CN102483537B - In-plane switching mode liquid crystal display - Google Patents
In-plane switching mode liquid crystal display Download PDFInfo
- Publication number
- CN102483537B CN102483537B CN201080035758.9A CN201080035758A CN102483537B CN 102483537 B CN102483537 B CN 102483537B CN 201080035758 A CN201080035758 A CN 201080035758A CN 102483537 B CN102483537 B CN 102483537B
- Authority
- CN
- China
- Prior art keywords
- liquid crystal
- polarizing plate
- compensation film
- switching mode
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 138
- 210000002858 crystal cell Anatomy 0.000 claims abstract description 47
- 238000010521 absorption reaction Methods 0.000 claims abstract description 32
- 230000001681 protective effect Effects 0.000 claims description 15
- 230000010287 polarization Effects 0.000 abstract description 30
- 230000003287 optical effect Effects 0.000 abstract description 23
- 238000004519 manufacturing process Methods 0.000 abstract description 15
- 230000002950 deficient Effects 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 119
- 238000002834 transmittance Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 239000010410 layer Substances 0.000 description 11
- 229920002284 Cellulose triacetate Polymers 0.000 description 10
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 239000004417 polycarbonate Substances 0.000 description 8
- 238000004088 simulation Methods 0.000 description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 229920002492 poly(sulfone) Polymers 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000012788 optical film Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920006300 shrink film Polymers 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133634—Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134372—Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/02—Number of plates being 2
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/05—Single plate on one side of the LC cell
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/08—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/12—Biaxial compensators
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
本发明涉及一种面内切换模式液晶显示器。更确切地,本发明涉及的面内切换模式液晶显示器包括第一偏振板、第二偏振板和液晶盒,因为根据在庞加莱球上的液晶取向的偏振状态的变化确定补偿膜的光学性能被,而且由于第一偏振板的补偿膜的慢轴平行于液晶取向和偏振片的吸收轴而改进了倾斜视觉方向的对比度,其设计具有宽视角且经济。本发明实现高产率(减少了由于外来物质或杂质造成的次品率)的薄液晶显示器的大规模生产,而且由于可生产更大的耦合偏振板,能够提供超大型液晶显示器,因为该耦合偏振板对上偏振板和下偏振板仅用一片补偿膜就可以确保宽视角。
The invention relates to an in-plane switching mode liquid crystal display. More precisely, the present invention relates to an in-plane switching mode liquid crystal display including a first polarizing plate, a second polarizing plate, and a liquid crystal cell, because the optical properties of the compensation film are determined according to the change in the polarization state of the liquid crystal orientation on the Poincaré sphere And because the slow axis of the compensation film of the first polarizing plate is parallel to the liquid crystal orientation and the absorption axis of the polarizing plate, the contrast in the oblique viewing direction is improved, and its design has a wide viewing angle and is economical. The present invention achieves mass production of thin liquid crystal displays with high yield (reduced defective rate due to foreign substances or impurities), and since larger coupled polarizing plates can be produced, ultra-large liquid crystal displays can be provided because the coupled polarized A wide viewing angle can be secured by using only one sheet of compensation film for the upper polarizing plate and the lower polarizing plate.
Description
技术领域 technical field
本发明涉及一种面内切换模式液晶显示器,通过改进在倾斜视觉方向的对比度,其能够保证宽视角。The present invention relates to an in-plane switching mode liquid crystal display capable of securing a wide viewing angle by improving contrast in oblique viewing directions.
背景技术 Background technique
液晶显示器(LCDs)被广泛用作普通图像显示器。尽管其具有多种优异的特性,但是,窄视角被作为缺陷指出。Liquid crystal displays (LCDs) are widely used as general image displays. Although it has various excellent characteristics, a narrow viewing angle is pointed out as a drawback.
液晶显示器的模式可以根据液晶盒的最初排列、电极的结构和液晶的性能被分类,且最常用的液晶显示器的模式为扭曲向列(TN)模式、垂直排列(VA)模式和面内切换(IPS)模式。The modes of liquid crystal displays can be classified according to the initial arrangement of liquid crystal cells, the structure of electrodes, and the properties of liquid crystals, and the most commonly used modes of liquid crystal displays are twisted nematic (TN) mode, vertical alignment (VA) mode, and in-plane switching ( IPS) mode.
此外,根据在没有接受电压时是否透光,其分成常黑模式和常白模式,根据液晶的区域和初始排列,VA模式分为PVA(图像垂直排列)模式、SPVA(超级图像垂直排列)模式和MVA(多区域垂直排列)模式,以及,IPS模式分为S-IPS模式(超级面内切换)模式或FFS(边缘场切换)模式。In addition, according to whether it transmits light when no voltage is received, it is divided into normally black mode and normally white mode. According to the area and initial arrangement of the liquid crystal, the VA mode is divided into PVA (Picture Vertical Alignment) mode and SPVA (Super Image Vertical Alignment) mode. and MVA (Multiple Area Vertical Alignment) mode, and, IPS mode is classified into S-IPS mode (Super In-Plane Switching) mode or FFS (Fringe Field Switching) mode.
当液晶分子没有被激活时,面内切换模式具有均匀且基本平行于基板表面的排列。当下偏振板的透光轴与液晶分子的快轴的方向相同时,由于液晶的光学性能,即使在斜面,液晶的透光轴与快轴的方向相同,因此,即使在光穿过下偏振板后经过液晶,也不会发生偏振状态的变化,从而,其可以穿过液晶层而没有变化。因此,通过在基材的上表面和下表面上的偏振板的排列可以在未激活状态下显示一定程度的黑色状态。When the liquid crystal molecules are not activated, the in-plane switching mode has a uniform and substantially parallel alignment to the substrate surface. When the light transmission axis of the lower polarizing plate is in the same direction as the fast axis of the liquid crystal molecules, due to the optical properties of the liquid crystal, even on an inclined plane, the light transmission axis of the liquid crystal is in the same direction as the fast axis, so even if the light passes through the lower polarizing plate After passing through the liquid crystal, there is no change in the polarization state, so it can pass through the liquid crystal layer without change. Therefore, a certain degree of black state can be displayed in an inactive state by the arrangement of the polarizing plates on the upper surface and the lower surface of the substrate.
这样的面内切换模式液晶显示器通常不使用光学膜的情况下就可以实现宽视角,使得其具有在确保自然的透光率的同时提供在整个屏幕上均匀的画质和视角的优点。因此,所述面内切换模式液晶显示器主要用于18英寸以上的高端显示器。Such an in-plane switching mode liquid crystal display can generally achieve a wide viewing angle without using an optical film, so that it has the advantage of providing uniform image quality and viewing angle across the entire screen while ensuring natural light transmittance. Therefore, the in-plane switching mode liquid crystal display is mainly used for high-end displays larger than 18 inches.
使用相关技术的面内切换模式的液晶显示器在包括液晶的液晶盒外部需要偏振板,以使光偏振化,以及,由TAC(三乙酰纤维素)膜形成的保护膜被设置在所述偏振板的一面或两面上以保护偏振片。在这种构造中,当液晶显示黑色状态时,由下偏振板上的偏振片所偏振的光不是在正面而是在倾斜视觉方向上被TAC膜椭圆地偏振。椭圆化的偏振光产生一个问题:因为其在液晶盒中改变了偏振,这导致显示器的颜色改变。A liquid crystal display using an in-plane switching mode of the related art requires a polarizing plate outside a liquid crystal cell including a liquid crystal to polarize light, and a protective film formed of a TAC (triacetyl cellulose) film is provided on the polarizing plate one or both sides to protect the polarizer. In this configuration, when the liquid crystal displays a black state, the light polarized by the polarizer on the lower polarizing plate is elliptically polarized by the TAC film not in the front but in oblique viewing directions. Elliptical polarized light creates a problem: because it changes polarization in the liquid crystal cell, this causes the color of the display to change.
此外,近年来,制造大图像显示器件需要宽视角,例如,使用面内切换模式的大尺寸TV。因此,在面内切换模式液晶显示器(IPS-LCD)中,已经通过如下方法制备了显示器:在液晶盒与用于液晶盒的两个偏振板中的一个偏振板的偏振片(聚乙烯醇)之间,代替TAC膜配置各向同性保护层,以及,在液晶盒与所述两个偏振板中的另一个偏振板的偏振片(聚乙烯醇)之间,配置两个或两个以上的具有不同光学性能的补偿层或者Z-轴取向(沿厚度方向取向)膜,以便保证宽视角。Furthermore, in recent years, a wide viewing angle is required to manufacture a large image display device, for example, a large-sized TV using an in-plane switching mode. Therefore, in an in-plane switching mode liquid crystal display (IPS-LCD), a display has been prepared by a polarizing plate (polyvinyl alcohol) between a liquid crystal cell and one of two polarizing plates for the liquid crystal cell Between the TAC film, an isotropic protective layer is arranged, and between the liquid crystal cell and the polarizer (polyvinyl alcohol) of the other polarizer among the two polarizers, two or more Compensation layers with different optical properties or Z-axis orientation (orientation in the thickness direction) film in order to ensure a wide viewing angle.
面内切换模式液晶显示器使用了通过将具有不同光学性能的两个层层叠在液晶层的一侧上形成的三个补偿膜类型的耦合偏振板(一个下方的各向同性膜和两个上方的补偿层),或者,由于在制造工艺中使用收缩膜所导致的较低的经济效益和必不可少的收缩工艺而难以具有大面积的Z-轴取向膜。In-plane switching mode liquid crystal displays use three compensation film-type coupled polarizing plates formed by laminating two layers with different optical properties on one side of the liquid crystal layer (one isotropic film below and two above compensation layer), or it is difficult to have a large-area Z-axis oriented film due to the lower economic efficiency and the necessary shrinking process caused by using the shrink film in the manufacturing process.
因此,由于使用由三个补偿膜层叠的耦合偏振板,难以制造较薄的产品;因为液晶盒两侧的厚度不同,温度或湿度的变化还会造成弯曲;以及由于使用昂贵的补偿膜造成的较低的价格竞争力,其使用限于高成本的面内切换模式液晶显示器。此外,由于不容易制造包括偏振片和补偿膜的宽偏振板,所以难以开发大尺寸的液晶显示器。Therefore, it is difficult to manufacture thinner products due to the use of coupled polarizing plates laminated by three compensation films; bending due to changes in temperature or humidity due to the difference in thickness on both sides of the liquid crystal cell; and Less price-competitive, its use is limited to high-cost in-plane switching mode LCDs. In addition, since it is not easy to manufacture a wide polarizing plate including a polarizing plate and a compensation film, it is difficult to develop a large-sized liquid crystal display.
发明内容 Contents of the invention
技术问题technical problem
本发明提供了一种面内切换模式液晶显示器,其包括第一偏振板、第二偏振板和液晶盒,因为根据在庞加莱球上的液晶取向的偏振状态的变化确定了补偿膜的光学性能,而且由于第一偏振板的补偿膜的慢轴平行于液晶取向和偏振片的吸收轴而改进了在倾斜视觉方向的对比度,所述面内切换模式液晶显示器具有宽视角,而且由于可以通过宽度拉伸制造具有特定光学性能的补偿膜,制造大的耦合偏振板可以被简单化,从而可以提供大型、经济、薄的面内切换模式液晶显示器。The present invention provides an in-plane switching mode liquid crystal display comprising a first polarizing plate, a second polarizing plate and a liquid crystal cell, because the change of the polarization state according to the orientation of the liquid crystal on the Poincaré sphere determines the optical properties of the compensation film. Performance, and because the slow axis of the compensation film of the first polarizing plate is parallel to the liquid crystal alignment and the absorption axis of the polarizing plate, the contrast in the oblique viewing direction is improved, and the in-plane switching mode liquid crystal display has a wide viewing angle, and since it can pass By width-stretching to fabricate compensation films with specific optical properties, the fabrication of large coupled polarizer plates can be simplified, allowing for large, economical, and thin in-plane switching-mode liquid crystal displays.
技术方案Technical solutions
本发明提供了面内切换模式液晶显示器,其包括:第一偏振板,其具有保护膜、偏振片和第一补偿膜,且从上至下按该次序形成;液晶盒;以及,第二偏振板,其具有第二补偿膜、偏振片、保护膜,且从上至下按该次序形成,其中,第一偏振板中的偏振片的吸收轴垂直于第二偏振板中的偏振片的吸收轴,第一补偿膜具有40nm至80nm的面内延迟(R0)、-150nm至-60nm的厚度方向的延迟(Rth)和-2至-1的折射率比(NZ),且其慢轴平行于液晶取向和第一偏振板中的偏振片的吸收轴,以及第二补偿膜具有150nm至270nm的面内延迟(R0)和-1至0的折射率比(NZ),且其慢轴平行于第二偏振板中的偏振片的吸收轴。The present invention provides an in-plane switching mode liquid crystal display comprising: a first polarizing plate having a protective film, a polarizing plate, and a first compensation film formed in this order from top to bottom; a liquid crystal cell; and, a second polarizing plate, which has a second compensation film, a polarizing plate, and a protective film, and is formed in this order from top to bottom, wherein the absorption axis of the polarizing plate in the first polarizing plate is perpendicular to the absorption axis of the polarizing plate in the second polarizing plate axis, the first compensation film has an in-plane retardation (R0) of 40nm to 80nm, a retardation in the thickness direction (Rth) of -150nm to -60nm, and a refractive index ratio (NZ) of -2 to -1, and its slow axis is parallel The absorption axis of the polarizer in the orientation of the liquid crystal and the first polarizing plate, and the second compensation film have an in-plane retardation (R0) of 150nm to 270nm and a refractive index ratio (NZ) of -1 to 0, and its slow axis is parallel The absorption axis of the polarizer in the second polarizer.
有益效果Beneficial effect
根据本发明的面内切换模式液晶显示器,可以确保与相关技术中使用三层补偿膜所达到的水平相当的宽视角。另外,由于对第一偏振板和第二偏振板仅用一层补偿膜就可以确保宽视角,本发明可实现高产率(减少了由于异物或杂质造成的次品率)的薄液晶显示器的大规模生产,以及由于可生产更大的耦合偏振板,能够提供超大型液晶显示器。According to the in-plane switching mode liquid crystal display of the present invention, a wide viewing angle comparable to that achieved by using three-layer compensation films in the related art can be ensured. In addition, since a wide viewing angle can be ensured with only one layer of compensation film for the first polarizing plate and the second polarizing plate, the present invention can realize the large size of a thin liquid crystal display with high yield (reduced defective rate due to foreign substances or impurities). Scale production, and since larger coupled polarizing plates can be produced, can provide very large LCD displays.
附图说明 Description of drawings
在附图中:In the attached picture:
图1和图2为示出根据本发明的面内切换模式液晶显示器(S-IPS和FFS)的结构的透视图;1 and 2 are perspective views showing the structure of an in-plane switching mode liquid crystal display (S-IPS and FFS) according to the present invention;
图3为示出根据本发明的补偿膜的折射率的示意图;3 is a schematic diagram showing the refractive index of a compensation film according to the present invention;
图4为示出在用于阐明补偿膜和偏振板的拉伸方向的制造方法中的机器方向(MD)的示意图;4 is a schematic view showing a machine direction (MD) in a manufacturing method for clarifying a stretching direction of a compensation film and a polarizing plate;
图5为示出本发明的坐标系中Φ和θ的表示的示意图;Figure 5 is a schematic diagram showing the representation of Φ and θ in the coordinate system of the present invention;
图6为示出根据本发明的示例1的在Φ=45°和θ=60°的视觉方向上在庞加莱球上的偏振状态的变化的图;6 is a graph showing changes in polarization states on a Poincaré sphere in visual directions of Φ=45° and θ=60° according to Example 1 of the present invention;
图7为示出本发明的示例1的所有的视觉方向上的透光率的模拟结果的图;7 is a graph showing simulation results of light transmittance in all viewing directions of Example 1 of the present invention;
图8为示出本发明的示例2的所有的视觉方向上的透光率的模拟结果的图;8 is a graph showing simulation results of light transmittance in all viewing directions of Example 2 of the present invention;
图9为示出根据本发明的示例3的在Φ=45°和θ=60°的视觉方向上在庞加莱球上的偏振状态的变化的图;9 is a graph showing changes in polarization states on a Poincaré sphere in visual directions of Φ=45° and θ=60° according to Example 3 of the present invention;
图10为示出本发明的示例3的所有的视觉方向上的透光率的模拟结果的图;10 is a graph showing simulation results of light transmittance in all viewing directions of Example 3 of the present invention;
图11为示出本发明的示例4的所有的视觉方向上的透光率的模拟结果的图。11 is a graph showing simulation results of light transmittance in all viewing directions of Example 4 of the present invention.
具体实施方式 Detailed ways
本发明涉及一种包括第一偏振板、第二偏振板和液晶盒的面内切换模式液晶显示器,其设计成具有宽视角和经济性,因为根据在庞加莱球(PoincareSphere)上的液晶取向的偏振状态的变化确定了补偿膜的光学性能,而且,由于第一偏振板的补偿膜的慢轴平行于液晶取向和偏振片的吸收轴,改进了在倾斜视觉方向的对比度。The present invention relates to an in-plane switching mode liquid crystal display comprising a first polarizing plate, a second polarizing plate and a liquid crystal cell, which is designed to have a wide viewing angle and economy because according to the orientation of the liquid crystal on the Poincare sphere (PoincareSphere) The change of the polarization state determines the optical properties of the compensation film, and, since the slow axis of the compensation film of the first polarizing plate is parallel to the liquid crystal orientation and the absorption axis of the polarizing plate, the contrast ratio in the oblique viewing direction is improved.
在下文中,将描述根据本发明的面内切换模式液晶显示器的实施方式。Hereinafter, embodiments of an in-plane switching mode liquid crystal display according to the present invention will be described.
所述面内切换模式液晶显示器包括第一偏振板、液晶盒和第二偏振板。The in-plane switching mode liquid crystal display includes a first polarizing plate, a liquid crystal cell and a second polarizing plate.
第一偏振板包括第一补偿膜、偏振片和保护膜,且从液晶盒侧开始按该顺序排列;以及,第二偏振板包括第二补偿膜、偏振片和保护膜,且从液晶盒侧开始按该顺序排列。第一偏振板中的偏振片的吸收轴垂直于第二偏振板中的偏振片的吸收轴。The first polarizing plate includes a first compensation film, a polarizing plate and a protective film, and is arranged in this order from the side of the liquid crystal cell; Start in that order. The absorption axis of the polarizers in the first polarizing plate is perpendicular to the absorption axis of the polarizing plates in the second polarizing plate.
第一偏振板和第二偏振板的排列依赖于液晶盒的液晶取向。The alignment of the first polarizing plate and the second polarizing plate depends on the liquid crystal orientation of the liquid crystal cell.
当从显示侧的右水平方向逆时针方向测量液晶取向时,如果液晶盒具有90°的液晶取向(S-IPS),则如图1所示配置第一偏振板为下偏振板以及第二偏振板为上偏振板。在该情况下,在波长589nm,通过下面的公式1所确定的液晶盒的面板相位差为300nm至330nm。When the liquid crystal orientation is measured counterclockwise from the right horizontal direction of the display side, if the liquid crystal cell has a liquid crystal orientation of 90° (S-IPS), configure the first polarizing plate as the lower polarizing plate and the second polarizing plate as shown in Figure 1 The plate is an upper polarizing plate. In this case, at a wavelength of 589 nm, the panel retardation of the liquid crystal cell determined by Equation 1 below is 300 nm to 330 nm.
【公式1】【Formula 1】
(Δn×d)=(ne-no)×d(Δn×d)=(ne-no)×d
其中,ne为液晶的非常光线折射率,no为普通光线折射率,d为液晶盒间隙,Δn和d为标量而不是向量。Among them, ne is the extraordinary ray refractive index of the liquid crystal, no is the ordinary ray refractive index, d is the liquid crystal cell gap, and Δn and d are scalars rather than vectors.
此外,当从显示器的右面的水平方向逆时针方向测量液晶取向时,如果液晶盒具有0°的液晶取向(FFS),则如图2所示配置第一偏振板为上偏振板以及第二偏振板为下偏振板。在该情况下,在波长589nm,液晶盒的面板相位差为370nm至400nm。In addition, when the liquid crystal orientation is measured counterclockwise from the horizontal direction on the right side of the display, if the liquid crystal cell has a liquid crystal orientation (FFS) of 0°, configure the first polarizing plate as the upper polarizing plate and the second polarizing plate as shown in FIG. 2 The plate is a lower polarizing plate. In this case, at a wavelength of 589 nm, the panel retardation of the liquid crystal cell is 370 nm to 400 nm.
第一偏振板中的第一补偿膜具有40nm至80nm的面内延迟(R0)、-150nm至-60nm的厚度方向的延迟(Rth)和-2至-1的折射率比(NZ)。The first compensation film in the first polarizing plate has an in-plane retardation (R0) of 40 nm to 80 nm, a thickness direction retardation (Rth) of -150 nm to -60 nm, and a refractive index ratio (NZ) of -2 to -1.
需要找到补偿膜的面内延迟(R0)的适当的下限值,因为较小的面内延迟(R0)由于制造所述膜时慢轴的方向上的不均匀导致从观看者的方向的对比度变差。在本发明中,所述面内延迟(R0)优选40nm。另外,由于波长的分散特性,超过120nm的补偿膜的面内延迟(R0)会导致根据视觉方向的色彩失真。折射率比(NZ)的范围为可以构成根据本发明的液晶显示器结构的范围,而且,当折射率比(NZ)在上述范围内时,通过拉伸可以稳定地制造所述补偿膜。It is necessary to find an appropriate lower limit value of the in-plane retardation (R0) of the compensation film, because a small in-plane retardation (R0) results in contrast from the direction of the viewer due to non-uniformity in the direction of the slow axis when the film is manufactured. worse. In the present invention, the in-plane retardation (R0) is preferably 40 nm. In addition, the in-plane retardation (R0) of the compensation film exceeding 120 nm may cause color distortion according to viewing directions due to dispersion characteristics of wavelengths. The range of the refractive index ratio (NZ) is a range in which the structure of the liquid crystal display according to the present invention can be constituted, and, when the refractive index ratio (NZ) is within the above range, the compensation film can be stably manufactured by stretching.
第一补偿膜的慢轴被配置为平行于液晶取向和第一偏振板内的偏振片的吸收轴。The slow axis of the first compensation film is configured to be parallel to the liquid crystal alignment and the absorption axis of the polarizers in the first polarizing plate.
第二偏振板内的第二补偿膜具有150nm至270nm的面内延迟(R0)和-1至0的折射率比(NZ),优选使用-1至-0.3的折射率比(NZ)。The second compensation film in the second polarizing plate has an in-plane retardation (R0) of 150 nm to 270 nm and a refractive index ratio (NZ) of -1 to 0, preferably using a refractive index ratio (NZ) of -1 to -0.3.
在面内延迟(R0)的所述范围内,150nm为补偿液晶的面内延迟的最小值,以及,270nm为用于通过拉伸制造补偿膜的最大值。另外,根据液晶和第一补偿膜的光学性能,确定折射率比(NZ)。In the range of the in-plane retardation (R0), 150 nm is the minimum value for compensating the in-plane retardation of the liquid crystal, and 270 nm is the maximum value for manufacturing the compensation film by stretching. In addition, the refractive index ratio (NZ) is determined according to the optical properties of the liquid crystal and the first compensation film.
第二补偿膜的慢轴被配置为平行于第二偏振板内的偏振片的吸收轴。The slow axis of the second compensation film is configured to be parallel to the absorption axis of the polarizing plate in the second polarizing plate.
如图1所示,当从显示侧面的右面的水平方向以逆时针方向测量液晶取向时,如果液晶盒具有90°的液晶取向,则配置第一偏振板为下偏振板,第一偏振板内的第一补偿膜和偏振片平行于90°的液晶取向。As shown in Figure 1, when the liquid crystal orientation is measured counterclockwise from the horizontal direction on the right side of the display side, if the liquid crystal cell has a liquid crystal orientation of 90°, the first polarizing plate is configured as the lower polarizing plate, and the inside of the first polarizing plate Align the first compensation film and polarizer parallel to the liquid crystal at 90°.
此外,如图2所示,当从显示侧面的右面的水平方向以逆时针方向测量液晶取向时,如果液晶盒具有0°的液晶取向,则配置第一偏振板为上偏振板,第一偏振板内的第一补偿膜和偏振片平行于0°的液晶取向。In addition, as shown in Figure 2, when the liquid crystal orientation is measured in the counterclockwise direction from the horizontal direction on the right side of the display side, if the liquid crystal cell has a liquid crystal orientation of 0°, configure the first polarizing plate as the upper polarizing plate, and the first polarizing plate The first compensation film and the polarizer inside the plate are aligned parallel to the liquid crystal at 0°.
在本发明中,通过下文的公式2至公式4,对可见光区内的所有波长,确定第一补偿膜和第二补偿膜的光学性能。In the present invention, the optical properties of the first compensation film and the second compensation film are determined for all wavelengths in the visible light region by Equation 2 to Equation 4 below.
如果对光源的波长没有特别声明,则描述的是在589nm的光学性能,其中,Nx为在面内方向上具有最大折射率的轴的折射率,Ny为在面内方向上在Nx垂直方向上的折射率以及Nz为厚度方向的折射率,用公式2表示如下:If there is no special statement about the wavelength of the light source, the optical performance at 589nm is described, where Nx is the refractive index of the axis with the maximum refractive index in the in-plane direction, and Ny is the direction perpendicular to Nx in the in-plane direction The refractive index of and Nz is the refractive index of the thickness direction, which is expressed by formula 2 as follows:
【公式2】【Formula 2】
Rth=[(Nx+Ny)/2-Nz]×dRth=[(Nx+Ny)/2-Nz]×d
其中,Nx和Ny为面内折射率,且Nx≥Ny,Nz为在膜的厚度方向上振动的光的折射率,以及d为膜的厚度;where Nx and Ny are in-plane refractive indices, and Nx≥Ny, Nz is the refractive index of light vibrating in the thickness direction of the film, and d is the thickness of the film;
【公式3】【Formula 3】
R0=(Nx-Ny)×dR0=(Nx-Ny)×d
其中,Nx和Ny为补偿膜的面内折射率,以及d为膜的厚度,以及Nx≥Ny;以及where Nx and Ny are the in-plane refractive indices of the compensation film, and d is the thickness of the film, and Nx≥Ny; and
【公式4】【Formula 4】
NZ=(Nx-Nz)/(Nx-Ny)=Rth/R0+0.5NZ=(Nx-Nz)/(Nx-Ny)=Rth/R0+0.5
其中,Nx和Ny为面内折射率,且Nx≥Ny,以及Nz为在膜的厚度方向上振动的光的折射率。Here, Nx and Ny are in-plane refractive indices, and Nx≧Ny, and Nz is the refractive index of light vibrating in the thickness direction of the film.
在此,公式2中的Rth为厚度方向的延迟,其表示在厚度方向上的相对于面内平均折射率的相位差,公式3中的R0为面内延迟,所述面内延迟为当光以法向方向(垂直方向)透过膜时的相位差。Here, Rth in Equation 2 is the retardation in the thickness direction, which represents the phase difference relative to the average refractive index in the thickness direction, and R0 in Equation 3 is the in-plane retardation, which is when the light The phase difference when passing through a film in the normal direction (perpendicular direction).
另外,公式4中的NZ为折射率比,由此可以区分出补偿膜的板的类型。In addition, NZ in Equation 4 is a refractive index ratio, whereby the plate type of the compensation film can be distinguished.
补偿膜的板的类型可分为:1)A-板,其具有在膜的面内方向上的光轴,2)C-板,其具有垂直于平面方向的光轴,以及,3)当存在两个光轴时的双轴板。具体来说,1)NZ=1时,折射率符合Nx>Ny=Nz,且称作A-板,2)1<NZ时,折射率符合Nx>Ny>Nz,且称作负双轴A-板,3)0<NZ<1时,折射率符合Nx>Nz>Ny,且称作Z-轴取向膜,4)NZ=0时,折射率具有关系式Nx=Nz>Ny,且称作负A-板,5)NZ<0时,折射率具有关系式Nz>Nx>Ny,且称作正双轴A-板,6)NZ=∞时,折射率具有关系式Nx=Ny>Nz,且称作负C-板,7)NZ=-∞时,折射率具有关系式Nz>Nx=Ny,且称作正C-板。The types of plates of the compensation film can be divided into: 1) A-plates, which have an optical axis in the in-plane direction of the film, 2) C-plates, which have an optical axis perpendicular to the plane direction, and, 3) when Biaxial plates when there are two optical axes. Specifically, 1) when NZ=1, the refractive index satisfies Nx>Ny=Nz, and is called A-plate, and 2) when 1<NZ, the refractive index satisfies Nx>Ny>Nz, and is called negative biaxial A - plate, 3) when 0<NZ<1, the refractive index meets Nx>Nz>Ny, and is called Z-axis alignment film, 4) when NZ=0, the refractive index has the relationship Nx=Nz>Ny, and is called As a negative A-plate, 5) when NZ<0, the refractive index has a relationship Nz>Nx>Ny, and it is called a positive biaxial A-plate, 6) when NZ=∞, the refractive index has a relationship Nx=Ny> Nz, and is called a negative C-plate, 7) When NZ=-∞, the refractive index has the relationship Nz>Nx=Ny, and is called a positive C-plate.
然而,按照理论的定义,在现实世界的方法中不能制造完全符合理论定义的A-板和C-板。因此,在一般的工艺中,通过设定A-板的折射率比的大致范围和C-板的面内延迟的范围内的预定值来区分A-板和C-板。然而,设定预定值无法应用在根据拉伸而具有不同的折射率的所有其它材料上。因此,本发明的上偏振板和下偏振板中包括的补偿膜由作为板的光学性能的NZ、R0和Rth等以数字形式表示,而不是根据折射率的各向同性。However, according to the theoretical definition, A-plates and C-plates that fully meet the theoretical definition cannot be fabricated in real-world methods. Therefore, in a general process, the A-plate and the C-plate are distinguished by setting a predetermined value within the approximate range of the refractive index ratio of the A-plate and the range of the in-plane retardation of the C-plate. However, setting predetermined values cannot be applied to all other materials having different refractive indices according to stretching. Therefore, the compensation films included in the upper and lower polarizing plates of the present invention are expressed numerically by NZ, R0, Rth, etc., which are optical properties of the plates, not in terms of isotropy of refractive index.
可以通过拉伸制造本发明中的第一偏振板和第二偏振板的补偿膜。The compensation films of the first polarizing plate and the second polarizing plate in the present invention can be manufactured by stretching.
这些补偿膜通过拉伸提供相位差,其中,在拉伸方向折射率增大的膜具有正(+)折射率性能,而在拉伸方向折射率减小的膜具有负(-)折射率性能。具有正(+)折射率性能的补偿膜可以由选自TAC(三乙酰纤维素)、COP(环烯烃聚合物)、COC(环烯烃共聚物)、PET(聚对苯二甲酸乙二醇酯)、PP(聚丙烯)、PC(聚碳酸酯)、PSF(聚砜)和PMMA(聚甲基丙烯酸甲酯)的一种制成,以及,具有负(-)折射率的补偿膜可以具体由改性PS(聚苯乙烯)或改性PC(聚碳酸酯)制成。These compensating films provide retardation by stretching, where a film with an increased refractive index in the stretching direction has positive (+) refractive index properties and a film with a decreased refractive index in the stretching direction has negative (-) refractive index properties . The compensation film with positive (+) refractive index properties can be selected from TAC (triacetyl cellulose), COP (cycloolefin polymer), COC (cycloolefin copolymer), PET (polyethylene terephthalate ), PP (polypropylene), PC (polycarbonate), PSF (polysulfone) and PMMA (polymethyl methacrylate), and the compensation film with negative (-) refractive index can be specifically Made of modified PS (polystyrene) or modified PC (polycarbonate).
对补偿膜提供光学性能的拉伸方法分为固定端拉伸和自由端拉伸。所述固定端拉伸为,在膜的拉伸期间,固定除拉伸方向以外的方向的长度,而自由端拉伸为在膜的拉伸过程中除拉伸方向以外的其他方向上提供自由度。一般而言,在拉伸过程中,膜在除拉伸方向以外的方向上收缩,但是Z-轴取向膜需要特殊的收缩处理而不是拉伸处理。The stretching method for providing optical properties to the compensation film is divided into fixed-end stretching and free-end stretching. The fixed-end stretching is to fix the length in directions other than the stretching direction during stretching of the film, and the free-end stretching is to provide freedom in directions other than the stretching direction during stretching of the film. Spend. In general, during stretching, the film shrinks in directions other than the stretching direction, but Z-axis oriented films require a special shrinking process rather than a stretching process.
卷绕膜的退绕方向称作MD(机器方向),以及垂直于MD的方向称作TD(横向)。此外,在该过程中,自由端拉伸为在MD上对膜进行拉伸,而固定端拉伸是在TD上对膜进行拉伸。The unwinding direction of the rolled film is called MD (machine direction), and the direction perpendicular to the MD is called TD (transverse direction). In addition, in this process, free-end stretching stretches the film in MD, and fixed-end stretching stretches the film in TD.
根据拉伸方法(当仅应用第一工艺时)确定NZ和板的类型。尤其是,1)通过自由端拉伸具有正(+)折射率性能的膜可以制造正A-板;2)通过固定端拉伸具有正(+)折射率性能的膜可以制造负双轴A-板;3)通过自由端拉伸和后续的固定端收缩具有正(+)折射性能或负(-)折射性能的膜可以制造Z-轴取向膜;4)通过自由端拉伸具有负(-)折射性能的膜可以制造负A-板;以及5)通过固定端拉伸具有负(-)折射性能的膜可以制备正双轴A-板。NZ and plate type are determined according to the drawing method (when only the first process is applied). In particular, 1) positive A-plates can be fabricated by stretching films with positive (+) refractive index properties at free ends; 2) negative biaxial A-plates can be fabricated by stretching films with positive (+) refractive index properties at fixed ends - plate; 3) films with positive (+) or negative (-) refractive properties by free-end stretching and subsequent fixed-end shrinkage can produce Z-axis oriented films; 4) by free-end stretching with negative ( -) Films with refractive properties can produce negative A-plates; and 5) Positive biaxial A-plates can be produced by fixed-end stretching films with negative (-) refractive properties.
除上述第一拉伸方法外,通过应用增加的工艺例如第二拉伸或添加添加剂可以控制慢轴的方向、相位差和NZ值。这样的增加的工艺为在包括本发明的领域内通常采用的许多工艺之一而不特别受限于此。。In addition to the above-mentioned first stretching method, the direction of the slow axis, phase difference, and NZ value can be controlled by applying an increased process such as second stretching or adding additives. Such an added process is one of many processes commonly employed in the field including the present invention and is not particularly limited thereto. .
第一补偿膜和第二补偿膜优选通过对具有负(-)折射率的膜实施一次或多次固定端拉伸而制成。此时,在TD上实施的拉伸应比在MD上实施的拉伸更多,使得慢轴在MD上。这是为了在制造根据本发明的耦合的偏振板时易于应用辊对辊(roll-to-roll)工艺中。The first compensation film and the second compensation film are preferably produced by subjecting a film having a negative (-) refractive index to one or more fixed-end stretches. At this time, more stretching should be performed in TD than in MD so that the slow axis is in MD. This is for ease of application in a roll-to-roll process when manufacturing coupled polarizing plates according to the present invention.
任何符合本发明的光学性能的材料可用作第一补偿膜和第二补偿膜。具体来说,可以使用从PC(聚碳酸酯)、改性PS(聚苯乙烯)和PMMA(聚甲基丙烯酸甲酯)中选取的一种材料。Any material conforming to the optical properties of the present invention can be used as the first compensation film and the second compensation film. Specifically, one material selected from PC (polycarbonate), modified PS (polystyrene), and PMMA (polymethyl methacrylate) can be used.
将作为通过拉伸和染色而提供偏振功能的偏振片的PVA(聚乙烯醇)层分别设置在第一偏振板和第二偏振板的偏振片上。第一偏振板的吸收轴垂直于第二偏振板的吸收轴。PVA (polyvinyl alcohol) layers, which are polarizers that provide a polarizing function by stretching and dyeing, are provided on the polarizers of the first polarizing plate and the second polarizing plate, respectively. The absorption axis of the first polarizing plate is perpendicular to the absorption axis of the second polarizing plate.
保护膜分别设置在第一偏振板的PVA层和第二偏振板的PVA层上的与液晶盒相反侧。The protective films are respectively provided on the PVA layer of the first polarizing plate and the PVA layer of the second polarizing plate on opposite sides to the liquid crystal cell.
在第一偏振板的保护膜和第二偏振板的保护膜中,根据折射率的差异的光学性能不会影响视角,因此在本发明中未特别限制折射率。在本领域中通常使用的材料可以用于第一偏振板和第二偏振板的保护膜,具体而言,可以使用选自TAC(三乙酰纤维素)、COP(环烯烃聚合物)、COC(环烯烃共聚物)、PET(聚对苯二甲酸乙二醇酯)、PP(聚丙烯)、PC(聚碳酸酯)、PSF(聚砜)和PMMA(聚甲基丙烯酸甲酯)中的一种。In the protective film of the first polarizing plate and the protective film of the second polarizing plate, the optical performance according to the difference in refractive index does not affect the viewing angle, and thus the refractive index is not particularly limited in the present invention. Materials commonly used in this field can be used for the protective films of the first polarizing plate and the second polarizing plate, specifically, materials selected from TAC (triacetyl cellulose), COP (cycloolefin polymer), COC ( Cycloolefin copolymer), PET (polyethylene terephthalate), PP (polypropylene), PC (polycarbonate), PSF (polysulfone) and PMMA (polymethyl methacrylate) kind.
可以通过本领域中常用的方法制备第一偏振板和第二偏振板,具体而言,可以使用辊对辊法和片对片(sheet-to-sheet)法。考虑到制备过程中的产率和效率,优选使用辊对辊法。The first polarizing plate and the second polarizing plate may be prepared by methods commonly used in the art, specifically, a roll-to-roll method and a sheet-to-sheet method may be used. In view of productivity and efficiency in the production process, it is preferable to use a roll-to-roll method.
在本发明中,因为PVA偏振片的吸收轴被固定在MD上且补偿膜的慢轴垂直于所述偏振板的吸收轴,所以通过应用辊对辊法可以制备所述第一偏振板。当偏振片与补偿膜组合在一起以使补偿膜的慢轴垂直于偏振板的吸收轴时,优选地使用辊对辊法降低制造成本。In the present invention, since the absorption axis of the PVA polarizer is fixed on the MD and the slow axis of the compensation film is perpendicular to the absorption axis of the polarizing plate, the first polarizing plate can be prepared by applying a roll-to-roll method. When a polarizing plate is combined with a compensation film such that the slow axis of the compensation film is perpendicular to the absorption axis of the polarizing plate, it is preferable to use a roll-to-roll method to reduce manufacturing costs.
图1示出根据本发明的面内切换模式液晶显示器的结构。FIG. 1 shows the structure of an in-plane switching mode liquid crystal display according to the present invention.
在图1中所示的面内切换模式液晶显示器包括从背光模组40侧开始依次排列的第一偏振板10、液晶盒30和第二偏振板20。在图2中,所述的面内切换模式液晶显示器具有从背光模组40侧开始依次排列的第二偏振板20、液晶盒30和第一偏振板10。在图1中所示的液晶盒为S-IPS液晶盒,而在图2中所示的液晶盒为FFS液晶盒。The in-plane switching mode liquid crystal display shown in FIG. 1 includes a first polarizing plate 10 , a liquid crystal cell 30 and a second polarizing plate 20 arranged in order from the backlight module 40 side. In FIG. 2 , the in-plane switching mode liquid crystal display has a second polarizing plate 20 , a liquid crystal cell 30 and a first polarizing plate 10 arranged sequentially from the side of the backlight module 40 . The liquid crystal cell shown in FIG. 1 is an S-IPS liquid crystal cell, and the liquid crystal cell shown in FIG. 2 is an FFS liquid crystal cell.
第一偏振板10包括从所述液晶盒侧开始依次排列的第一偏振膜14、偏振片11和保护膜13。第二偏振板20包括从所述液晶盒侧开始依次排列的第二偏振膜24、偏振片21和保护膜23。The first polarizing plate 10 includes a first polarizing film 14 , a polarizing plate 11 and a protective film 13 arranged sequentially from the side of the liquid crystal cell. The second polarizing plate 20 includes a second polarizing film 24 , a polarizing plate 21 and a protective film 23 arranged in order from the side of the liquid crystal cell.
偏振片11的吸收轴12垂直于偏振片21的吸收轴22,且第一补偿膜14的慢轴15平行于偏振片11的吸收轴12和液晶取向31。The absorption axis 12 of the polarizer 11 is perpendicular to the absorption axis 22 of the polarizer 21 , and the slow axis 15 of the first compensation film 14 is parallel to the absorption axis 12 of the polarizer 11 and the liquid crystal alignment 31 .
所述第一补偿膜14具有40nm至80nm的面内延迟(R0)、-130nm至-60nm的厚度方向延迟(Rth)和-2至-1的折射率比,且所述第二补偿膜24具有150nm至270nm的面内延迟(R0)和-1至0的折射率比(NZ)。The first compensation film 14 has an in-plane retardation (R0) of 40 nm to 80 nm, a thickness direction retardation (Rth) of -130 nm to -60 nm, and a refractive index ratio of -2 to -1, and the second compensation film 24 It has an in-plane retardation (R0) of 150nm to 270nm and a refractive index ratio (NZ) of -1 to 0.
在本发明中,当从前面看时,下偏振板的偏振片的吸收轴应该被垂直放置。具体来说,当靠近背光模组的下偏振板的吸收轴为垂直方向时,穿过下偏振板的光在水平方向上被偏振。当通过穿过施加面板电压的液晶盒实现白色状态时,所述光垂直前进并穿过显示侧的具有水平方向的吸收轴的上偏振板。即使一个戴着吸收轴在显示侧水平方向上的偏振太阳镜(偏振太阳镜的吸收轴一般为水平方向)的人也可以看见来自液晶显示器的光。如果靠近背光模组的下偏振板的吸收轴为水平方向时,戴着偏振太阳镜的人不能看到图像。In the present invention, the absorption axis of the polarizer of the lower polarizing plate should be vertically placed when viewed from the front. Specifically, when the absorption axis of the lower polarizing plate close to the backlight module is in the vertical direction, the light passing through the lower polarizing plate is polarized in the horizontal direction. When the white state is achieved by passing a panel voltage across the liquid crystal cell, the light travels vertically and passes through the upper polarizing plate on the display side with an absorption axis in the horizontal direction. Even a person wearing polarized sunglasses with the absorption axis in the horizontal direction on the display side (the absorption axis of polarized sunglasses is generally in the horizontal direction) can see the light from the liquid crystal display. If the absorption axis of the lower polarizing plate close to the backlight module is horizontal, people wearing polarized sunglasses cannot see the image.
通过当光经过庞加莱球内的每个光学层时的偏振状态的变化可以解释本发明的视角补偿的效果。The effect of the viewing angle compensation of the present invention can be explained by the change in the polarization state of light as it passes through each optical layer within the Poincaré sphere.
所述庞加莱球对于示出在特定视角的偏振状态的变化很有用,因此当在液晶显示器(其使用偏振来显示图像)中以特定的视角前进的光穿过液晶显示器内部的各光学元件时,其可以显示偏振状态的变化。The Poincaré sphere is useful for showing the change in polarization state at a particular viewing angle, so when light traveling at a particular viewing angle in a liquid crystal display (which uses polarization to display images) passes through the various optical elements inside the liquid crystal display , it can show a change in polarization state.
在本发明中的所述特定视角为图5所示的半球坐标系中的Φ=45°和θ=60°的方向,并且,通过示出相对于所有波长的来自该方向的光在庞加莱球上的偏振状态的变化,可以看出波长分布特征。The specific viewing angle in the present invention is the direction of Φ=45° and θ=60° in the hemispherical coordinate system shown in FIG. The change of the polarization state on the ray sphere can show the characteristics of the wavelength distribution.
图6示出了在Φ=45°和θ=60°的视角处,根据本发明的液晶显示器的偏振状态。具体来说,当所述Φ方向的表面在正面中以θ角度绕Φ+90°的轴被旋转至显示侧时,其示出了从前方出来的光在庞加莱球上的偏振状态的变化。当S3轴的坐标在庞加莱球上为正(+)时,出现了右旋圆偏振,其中,当某一偏振水平分量为Ex和偏振垂直分量为Ey时,右旋圆偏振表示:Ex分量的光相对于Ey分量的光的相位延迟大于0且小于波长的一半。FIG. 6 shows the polarization states of the liquid crystal display according to the present invention at viewing angles of Φ=45° and θ=60°. Specifically, when the Φ-directed surface is rotated to the display side at an angle of θ around the axis of Φ+90° in the front face, it shows the polarization state of the light coming out from the front on the Poincaré sphere Variety. When the coordinate of the S3 axis is positive (+) on the Poincaré sphere, right-handed circular polarization appears, wherein, when a certain polarization horizontal component is Ex and the polarization vertical component is Ey, right-handed circular polarization means: Ex The phase retardation of the light of the component relative to the light of the Ey component is greater than 0 and less than half the wavelength.
本发明的所述液晶显示器具有的光学参数为:从所有光方向的最大透光率为小于或等于0.2%。The optical parameter of the liquid crystal display of the present invention is: the maximum light transmittance from all light directions is less than or equal to 0.2%.
在下文中,通过示例和比较例比较了根据上述构造的对宽视角的改进效果。尽管通过下文的实施方式可以更容易理解本发明,但是下文所提供的实施方式仅作为本发明的示例,而并非限定上述权利要求所声明的本发明的保护范围。Hereinafter, the effect of improving the wide viewing angle according to the above configuration is compared by way of examples and comparative examples. Although the present invention can be understood more easily through the following embodiments, the embodiments provided below are only examples of the present invention, rather than limiting the protection scope of the present invention claimed by the above claims.
示例example
通过使用TECH WIZ LCD 1D(Sanayi System有限公司,韩国)进行的模拟比较了宽视角效果,该仪器是下文示例中的LCD模拟系统。The wide viewing angle effect was compared by simulation using TECH WIZ LCD 1D (Sanayi System Co., Ltd., Korea), which is the LCD simulation system in the example below.
示例1Example 1
将根据本发明的各光学膜、液晶盒和背光模组的实际测量的数据以图1所示的层叠结构应用到TECH WIZ LCD 1D(Sanayi System有限公司,韩国)。下文详细描述了图1的结构。The actual measured data of each optical film, liquid crystal cell and backlight module according to the present invention were applied to TECH WIZ LCD 1D (Sanayi System Co., Ltd., Korea) with the laminated structure shown in Figure 1. The structure of Fig. 1 is described in detail below.
从背光模组40侧开始,设置了第一偏振板10、面内切换模式液晶盒30(当没有施加电压的状态下从显示侧的右水平方向以逆时针方向测量液晶取向时该液晶盒具有90°的液晶取向)和第二偏振板20,其中,通过从液晶盒30侧开始层叠第一补偿膜14、偏振片11和保护膜13形成第一偏振板10,且从液晶盒30侧开始层叠第二补偿膜24、偏振片21和保护膜23形成第二偏振板20。Starting from the backlight module 40 side, the first polarizing plate 10, the in-plane switching mode liquid crystal cell 30 (when the liquid crystal orientation is measured in the counterclockwise direction from the right horizontal direction of the display side under the state where no voltage is applied), the liquid crystal cell has 90° liquid crystal orientation) and a second polarizing plate 20, wherein the first polarizing plate 10 is formed by laminating the first compensation film 14, the polarizer 11, and the protective film 13 from the liquid crystal cell 30 side, and the first polarizing plate 10 is formed from the liquid crystal cell 30 side The second polarizing plate 20 is formed by laminating the second compensation film 24 , the polarizing plate 21 and the protective film 23 .
就所述的液晶盒,应用了LG显示器有限公司(LG Display Co.,Ltd.)生产的LC420WU5的42英寸面板且不考虑所述色彩滤光片的吸收。对背光模组40使用了32英寸的型号为TV LC320WX4所装配的实际测量数据。As for the liquid crystal cell, a 42-inch panel of LC420WU5 produced by LG Display Co., Ltd. was used without considering the absorption of the color filter. The actual measurement data assembled by a 32-inch model TV LC320WX4 was used for the backlight module 40 .
同时,用于本示例中的各光学膜和背光模组具有如下的光学性能。Meanwhile, each optical film and backlight module used in this example has the following optical properties.
首先,通过用碘染色拉伸的PVA使第一偏振板10和第二偏振板20的偏振片11和偏振片21具有偏振功能,且所述偏振片的偏振性能为在370nm至780nm的可见光范围内具有99.9%或大于99.9%的亮度偏振度和41%或大于41%的亮度组透光率。当根据波长的透光轴的透光率为TD(λ),根据波长的吸收轴的透光率为MD(λ),且在JIS Z 8701:1999中定义的亮度补偿值为时,亮度偏振度和亮度组透光率由如下公式5至公式9所定义,其中,S(λ)为光源频谱,且光源为C-光源。First, the polarizing plate 11 and the polarizing plate 21 of the first polarizing plate 10 and the second polarizing plate 20 have a polarizing function by dyeing stretched PVA with iodine, and the polarizing performance of the polarizing plate is in the visible light range of 370nm to 780nm It has a brightness degree of polarization of 99.9% or greater than 99.9% and a brightness group light transmittance of 41% or greater. When the transmittance of the light transmission axis according to the wavelength is TD(λ), the light transmittance of the absorption axis according to the wavelength is MD(λ), and the brightness compensation value defined in JIS Z 8701:1999 is When , the degree of polarization of the brightness and the light transmittance of the brightness group are defined by the following formulas 5 to 9, wherein, S(λ) is the spectrum of the light source, and the light source is a C-light source.
【公式5】【Formula 5】
【公式6】【Formula 6】
【公式7】【Formula 7】
【公式8】[Formula 8]
【公式9】【Formula 9】
根据每个膜的方向上在内部的折射率的差异所产生的光学性能,对于589.3nm光源,使用了具有180nm的面内延迟(R0)和-0.5的折射率比(NZ)的第二补偿膜24,以及,具有52nm的面内延迟(R0)、-130nm的厚度方向延迟(Rth)和-2的折射率比的第一补偿膜14。通过应用一次或多次固定端拉伸,制造了第一补偿膜和第二补偿膜。可以通过应用固定端拉伸和自由端拉伸(固定端拉伸率大于自由端的拉伸率)或者通过仅应用固定端拉伸来制造第一补偿膜,而通过仅应用固定端拉伸,制造了第二补偿膜。According to the optical performance resulting from the difference in the internal refractive index in the direction of each film, a second compensation with an in-plane retardation (R0) of 180 nm and a refractive index ratio (NZ) of -0.5 for a 589.3 nm source was used The film 24, and the first compensation film 14 having an in-plane retardation (R0) of 52 nm, a thickness direction retardation (Rth) of -130 nm, and a refractive index ratio of -2. By applying one or more fixed-end stretches, a first compensation film and a second compensation film are fabricated. The first compensation film can be manufactured by applying both fixed-end stretching and free-end stretching (the fixed-end stretching rate is greater than that of the free end) or by applying only the fixed-end stretching, and by applying only the fixed-end stretching, manufacturing the second compensation film.
在这种情况下,偏振片11的吸收轴12平行于第一偏振膜14的慢轴15和液晶取向31。In this case, the absorption axis 12 of the polarizing plate 11 is parallel to the slow axis 15 of the first polarizing film 14 and the liquid crystal alignment 31 .
另外,对于598.3nm的入射光具有50nm的Rth的光学性能的TAC(三乙酰纤维素)被用于作为第一偏振板10和第二偏振板20的保护层的外部保护膜13和23。In addition, TAC (triacetyl cellulose) having an optical performance of Rth of 50 nm for incident light of 598.3 nm was used for the outer protective films 13 and 23 as protective layers of the first polarizing plate 10 and the second polarizing plate 20 .
图6示出在Φ=45°和θ=60°的视角处在庞加莱球上的面内切换模式液晶显示器内的偏振状态的变化。具体而言,当光在庞加莱球上以波长550nm通过第一偏振板10的偏振片11时的偏振状态为所述开始点的偏振状态,且在光依次透过第一补偿膜14、液晶盒30和第二补偿膜24之后,偏振状态到达结束点。Fig. 6 shows the variation of the polarization state in an in-plane switching mode liquid crystal display on a Poincaré sphere at viewing angles of Φ = 45° and θ = 60°. Specifically, when the light passes through the polarizing plate 11 of the first polarizing plate 10 with a wavelength of 550 nm on the Poincaré sphere, the polarization state is the polarization state at the starting point, and when the light passes through the first compensation film 14, After the liquid crystal cell 30 and the second compensation film 24, the polarization state reaches the end point.
图7示出了面内切换模式液晶显示器的所有光方向的透光率,其中,在该比例范围内,透光率为0%至1%,当示出黑色状态时,透光率超过1%的部分用红色显示,以及低透光率部分用蓝色显示。在这种情况下,可以看出,在中心处的蓝色部分越宽,越容易确保较宽的视角,而且通过图7可以确认,由于在中心处的蓝色部分较宽,可以确保较宽的视角。Figure 7 shows the light transmittance for all light directions of an in-plane switching mode liquid crystal display, where the light transmittance is 0% to 1% in the scale range, and when the black state is shown, the light transmittance exceeds 1 The % portion is shown in red, and the low transmittance portion is shown in blue. In this case, it can be seen that the wider the blue part at the center, the easier it is to secure a wider viewing angle, and it can be confirmed from Figure 7 that since the blue part at the center is wider, it is possible to ensure a wider perspective.
示例2Example 2
尽管与在示例1中的配置相同,但是第二补偿膜24具有200nm的面内延迟(R0)和-0.5的折射率比(NZ),而且,第一补偿膜14具有78nm的面内延迟(R0)和-1.1的折射率比(NZ),所述第二补偿膜24和第一补偿膜14用于制造面内切换模式液晶显示器。Although the same configuration as in Example 1, the second compensation film 24 has an in-plane retardation (R0) of 200 nm and a refractive index ratio (NZ) of −0.5, and the first compensation film 14 has an in-plane retardation ( R0) and a refractive index ratio (NZ) of -1.1, the second compensation film 24 and the first compensation film 14 are used to manufacture an in-plane switching mode liquid crystal display.
根据波长,在庞加莱球上面内切换模式液晶显示器中的偏振状态的变化与图6类似,而且,所有光方向的透光率结果与图8相同。可以通过图8确认,由于在中心处的蓝色部分较宽,故可以确保较宽的视角。The variation of the polarization state in the ISMLCD above the Poincaré sphere according to the wavelength is similar to that in Fig. 6, and the transmittance results for all light directions are the same as in Fig. 8. It can be confirmed from FIG. 8 that since the blue portion at the center is wider, a wider viewing angle can be ensured.
示例3Example 3
尽管与示例1中配置相同,在图2所示的层叠结构,第二补偿膜24具有270nm的面内延迟(R0)和-0.5的折射率比(NZ),以及,第一补偿膜14具有60nm的面内延迟(R0)、-150nm的厚度方向延迟(Rth)和-2的折射率比(NZ),且使用所述第二补偿膜24和第一补偿膜14制造了面内切换模式液晶显示器。在这种情况下,使用了当在没有接受电压的状态下从显示器的右边水平方向逆时针测量液晶取向时的液晶取向为0°的面内切换模式液晶盒30(FFS)。Although configured the same as in Example 1, in the laminated structure shown in FIG. 2, the second compensation film 24 has an in-plane retardation (R0) of 270 nm and a refractive index ratio (NZ) of -0.5, and the first compensation film 14 has In-plane retardation (R0) of 60nm, thickness direction retardation (Rth) of -150nm and refractive index ratio (NZ) of -2, and the in-plane switching mode was fabricated using the second compensation film 24 and the first compensation film 14 LCD Monitor. In this case, an in-plane switching mode liquid crystal cell 30 (FFS) whose liquid crystal orientation was 0° when measured counterclockwise from the right horizontal direction of the display in a state where no voltage was received was used.
图9示出根据波长在Φ=45°和θ=60°的视角处在庞加莱球上的面内切换模式液晶显示器的偏振状态的变化,以及图10示出所有光方向的透光率的模拟结果。Figure 9 shows the variation of the polarization state of an in-plane switching mode liquid crystal display on the Poincaré sphere at viewing angles of Φ=45° and θ=60° according to wavelength, and Figure 10 shows the light transmittance for all light directions simulation results.
如图9所示,当光在庞加莱球上以波长550nm通过的第二偏振板20的偏振片21时的偏振状态为所述开始点的偏振状态,以及在光依次透过第二补偿膜24、液晶盒30和第一补偿膜14之后,偏振状态到达结束点。As shown in Figure 9, the polarization state when the light passes through the polarizing plate 21 of the second polarizing plate 20 with a wavelength of 550nm on the Poincaré sphere is the polarization state of the starting point, and when the light passes through the second compensation After film 24, liquid crystal cell 30 and first compensation film 14, the polarization state reaches an end point.
可以通过图10确认,由于在中心处的蓝色部分较宽,故可以确保较宽的视角。It can be confirmed from FIG. 10 that since the blue portion at the center is wider, a wider viewing angle can be ensured.
示例4Example 4
尽管与在示例3中的配置相同,但是第二补偿膜24具有270nm的面内延迟(R0)和-0.3的折射率比(NZ),以及,第一补偿膜14具有45nm的面内延迟(R0)、-112.5nm的厚度方向延迟(Rth)和-2的折射率比(NZ),且使用所述第二补偿膜24和第一补偿膜14制造了面内切换模式液晶显示器。Although the same configuration as in Example 3, the second compensation film 24 has an in-plane retardation (R0) of 270 nm and a refractive index ratio (NZ) of −0.3, and the first compensation film 14 has an in-plane retardation ( R0), thickness direction retardation (Rth) of -112.5nm and refractive index ratio (NZ) of -2, and using the second compensation film 24 and the first compensation film 14 to manufacture an in-plane switching mode liquid crystal display.
根据波长,在庞加莱球上面内切换模式液晶显示器的偏振状态的变化与图9类似,以及,所有光方向的透光率结果与图11相同。可以通过图11确认,由于在中心处的蓝色部分较宽,故可以确保较宽的视角。According to the wavelength, the variation of the polarization state of the ISMLCD above the Poincaré sphere is similar to that in FIG. 9, and the transmittance results for all light directions are the same as in FIG. 11. It can be confirmed from FIG. 11 that since the blue portion at the center is wider, a wider viewing angle can be ensured.
工业实用性Industrial Applicability
如上所述,根据本发明的面内切换模式液晶显示器可以应用于要求高的视角性能的大型液晶显示器中,因为其可以对所有的视觉方向提供优异的图像质量。As described above, the in-plane switching mode liquid crystal display according to the present invention can be applied to a large liquid crystal display requiring high viewing angle performance because it can provide excellent image quality for all viewing directions.
Claims (8)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090104899A KR101605031B1 (en) | 2009-11-02 | 2009-11-02 | In-plane switching mode liquid crystal display |
KR10-2009-0104899 | 2009-11-02 | ||
PCT/KR2010/007625 WO2011053081A2 (en) | 2009-11-02 | 2010-11-01 | In-plane switching mode liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102483537A CN102483537A (en) | 2012-05-30 |
CN102483537B true CN102483537B (en) | 2014-08-27 |
Family
ID=43922903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080035758.9A Expired - Fee Related CN102483537B (en) | 2009-11-02 | 2010-11-01 | In-plane switching mode liquid crystal display |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2013509611A (en) |
KR (1) | KR101605031B1 (en) |
CN (1) | CN102483537B (en) |
WO (1) | WO2011053081A2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103018962B (en) | 2012-12-14 | 2015-04-01 | 京东方科技集团股份有限公司 | Liquid crystal display screen and display equipment |
KR101587681B1 (en) * | 2013-01-22 | 2016-01-21 | 제일모직주식회사 | Polarizing plate and optical display apparatus comprising the same |
JP2015068847A (en) * | 2013-09-26 | 2015-04-13 | 大日本印刷株式会社 | Polarizing plate, image display device, and method of improving bright field contrast of image display device |
CN104536205A (en) * | 2014-12-25 | 2015-04-22 | 深圳市华星光电技术有限公司 | Liquid crystal displayer |
KR101674354B1 (en) * | 2016-05-30 | 2016-11-22 | 주식회사 엘지화학 | The system and method for manufacturing optical display element |
KR101674352B1 (en) * | 2016-05-30 | 2016-11-08 | 주식회사 엘지화학 | The system and method for manufacturing optical display element |
JP6820417B2 (en) * | 2017-05-29 | 2021-01-27 | 富士フイルム株式会社 | Display device |
KR102108555B1 (en) * | 2017-08-11 | 2020-05-08 | 주식회사 엘지화학 | Polarizing plate, polarizing set and liquid crystal display |
KR102108556B1 (en) * | 2017-08-11 | 2020-05-08 | 주식회사 엘지화학 | Polarizing plate, polarizing set and liquid crystal display |
KR102118363B1 (en) * | 2017-08-11 | 2020-06-03 | 주식회사 엘지화학 | Polarizing plate, polarizing set and liquid crystal display |
KR102108554B1 (en) * | 2017-08-11 | 2020-05-08 | 주식회사 엘지화학 | Polarizing plate, polarizing set and liquid crystal display |
JP6521007B2 (en) * | 2017-09-04 | 2019-05-29 | 大日本印刷株式会社 | Polarizing plate, image display device, and method for improving light contrast in image display device |
KR20210117391A (en) * | 2020-03-18 | 2021-09-29 | 삼성디스플레이 주식회사 | Display device |
CN114384714B (en) * | 2020-10-18 | 2024-11-22 | 中强光电股份有限公司 | Display device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1768295A (en) * | 2003-11-21 | 2006-05-03 | Lg化学株式会社 | In-plane switching liquid crystal display including viewing angle compensation film using positive biaxial retardation film |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4882222B2 (en) * | 2003-11-21 | 2012-02-22 | 日本ゼオン株式会社 | Liquid crystal display |
JP4944387B2 (en) * | 2005-04-13 | 2012-05-30 | 帝人株式会社 | Liquid crystal display device and optical film used therefor |
JP2007045993A (en) * | 2005-08-12 | 2007-02-22 | Fujifilm Corp | Liquid crystal composition, optical compensation sheet, and liquid crystal display device |
JP2007078854A (en) * | 2005-09-12 | 2007-03-29 | Tohoku Univ | Polarizing plate and liquid crystal display device |
JP2007093864A (en) * | 2005-09-28 | 2007-04-12 | Fujifilm Corp | Retardation plate, polarizing plate, and liquid crystal display device |
-
2009
- 2009-11-02 KR KR1020090104899A patent/KR101605031B1/en active Active
-
2010
- 2010-11-01 WO PCT/KR2010/007625 patent/WO2011053081A2/en active Application Filing
- 2010-11-01 CN CN201080035758.9A patent/CN102483537B/en not_active Expired - Fee Related
- 2010-11-01 JP JP2012536702A patent/JP2013509611A/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1768295A (en) * | 2003-11-21 | 2006-05-03 | Lg化学株式会社 | In-plane switching liquid crystal display including viewing angle compensation film using positive biaxial retardation film |
Non-Patent Citations (4)
Title |
---|
JP特开2006-293108A 2006.10.26 |
JP特开2007-45993A 2007.02.22 |
JP特开2007-78854A 2007.03.29 |
JP特开2007-93864A 2007.04.12 |
Also Published As
Publication number | Publication date |
---|---|
JP2013509611A (en) | 2013-03-14 |
CN102483537A (en) | 2012-05-30 |
KR101605031B1 (en) | 2016-03-21 |
KR20110048203A (en) | 2011-05-11 |
WO2011053081A3 (en) | 2011-10-20 |
WO2011053081A2 (en) | 2011-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102483537B (en) | In-plane switching mode liquid crystal display | |
TWI546576B (en) | A coupled polarizing plate set and in-plane switching mode liquid crystal display including the same | |
KR20110066255A (en) | Planar Switching Mode Liquid Crystal Display | |
CN102687064B (en) | In-plane switching mode liquid crystal display | |
JP5602222B2 (en) | Liquid crystal display | |
JP5602221B2 (en) | Liquid crystal display | |
KR20100060092A (en) | Upper plate polarizer and in-plane switching mode liquid crystal display comprising the same | |
KR101486748B1 (en) | Top panel polarizer and plane switching mode liquid crystal display including same | |
KR20100060091A (en) | Upper plate polarizer and in-plane switching mode liquid crystal display comprising the same | |
KR101565009B1 (en) | A lower plate polarizing plate and a surface switching mode liquid crystal display including the same | |
KR20100022919A (en) | Twist nematic liquid crystal display with wideviewing | |
KR101512711B1 (en) | Retardation film and wideviewing twist nematic liquid crystal display comprising the same | |
KR101629742B1 (en) | In-plane switching mode liquid crystal display | |
KR20090101871A (en) | In-plane switching liquid crystal display comprising biaxial retardation film with negative refractive property and protective film with negative c-plate property | |
KR20100071254A (en) | Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same | |
KR20100071255A (en) | Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same | |
KR20100058884A (en) | Complex retardation film and wideviewing twist nematic liquid crystal display comprising the same | |
JP5602220B2 (en) | Liquid crystal display | |
KR20100071457A (en) | Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same | |
KR20110031537A (en) | Planar Switching Mode Liquid Crystal Display | |
KR20100071253A (en) | Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same | |
KR101485773B1 (en) | Phase difference film and a wide viewing angle twisted nematic mode liquid crystal display including the same | |
KR20090101856A (en) | In-plane switching liquid crystal display comprising uniaxial retardation film with negative refractive property and biaxial retardation film with positive refractive property | |
KR20110092052A (en) | Twist nematic mode liquid crystal display | |
KR20100058974A (en) | Upside wideviewing twist nematic liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140827 |
|
CF01 | Termination of patent right due to non-payment of annual fee |