CN102507395A - Method for monitoring virus particles in solution in real time - Google Patents
Method for monitoring virus particles in solution in real time Download PDFInfo
- Publication number
- CN102507395A CN102507395A CN2011103090684A CN201110309068A CN102507395A CN 102507395 A CN102507395 A CN 102507395A CN 2011103090684 A CN2011103090684 A CN 2011103090684A CN 201110309068 A CN201110309068 A CN 201110309068A CN 102507395 A CN102507395 A CN 102507395A
- Authority
- CN
- China
- Prior art keywords
- solution
- virion
- real
- virus
- pore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000700605 Viruses Species 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000012544 monitoring process Methods 0.000 title claims abstract description 13
- 239000002245 particle Substances 0.000 title abstract description 25
- 239000012488 sample solution Substances 0.000 claims abstract description 15
- 239000011148 porous material Substances 0.000 claims description 9
- 239000007822 coupling agent Substances 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 claims description 2
- 102000004169 proteins and genes Human genes 0.000 claims description 2
- 210000002845 virion Anatomy 0.000 claims 13
- 230000000840 anti-viral effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 230000010460 detection of virus Effects 0.000 abstract description 4
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 230000009471 action Effects 0.000 abstract description 3
- 238000010224 classification analysis Methods 0.000 abstract description 2
- 238000010223 real-time analysis Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 23
- 238000001514 detection method Methods 0.000 description 19
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 14
- 230000000903 blocking effect Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 241000702670 Rotavirus Species 0.000 description 9
- 241000282414 Homo sapiens Species 0.000 description 8
- 239000001103 potassium chloride Substances 0.000 description 7
- 235000011164 potassium chloride Nutrition 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 241001529453 unidentified herpesvirus Species 0.000 description 5
- 241000700721 Hepatitis B virus Species 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003570 air Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 208000006454 hepatitis Diseases 0.000 description 3
- 231100000283 hepatitis Toxicity 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 210000003296 saliva Anatomy 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 208000005252 hepatitis A Diseases 0.000 description 2
- 201000010284 hepatitis E Diseases 0.000 description 2
- 238000013408 indirect enzyme-linked immunoassay Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000005180 public health Effects 0.000 description 2
- 238000011897 real-time detection Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000004557 single molecule detection Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- 101710092462 Alpha-hemolysin Proteins 0.000 description 1
- 241000252506 Characiformes Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000003894 drinking water pollution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及实时监测溶液中病毒颗粒的方法,可以实现快速检测病毒颗粒。所述实时监测溶液中病毒颗粒的方法为,在偏置电压作用下,使包含病毒颗粒的样品溶液通过纳米孔,检测电信号,通过与包含标准病毒的溶液通过纳米孔时获得的电信号相比,确定样品溶液中包含病毒颗粒的信息。优选,通过与包含标准病毒的溶液通过纳米孔时获得的电信号的幅度、持续时间、时间分布、频率、电信号波形特性或相位特性中的至少一种相比,确定样品溶液中包含病毒颗粒的信息。本发明具有动态实时、高灵敏度、高通量的特点,满足环境中病毒计数、分类及实时分析等工作的要求。
The invention relates to a method for real-time monitoring of virus particles in a solution, which can realize rapid detection of virus particles. The method for real-time monitoring of the virus particles in the solution is to make the sample solution containing the virus particles pass through the nanopore under the action of a bias voltage, detect the electrical signal, and compare the electric signal obtained when the solution containing the standard virus passes through the nanopore. Ratio, to determine the information on the virus particles contained in the sample solution. Preferably, determining that the sample solution contains virus particles is determined by comparing at least one of the amplitude, duration, time distribution, frequency, waveform characteristics or phase characteristics of the electrical signal obtained when the solution containing the standard virus passes through the nanopore Information. The invention has the characteristics of dynamic real-time, high sensitivity and high throughput, and meets the requirements of virus counting, classification and real-time analysis in the environment.
Description
技术领域 technical field
本发明涉及一种实时监测溶液中病毒颗粒的方法。The invention relates to a method for real-time monitoring of virus particles in a solution.
背景技术 Background technique
病毒在众多微生物中个体最小、结构特殊、致病性强。广泛存在于空气,水,土壤以及人体血液,体液,粪便中,对公共卫生造成极大威胁。以水环境为例,目前已发现的700多种介水传播病毒中,轮状病毒、肝炎病毒和肠道病毒占主导,可引起腹泻、肝炎等多种病症。其中,轮状病毒每年导致114亿例腹泻,在发展中国家每年导致87万例死亡[Albert,M.J.,et al.,Bangladesh.Journal of clinical microbiology,1999.37(11):p.3458]。A型和E型肝炎病毒的传染通常与不合格供应的水有关,E型肝炎在孕妇中尤其严重,其死亡率高达25%[Aggarwal,R.andK.Krawczynski,Jou rnal of gastroenterology and hepatology,2000.15(1):p.9-20]。2004年,我国四川省因饮用水污染暴发传染病流行,123名学生罹患甲肝[任金法.中国卫生检验杂志,2009(004):p.942-944]。由此可见,病毒对人体危害巨大,污染水源会对公共卫生造成极大威胁。而存在于血液中的肝炎病毒,HIV病毒等,以及存在于空气中的流感病毒,风疹病毒等同样会对人的健康造成影响。为了保障环境及人体的卫生安全,实时检测各类环境中的病毒的方法及小型便携设备成为临床和日常生活中的迫切需求。Viruses are the smallest of many microorganisms, have special structures, and are highly pathogenic. Widely present in air, water, soil, and human blood, body fluids, and feces, it poses a great threat to public health. Taking the water environment as an example, among the more than 700 water-borne viruses that have been discovered so far, rotavirus, hepatitis virus and enterovirus are dominant, which can cause various diseases such as diarrhea and hepatitis. Among them, rotavirus causes 11.4 billion cases of diarrhea and 870,000 deaths per year in developing countries [Albert, M.J., et al., Bangladesh. Journal of clinical microbiology, 1999.37(11): p.3458]. Infection of hepatitis A and E viruses is usually related to substandard water supply, and hepatitis E is particularly serious in pregnant women, with a mortality rate of up to 25% [Aggarwal, R. and K. Krawczynski, Journal of gastroenterology and hepatology, 2000.15 (1): p.9-20]. In 2004, infectious diseases broke out in Sichuan Province of my country due to drinking water pollution, and 123 students suffered from hepatitis A [Ren Jinfa. Chinese Journal of Health Inspection, 2009(004): p.942-944]. It can be seen that the virus is extremely harmful to the human body, and polluting water sources will pose a great threat to public health. The hepatitis virus, HIV virus, etc. that exist in the blood, and the influenza virus, rubella virus, etc. that exist in the air will also affect people's health. In order to ensure the health and safety of the environment and the human body, methods for real-time detection of viruses in various environments and small portable devices have become an urgent need in clinical and daily life.
目前临床常用的病毒检测方法包括:电镜观察,电泳分离以及间接酶联免疫法(ELISA),分别从病毒颗粒的大小形态,电荷性质和表面特异性识别方面对病毒的种类、特点进行检测和鉴定。然而这些方法都必须在实验室条件下进行,且耗时较长,未能实现实时检测,技术流程较为复杂,很难进行临床推广。因此,一种高灵敏度实时检测环境中病毒的方法和便携设备亟待开发。纳米孔技术,作为新一代单分子检测的热点,同样可以在高灵敏度病毒检测方面得到出色的应用。At present, the commonly used clinical virus detection methods include: electron microscope observation, electrophoretic separation and indirect enzyme-linked immunoassay (ELISA), respectively, from the size and shape of virus particles, charge properties and surface specific recognition to detect and identify the types and characteristics of viruses . However, these methods must be carried out under laboratory conditions, and it takes a long time to achieve real-time detection. The technical process is relatively complicated, and it is difficult to promote clinically. Therefore, a method and portable device for detecting viruses in the environment with high sensitivity in real time are urgently needed to be developed. Nanopore technology, as a new generation of single-molecule detection hotspot, can also be used in high-sensitivity virus detection.
在1996年Kasianowicz及其同事首次报道[Kasianowicz,J.J.,et al.,Proceedings of theNational Academy of Sciences of the United States of America,1996.93(24):p.13770-13773]了单链DNA或RNA在电场作用下通过α-溶血素纳米孔,并且得到分子通过孔时产生了阻塞电流(blockade current)的现象,可以依次获得每一个碱基通过纳米孔时阻塞电流幅度。由于不同的碱基产生的阻塞电流都有相应的降低幅度,根据这个可以区分出四种碱基,以获得了DNA或者RNA分子的序列成分。另外还可以通过阻塞电流持续的时间推算出阻塞整个分子的长度。经过近几十年的不断的努力,纳米孔作为单分子检测的方法研究日益升温,最主要的原因就是这种方法具有方便、快速、廉价等优点。In 1996, Kasianowicz and colleagues first reported [Kasianowicz, J.J., et al., Proceedings of the National Academy of Sciences of the United States of America, 1996.93(24): p.13770-13773] the single-stranded DNA or RNA in the electric field It passes through the α-hemolysin nanopore under the action, and the phenomenon of blockade current (blockade current) is generated when the molecule passes through the hole, and the magnitude of the blockade current when each base passes through the nanopore can be obtained in turn. Since the blocking current generated by different bases has a corresponding decrease, four bases can be distinguished according to this, and the sequence components of DNA or RNA molecules can be obtained. In addition, the length of blocking the entire molecule can also be calculated from the duration of blocking current. After decades of continuous efforts, the research on nanopore as a method for single molecule detection is increasing day by day. The main reason is that this method has the advantages of convenience, rapidity and low cost.
发明内容Contents of the invention
本发明提供一种实时监测溶液中病毒颗粒的方法,可以实现快速检测病毒颗粒。The invention provides a method for real-time monitoring of virus particles in a solution, which can realize rapid detection of virus particles.
申请人经研究发现,在病毒检测中,病毒颗粒的粒径大小,形状同样可以通过对阻塞电流大小,信号持续时间的分析得到;此外,孔壁的特异性抗体修饰还能够实现特定病毒种类的定向捕获,从而与其他颗粒区别开来。与传统的电镜观察,电泳分离以及间接酶联免疫法(ELISA)相比具有检测速度快,操作便捷,灵敏度高等特点,是一种极具吸引力的病毒检测方法。通过这种方法,原理上可以实现快速检测病毒颗粒,通过病毒颗粒通过纳米孔时形成阻塞电流的幅值和持续时间,分辨其种类,数量和状态。The applicant has found through research that in virus detection, the particle size and shape of virus particles can also be obtained by analyzing the size of the blocking current and the duration of the signal; in addition, the specific antibody modification of the pore wall can also realize the detection of specific virus species. Targeted capture to distinguish it from other particles. Compared with traditional electron microscope observation, electrophoretic separation and indirect enzyme-linked immunoassay (ELISA), it has the characteristics of fast detection speed, convenient operation and high sensitivity, and is an attractive virus detection method. Through this method, in principle, rapid detection of virus particles can be realized, and the type, quantity and state can be distinguished through the amplitude and duration of blocking current formed when the virus particles pass through the nanopore.
所述实时监测溶液中病毒颗粒的方法为,在偏置电压作用下,使包含病毒颗粒的样品溶液通过纳米孔,检测电信号,通过与包含标准病毒的溶液通过纳米孔时获得的电信号相比,确定样品溶液中包含病毒颗粒的信息。所述病毒颗粒优选为轮状病毒、乙型肝炎病毒或人类疱疹病毒。The method for real-time monitoring of the virus particles in the solution is to make the sample solution containing the virus particles pass through the nanopore under the action of a bias voltage, detect the electrical signal, and compare the electric signal obtained when the solution containing the standard virus passes through the nanopore. Ratio, to determine the information on the virus particles contained in the sample solution. The virus particles are preferably rotavirus, hepatitis B virus or human herpes virus.
优选,通过与包含标准病毒的溶液通过纳米孔时获得的电信号的幅度、持续时间、时间分布、频率、电信号波形特性或相位特性中的至少一种相比,确定样品溶液中包含病毒颗粒的信息。Preferably, determining that the sample solution contains virus particles is determined by comparing at least one of the amplitude, duration, time distribution, frequency, waveform characteristics or phase characteristics of the electrical signal obtained when the solution containing the standard virus passes through the nanopore Information.
优选,所述纳米孔尺寸为100-250nm。更优选,所述纳米孔经偶联剂分子、DNA单链或双链分子、RNA分子、PNA分子或蛋白质分子表面修饰。Preferably, the size of the nanopores is 100-250 nm. More preferably, the surface of the nanopore is modified by coupling agent molecules, DNA single- or double-stranded molecules, RNA molecules, PNA molecules or protein molecules.
作为本发明的改进,所述包含病毒颗粒的样品溶液通过纳米孔之前,通过亚微米级滤器进行预处理,滤去细菌及其他大颗粒杂质。As an improvement of the present invention, before the sample solution containing virus particles passes through the nanopore, it is pretreated through a submicron filter to filter out bacteria and other large particle impurities.
本发明所使用的检测装置为现有技术,包括:用带有纳米孔的芯片将两个溶液池隔开,使得两个溶液池仅通过纳米孔导通。在两个溶液池内各安置一个电极,通过屏蔽导线和数据采集与分析一起串联形成检测系统。The detection device used in the present invention is the prior art, including: separating the two solution pools with a chip with nanopores, so that the two solution pools are only connected through the nanopores. An electrode is placed in each of the two solution pools, and a detection system is formed in series with shielded wires and data acquisition and analysis.
所述实时病毒检测方法包括下述过程中的全部或部分步骤:The real-time virus detection method includes all or some steps in the following process:
样品准备:将待测样品(空气,土壤,水样中收集物的水溶液,血液及生物体液,分泌物)配制成氯化钾溶液,并用亚微米级滤膜过滤。Sample preparation: Prepare the samples to be tested (air, soil, aqueous solution of collected materials in water samples, blood and biological fluids, secretions) into potassium chloride solution, and filter it with a submicron membrane filter.
信号检测:将纳米孔安装于上述检测体系中。在电极两端加上偏置电压,记录电信号。Signal detection: install the nanopore in the above detection system. A bias voltage is applied across the electrodes to record electrical signals.
结果比对:以已知常见病毒溶液作为标准病毒溶液,通过纳米孔,检测其电信号,得到标准病毒在不同条件下的过孔阻塞电流特征值(包括阻塞电流的幅值,持续时间,频率,波形和相位)。将所得结果进行统计分析,确定未知样品中特定病毒的有无及数量。Result comparison: take the known common virus solution as the standard virus solution, pass through the nanopore, detect its electrical signal, and obtain the characteristic value of the blocking current of the standard virus under different conditions (including the amplitude, duration, and frequency of the blocking current) , waveform and phase). Statistical analysis is performed on the obtained results to determine the presence and quantity of specific viruses in unknown samples.
本发明具有动态实时、高灵敏度、高通量的特点,满足环境中病毒计数、分类及实时分析等工作的要求。The invention has the characteristics of dynamic real-time, high sensitivity and high throughput, and meets the requirements of virus counting, classification and real-time analysis in the environment.
附图说明Description of drawings
图1示出固体纳米孔立体图(1a)和中心剖视图(1b);Fig. 1 shows solid nanopore perspective view (1a) and central sectional view (1b);
图2示出与滤器装置相连的检测器件示意图;Figure 2 shows a schematic diagram of a detection device connected to a filter device;
图3示出固态纳米孔用于生物传感检测的系统示意图;Figure 3 shows a schematic diagram of a system in which solid-state nanopores are used for biosensing detection;
图4示出纳米孔病毒检测方法检测水体中轮状病毒的实验结果;Fig. 4 shows the experimental result that nanopore virus detection method detects rotavirus in water;
图5示出纳米孔病毒检测方法检测水体中乙型肝炎病毒的实验结果;Figure 5 shows the experimental results of the nanopore virus detection method detecting hepatitis B virus in water;
图6示出人类疱疹病毒通过EBV-Ab修饰纳米孔时的电流信号图。Fig. 6 shows the current signal graph when the human herpes virus passes through the nanopore modified by EBV-Ab.
其中,1:纳米孔;2:氮化硅薄膜;3:带有纳米孔的芯片;4:电极;5:电解质溶液;6:亚微米级滤器;7:信号采集分析系统。Among them, 1: nanopore; 2: silicon nitride film; 3: chip with nanopore; 4: electrode; 5: electrolyte solution; 6: submicron filter; 7: signal acquisition and analysis system.
具体实施方式 Detailed ways
实施例1Example 1
水体中主要病毒的检测方法:Detection methods of main viruses in water:
样品准备:分别将0.0745g氯化钾加入10ml超纯水,10ml目标病毒标准品(如轮状病毒,乙型肝炎病毒)和10ml待测水样中,配置成100mM的氯化钾溶液A,标准病毒液B和待测样液C。以220nm滤膜分别过滤两种液体,滤去细菌及其他大颗粒杂质。Sample preparation: Add 0.0745g of potassium chloride to 10ml of ultrapure water, 10ml of target virus standard (such as rotavirus, hepatitis B virus) and 10ml of water sample to be tested to form 100mM potassium chloride solution A, Standard virus solution B and test sample solution C. Filter the two liquids with a 220nm filter membrane to remove bacteria and other large particle impurities.
装置:用带有直径100nm纳米孔1的芯片3将两个溶液池隔开,使得两个溶液池仅通过纳米孔导通。在两个溶液池内各安置一个电极4,电极通过屏蔽导线数据采集与分析系统7相连。Device: a
标准品测试:室温条件下,在芯片两侧的腔内分别加入50μl氯化钾溶液和轮状病毒标准病毒液,插入电极,与数据采集系统连接,关好屏蔽箱。调整电极施加的偏置电压为200mV,记录标准病毒过孔阻塞电流的幅值,持续时间,频率,波形,作为判定此种病毒的标准。以轮状病毒和乙型肝炎病毒为例,两种病毒过孔时电流信号如图4和图5所示。其阻塞电流幅值,持续时间及波形形状都具有明显的差别。Standard product test: at room temperature, add 50 μl potassium chloride solution and rotavirus standard virus solution into the chambers on both sides of the chip respectively, insert electrodes, connect with the data acquisition system, and close the shielding box. Adjust the bias voltage applied by the electrode to 200mV, and record the amplitude, duration, frequency, and waveform of the standard virus via hole blocking current as the standard for judging this virus. Taking rotavirus and hepatitis B virus as examples, the current signals when the two viruses pass through the hole are shown in Figure 4 and Figure 5. The blocking current amplitude, duration and waveform shape all have obvious differences.
检测过程:室温条件下,在芯片两侧的腔内分别加入50μl氯化钾溶液和样液,插入电极,与数据采集系统连接,关好屏蔽箱,采集并准确记录标准病毒过孔阻塞电流的幅值,持续时间,频率,波形和相位特征,并进行统计分析,最终得到不同病毒的过孔阻塞电流特征。Detection process: at room temperature, add 50 μl of potassium chloride solution and sample solution into the chambers on both sides of the chip, insert electrodes, connect with the data acquisition system, close the shielding box, collect and accurately record the standard virus via hole blocking current Amplitude, duration, frequency, waveform and phase characteristics, and statistical analysis, and finally get the characteristics of the blocking current of different viruses.
因此,水样中的各种目标病毒都可以被准确快速的检测出来。Therefore, various target viruses in water samples can be detected accurately and quickly.
实施例2Example 2
经修饰纳米孔特异性识别人类疱疹病毒Modified nanopores specifically recognize human herpesviruses
纳米孔修饰:把带有直径200nm的芯片放在干燥洁净的10ml试管中,取4ml piranha溶液(75mL浓硫酸(98%)和25mL双氧水溶液(30%))加入试管中,用枪头小心搅拌,但不要接触芯片,置于100℃水浴加热10-15min。清洗完毕后,将芯片浸入2%APTS(3-氨基丙基三乙氧基硅烷)溶液中,室温结合30min。取出芯片,用甲醇,超纯水多次清洗。随后,将芯片置于0.5ml活化缓冲液(0.1M MES,0.5M NaCl,pH 6.0)中,加入0.2mg EDC,0.3mg NHS,反应30min后,将0.5ml pH7.2的磷酸盐缓冲液加入其中,5min后加入0.1μM人类疱疹病毒抗体EBV-Ab。通过氨基与氨基酸残基的羧基反应,结合于芯片纳米孔内。Nanopore modification: put the chip with a diameter of 200nm in a dry and clean 10ml test tube, take 4ml of piranha solution (75mL of concentrated sulfuric acid (98%) and 25mL of hydrogen peroxide solution (30%)) into the test tube, and stir carefully with a gun tip , but do not touch the chip, place it in a water bath at 100°C for 10-15min. After cleaning, the chip was immersed in 2% APTS (3-aminopropyltriethoxysilane) solution, and combined at room temperature for 30 minutes. Take out the chip and wash it several times with methanol and ultrapure water. Subsequently, put the chip in 0.5ml activation buffer (0.1M MES, 0.5M NaCl, pH 6.0), add 0.2mg EDC, 0.3mg NHS, react for 30min, add 0.5ml pH7.2 phosphate buffer Wherein, 0.1 μM human herpesvirus antibody EBV-Ab was added after 5 minutes. Through the reaction of the amino group and the carboxyl group of the amino acid residue, it is combined in the nanopore of the chip.
样品准备:取待测唾液样本A(含有EBV),加入轮状病毒的唾液样品B(不含EBV,含有轮状病毒)和对照唾液样本C(不含有EBV和其他病毒)1ml,分别与9ml 100mM氯化钾溶液混匀。以220nm滤膜分别过滤两种液体,滤去细菌及其他大颗粒杂质。Sample preparation: Take saliva sample A (containing EBV) to be tested, add 1ml of rotavirus-containing saliva sample B (does not contain EBV, contains rotavirus) and control saliva sample C (does not contain EBV and other viruses), and 9ml 100mM potassium chloride solution and mix well. Filter the two liquids with a 220nm filter membrane to remove bacteria and other large particle impurities.
检测过程:室温条件下,在芯片两侧的腔内分别加入50μl氯化钾溶液和样液,插入电极,与数据采集系统连接,关好屏蔽箱,采集并准确记录标准病毒过孔阻塞电流的幅值,持续时间,频率,波形和相位特征,并进行统计分析,最终得到不同病毒的过孔阻塞电流特征。人类疱疹病毒通过EBV-Ab修饰孔过程电流信号如图6所示。结果显示,只有存在EBV-Ab特异性识别的抗原病毒EBV时,才会出现阻塞电流持续下降的现象。通过这种方法,可以实现病毒的准确快速检测。Detection process: at room temperature, add 50 μl of potassium chloride solution and sample solution into the chambers on both sides of the chip, insert electrodes, connect with the data acquisition system, close the shielding box, collect and accurately record the standard virus via hole blocking current Amplitude, duration, frequency, waveform and phase characteristics, and statistical analysis, and finally get the characteristics of the blocking current of different viruses. The current signal of the human herpes virus through the EBV-Ab modified pore process is shown in Figure 6. The results showed that only when there was EBV, the antigenic virus specifically recognized by EBV-Ab, the blocking current continued to decrease. Through this method, accurate and rapid detection of the virus can be achieved.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103090684A CN102507395A (en) | 2011-10-13 | 2011-10-13 | Method for monitoring virus particles in solution in real time |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103090684A CN102507395A (en) | 2011-10-13 | 2011-10-13 | Method for monitoring virus particles in solution in real time |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102507395A true CN102507395A (en) | 2012-06-20 |
Family
ID=46219502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103090684A Pending CN102507395A (en) | 2011-10-13 | 2011-10-13 | Method for monitoring virus particles in solution in real time |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102507395A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105738623A (en) * | 2014-12-26 | 2016-07-06 | 株式会社东芝 | Method and device for detecting sample |
CN105779279A (en) * | 2016-02-29 | 2016-07-20 | 东南大学 | A nanoporous sensor device based on two-dimensional layered materials and its construction method |
CN108287178A (en) * | 2017-12-29 | 2018-07-17 | 广东工业大学 | A kind of tumor markers molecular detecting method |
CN109612890A (en) * | 2018-12-28 | 2019-04-12 | 瑞芯智造(深圳)科技有限公司 | A kind of particle counting system and application, the method for detecting metal ion and particle |
CN111554351A (en) * | 2020-04-26 | 2020-08-18 | 深圳市儒翰基因科技有限公司 | Virus identification method, terminal and storage medium |
CN112424592A (en) * | 2018-07-19 | 2021-02-26 | 国立大学法人大阪大学 | Virus detection method, virus detection device, virus determination program, pressure determination method, and pressure determination device |
CN115443099A (en) * | 2020-04-23 | 2022-12-06 | 马可·德·安杰利斯 | System for detecting viral biological particles emitted into the air by living organisms |
US12005447B2 (en) | 2022-03-23 | 2024-06-11 | Samsung Electronics Co., Ltd. | Apparatus and method for bio-particle detection |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080025875A1 (en) * | 2004-09-29 | 2008-01-31 | Martin Charles R | Chemical, Particle, and Biosensing with Nanotechnology |
US20100025263A1 (en) * | 2006-05-05 | 2010-02-04 | University Of Utah Research Foundation | Nanopore particle analyzer, method of preparation and use thereof |
WO2011028494A2 (en) * | 2009-08-24 | 2011-03-10 | Trustees Of Boston University | Label-free sensing of pna-dna complexes using nanopores |
US20110120890A1 (en) * | 2008-05-15 | 2011-05-26 | Julie Macpherson | Conductivity sensor device comprising diamond film with at least one nanopore or micorpore |
-
2011
- 2011-10-13 CN CN2011103090684A patent/CN102507395A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080025875A1 (en) * | 2004-09-29 | 2008-01-31 | Martin Charles R | Chemical, Particle, and Biosensing with Nanotechnology |
US20100025263A1 (en) * | 2006-05-05 | 2010-02-04 | University Of Utah Research Foundation | Nanopore particle analyzer, method of preparation and use thereof |
US20110120890A1 (en) * | 2008-05-15 | 2011-05-26 | Julie Macpherson | Conductivity sensor device comprising diamond film with at least one nanopore or micorpore |
WO2011028494A2 (en) * | 2009-08-24 | 2011-03-10 | Trustees Of Boston University | Label-free sensing of pna-dna complexes using nanopores |
Non-Patent Citations (1)
Title |
---|
RALPH W. DEBLOIS ET AL.: "sizes and concentrations of several type C oncornaviruses and bacteriophage T2 by the resistive-pulse technique", 《JOURNAL OF VIROLOGY》, vol. 23, no. 2, 31 December 1977 (1977-12-31), pages 227 - 233, XP007907724 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105738623A (en) * | 2014-12-26 | 2016-07-06 | 株式会社东芝 | Method and device for detecting sample |
US9804116B2 (en) | 2014-12-26 | 2017-10-31 | Kabushiki Kaisha Toshiba | Method and device for detecting sample |
CN105779279A (en) * | 2016-02-29 | 2016-07-20 | 东南大学 | A nanoporous sensor device based on two-dimensional layered materials and its construction method |
CN108287178A (en) * | 2017-12-29 | 2018-07-17 | 广东工业大学 | A kind of tumor markers molecular detecting method |
CN112424592A (en) * | 2018-07-19 | 2021-02-26 | 国立大学法人大阪大学 | Virus detection method, virus detection device, virus determination program, pressure determination method, and pressure determination device |
CN109612890A (en) * | 2018-12-28 | 2019-04-12 | 瑞芯智造(深圳)科技有限公司 | A kind of particle counting system and application, the method for detecting metal ion and particle |
CN109612890B (en) * | 2018-12-28 | 2021-02-02 | 瑞芯智造(深圳)科技有限公司 | Particle counting system, application of particle counting system and method for detecting metal ions and particles |
CN115443099A (en) * | 2020-04-23 | 2022-12-06 | 马可·德·安杰利斯 | System for detecting viral biological particles emitted into the air by living organisms |
CN111554351A (en) * | 2020-04-26 | 2020-08-18 | 深圳市儒翰基因科技有限公司 | Virus identification method, terminal and storage medium |
US12005447B2 (en) | 2022-03-23 | 2024-06-11 | Samsung Electronics Co., Ltd. | Apparatus and method for bio-particle detection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102507395A (en) | Method for monitoring virus particles in solution in real time | |
CN106525940A (en) | Electrochemical method of detecting single-chain target DNA concentration based on G-quadruplex-heme compound and polymeric chain type amplification reaction | |
Akhtarian et al. | Nanopore sensors for viral particle quantification: current progress and future prospects | |
Arima et al. | Digital pathology platform for respiratory tract infection diagnosis via multiplex single-particle detections | |
Gorgzadeh et al. | A state-of-the-art review of the recent advances in exosome isolation and detection methods in viral infection | |
Sethi et al. | Direct detection of conserved viral sequences and other nucleic acid motifs with solid-state nanopores | |
CN105092647A (en) | Molecular conformation change-based sequence measuring method | |
Cai et al. | Selective single-molecule nanopore detection of mpox A29 protein directly in biofluids | |
CN113702350A (en) | Novel coronavirus detection method and kit based on surface enhanced Raman spectroscopy | |
Mishra et al. | Carbon-based biosensors: next-generation diagnostic tool for target-specific detection of SARS-CoV-2 (COVID-19) | |
CN103353529B (en) | Electrochemical immunosensor for detecting AIV H7 and preparation method thereof | |
CN114231593B (en) | Preparation and application of a label-free methyltransferase sensor based on nanopores | |
CN102788833B (en) | Kit for detecting low-abundance and low-molecular-weight protein spectrum | |
Ferreira et al. | Cutting-edge biorecognition strategies to boost the detection performance of COVID-19 electrochemical biosensors: A review | |
Zeid et al. | Advances in miniaturized nanosensing platforms for analysis of pathogenic bacteria and viruses | |
Murakami et al. | High-precision rapid testing of omicron SARS-CoV-2 variants in clinical samples using AI-nanopore | |
Khamsi et al. | Evaporation-Enhanced Redox Cycling for Rapid Detection of Attomolar SARS-CoV-2 Virions Using Nanolithography-free Electrochemical Devices | |
Drobysh et al. | Affinity Sensors for the Diagnosis of COVID-19. Micromachines. 2021; 12: 390 | |
CN112326752A (en) | An ultra-sensitive method for detecting mercury ions in water | |
CN113774108A (en) | Method for enriching and detecting infectious new coronavirus by selectively adsorbing spike glycoprotein | |
Reynaud | Aptamer-functionalized nanopore for the detection of closely-related proteins | |
Li et al. | Probing surface hydrophobicity of individual protein at single-molecule resolution using solid-state nanopores | |
Che et al. | Advancements in Nanopore Technology for Virus Detection | |
CN113416767B (en) | Method for detecting number of biomolecules | |
Bian et al. | Detection of short peptides and dimers using silicon nitride nanopores |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120620 |