (t) (7)
pEHPs(t)为调节后t时段所有用户热泵采暖耗电功率之和,单位为MW;pCOMB(t)为调节后t时段燃气供暖锅炉与燃气联合循环的联合循环电出力;p EHPs (t) is the sum of heating power consumption of all user heat pumps in t period after adjustment, in MW; p COMB (t) is the combined cycle power output of gas heating boiler and gas combined cycle in t period after adjustment;
3.2.2)、热负荷平衡方程3.2.2), heat load balance equation
热泵用电供暖代替燃气供暖锅炉与燃气联合循环热水供暖出力的不足是方法的核心,如果Δh(t)表示第t时段燃气供暖锅炉与燃气联合循环热水供暖不足的功率,则,其表达式为:The core of the method is that the heat pump uses electric heating instead of gas heating boiler and gas combined cycle hot water heating output. If Δh(t) represents the insufficient power of gas heating boiler and gas combined cycle hot water heating in period t, then its expression The formula is:
Δh(t)=|HCOMB(t)+HBOIL(t)-hCOMB(t)+hBOIL(t)|(8)Δh(t)=|H COMB (t)+H BOIL (t)-h COMB (t)+h BOIL (t)|(8)
第t时段燃气供暖锅炉与燃气联合循环热水供给不足是由各个用户组使用热泵耗电采暖获得的,由于热水传输的延时性,热水不足的影响也存在延时,而这个延时随着用户组距离的变化而变化。例如,将所有用户分为近似的0,1,..,l,..,L用户组,对于第1用户组,热水流到其的时间为一个单位调度时长,所以热水不足也将会在第t+1时段影响到第1用户组,同理,热水不足将会在第t+l影响到第l用户组。综上所述,第t时段燃气供暖锅炉与燃气联合循环热水供给不足将由0~L用户组的空调热泵,分别在t~(t+L)时段通过用电来补偿。具体公式为:Insufficient hot water supply of gas-fired heating boilers and gas-fired combined cycle in period t is obtained by various user groups using heat pumps for heating. Due to the delay of hot water transmission, there is also a delay in the impact of hot water shortage, and this delay Varies with user group distance. For example, divide all users into approximate 0, 1, .., l, .., L user groups. For the first user group, the time for hot water to flow to it is a unit scheduling time, so hot water shortage will also be It will affect the first user group in the t+1 period, and similarly, the lack of hot water will affect the l user group in the t+l time. To sum up, the insufficient hot water supply of the gas-fired heating boiler and the gas-fired combined cycle in the t-th period will be compensated by the air-conditioning heat pumps of the 0-L user group through electricity consumption during the t-(t+L) period respectively. The specific formula is:
其中:hEHP(t+l,l)为t+l时段第l组用户热泵的供暖功率之和,单位为MW;hEHP(t,l)为t时段第l组用户热泵的供暖功率之和,单位为MW;HCOMB(t)为步骤2.2)预测的燃气供暖锅炉与燃气联合循环(A)t时段的燃气联合循环热出力;HBOIL(t)为步骤2.2)预测的燃气供暖锅炉与燃气联合循环(A)t时段的燃气供暖锅炉热出力;hCOMB(t)为调节后t时段燃气供暖锅炉与燃气联合循环(A)的燃气联合循环热出力;hBOIL(t)为调节后t时段燃气供暖锅炉与燃气联合循环(A)的燃气供暖锅炉热出力;Among them: hEHP (t+l, l) is the sum of the heating power of user heat pumps in group l during t+l, in MW; hEHP (t, l) is the sum of heating power of user heat pumps in group l during t and, the unit is MW; H COMB (t) is the heat output of the gas-fired combined cycle of the gas-fired heating boiler and the gas-fired combined cycle (A) predicted in step 2.2); H BOIL (t) is the gas-fired heating boiler predicted in step 2.2) h COMB (t) is the thermal output of the gas heating boiler and the gas combined cycle (A) in the t period after adjustment; h BOIL (t) is the adjusted The thermal output of the gas-fired heating boiler and the gas-fired combined cycle (A) in the next t period;
如果式中hEHP(t,l)可以取0的话,一方面,某些时段并不是所有用户组都参与补偿;另一方面,如果超过了规定的总调度时间,热水供给不足仍未影响到处于远端的用户组,那么这些用户组也将不参与补偿。If hEHP (t, l) in the formula can take 0, on the one hand, not all user groups participate in the compensation in certain time periods; To the remote user groups, these user groups will not participate in the compensation.
3.2.3)、燃气供暖锅炉与燃气联合循环约束:3.2.3), gas heating boiler and gas combined cycle constraints:
为燃气供暖锅炉与燃气联合循环的联合循环热效率;为燃气供暖锅炉与燃气联合循环的联合循环发电效率;pCOMB(t)为调节后t时段燃气供暖锅炉与燃气联合循环A的联合循环电出力;fCOMB(t)为调节后t时段燃气供暖锅炉与燃气联合循环A的联合循环的功率能耗; is the thermal efficiency of the combined cycle of the gas-fired heating boiler and the gas-fired combined cycle; is the combined cycle power generation efficiency of the gas-fired heating boiler and the gas-fired combined cycle; p COMB (t) is the combined cycle power output of the gas-fired heating boiler and the gas-fired combined cycle A in the adjusted period t; f COMB (t) is the adjusted gas heating The power consumption of the combined cycle of boiler and gas combined cycle A;
3.2.4)、纯凝式火电机组约束:3.2.4), Constraints of pure condensing thermal power units:
其中为纯凝汽火电机组发电出力上限,单位为MW;为纯凝汽火电机组发电出力下限,单位为MW;in is the upper limit of power generation output of the pure condensing steam thermal power unit, the unit is MW; is the lower limit of power generation output of pure condensing steam thermal power unit, the unit is MW;
3.2.5)、用户侧热泵约束:3.2.5), user-side heat pump constraints:
热电比约束:Thermoelectric ratio constraint:
hEHP(t,l)=COPEHP·pEHP(t,l) (13)h EHP (t, l) = COP EHP p EHP (t, l) (13)
热泵出力上限:Heat pump output upper limit:
0≤pEHP(t,l)≤min(PEHP(l),Hload(l)/COPEHP) (14)0≤p EHP (t, l)≤min(P EHP (l), H load (l)/COP EHP ) (14)
其中,PCHP(l)为第1组用户的热泵容量之和,单位为MW;Hload(l)为第1组用户的采暖负荷,单位为MW;COPEHP为热泵性能系数;Among them, P CHP (l) is the sum of the heat pump capacity of the first group of users, in MW; H load (l) is the heating load of the first group of users, in MW; COP EHP is the coefficient of performance of the heat pump;
最后空调热泵耗电供热既可以补偿热水供暖的不足,也可以增加电力低谷时段的负荷,因此,需要求出各时段所有用户组的空调热泵耗电量之和:Finally, the power consumption of the air-conditioning heat pump for heating can not only compensate for the shortage of hot water heating, but also increase the load during low power periods. Therefore, the sum of the power consumption of the air-conditioning heat pump for all user groups in each period needs to be calculated:
将步骤1)中直接采集变量PCOMB(t),PCON(t);步骤2)中计算变量Pload(t),HCOMB(t),HBOIL(t),Hload(l),PEHP(l)代入公式1~15中并进行联合求解,在目标函数总能耗f为最小值时,求得优化后所得执行变量燃气供暖锅炉与燃气联合循环的燃气联合循环热出力hCOMB(t)、燃气供暖锅炉与燃气联合循环的燃气供暖锅炉热出力hBOIL(t)、燃气供暖锅炉与燃气联合循环(A)的联合循环电出力pCOMB(t)、用户不同时刻热泵耗电量pEHP(t,l)和供暖功率hEHP(t,l)、火电机组发电出力pCON(t);In the step 1), directly collect the variable P COMB (t), P CON (t); in the step 2), calculate the variable P load (t), H COMB (t), H BOIL (t), H load (l), P EHP (l) is substituted into formulas 1-15 and jointly solved. When the total energy consumption f of the objective function is the minimum value, the gas-fired combined cycle heat output h COMB of the gas-fired heating boiler and the gas-fired combined cycle obtained after optimization is obtained. (t), thermal output h BOIL (t) of gas heating boiler and gas combined cycle gas heating boiler, combined cycle electric output p COMB (t) of gas heating boiler and gas combined cycle (A), power consumption of heat pumps at different times for users Quantity p EHP (t, l) and heating power h EHP (t, l), thermal power generation output p CON (t);
4)、发送控制信号到供给和用户执行动作:4), Send control signals to suppliers and users to perform actions:
综合调度控制装置115根据步骤3)的优化后所得执行变量,将变量信号发送至供给侧的第一远程集中控制器1121、第三远程集中控制器1123和用户的第二远程集中控制器1122,具体执行如下动作:The comprehensive
A、燃气供暖锅炉与燃气联合循环的燃气联合循环热出力hCOMB(t)、燃气供暖锅炉与燃气联合循环的燃气供暖锅炉热出力hBOIL(t)、燃气供暖锅炉与燃气联合循环(A)的联合循环电出力pCOMB(t)信号,控制燃气供暖锅炉与燃气联合循环在未来调节时间内各时段的动作;A. Heat output h COMB (t) of gas heating boiler and gas combined cycle gas heating boiler, gas heating boiler heat output h BOIL (t) of gas heating boiler and gas combined cycle gas heating boiler and gas combined cycle (A) Combined cycle power output p COMB (t) signal to control the actions of the gas heating boiler and the gas combined cycle in each period of the future adjustment time;
B、用户不同时刻热泵耗电量pEHP(t,l)和供暖功率hEHP(t,l),控制用户侧不同距离用户使用热泵供暖量,以及关闭散热器量;B. Heat pump power consumption p EHP (t, l) and heating power h EHP (t, l) at different times of the user, control the heating amount of the heat pump used by the user at different distances from the user side, and the amount of closing the radiator;
C、火电机组发电出力pCON(t)信号,控制火电机组在未来调节时间内各时段的动作。C. The output p CON (t) signal of the thermal power unit controls the action of the thermal power unit in each period of the future adjustment time.
本发明中步骤1)中t为采集的时间段,t∈0~T;步骤3)、4)中t为调度的时间段,t∈(T+1)~2T。In the present invention, t in step 1) is the time period of collection, t∈0~T; in steps 3), 4), t is the time period of scheduling, t∈(T+1)~2T.
请参阅图7所示,为使用本发明调度方法后不同性能热泵的节能效率图,从图中可以看出使用本发明调度方法后,热泵节能效果明显。Please refer to FIG. 7 , which is the energy-saving efficiency diagram of heat pumps with different performances after using the scheduling method of the present invention. It can be seen from the figure that the energy-saving effect of the heat pump is obvious after using the scheduling method of the present invention.
以上具体实施方式仅用于说明本发明,而非用于限定本发明。The above specific embodiments are only used to illustrate the present invention, but not to limit the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103238291A CN102510095B (en) | 2011-10-23 | 2011-10-23 | Combined cycle and straight condensing thermal power combined dispatching system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103238291A CN102510095B (en) | 2011-10-23 | 2011-10-23 | Combined cycle and straight condensing thermal power combined dispatching system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102510095A CN102510095A (en) | 2012-06-20 |
CN102510095B true CN102510095B (en) | 2013-08-28 |
Family
ID=46222155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103238291A Expired - Fee Related CN102510095B (en) | 2011-10-23 | 2011-10-23 | Combined cycle and straight condensing thermal power combined dispatching system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102510095B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106503466B (en) * | 2016-11-04 | 2022-03-18 | 中国电力科学研究院 | Equipment capacity configuration method and device of electric boiler and solar combined heating system |
CN107726426A (en) * | 2017-11-13 | 2018-02-23 | 济南金孚瑞供热工程技术有限公司 | Double thermal source complementary heating systems and its implementation |
CN109946103B (en) * | 2019-04-23 | 2024-03-29 | 山东建筑大学 | Geothermal parameter testing system and method based on middle-deep buried pipe heat exchanger |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101275763A (en) * | 2008-05-05 | 2008-10-01 | 西安交通大学 | Cogeneration energy supply method and system |
CN101950963A (en) * | 2010-08-24 | 2011-01-19 | 西安交通大学 | System and method for avoiding startup and shutdown peaking by matching heat and power cogeneration unit with pure condensing thermal power unit |
CN102950964A (en) * | 2011-08-18 | 2013-03-06 | 什拉姆有限责任公司 | Bicycle rim with integral impact resistant structure |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002015365A2 (en) * | 2000-08-11 | 2002-02-21 | Nisource Energy Technologies | Energy management system and methods for the optimization of distributed generation |
-
2011
- 2011-10-23 CN CN2011103238291A patent/CN102510095B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101275763A (en) * | 2008-05-05 | 2008-10-01 | 西安交通大学 | Cogeneration energy supply method and system |
CN101950963A (en) * | 2010-08-24 | 2011-01-19 | 西安交通大学 | System and method for avoiding startup and shutdown peaking by matching heat and power cogeneration unit with pure condensing thermal power unit |
CN102950964A (en) * | 2011-08-18 | 2013-03-06 | 什拉姆有限责任公司 | Bicycle rim with integral impact resistant structure |
Non-Patent Citations (2)
Title |
---|
热电联产热电机组的选型;祝平;《山西能源与节能》;20030630(第2期);第2-3页 * |
祝平.热电联产热电机组的选型.《山西能源与节能》.2003,(第2期),第2-3页. |
Also Published As
Publication number | Publication date |
---|---|
CN102510095A (en) | 2012-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102510098B (en) | Extraction condensing cogeneration and straight condensing thermal power combined dispatching system and method | |
CN102506519B (en) | Heat and power cogenerator unit and wind power generator unit combined heat supply system and scheduling method thereof | |
CN102437645B (en) | Wind power output dispatching system and method jointly controlled by cogeneration and heating load | |
CN102506451B (en) | Cogeneration system and method including wind power and gas combined cycle units | |
CN102410594B (en) | Wind power output scheduling system and method realized by combined control of heat and power cogeneration and refrigeration load | |
CN102510078B (en) | Combined heat and power scheduling system and scheduling method for extraction and condensing unit | |
CN102510095B (en) | Combined cycle and straight condensing thermal power combined dispatching system and method | |
CN102510075B (en) | Thermoelectricity dispatching system and method of water source heat pump | |
CN102494430B (en) | Cold-electricity cogeneration system comprising wind power and gas combined cycle unit and method for scheduling cold-electricity cogeneration system | |
CN102410596B (en) | Combined cooling and power scheduling system of water source heat pump and scheduling method thereof | |
CN102510106A (en) | Combined heat and power dispatching system comprising steam-extracting steam-condensing type cogeneration unit and dispatching method thereof | |
CN102510099B (en) | Combined heat and power dispatching system and method including gas combined cycle unit | |
CN102410591A (en) | Combined scheduling system and method of water source heat pump and pure condensing steam thermal power | |
CN102510079B (en) | Water source heat pump cooling and power combined dispatching system using solar power generation, and dispatching method thereof | |
CN102410593B (en) | Combined cooling and power scheduling system of fuel gas combined cycle unit and scheduling method thereof | |
CN102522780B (en) | Heat and power combined dispatching system and dispatching method of fuel-gas combined circulating machine set | |
CN102410595B (en) | Back pressure type combined refrigeration system by heat and power cogeneration and solar power generation as well as scheduling method thereof | |
CN102427276B (en) | System and method for joint scheduling of extracting-condensing type heat and power cogeneration and straight condensing thermal power generation | |
CN102510103B (en) | Back-pressure type cogeneration and pure condensing steam thermal power combined dispatching system and dispatching method thereof | |
CN102510097B (en) | Back pressure type cogeneration and straight condensing thermal power combined dispatching system and method | |
CN102510076B (en) | Heat and power dispatching system and dispatching method for back pressure cogeneration unit | |
CN102510094B (en) | Combined cycle and pure condensed steam thermal power scheduling system and method | |
CN102510077B (en) | Cooling power dispatching system and dispatching method for condensing unit | |
CN102522762B (en) | Water source heat pump combined heat and power dispatching system and dispatching method using solar power generation | |
CN102510074B (en) | Cooling and power dispatching system and dispatching method of back-pressure type combined heat and power generation unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130828 Termination date: 20161023 |
|
CF01 | Termination of patent right due to non-payment of annual fee |