CN102485968A - Preparation method of zinc-doped titania nanotube array - Google Patents
Preparation method of zinc-doped titania nanotube array Download PDFInfo
- Publication number
- CN102485968A CN102485968A CN2010105734200A CN201010573420A CN102485968A CN 102485968 A CN102485968 A CN 102485968A CN 2010105734200 A CN2010105734200 A CN 2010105734200A CN 201010573420 A CN201010573420 A CN 201010573420A CN 102485968 A CN102485968 A CN 102485968A
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- zinc
- tube array
- preparation
- dioxide nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 151
- 239000002071 nanotube Substances 0.000 title claims abstract description 72
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 54
- 239000003792 electrolyte Substances 0.000 claims abstract description 37
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 31
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 15
- 238000004070 electrodeposition Methods 0.000 claims abstract description 14
- 239000000243 solution Substances 0.000 claims abstract description 10
- 230000009471 action Effects 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 239000011701 zinc Substances 0.000 claims abstract 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract 4
- 238000000034 method Methods 0.000 claims description 21
- 238000007254 oxidation reaction Methods 0.000 claims description 15
- 230000003647 oxidation Effects 0.000 claims description 14
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 239000008151 electrolyte solution Substances 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000008186 active pharmaceutical agent Substances 0.000 claims 3
- 238000000137 annealing Methods 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 6
- 230000005684 electric field Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 238000005468 ion implantation Methods 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000002048 anodisation reaction Methods 0.000 abstract 1
- 239000007864 aqueous solution Substances 0.000 abstract 1
- 230000031700 light absorption Effects 0.000 abstract 1
- 238000003491 array Methods 0.000 description 14
- 239000011259 mixed solution Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002715 modification method Methods 0.000 description 3
- 238000007743 anodising Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000032900 absorption of visible light Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- CUPFNGOKRMWUOO-UHFFFAOYSA-N hydron;difluoride Chemical compound F.F CUPFNGOKRMWUOO-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Hybrid Cells (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域 technical field
本发明属于光电材料技术领域,具体涉及一种利用阳极氧化法制备锌掺杂二氧化钛纳米管阵列的方法,特别是涉及一种通过后继电化学沉积法制备出光电性能良好的锌掺杂二氧化钛纳米管阵列的方法。The invention belongs to the technical field of optoelectronic materials, and in particular relates to a method for preparing a zinc-doped titanium dioxide nanotube array by using an anodic oxidation method, in particular to a zinc-doped titanium dioxide nanotube array with good photoelectric performance prepared by a subsequent electrochemical deposition method. Tube array method.
背景技术 Background technique
二氧化钛是一种重要的无机功能材料,它在太阳能的储存与利用、光电转换、光致变色及光催化降解大气和水中的污染物等方面有广阔的应用前景,因其原材料资源丰富、价格便宜,且无毒害,是近年来国际上研究的热点。二氧化钛主要有锐钛矿、金红石和不稳定的板钛矿三种晶型,由于晶型不同,二氧化钛的禁带宽度分布在3.0~3.2左右,只能吸收占太阳能光谱中3~5%的紫外部分,而对可见光几乎没有吸收。有序排列的二氧化钛纳米管阵列具有明显的量子限域效应、高度有序取向结构和大的比表面积,能有效地提高电子-空穴的界面分离和载流子的定向传输效率,使其在染料敏化电池、光(电)催化降解污染物、传感器等技术领域有着重要的应用前景。Titanium dioxide is an important inorganic functional material. It has broad application prospects in the storage and utilization of solar energy, photoelectric conversion, photochromism and photocatalytic degradation of pollutants in the atmosphere and water, because of its rich raw material resources and low price. , and non-toxic, it is a research hotspot in the world in recent years. Titanium dioxide mainly has three crystal forms: anatase, rutile and unstable brookite. Due to different crystal forms, the band gap of titanium dioxide is distributed around 3.0-3.2, and it can only absorb 3-5% of the solar spectrum. Ultraviolet part, but almost no absorption of visible light. The ordered titanium dioxide nanotube array has obvious quantum confinement effect, highly ordered orientation structure and large specific surface area, which can effectively improve the interface separation of electrons and holes and the directional transport efficiency of carriers, making it in Dye-sensitized cells, photo(electric) catalytic degradation of pollutants, sensors and other technical fields have important application prospects.
目前制备掺杂二氧化钛纳米管阵列所采取的主要方法有电解改性法、浸渍法等。在这些方法中,电解液改性法因金属离子的加入,改变了电解液中电荷迁移速度,使电流增大,且部分离子与F-发生络合反应,降低了电解液中F-浓度,不利于反应进行,因此不具备普遍性;在浸渍法改性中,离子注入的主要驱动力是毛细管作用,这种方法耗时长,且离子不易进入到二氧化钛纳米管中。因此本发明提出了一种新的离子注入方法来对二氧化钛纳米管进行掺杂改性,即后继电化学沉积法,使离子在毛细管与电场力的双重作用下有效注入到二氧化钛纳米管内部,可通过对掺杂离子浓度及沉积电压的调控来控制掺杂量及掺杂离子的存在方式,是一种有效的掺杂改性方法。At present, the main methods used to prepare doped titania nanotube arrays include electrolytic modification method, impregnation method and so on. Among these methods, the electrolytic solution modification method changes the charge migration velocity in the electrolyte due to the addition of metal ions, increases the current, and the complexation reaction between some ions and F - reduces the F - concentration in the electrolyte, It is not conducive to the reaction, so it is not universal; in the impregnation modification, the main driving force of ion implantation is capillary action, this method takes a long time, and the ions are not easy to enter the titanium dioxide nanotubes. Therefore, the present invention proposes a new ion implantation method to dope and modify titanium dioxide nanotubes, that is, the subsequent electrochemical deposition method, so that ions are effectively injected into the titanium dioxide nanotubes under the dual effects of capillary and electric field force, The doping amount and the existence of doping ions can be controlled by adjusting the concentration of doping ions and the deposition voltage, which is an effective doping modification method.
发明内容 Contents of the invention
本发明要解决的技术问题是提供一种光电性能良好的锌掺杂二氧化钛纳米管阵列的制备方法,该方法工艺流程简单、清洁环保,适合批量制备、成本低廉、制得的锌掺杂二氧化钛纳米管尺寸和管径均匀可控、热稳定性和光电性能良好,可广泛应用于光电材料领域。The technical problem to be solved by the present invention is to provide a method for preparing a zinc-doped titanium dioxide nanotube array with good photoelectric performance. The tube size and tube diameter are uniform and controllable, thermal stability and photoelectric performance are good, and can be widely used in the field of photoelectric materials.
为解决上述技术问题,本发明提供了一种光电性能良好的锌掺杂二氧化钛纳米管阵列的制备方法,包括如下步骤:In order to solve the above-mentioned technical problems, the invention provides a method for preparing a zinc-doped titanium dioxide nanotube array with good photoelectric properties, comprising the following steps:
(1)将纯钛箔打磨至表面无划痕,清洗干净备用;(1) Polish the pure titanium foil until there is no scratch on the surface, clean it and set aside;
(2)配制电解液:电解液由HF含量为40wt%的氢氟酸氢氟酸与去离子水配制的混合溶液,电解液中HF的含量为0.3wt%-1.0wt%;(2) Preparation of electrolyte: the electrolyte is a mixed solution prepared by hydrofluoric acid hydrofluoric acid and deionized water with a HF content of 40wt%, and the content of HF in the electrolyte is 0.3wt%-1.0wt%;
(3)将经过表面处理的纯钛箔作为阳极,铂片作为阴极,接直流稳压电源,在HF电解液中进行电化学阳极氧化,保持两极之间的间距为20-50mm,阳极氧化电压为10-50V,氧化时间为1-4h,制得无定型二氧化钛纳米管阵列;(3) The surface-treated pure titanium foil is used as the anode, the platinum sheet is used as the cathode, connected to a DC stabilized power supply, and electrochemically anodized in the HF electrolyte, keeping the distance between the two electrodes at 20-50mm, and the anodizing voltage 10-50V, the oxidation time is 1-4h, and the amorphous titanium dioxide nanotube array is prepared;
(4)锌掺杂二氧化钛纳米管阵列的制备:将无定型二氧化钛纳米管阵列做阴极,铂片为阳极,以0.1-0.5mol/L的Zn(NO3)2溶液为电解液,在0.3-1.0V的直流电压下进行电化学沉积20-60min,Zn2+在电场力的和毛细作用下进入到二氧化钛纳米管;(4) Preparation of zinc-doped titania nanotube array: use amorphous titania nanotube array as cathode, platinum sheet as anode, and 0.1-0.5mol/L Zn(NO 3 ) 2 solution as electrolyte. Electrochemical deposition is carried out at a DC voltage of 1.0V for 20-60min, and Zn 2+ enters the titanium dioxide nanotubes under the action of electric field force and capillary action;
(5)将经电化学沉积处理的二氧化钛纳米管阵列放入马弗炉中,在450-600℃条件下恒温退火2-4h,即得锌掺杂二氧化钛纳米管阵列。(5) Put the electrochemically deposited titanium dioxide nanotube array into a muffle furnace, and anneal at a constant temperature of 450-600° C. for 2-4 hours to obtain the zinc-doped titanium dioxide nanotube array.
所述阳极氧化的最佳直流电压为20-40V。The optimum DC voltage for the anodic oxidation is 20-40V.
所述电化学沉积的最佳直流电压为0.4-0.7V,电解液中Zn(NO3)2的最佳浓度为0.1-0.3mol/L。The optimum DC voltage of the electrochemical deposition is 0.4-0.7V, and the optimum concentration of Zn(NO 3 ) 2 in the electrolyte is 0.1-0.3mol/L.
本发明提供了一种锌掺杂二氧化钛纳米管阵列的制备方法,当电压较低,氧化时间较短时,制得纳米管排列整齐,孔径分布均匀;当沉积电压低,沉积时间较短时可得光电活性较高的锌掺杂二氧化钛纳米管;煅烧温度越低,形成的锌掺杂二氧化钛纳米管的孔径分布越均匀,且具有良好的表面形貌。The invention provides a method for preparing a zinc-doped titanium dioxide nanotube array. When the voltage is low and the oxidation time is short, the nanotubes are arranged neatly and the pore size distribution is uniform; when the deposition voltage is low and the deposition time is short, it can be Zinc-doped titanium dioxide nanotubes with high photoelectric activity are obtained; the lower the calcination temperature, the more uniform the pore size distribution of the formed zinc-doped titanium dioxide nanotubes and good surface morphology.
本发明的主要优点:Main advantage of the present invention:
与现有的制备金属掺杂二氧化钛纳米管阵列的方法相比,本发明采用了一种新的掺杂方式,即通过后继电化学沉积方法对二氧化钛纳米管阵列进行掺杂改性,可使Zn2+在毛细管作用及电场力双重作用下进入到二氧化钛纳米管内部;可通过对电化学沉积过程中直流电压的调控,使Zn2+的掺入量及其在纳米管中的存在方式实现可控;所制备的二氧化钛纳米管分布均匀,排列整齐,与金属钛基底直接相连,结合牢固;二氧化钛纳米管阵列具有有序结构和很高的量子效应;将制备的样品与通过电解液改性制备的锌掺杂二氧化钛纳米管阵列进行对比,具有更良好的光电性能,可广泛的应用于光电催化及染料敏化太阳能电池领域。Compared with the existing method for preparing metal-doped titanium dioxide nanotube arrays, the present invention adopts a new doping method, that is, the titanium dioxide nanotube arrays are doped and modified by the subsequent electrochemical deposition method, which can make Zn 2+ enters into the interior of titanium dioxide nanotubes under the dual effects of capillary action and electric field force; the amount of Zn 2+ doped and its existence in the nanotubes can be realized by adjusting the DC voltage during the electrochemical deposition process. Controllable; the prepared titanium dioxide nanotubes are evenly distributed and arranged neatly, and are directly connected to the metal titanium substrate, and the combination is firm; the titanium dioxide nanotube array has an ordered structure and high quantum effect; the prepared sample is modified with the electrolyte Compared with the prepared zinc-doped titanium dioxide nanotube array, it has better photoelectric performance and can be widely used in the fields of photoelectrocatalysis and dye-sensitized solar cells.
附图说明 Description of drawings
图1是锌掺杂二氧化钛纳米管阵列的扫描电镜图Figure 1 is a scanning electron microscope image of a zinc-doped titania nanotube array
本发明的锌掺杂二氧化钛纳米管阵列的扫描电镜图,是采用JEOL JSM-6700F扫描电子显微镜,在加速电压为3.0KV,放大倍数为30000倍(a)及150000倍(b)的条件下拍摄。The scanning electron microscope figure of the zinc-doped titanium dioxide nanotube array of the present invention adopts a JEOL JSM-6700F scanning electron microscope, and the accelerating voltage is 3.0KV, and the magnification is 30000 times (a) and 150000 times (b) under the condition of shooting .
图2是二氧化钛纳米管阵列的X射线衍射图谱Figure 2 is the X-ray diffraction pattern of titanium dioxide nanotube arrays
本发明的锌掺杂二氧化钛纳米管阵列的X射线衍射图谱,是采用SEMENS D5000X射线衍射仪,测试条件:靶材为Cu,管电压35KV,管电流30mA,扫描范围为10°~80°,扫描步长0.02°,积分时间0.2s。图2(a)是纯二氧化钛纳米管阵列的X射线衍射图谱,图2(b)是锌掺杂二氧化钛纳米阵列管的X射线衍射图谱。The X-ray diffraction pattern of the zinc-doped titanium dioxide nanotube array of the present invention adopts a SEMENS D5000 X-ray diffractometer, and the test conditions: the target material is Cu, the tube voltage is 35KV, the tube current is 30mA, and the scanning range is 10° to 80°. The step size is 0.02°, and the integration time is 0.2s. Fig. 2(a) is an X-ray diffraction pattern of a pure titania nanotube array, and Fig. 2(b) is an X-ray diffraction pattern of a zinc-doped titania nanoarray tube.
具体实施方式 Detailed ways
下面通过具体实施例,进一步说明锌掺杂二氧化钛纳米管阵列的制备方法。The preparation method of the zinc-doped titanium dioxide nanotube array will be further illustrated below through specific examples.
实施例1:Example 1:
(1)将纯钛箔打磨至表面无划痕,清洗干净备用;(1) Polish the pure titanium foil until there is no scratch on the surface, clean it and set aside;
(2)配制电解液:电解液是由HF含量为40wt%的氢氟酸与去离子水配制的混合溶液,电解液中HF的含量为0.3wt%;(2) prepare electrolyte: electrolyte is the mixed solution that is the hydrofluoric acid of 40wt% and deionized water preparation by HF content, and the content of HF is 0.3wt% in the electrolyte;
(3)在20V直流电压下,以纯钛箔为阳极,铂片为阴极,保持两极之间的间距为30mm,在电解液中进行阳极氧化,氧化时间为4h,制得无定型二氧化钛纳米管阵列;(3) Under 20V DC voltage, with pure titanium foil as the anode and platinum sheet as the cathode, keeping the distance between the two electrodes at 30mm, anodic oxidation is carried out in the electrolyte, and the oxidation time is 4h, and the amorphous titanium dioxide nanotube array is prepared ;
(4)锌掺杂二氧化钛纳米管阵列的制备:用以上制备的二氧化钛纳米管阵列做阴极,铂片为阳极,以0.1mol/L的Zn(NO3)2溶液为电解液,在0.4V的直流电压下进行电化学沉积60min;(4) Preparation of zinc-doped titania nanotube arrays: use the titania nanotube arrays prepared above as cathode, platinum sheet as anode, and 0.1mol/L Zn(NO 3 ) 2 solution as electrolyte. Electrochemical deposition was carried out under DC voltage for 60 minutes;
(5)将经过电化学沉积处理的二氧化钛纳米管阵列放入马弗炉中,在450℃条件下恒温退火2h,即得锌掺杂二氧化钛纳米管阵列。(5) Put the electrochemically deposited titanium dioxide nanotube array into a muffle furnace, and anneal at a constant temperature of 450° C. for 2 hours to obtain a zinc-doped titanium dioxide nanotube array.
实施例2:Example 2:
(1)将纯钛箔打磨至表面无划痕,清洗干净备用;(1) Polish the pure titanium foil until there is no scratch on the surface, clean it and set aside;
(2)配制电解液:电解液是由HF含量为40wt%的氢氟酸与去离子水配制的混合溶液,电解液中HF的含量为0.5wt%;(2) prepare electrolyte: electrolyte is the mixed solution that is the hydrofluoric acid of 40wt% and deionized water preparation by HF content, and the content of HF is 0.5wt% in the electrolyte;
(3)在30V直流电压下,以纯钛箔为阳极,铂片为阴极,保持两极之间的间距为40mm,在电解液中进行阳极氧化,氧化时间为3h,制得无定型二氧化钛纳米管阵列;(3) Under 30V DC voltage, using pure titanium foil as the anode and platinum sheet as the cathode, keeping the distance between the two electrodes at 40mm, anodizing in the electrolyte, the oxidation time is 3h, and the amorphous titanium dioxide nanotube array is prepared ;
(4)锌掺杂二氧化钛纳米管阵列的制备:用以上制备的二氧化钛纳米管阵列做阴极,铂片为阳极,以0.2mol/L的Zn(NO3)2溶液为电解液,在0.6V的直流电压下进行电化学沉积30min;(4) Preparation of zinc-doped titania nanotube arrays: use the titania nanotube arrays prepared above as cathode, platinum sheet as anode, and 0.2mol/L Zn(NO 3 ) 2 solution as electrolyte. Perform electrochemical deposition under DC voltage for 30 minutes;
(5)将经过电化学沉积处理的二氧化钛纳米管阵列放入马弗炉中,在450℃条件下恒温退火2h,即得锌掺杂二氧化钛纳米管阵列。(5) Put the electrochemically deposited titanium dioxide nanotube array into a muffle furnace, and anneal at a constant temperature of 450° C. for 2 hours to obtain a zinc-doped titanium dioxide nanotube array.
实施例3:Example 3:
(1)将纯钛箔打磨至表面无划痕,清洗干净备用;(1) Polish the pure titanium foil until there is no scratch on the surface, clean it and set aside;
(2)配制电解液:电解液是由HF含量为40wt%的氢氟酸与去离子水配制的混合溶液,电解液中HF的含量为0.7wt%;(2) prepare electrolyte: electrolyte is the mixed solution that is the hydrofluoric acid of 40wt% and deionized water preparation by HF content, and the content of HF is 0.7wt% in the electrolyte;
(3)在40V直流电压下,以纯钛箔为阳极,铂片为阴极,保持两极之间的间距为50mm,在电解液中进行阳极氧化,氧化时间为2h,制得无定型二氧化钛纳米管阵列;(3) Under 40V DC voltage, with pure titanium foil as the anode and platinum sheet as the cathode, keeping the distance between the two electrodes at 50 mm, anodic oxidation is carried out in the electrolyte, and the oxidation time is 2 hours, and the amorphous titanium dioxide nanotube array is prepared ;
(4)锌掺杂二氧化钛纳米管阵列的制备:用以上制备的二氧化钛纳米管阵列做阴极,铂片为阳极,以0.3mol/L的Zn(NO3)2溶液为电解液,在0.5V的直流电压下进行电化学沉积60min;(4) Preparation of zinc-doped titania nanotube arrays: use the above-prepared titania nanotube arrays as cathode, platinum sheet as anode, and 0.3mol/L Zn(NO 3 ) 2 solution as electrolyte. Electrochemical deposition was carried out under DC voltage for 60 minutes;
(5)将经过电化学沉积处理的二氧化钛纳米管阵列放入马弗炉中,在600℃条件下恒温退火2h,即得锌掺杂二氧化钛纳米管阵列。(5) Put the electrochemically deposited titanium dioxide nanotube array into a muffle furnace, and anneal at a constant temperature of 600° C. for 2 hours to obtain a zinc-doped titanium dioxide nanotube array.
实施例4:Example 4:
(1)将纯钛箔打磨至表面无划痕,清洗干净备用;(1) Polish the pure titanium foil until there is no scratch on the surface, clean it and set aside;
(2)配制电解液:电解液是由HF含量为40wt%的氢氟酸与去离子水配制的混合溶液,电解液中HF的含量为1.0wt%;(2) prepare electrolyte: electrolyte is the mixed solution that is the hydrofluoric acid of 40wt% and deionized water preparation by HF content, and the content of HF is 1.0wt% in the electrolyte;
(3)在50V直流电压下,以纯钛箔为阳极,铂片为阴极,保持两极之间的间距为40mm在电解液中进行阳极氧化,氧化时间为2h,制得无定型二氧化钛纳米管阵列;(3) Under 50V DC voltage, with pure titanium foil as anode, platinum sheet as cathode, keep the distance between the two poles as 40mm to carry out anodic oxidation in electrolyte, oxidation time is 2h, make amorphous titania nanotube array;
(4)锌掺杂二氧化钛纳米管阵列的制备:用以上制备的二氧化钛纳米管阵列做阴极,铂片为阳极,以0.5mol/L的Zn(NO3)2溶液为电解液,在0.7V的直流电压下进行电化学沉积30min;(4) Preparation of zinc-doped titania nanotube arrays: use the titania nanotube arrays prepared above as cathode, platinum sheet as anode, and 0.5mol/L Zn(NO 3 ) 2 solution as electrolyte. Perform electrochemical deposition under DC voltage for 30 minutes;
(5)将经过电化学沉积处理的二氧化钛纳米管阵列放入马弗炉中,在450℃条件下恒温退火3h,即得锌掺杂二氧化钛纳米管阵列。(5) Put the electrochemically deposited titanium dioxide nanotube array into a muffle furnace, and anneal at a constant temperature of 450° C. for 3 hours to obtain a zinc-doped titanium dioxide nanotube array.
实施例5:Example 5:
(1)将纯钛箔打磨至表面无划痕,清洗干净备用;(1) Polish the pure titanium foil until there is no scratch on the surface, clean it and set aside;
(2)配制电解液:电解液是由HF含量为40wt%的氢氟酸与去离子水配制的混合溶液,电解液中HF的含量为0.5wt%;(2) prepare electrolyte: electrolyte is the mixed solution that is the hydrofluoric acid of 40wt% and deionized water preparation by HF content, and the content of HF is 0.5wt% in the electrolyte;
(3)在20V直流电压下,以纯钛箔为阳极,铂片为阴极,保持两极之间的间距为30mm在电解液中进行阳极氧化,氧化时间为2h,制得无定型二氧化钛纳米管阵列;(3) Under 20V DC voltage, with pure titanium foil as anode, platinum sheet as cathode, keep the distance between the two poles as 30mm to carry out anodic oxidation in electrolyte, oxidation time is 2h, make amorphous titanium dioxide nanotube array;
(4)锌掺杂二氧化钛纳米管阵列的制备:用以上制备的二氧化钛纳米管阵列做阴极,铂片为阳极,以0.3mol/L的Zn(NO3)2溶液为电解液,在0.6V的直流电压下进行电化学沉积60min;(4) Preparation of zinc-doped titania nanotube arrays: use the titania nanotube arrays prepared above as cathode, platinum sheet as anode, and 0.3mol/L Zn(NO 3 ) 2 solution as electrolyte. Electrochemical deposition was carried out under DC voltage for 60 minutes;
(5)将经过电化学沉积处理的二氧化钛纳米管阵列放入马弗炉中,在600℃条件下恒温退火4h,即得锌掺杂二氧化钛纳米管阵列。(5) Put the electrochemically deposited titanium dioxide nanotube array into a muffle furnace, and anneal at a constant temperature of 600° C. for 4 hours to obtain a zinc-doped titanium dioxide nanotube array.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105734200A CN102485968A (en) | 2010-12-06 | 2010-12-06 | Preparation method of zinc-doped titania nanotube array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105734200A CN102485968A (en) | 2010-12-06 | 2010-12-06 | Preparation method of zinc-doped titania nanotube array |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102485968A true CN102485968A (en) | 2012-06-06 |
Family
ID=46151541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105734200A Pending CN102485968A (en) | 2010-12-06 | 2010-12-06 | Preparation method of zinc-doped titania nanotube array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102485968A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102485969A (en) * | 2010-12-06 | 2012-06-06 | 长沙理工大学 | Preparation method of nitrogen and gadolinium co-doped titania nanotube array |
CN102826630A (en) * | 2012-09-09 | 2012-12-19 | 桂林理工大学 | Application of Bi/TiO2 Nanotube Arrays to Photocatalytic Degradation of Sugar Wastewater |
CN102980915A (en) * | 2012-11-08 | 2013-03-20 | 清华大学 | Preparation method of palladium-doped TiO2 nanotube array Schottky junction hydrogen sensor |
CN103774198A (en) * | 2014-01-15 | 2014-05-07 | 浙江大学 | Preparation method of rare earth Eu-doped CaF2 film on titanium dioxide nanotube by photo-assisted electrodeposition |
CN103866370A (en) * | 2012-12-11 | 2014-06-18 | 中国科学院上海硅酸盐研究所 | Method for preparing low-oxygen titania nanotube array |
CN107083151A (en) * | 2017-05-19 | 2017-08-22 | 重庆中鼎三正科技有限公司 | Method for preparing degraded catalysis material |
CN107129734A (en) * | 2017-05-19 | 2017-09-05 | 重庆中鼎三正科技有限公司 | The preparation method of composite photocatalyst material |
CN108620112A (en) * | 2018-04-02 | 2018-10-09 | 华南理工大学 | A kind of preparation method of the composite mixed film of Nano tube array of titanium dioxide of Zn-N with visible light activity |
CN112162020A (en) * | 2020-10-09 | 2021-01-01 | 浙江科技学院 | A preparation method of a high-performance hydrogen sulfide sensor that is not affected by humidity |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11315398A (en) * | 1998-02-20 | 1999-11-16 | Daiwa House Ind Co Ltd | Formation of titanium anodically oxidized film for photocatalyst |
US20050103639A1 (en) * | 2003-11-18 | 2005-05-19 | Fu-Hsing Lu | Titanium dioxide film synthesizing method and the product thereof |
CN101109096A (en) * | 2007-06-22 | 2008-01-23 | 湖南大学 | Method for preparing titanium dioxide nanotube array by molybdenum-tungsten doped anodic oxidation method |
CN101113525A (en) * | 2007-02-09 | 2008-01-30 | 南京航空航天大学 | Pt-TiO2/Ti combination electrode and method for making same |
CN101560669A (en) * | 2009-04-24 | 2009-10-21 | 同济大学 | Method for preparing noble metal nanocrystalline chemically based on titanium dioxide nanotube array |
-
2010
- 2010-12-06 CN CN2010105734200A patent/CN102485968A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11315398A (en) * | 1998-02-20 | 1999-11-16 | Daiwa House Ind Co Ltd | Formation of titanium anodically oxidized film for photocatalyst |
US20050103639A1 (en) * | 2003-11-18 | 2005-05-19 | Fu-Hsing Lu | Titanium dioxide film synthesizing method and the product thereof |
CN101113525A (en) * | 2007-02-09 | 2008-01-30 | 南京航空航天大学 | Pt-TiO2/Ti combination electrode and method for making same |
CN101109096A (en) * | 2007-06-22 | 2008-01-23 | 湖南大学 | Method for preparing titanium dioxide nanotube array by molybdenum-tungsten doped anodic oxidation method |
CN101560669A (en) * | 2009-04-24 | 2009-10-21 | 同济大学 | Method for preparing noble metal nanocrystalline chemically based on titanium dioxide nanotube array |
Non-Patent Citations (2)
Title |
---|
刘素琴等: "阳极氧化法制备二氧化钛纳米管及其荧光性质", 《无极化学学报》, vol. 23, no. 5, 31 May 2007 (2007-05-31), pages 827 - 832 * |
武朋飞等: "阳极氧化法制备光电化学防腐蚀二氧化钛薄膜", 《电化学》, vol. 10, no. 3, 31 August 2004 (2004-08-31), pages 353 - 358 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102485969A (en) * | 2010-12-06 | 2012-06-06 | 长沙理工大学 | Preparation method of nitrogen and gadolinium co-doped titania nanotube array |
CN102485969B (en) * | 2010-12-06 | 2016-03-23 | 长沙理工大学 | The preparation method of nitrogen, gadolinium codope titanium dioxide nanotube array |
CN102826630A (en) * | 2012-09-09 | 2012-12-19 | 桂林理工大学 | Application of Bi/TiO2 Nanotube Arrays to Photocatalytic Degradation of Sugar Wastewater |
CN102980915A (en) * | 2012-11-08 | 2013-03-20 | 清华大学 | Preparation method of palladium-doped TiO2 nanotube array Schottky junction hydrogen sensor |
CN103866370A (en) * | 2012-12-11 | 2014-06-18 | 中国科学院上海硅酸盐研究所 | Method for preparing low-oxygen titania nanotube array |
CN103866370B (en) * | 2012-12-11 | 2016-05-18 | 中国科学院上海硅酸盐研究所 | A kind of method of preparing hypoxemia titania nanotube array |
CN103774198A (en) * | 2014-01-15 | 2014-05-07 | 浙江大学 | Preparation method of rare earth Eu-doped CaF2 film on titanium dioxide nanotube by photo-assisted electrodeposition |
CN107083151A (en) * | 2017-05-19 | 2017-08-22 | 重庆中鼎三正科技有限公司 | Method for preparing degraded catalysis material |
CN107129734A (en) * | 2017-05-19 | 2017-09-05 | 重庆中鼎三正科技有限公司 | The preparation method of composite photocatalyst material |
CN108620112A (en) * | 2018-04-02 | 2018-10-09 | 华南理工大学 | A kind of preparation method of the composite mixed film of Nano tube array of titanium dioxide of Zn-N with visible light activity |
CN112162020A (en) * | 2020-10-09 | 2021-01-01 | 浙江科技学院 | A preparation method of a high-performance hydrogen sulfide sensor that is not affected by humidity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102485968A (en) | Preparation method of zinc-doped titania nanotube array | |
Lu et al. | Investigation on IrO2 supported on hydrogenated TiO2 nanotube array as OER electro-catalyst for water electrolysis | |
CN108103525B (en) | N doping carbon dots modify tungstic acid complex light electrode and preparation method thereof and decompose the application in water in photoelectrocatalysis | |
CN103165283B (en) | A kind of enhancing TiO2The method of electrode electro Chemical performance | |
CN105597784B (en) | MoS2Iron oxide photocatalysis film, preparation method and its application in Phenol-Containing Wastewater Treatment of doping | |
CN101969109B (en) | Preparation process of dendritic titanium dioxide nanotube array electrode | |
CN103334142A (en) | A self-doping modified high-conductivity TiO2 nanotube array preparation method | |
CN102485969B (en) | The preparation method of nitrogen, gadolinium codope titanium dioxide nanotube array | |
CN102280269B (en) | TiO2 nanotube array photoanode and preparation method thereof | |
CN101719421A (en) | Light anode and flexile solar battery thereof | |
CN103361689A (en) | Method for preparing titanium dioxide nanotube array photoelectrode | |
CN101922044A (en) | A method of doping nano-silver particles in titanium dioxide nanotubes | |
CN109023413B (en) | Carbon dot and carbon nitride co-modified titanium dioxide photoelectrode and preparation method and application thereof | |
CN105986292B (en) | Preparation method of cobalt-nickel double-layer hydroxide modified titanium dioxide nanotube array and application of photoelectrochemical hydrolysis hydrogen production | |
CN105274503A (en) | Preparation method of tungsten trioxide nano film | |
CN102222574A (en) | Ag modified TiO2 membrane electrode for solar cell and preparation method thereof | |
CN106637285B (en) | Cu2O quantum dots modified TiO2 nanotube photoelectrode and its preparation and application | |
CN108560035A (en) | A kind of low cost preparation ZnO&TiO2The method of hetero-junction thin-film | |
CN103011346A (en) | Titanium-tungsten alloy oxide nano-tube electrode with characteristic of in-situ vertical growth, preparation method and applications thereof | |
Chun et al. | Fabrication of dye-sensitized solar cells using TiO2-nanotube arrays on Ti-grid substrates | |
CN111424301A (en) | A method for improving the photoelectric catalytic CO2 conversion efficiency of CuO in a pulsed potential mode | |
CN105040062B (en) | Cu2O nano-particles are sensitized TiO2The method of nanotube array photoelectrode | |
CN107020103A (en) | A kind of iron oxide molybdenum sulfide cuprous oxide photocatalysis film and its preparation method and application | |
CN107930665B (en) | A photocatalyst regulated by two-dimensional MoS2 and its preparation method and application | |
CN106975501B (en) | A kind of visible light responsive photocatalytic film and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120606 |
|
RJ01 | Rejection of invention patent application after publication |