CN102482096B - 富勒烯型多层碳纳米颗粒 - Google Patents
富勒烯型多层碳纳米颗粒 Download PDFInfo
- Publication number
- CN102482096B CN102482096B CN200980160650.XA CN200980160650A CN102482096B CN 102482096 B CN102482096 B CN 102482096B CN 200980160650 A CN200980160650 A CN 200980160650A CN 102482096 B CN102482096 B CN 102482096B
- Authority
- CN
- China
- Prior art keywords
- carbon nano
- particle
- multilayer
- fullerene type
- positive plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011852 carbon nanoparticle Substances 0.000 title claims abstract description 40
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 title claims description 27
- 229910003472 fullerene Inorganic materials 0.000 title claims description 27
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 claims description 13
- 238000007254 oxidation reaction Methods 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 239000002105 nanoparticle Substances 0.000 claims description 11
- 230000005684 electric field Effects 0.000 claims description 8
- 230000003993 interaction Effects 0.000 claims description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical group CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 239000007791 liquid phase Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 3
- 230000003628 erosive effect Effects 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 239000004902 Softening Agent Substances 0.000 claims description 2
- 230000005587 bubbling Effects 0.000 claims description 2
- 150000001805 chlorine compounds Chemical class 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000005389 magnetism Effects 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000012745 toughening agent Substances 0.000 claims description 2
- 238000004627 transmission electron microscopy Methods 0.000 claims 2
- 239000007790 solid phase Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 description 8
- 239000002048 multi walled nanotube Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/152—Fullerenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/004—Additives being defined by their length
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/014—Additives containing two or more different additives of the same subgroup in C08K
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/045—Fullerenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cold Cathode And The Manufacture (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Inert Electrodes (AREA)
Abstract
本发明涉及一种具有0.34-0.36nm层间距的环状的多层碳纳米颗粒,所述多层碳纳米颗粒的环状多层体的外径和厚度的比为(10-3)∶1,且平均尺寸为15-100nm。
Description
技术领域
本发明涉及碳的化学,特别是,涉及富勒烯型(fulleroid type)多层碳纳米颗粒的获得。
富勒烯型颗粒具有呈现由σ和π键交互的5元环,6元环组成的连续网状的典型结构。
多层颗粒具有等于0.34-0.36nm的层间距。富勒烯型纳米颗粒的结构决定了它们具有低强度的、强的或异常高的弥散相互作用(dispersion interaction)的性能,该性能通过进入所述颗粒的电磁波的电场强度的可行性增长得到证实。
背景技术
富勒烯型多层碳纳米颗粒—多层碳纳米管—是管状纳米颗粒,具有相当大范围的尺寸:长度为10-100000nm;外径为1-500nm;壁厚为0.1-200nm。纳米管通过提取由石墨阳极的电弧蒸发得到的阴极沉积物而获得(申请JP 07-165406,M.cl.C01B,31/00,1995)。
所述的多层纳米管在包含这些纳米颗粒的阴极的自发射中在电极间隙中对相互作用力几乎没有影响。此外,在包含纳米管的阴极表面上实现的电场增益系数值很小,不允许在各种介质的边界上获得高水平的弥散相互作用。
具有0.34-0.36nm的层间距以及60-200nm的平均颗粒尺寸的富勒烯型多面体多层碳纳米颗粒是已知的(RU专利号2196731,M.cl.C01B,31/02,2003)。
所述多面体多层碳纳米颗粒是具有内部裂缝状毛细管的4-7面多面体。它们也可以具有分枝形式并可不包含所述的内部毛细管,或者它们可具有拉平的多面体的形式,其外径超出纳米颗粒的长度。
所述富勒烯型多面体多层纳米颗粒从电弧过程中石墨阳极的蒸发得到的阴极沉积物的外壳中提取获得。制备方法包括研磨过的阴极沉淀物外壳的气相氧化以及随后的碳粉在氢氧化物和硝酸钾的混合物熔体中的液相氧化,如在RU2196731中所示的。
所述多面体多层碳纳米颗粒具有很多有价值的特性:它们有助于构造混凝土(RU专利号2233254,2004),增强合金的耐磨性(RU专利号2281341,2003),高抗热降解性(RU专利号2196731,2003)等等。然而,它们在尺寸和形状分布的随机性不允许在从由这些纳米颗粒制成的阴极自电子发射的过程中实现在电极间隙间相互作用力的效果,也不允许在它们表面上获得高的电场增益系数,高的电场增益系数在各种介质的相界面上提供最高水平的弥散相互作用。
发明内容
本发明的目的是获得富勒烯型多层碳纳米颗粒,在由所述颗粒制成的阴极自电子发射过程中所述颗粒在电极间隙间提供高值的相互作用力。
根据本发明,层间距为0.34-0.36nm的富勒烯型多层碳纳米颗粒具有环形形状,环状多层体的外径与厚度的比为(10-3)∶1且纳米颗粒的平均尺寸为15-100nm。
所述富勒烯型环形多层碳纳米颗粒通过它们在电场中的分离来选择多层碳纳米颗粒的尺寸和形状而获得,如Brozdnichenko A.N.&all.的论文中所述(Journal ofSurface Investigation.X-ray,Synchrotron and Neutron Techniques,2007,No2,p.69-73)。为了获得所述形状的纳米颗粒,阴极板被放置在真空体中;由先前的操作通过氧化得到的多层碳纳米颗粒置于阴极板上,并且与之平行放置由非磁性材料例如钽制成的阳极板。将阳极和阴极连接到高压电源后,提供电压并且逐渐提高在电极间隙间的电位差。当场强度达到800-1000V/mm时,开始产生自发射电流。如果自发射电流增大,通过一个在其上固定所述阳极板的真空功率计记录阳极/阴极吸引力的出现。以某个自发射电流值开始,一部分多层碳纳米颗粒从阴极迁移到阳极,同时,在电极间隙中作用的力停止增加。随后,移除施加在阴极和阳极上的电压,用惰性气体填充所述真空体,收集积聚在阳极板上的多层碳纳米颗粒。
用这种方式分离的多层碳纳米颗粒具有环形形状,所述环状多层体的外径与厚度的比等于(10-3)∶1,正如在透射电子显微镜,例如JEM-100C的帮助下的研究所示。
附图说明
所得纳米颗粒的微观照片如图1-2所示。
图1显示了聚集成一束的圆环形状的富勒烯型多层碳纳米颗粒的照片。
图2显示了富勒烯型环状多层碳纳米颗粒在可确定环状外径与其主体厚度的比的高放大倍率下的照片。
具体实施方式
本发明通过实施例进一步说明但不限于这些实施例。
实施例1
在80-200A/cm2的电流密度和20-28V的电弧压降下在40-100Torr压力的氦气气氛中通过截面积为30-160mm2的阳极石墨棒的电弧侵蚀来获得阴极沉积。从松散的中部分离阴极沉积物的致密外壳,将其研磨并将其放置在置于频率为2.5GHz且功率为500-1500Wt的超高频场中的转动的石英管中。在这些条件下经过100-150min的气相氧化,冷却所得到的粉末并将其置于真空体中的阴极上,处于阴极和阳极之间的极间空间中。随后增大阴极和阳极间的电位差直到出现自发射电流。随着自发射电流的增大,一部分多层碳纳米颗粒迁移到阳极。在该过程的最后,从阳极表面被收集多层碳纳米颗粒并在有机溶剂例如二甲基甲酰胺中转化为分散体。
实施例2
如实施例1所述得到产品,但气相氧化在包含过量氧气,例如,20%-60%氧气的气氛下进行。
实施例3
如实施例1所述得到产品,但在气相氧化后,多层碳纳米颗粒另外在包含氯化合物的含水电解液中电化学氧化。
实施例4
如实施例1所述得到产品,但环状多层碳纳米颗粒的分离在具有高的介电渗透性值的介电介质(例如石油溶剂油)中在电场下实施。
实施例5
如实施例1所述得到产品,但在气相氧化后,通过将多层碳纳米颗粒放置在液化气体介质(氮,氦)中进行附加冷却,鼓泡并从液相中分离沉积物,随后蒸发液化气体获得两种类型的碳粉末,并如实施例1所述进一步处理,。
为了确定电物理学特性,将产物从溶剂中分离并测定以下参数:
—放射学地测定多层碳纳米颗粒的层间距,测得层间距等于0.34-0.36nm,该值是富勒烯型碳化合物的特征;
—使用透射电子显微镜,例如JEM-100C,和乳胶珠标准样,测定了多层碳纳米颗粒的尺寸、形状以及环状纳米颗粒的外径和多层体厚度之间的比。
通过将所得到的环状纳米颗粒涂覆在电传导基体上制造自发射阴极。根据RU2196731,具有多层纳米管和多面体多层碳纳米颗粒的自发射阴极已用相似的方式制造。
测定了所述自发射阴极的电极间隙中的相互作用力。参数列于表中。
下表显示了当负极由富勒烯型环状多层碳纳米颗粒制造时电极间隙中的作用力,与根据RU2196731得到的多层纳米管和富勒烯型多面体多层碳纳米颗粒的电极的这些力的值不同。
表根据本发明的技术方案的由富勒烯型多层碳纳米颗粒
制备的电极的相互作用力
由于在这些富勒烯型环状多层碳纳米颗粒表面上的电场的增益系数的高值,制得的产物可以应用于利用在自电子发射过程中电极间隙中相互作用力的效应的电子设备(动态参数传感器);作为非线性光学介质的组分;也可用作结构复合材料的增强剂和作为建筑中混凝土的增塑剂。
Claims (10)
1.富勒烯型多层碳纳米颗粒,其具有0.34-0.36nm的层间距,特征在于:所述富勒烯型多层碳纳米颗粒具有环形形状,环状纳米颗粒的多层体的外径和厚度的比等于(10-3):1,且平均尺寸为15-100nm,所述平均尺寸通过透射电子显微镜测定。
2.制备根据权利要求1所述的富勒烯型多层碳纳米颗粒的方法,所述方法包括:
-将阴极板和由非磁性材料制成的阳极板放置在具有介电介质的真空体中,调节所述阴极板和阳极板使得形成电极间隙,
-通过气相氧化获得源自多层碳纳米结构的粉末,
其特征在于,所述方法进一步包括:
-将先前通过气相氧化获得的源自多层碳纳米结构的粉末放置在所述阴极板上;
-将所述阳极板固定在功率计上;
-将所述阴极板和所述阳极板连接至电源;
-通过给所述阴极板和所述阳极板施加电压将所述粉末暴露在电场中;
-增加所述阴极板和所述阳极板之间的电位差直到在电极间隙间中出现自发射电流;
-通过所述功率计记录阳极/阴极吸引力作为自发射电流的函数;
-当在电极间隙中作用的力停止增加,移除施加在所述阴极板和所述阳极板上的电位差;
-用惰性气体填充所述真空体;
-收集积聚在所述阳极板的富勒烯型多层碳纳米颗粒;
-用放射学方法测定富勒烯型多层碳纳米颗粒的层间距;
-使用透射电子显微镜测定富勒烯型多层碳纳米颗粒的平均尺寸、形状以及外径和多层体厚度之间的比值;且
特征在于,
所述多层碳纳米颗粒是根据权利要求1所述的富勒烯型多层碳纳米颗粒。
3.根据权利要求2所述的方法,其特征在于,所述方法还包括:
-在氦气气氛中通过阳极石墨棒的电弧侵蚀来获得阴极沉积;
-从松散的中部分离阴极沉积物的致密外壳;
-研磨该致密外壳;
-借助于该致密外壳的气相氧化获得多层碳纳米结构。
4.根据权利要求3所述的方法,其特征在于,所述方法还包括:将在阳极板上收集的富勒烯型多层碳纳米颗粒在有机溶剂中转化为分散体。
5.根据权利要求4所述的方法,其特征在于,所述有机溶剂是二甲基甲酰胺。
6.根据权利要求5所述的方法,其特征在于,所述方法还包括将该致密外壳置于超高频场中,以及特征在于,
-阳极石墨棒的截面积为30-160mm2;
-在80-200A/cm2的电流密度和20-28V的电弧压降下在40-100Torr压力的氦气气氛中进行阳极石墨棒的电弧侵蚀;
-超高频场的频率为2.5GHz且功率为500-1500Wt;
-致密外壳的气相氧化在100-150min的时间内实现。
7.根据权利要求6所述的方法,其特征在于,所述致密外壳的气相氧化在包含氧气的气氛中进行,并且所述气氛包含的氧气量为20%-60%。
8.根据权利要求6所述的方法,其特征在于,在气相氧化之后,多层碳纳米结构另外在包含氯化合物溶液的含水电解液中被电化学氧化。
9.根据权利要求6所述的方法,其特征在于,在气相氧化之后,对多层碳纳米结构另外进行处理,该另外的处理包括:
-通过将多层碳纳米结构放置在液化气体中将其冷却;
-对包含该液化气体和该多层碳纳米结构的介质进行鼓泡;
-从该介质的液相中分离介质的固相;
-通过蒸发所述液相从介质的液相中获得粉末。
10.通过权利要求2的方法所获得的权利要求1的富勒烯型多层碳纳米颗粒在以下应用之一中的用途:(a)作为利用在自电子发射过程中电极间隙中相互作用力的效应的电子设备中的动态参数传感器;(b)作为非线性光学介质的组分;(c)用作结构复合材料的增强剂;和(d)作为建筑中混凝土的增塑剂。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU2009/000364 WO2011010946A1 (ru) | 2009-07-21 | 2009-07-21 | Многослойные углеродные наночастицы фуллероидного типа |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102482096A CN102482096A (zh) | 2012-05-30 |
CN102482096B true CN102482096B (zh) | 2015-02-04 |
Family
ID=43499267
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980160650.XA Expired - Fee Related CN102482096B (zh) | 2009-07-21 | 2009-07-21 | 富勒烯型多层碳纳米颗粒 |
CN200980159895.0A Active CN102471064B (zh) | 2009-07-21 | 2009-10-22 | 含有聚合物粘合剂的纳米复合材料 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980159895.0A Active CN102471064B (zh) | 2009-07-21 | 2009-10-22 | 含有聚合物粘合剂的纳米复合材料 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9090752B2 (zh) |
EP (1) | EP2460764A4 (zh) |
CN (2) | CN102482096B (zh) |
WO (3) | WO2011010946A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8894472B2 (en) * | 2008-09-22 | 2014-11-25 | Virtum I Sverige Ab | Tool for machining surfaces of parts |
EP2460764A4 (en) | 2009-07-21 | 2013-11-13 | Andrey Ponomarev | MULTILAYER FULLEROID CARBON NANOPARTICLES |
ES2369811B1 (es) * | 2010-05-04 | 2012-10-15 | Consejo Superior De Investigaciones Científicas (Csic) | Procedimiento de obtención de materiales nanocompuestos. |
GB201118586D0 (en) | 2011-10-27 | 2011-12-07 | Turzi Antoine | New A-PRP medical device, manufacturing machine and process |
FR3000426A1 (fr) * | 2012-12-28 | 2014-07-04 | Andrey Ponomarev | Composition et procede de revetement d'un support |
GB201421013D0 (en) | 2014-11-26 | 2015-01-07 | Turzi Antoine | New standardizations & medical devices for the preparation of platelet rich plasma (PRP) or bone marrow centrate (BMC) |
CN116254545A (zh) | 2018-10-29 | 2023-06-13 | C2Cnt有限责任公司 | 以低碳足迹生产的碳纳米材料用于生产具有低co2排放的复合材料的用途 |
CN110527257B (zh) * | 2019-09-18 | 2022-03-18 | 东莞泰合复合材料有限公司 | 一种碳纤维复合材料及其制备方法和应用 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4316925A (en) | 1980-10-09 | 1982-02-23 | John Delmonte | Fiber reinforced cementitious castings |
JP2668598B2 (ja) | 1989-12-08 | 1997-10-27 | 日本化薬株式会社 | 水硬性組成物及び高強度複合材料 |
JPH0669494A (ja) * | 1992-08-20 | 1994-03-11 | Hitachi Ltd | カーボン分子とその集合体の製造方法 |
RU2068489C1 (ru) | 1992-10-26 | 1996-10-27 | Украинский научно-исследовательский институт природных газов | Способ крепления скважин |
RU2036298C1 (ru) | 1992-12-08 | 1995-05-27 | Западно-Сибирский научно-исследовательский институт нефтяной промышленности | Тампонажная композиция |
KR960700869A (ko) | 1993-03-08 | 1996-02-24 | 에쌈 카소기 | 수경성 매트릭스를 갖는 단열 차단벽(insulation barriers having a hydraulically settable matrix) |
JP3508247B2 (ja) | 1993-10-19 | 2004-03-22 | ソニー株式会社 | カーボンチューブの製造方法 |
RU2085394C1 (ru) | 1994-02-16 | 1997-07-27 | Евгений Афанасьевич Точилин | Композиционный материал "миленитт-этп" |
RU2196731C2 (ru) | 2000-09-21 | 2003-01-20 | Закрытое акционерное общество "Астрин" | Полиэдральные многослойные углеродные наноструктуры фуллероидного типа |
RU2233254C2 (ru) | 2000-10-26 | 2004-07-27 | Закрытое акционерное общество "Астрин-Холдинг" | Композиция для получения строительных материалов |
RU2234457C2 (ru) | 2001-06-01 | 2004-08-20 | Общество с ограниченной ответственностью "Научно-производственная компания "НеоТекПродакт" | Способ получения фуллеренсодержащей сажи и устройство для его осуществления |
US20030082092A1 (en) * | 2001-10-30 | 2003-05-01 | Nettleton Nyles I. | Carbon nanoloop |
RU2223988C2 (ru) | 2001-11-19 | 2004-02-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Полимерное связующее, композиционный материал на его основе и способ его изготовления |
RU2223304C1 (ru) | 2002-09-19 | 2004-02-10 | Открытое акционерное общество "Белкард" | Композиционный материал для узлов трения автомобильных агрегатов |
RU2291700C2 (ru) | 2002-11-20 | 2007-01-20 | Артур Афанасьевич Мак | Способ фотодинамического воздействия на вирусы или клетки |
RU2281341C2 (ru) | 2003-07-23 | 2006-08-10 | Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" | Спеченный композиционный материал |
RU2247759C1 (ru) | 2004-03-19 | 2005-03-10 | Николаев Алексей Анатольевич | Композиция для поглощения электромагнитного излучения и способ получения композиции |
DK1836239T3 (da) | 2005-01-13 | 2009-01-19 | Cinv Ag | Kompositmaterialer, der indeholder carbonnanopartikler |
RU2281262C1 (ru) | 2005-01-31 | 2006-08-10 | Ижевский государственный технический университет | Композиция для получения строительных материалов |
AU2006223564A1 (en) * | 2005-03-09 | 2006-09-21 | The Regents Of The University Of California | Nanocomposite membranes and methods of making and using same |
AU2006347615A1 (en) | 2005-08-08 | 2008-04-10 | Cabot Corporation | Polymeric compositions containing nanotubes |
BRPI0617107A2 (pt) | 2005-08-25 | 2011-07-12 | Du Pont | nanopartìcula modificada e composição de revestimento |
US8012420B2 (en) * | 2006-07-18 | 2011-09-06 | Therm-O-Disc, Incorporated | Robust low resistance vapor sensor materials |
RU2345968C2 (ru) | 2007-01-24 | 2009-02-10 | Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" | Композиция для получения строительного материала |
RU2354526C2 (ru) * | 2007-03-12 | 2009-05-10 | Андрей Николаевич Пономарев | Инструмент для механической обработки поверхности деталей |
RU2397950C2 (ru) | 2008-04-23 | 2010-08-27 | Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" | Многослойные углеродные наночастицы фуллероидного типа тороидальной формы |
RU2011127203A (ru) * | 2008-12-03 | 2013-01-10 | Массачусетс Инститьют Оф Текнолоджи | Многофункциональные композиты на основе покрытых наноструктур |
EP2460764A4 (en) | 2009-07-21 | 2013-11-13 | Andrey Ponomarev | MULTILAYER FULLEROID CARBON NANOPARTICLES |
RU2436749C2 (ru) | 2009-10-22 | 2011-12-20 | Андрей Николаевич Пономарев | Нанокомпозитный материал на основе минеральных вяжущих |
RU2437902C2 (ru) | 2009-10-22 | 2011-12-27 | Андрей Николаевич Пономарев | Нанокомпозитный материал на основе полимерных связующих |
-
2009
- 2009-07-21 EP EP09847620.3A patent/EP2460764A4/en not_active Withdrawn
- 2009-07-21 WO PCT/RU2009/000364 patent/WO2011010946A1/ru active Application Filing
- 2009-07-21 US US13/384,710 patent/US9090752B2/en active Active
- 2009-07-21 CN CN200980160650.XA patent/CN102482096B/zh not_active Expired - Fee Related
- 2009-10-22 US US13/388,182 patent/US8742001B2/en active Active
- 2009-10-22 WO PCT/RU2009/000562 patent/WO2011010947A1/ru active Application Filing
- 2009-10-22 CN CN200980159895.0A patent/CN102471064B/zh active Active
- 2009-10-22 WO PCT/RU2009/000563 patent/WO2011010948A1/ru active Application Filing
Non-Patent Citations (2)
Title |
---|
Energetic and structure of fullerene crop circles;Jie Han;《Chemical Physics Letters》;19980109;第282卷;188-189页 2.circular tori * |
Toroidal Single Wall Carbon Nanotubes in Fullerene Crop Circles;Jie Han;《NASA Technical Report》;19971231;文章2.Circular Tori * |
Also Published As
Publication number | Publication date |
---|---|
CN102482096A (zh) | 2012-05-30 |
EP2460764A4 (en) | 2013-11-13 |
EP2460764A1 (en) | 2012-06-06 |
US9090752B2 (en) | 2015-07-28 |
WO2011010946A1 (ru) | 2011-01-27 |
US8742001B2 (en) | 2014-06-03 |
CN102471064B (zh) | 2014-11-05 |
US20120114946A1 (en) | 2012-05-10 |
CN102471064A (zh) | 2012-05-23 |
US20120142821A1 (en) | 2012-06-07 |
WO2011010947A1 (ru) | 2011-01-27 |
WO2011010948A1 (ru) | 2011-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102482096B (zh) | 富勒烯型多层碳纳米颗粒 | |
Du et al. | Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition | |
Zhang et al. | 3D porous γ‐Fe2O3@ C nanocomposite as high‐performance anode material of Na‐ion batteries | |
JP6209641B2 (ja) | 薄片状黒鉛結晶集合物 | |
Jeong et al. | Microclusters of kinked silicon nanowires synthesized by a recyclable iodide process for high‐performance lithium‐ion battery anodes | |
Sun et al. | Porous Fe2O3 nanotubes as advanced anode for high performance lithium ion batteries | |
Ma et al. | Ag nanoparticles decorated MnO2/reduced graphene oxide as advanced electrode materials for supercapacitors | |
Qiu et al. | Scalable sonochemical synthesis of petal-like MnO2/graphene hierarchical composites for high-performance supercapacitors | |
Li et al. | Study on electrochemical performance of multi-wall carbon nanotubes coated by iron oxide nanoparticles as advanced electrode materials for supercapacitors | |
Chu et al. | Rice husk derived silicon/carbon and silica/carbon nanocomposites as anodic materials for lithium-ion batteries | |
Xin et al. | A self-supporting graphene/MnO2 composite for high-performance supercapacitors | |
Sedira et al. | Hydrothermal synthesis of spherical carbon nanoparticles (CNPs) for supercapacitor electrodes uses | |
Li et al. | based ultracapacitors with carbon nanotubes-graphene composites | |
Chang et al. | Formation of urchin-like CuO structure through thermal oxidation and its field-emission lighting application | |
Khan et al. | Synthesis, characterization and charge storage properties of C60-fullerene microparticles as a flexible negative electrode for supercapacitors | |
Pal et al. | Graphene oxide–polyaniline–polypyrrole nanocomposite for a supercapacitor electrode | |
Alaf et al. | Electrochemical properties of free-standing Sn/SnO2/multi-walled carbon nano tube anode papers for Li-ion batteries | |
Xie et al. | Advanced negative electrode of Fe2O3/graphene oxide paper for high energy supercapacitors | |
Mitchell et al. | Ultralight carbon nanofoam from naphtalene-mediated hydrothermal sucrose carbonization | |
WO2020264110A1 (en) | Nano-inks of carbon nanomaterials for printing and coating | |
Aravinda et al. | Fabrication and performance evaluation of hybrid supercapacitor electrodes based on carbon nanotubes and sputtered TiO2 | |
Sankaran et al. | Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid | |
Wan et al. | Molten salt electrolytic fabrication of TiC-CDC and its applications for supercapacitor | |
CN108802079B (zh) | 一种铁磁性合金粉末的第二相表征方法 | |
Maity et al. | Nickel oxide-1D/2D carbon nanostructure hybrid as efficient field emitters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150204 Termination date: 20170721 |