CN102478674A - A Method for Tracing and Exploring Hydrothermal Uranium Deposits with Combination of Geochemical Elements - Google Patents
A Method for Tracing and Exploring Hydrothermal Uranium Deposits with Combination of Geochemical Elements Download PDFInfo
- Publication number
- CN102478674A CN102478674A CN2010105601919A CN201010560191A CN102478674A CN 102478674 A CN102478674 A CN 102478674A CN 2010105601919 A CN2010105601919 A CN 2010105601919A CN 201010560191 A CN201010560191 A CN 201010560191A CN 102478674 A CN102478674 A CN 102478674A
- Authority
- CN
- China
- Prior art keywords
- uranium
- ore
- hydrothermal
- soil
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052770 Uranium Inorganic materials 0.000 title claims abstract description 147
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 title claims abstract description 147
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000002689 soil Substances 0.000 claims abstract description 40
- 230000002159 abnormal effect Effects 0.000 claims abstract description 16
- 239000000284 extract Substances 0.000 claims abstract description 7
- 239000002131 composite material Substances 0.000 claims abstract description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 36
- 238000005070 sampling Methods 0.000 claims description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 29
- 239000010949 copper Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 230000002547 anomalous effect Effects 0.000 claims description 22
- 239000008367 deionised water Substances 0.000 claims description 22
- 229910021641 deionized water Inorganic materials 0.000 claims description 22
- 239000000706 filtrate Substances 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 19
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 15
- 229910017604 nitric acid Inorganic materials 0.000 claims description 15
- 239000011259 mixed solution Substances 0.000 claims description 10
- 230000005260 alpha ray Effects 0.000 claims description 9
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 8
- 239000001099 ammonium carbonate Substances 0.000 claims description 8
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 8
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 claims description 8
- 230000004075 alteration Effects 0.000 claims description 7
- 238000000605 extraction Methods 0.000 claims description 7
- 230000033558 biomineral tissue development Effects 0.000 claims description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 6
- 239000011707 mineral Substances 0.000 claims description 6
- 230000002349 favourable effect Effects 0.000 claims description 5
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 230000005856 abnormality Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000007873 sieving Methods 0.000 claims description 2
- 239000000700 radioactive tracer Substances 0.000 claims 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000005553 drilling Methods 0.000 description 4
- 125000001475 halogen functional group Chemical group 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 238000000918 plasma mass spectrometry Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
技术领域 technical field
本发明属于一种铀矿勘查方法,具体涉及一种通过地球化学元素组合示踪技术勘查热液型铀矿的方法。The invention belongs to a method for prospecting uranium ore, in particular to a method for prospecting hydrothermal uranium ore through geochemical element combination tracing technology.
背景技术 Background technique
经过50多年的铀矿勘查工作,浅易矿床绝大部分已被发现。随着找矿工作的不断深入,找矿深度越来越大,特别是热液型铀矿找矿深度更是越来越大。长期以来,国内外常规的铀矿地球化学探矿(简称化探)方法,主要是用铀及其伴生元素总量来圈定出露及亚出露矿化周围的地表次生分散晕、分散流或原生晕寻找露头矿、地表矿及浅部矿。但是,热液型铀矿由于生成的次生晕和原生晕皆被覆盖层掩蔽,且覆盖层厚度数十米或数百米,这种总量化探法对热液型铀矿的勘查便无能为力。因此,要想在热液型铀矿勘查方面有新的进展,沿用或改进常规的总量化探方法已经变得非常困难。急需能从地表直接识别深部铀矿化的找矿方法与技术。After more than 50 years of uranium exploration work, most of the shallow deposits have been discovered. With the continuous deepening of the prospecting work, the prospecting depth is getting bigger and bigger, especially the prospecting depth of hydrothermal uranium ore is getting bigger and bigger. For a long time, conventional uranium ore geochemical prospecting (referred to as geochemical prospecting) methods at home and abroad mainly use the total amount of uranium and its associated elements to delineate the surface secondary dispersed halo, dispersed flow or The primary halo looks for outcrops, surface mines and shallow mines. However, since the secondary halos and primary halos generated by hydrothermal uranium deposits are covered by the overburden, and the thickness of the overburden is tens of meters or hundreds of meters, this total geochemical prospecting method is very convenient for the exploration of hydrothermal uranium deposits. powerless. Therefore, in order to make new progress in the exploration of hydrothermal uranium ore, it has become very difficult to continue or improve the conventional gross geochemical prospecting method. There is an urgent need for prospecting methods and technologies that can directly identify deep uranium mineralization from the surface.
发明内容 Contents of the invention
本发明的目的在于提供一种地球化学元素组合示踪勘查热液型铀矿的方法,该方法可有效解决常规的总量化探方法不能探测深部热液型铀矿的关键问题。The purpose of the present invention is to provide a method for tracing and prospecting hydrothermal uranium ore by combination of geochemical elements, which can effectively solve the key problem that conventional total geochemical prospecting methods cannot detect deep hydrothermal uranium ore.
实现本发明目的的技术方案:一种地球化学元素组合示踪勘查热液型铀矿的方法,它包括以下步骤:The technical solution for realizing the object of the present invention: a method for trace exploration of hydrothermal uranium ore by combination of geochemical elements, which comprises the following steps:
(1)土壤样品采集和加工(1) Soil sample collection and processing
以一定的采样密度在勘查区选取采样点,在每一采样点采集一定质量的B层顶部的土壤;Select sampling points in the survey area with a certain sampling density, and collect a certain quality of soil at the top of layer B at each sampling point;
(2)测量勘查区土壤中的铀分量(2) Measure the uranium content in the soil of the exploration area
(2.1)铀分量的提取(2.1) Extraction of uranium content
取一定量上述步骤(1)中B层顶部的土壤放置在容器中,并向容器中加入柠檬酸铵与碳酸铵混合溶液,搅拌、放置后过滤,滤液用第一个比色管承接,将第一个比色管中滤液用去离子水冲后摇匀;提取一定体积的用去离子水冲后的滤液、放置在第二个比色管中,再向该第二个比色管中加入硝酸溶液,用去离子水冲后摇匀;Get a certain amount of soil at the top of the B layer in the above step (1) and place it in a container, and add a mixed solution of ammonium citrate and ammonium carbonate to the container, stir and filter after placing, the filtrate is accepted by the first colorimetric tube, and the Rinse the filtrate in the first colorimetric tube with deionized water and shake well; extract a certain volume of filtrate rinsed with deionized water, place it in the second colorimetric tube, and pour it into the second colorimetric tube Add nitric acid solution, rinse with deionized water and shake well;
(2.2)铀分量的测定(2.2) Determination of uranium content
测定上述步骤(2.1)第二个比色管中、用去离子水冲后的溶液的铀分量,即得到该采样点的铀分量;Determination of the uranium content of the solution flushed with deionized water in the second colorimetric tube of the above step (2.1), promptly obtains the uranium content of the sampling point;
(3)测量210Po(3) Measure 210 Po
(3.1)210Po的提取(3.1) Extraction of 210 Po
取一定量上述步骤(1)中B层顶部的土壤放置在容器中,并向容器中加入盐酸,然后放入用硝酸处理好的紫铜片;经过将上述含有紫铜片的盐酸溶液在一定温度下振荡,此时210Po富集在紫铜片上,取出圆紫铜片;Get a certain amount of soil at the top of the B layer in the above-mentioned steps (1) and place it in a container, and add hydrochloric acid to the container, then put into the red copper sheet that has been treated with nitric acid; Oscillate, at this time 210 Po is enriched on the copper sheet, take out the round copper sheet;
(3.2)210Po的测定(3.2) Determination of 210 Po
测量紫铜片的α射线强度,即得到土壤中210Po的含量;Measure the α-ray intensity of the copper sheet to obtain the content of 210 Po in the soil;
(4)制作铀分量、210Po元素平面等值线图(4) Make plane contour maps of uranium content and 210 Po elements
根据上述步骤(2)和(3)测量的结果,制作出铀分量等值线图和210Po元素平面等值线图,初步圈出成矿远景区;According to the measurement results of the above steps (2) and (3), a uranium component contour map and a 210 Po element plane contour map are produced, and the mineralization prospect area is preliminarily circled;
(5)通过矿致异常识别,判断勘查区是否存在热液型铀矿(5) Determine whether there are hydrothermal uranium deposits in the exploration area through the identification of ore-induced anomalies
(5.1)根据铀分量/铀总量比值判断是否为矿致铀分量异常(5.1) According to the ratio of uranium content/total uranium content, it is judged whether it is abnormal mineral-induced uranium content
如果铀分量/铀总量比值大于等于0.1为矿致铀分量异常;如果铀分量/铀总量比值小于0.1为非矿致铀分量异常;If the ratio of uranium content/total uranium is greater than or equal to 0.1, it is an abnormality of uranium content caused by ore; if the ratio of uranium content/total uranium is less than 0.1, it is an anomaly of non-mineral uranium content;
(5.2)若为矿致铀分量异常,则进一步结合下列条件推断勘查区是否存在热液型铀矿:(5.2) If it is anomalous uranium content caused by ore, it is further inferred whether there is a hydrothermal uranium deposit in the exploration area based on the following conditions:
①通过铀分量等值线图,是否有套合和逐步浓集的铀分量异常分布模式及较强的铀分量异常浓集中心,即从外带到中带、再到内带铀分量逐渐升高的区域;① Through the contour map of uranium content, whether there is an anomalous distribution pattern of overlapping and gradually enriched uranium content and a strong uranium content anomalous concentration center, that is, the uranium content gradually increases from the outer zone to the middle zone, and then to the inner zone. high area;
②通过210Po等值线图,看是否有铀分量、210Po异常组合,即相应异常区是否基本重合;② Through the 210 Po contour map, check whether there is a combination of uranium content and 210 Po anomaly, that is, whether the corresponding anomalous areas basically overlap;
③铀分量异常区是否与有利的成矿断裂构造蚀变带对应复合地段,即将异常区叠放在该区地质图上,看成矿断裂构造蚀变带是否通过异常区。③Whether the uranium component anomalous area corresponds to the favorable ore-forming fault structural alteration zone is a composite section, that is, the anomalous area is superimposed on the geological map of the area to see whether the ore-forming fault structural alteration zone passes through the anomalous area.
若上述步骤(5.2)中的步骤①-③的推断结论至少有2条为肯定,则可以判定该勘查区存在热液型铀矿;否则,该勘查区不存在热液型铀矿。If at least two of the inference conclusions of steps ①-③ in the above step (5.2) are affirmative, it can be determined that there are hydrothermal uranium deposits in the exploration area; otherwise, there is no hydrothermal uranium deposit in the exploration area.
所述的步骤(1)具体包括以下步骤:Described step (1) specifically comprises the following steps:
(1.1)以一定的采样密度在勘查区选取采样点;(1.1) Select sampling points in the survey area with a certain sampling density;
(1.2)在每一采样点采集一定质量的B层顶部的土壤,将采集的B层顶部的土壤过筛,取每一采样点过筛后的一定质量的土壤,先烘干再冷却至室温后备用。(1.2) Collect a certain quality of soil at the top of layer B at each sampling point, sieve the collected soil at the top of layer B, and get a certain quality of soil after sieving at each sampling point, first dry and then cool to room temperature Backup.
所述的步骤(1.1)中的采样密度为4个点/km2~500个点/km2;所述的步骤(1.2)中采集B层顶部的土壤200g~500g,取过筛后的土壤10g~50g,在105℃~110℃下烘2h,冷却至室温后备用。The sampling density in the step (1.1) is 4 points/km 2 to 500 points/km 2 ; in the step (1.2), 200g to 500g of the soil at the top of the B layer is collected, and the sieved soil is taken 10g~50g, bake at 105℃~110℃ for 2 hours, cool to room temperature and set aside.
所述的步骤(2.1)具体包括以下步骤:Described step (2.1) specifically comprises the following steps:
①从上述步骤(1)中每一采样点的B层顶部的土壤中取一定质量的试样分别放置在容器中;1. Get samples of a certain quality from the soil at the top of the B layer at each sampling point in the above-mentioned steps (1) and place them in containers respectively;
②在每个容器中均加入柠檬酸铵与碳酸铵混合溶液,将该混合溶液搅拌、放置一定时间后过滤,滤液用比色管承接;② Add the mixed solution of ammonium citrate and ammonium carbonate to each container, stir the mixed solution, place it for a certain period of time, and then filter it, and the filtrate is taken over by a colorimetric tube;
③将上述步骤②比色管中的滤液用去离子水冲至一定刻度后、摇匀;③ Rinse the filtrate in the colorimetric tube in the above step ② to a certain scale with deionized water, and shake well;
④提取一定体积的上述步骤③中制备的滤液于第一个比色管中,再向该比色管种加入硝酸溶液,用去离子水冲冲至一定刻度后摇匀。④ Extract a certain volume of the filtrate prepared in the above step ③ into the first colorimetric tube, then add nitric acid solution to the colorimetric tube, rinse with deionized water to a certain scale and shake well.
所述的步骤(2.1)中的第①个步骤中所取试样的质量为2.5000g,容器为50ml烧杯;The quality of the sample taken in the first step in the step (2.1) is 2.5000g, and the container is a 50ml beaker;
所述的步骤(2.1)中的第②个步骤是在每个50ml烧杯中均分别加入20ml浓度为0.1mol/L的柠檬酸铵与0.1mol/L碳酸铵混合溶液,滤液用25ml具塞比色管承接;The second step in the described step (2.1) is to add 20ml concentration respectively in each 50ml beaker and be the mixed solution of ammonium citrate and 0.1mol/L ammonium carbonate of 0.1mol/L, and the filtrate is mixed with 25ml plug ratio. Color tube undertaking;
所述的步骤(2.1)中的第③个步骤是将上述步骤②比色管中的滤液用去离子水冲至25ml刻度、摇匀;The 3rd step in the described step (2.1) is to flush the filtrate in the above-mentioned step 2. colorimetric tube to 25ml scale with deionized water, shake up;
所述的步骤(2.1)中的第④个步骤分别提取1.00ml上述步骤③中制备的滤液于10ml比色管中,再向该比色管中加入1ml硝酸(1+2)溶液,用去离子水冲至10ml刻度、摇匀。The 4th step in the described step (2.1) extracts respectively the filtrate prepared in 1.00ml above-mentioned steps 3. in the 10ml colorimetric tube, then adds 1ml nitric acid (1+2) solution in this colorimetric tube, uses Rinse with ionized water to the 10ml mark and shake well.
所述的步骤(2.2)中用ICP-MS法测定铀分量。In the step (2.2), the ICP-MS method is used to determine the uranium content.
所述的步骤(3.1)具体包括以下步骤:Described step (3.1) specifically comprises the following steps:
①从上述步骤(1)中每一采样点的B层顶部的土壤中取一定质量的试样分别放置在容器中,向容器中加盐酸,向盐酸溶液中放入用硝酸处理好的紫铜片;① Take samples of a certain quality from the soil at the top of layer B at each sampling point in the above step (1) and place them in containers respectively, add hydrochloric acid to the container, and put red copper sheets treated with nitric acid into the hydrochloric acid solution. ;
②将上述步骤①中的含有用硝酸处理好的圆紫铜片的盐酸溶液在一定温度下振荡,取出紫铜片后用去离子水冲洗、吸干。② Shake the hydrochloric acid solution containing the round red copper sheet treated with nitric acid in the above step ① at a certain temperature, take out the red copper sheet, rinse it with deionized water, and dry it.
所述的步骤(3.1)中的第①个步骤中所取试样的质量为2.0000g,容器为100ml烧杯,加入的盐酸为20毫升2mol/L的盐酸,紫铜片为圆紫铜片;The quality of the sample taken in the 1. step in the described step (3.1) is 2.0000g, and the container is a 100ml beaker, and the hydrochloric acid added is the hydrochloric acid of 20 milliliters of 2mol/L, and the copper sheet is a round copper sheet;
所述的步骤(3.1)中的第②个步骤是将盐酸溶液在60℃~80℃下振荡3小时~5小时,此时210Po富集在圆紫铜片上,取出圆紫铜片后去离子水冲洗、然后用滤纸吸干。The second step in the step (3.1) is to shake the hydrochloric acid solution at 60°C to 80°C for 3 hours to 5 hours. At this time, 210 Po is enriched on the round copper sheet, and after taking out the round red copper sheet, deionized water Rinse, then blot dry with filter paper.
所述的步骤(3.2)中用α射线强度测量仪测量圆紫铜片正面的α射线强度。In the described step (3.2), measure the α-ray intensity on the front side of the round red copper sheet with an α-ray intensity measuring instrument.
本发明的有益技术效果在于:本发明的方法通过提取、测定地表土壤样品的铀分量、210Po,可以在隐伏热液型铀矿上方一定区域有效地发现、识别覆盖层厚度数十米至几百米的隐伏热液铀矿矿致异常。该方法简便、快速、成本低、效率高、有效性强、探测深度大,是一种直接找矿方法。在钻探工作以前先行开展该方法测量,让花钱比较多的钻探工作,集中在靶区范围内进行,将大大减少钻探工作量、提高找矿命中率、加快找矿速度、缩短勘探周期、降低成本、较快地为铀资源勘探提供有利的后备地区。The beneficial technical effects of the present invention are: the method of the present invention can effectively discover and identify the overburden layer with a thickness of tens of meters to several tens of meters to several The 100-meter hidden hydrothermal uranium deposit is abnormal. The method is simple, fast, low in cost, high in efficiency, strong in effectiveness and large in detection depth, and is a direct prospecting method. Carry out this method of measurement before the drilling work, so that the drilling work that costs more money can be concentrated in the target area, which will greatly reduce the drilling workload, improve the hit rate of ore prospecting, speed up the prospecting speed, shorten the exploration cycle, reduce Provide favorable backup areas for uranium resource exploration at low cost and relatively quickly.
附图说明 Description of drawings
图1为我国某地区勘查热液型铀矿的铀分量等值线图;Figure 1 is a contour map of the uranium content in the exploration of hydrothermal uranium deposits in a certain area of my country;
图2为我国某地区勘查热液型铀矿的210po等值线图。Fig. 2 is the 210 po contour map of hydrothermal uranium deposit exploration in a certain area of China.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
一种地球化学元素组合示踪勘查热液型铀矿的方法,具体包括以下步骤:A method for trace exploration of hydrothermal uranium ore by combination of geochemical elements, specifically comprising the following steps:
(1)土壤样品采集和加工(1) Soil sample collection and processing
(1.1)在勘查区选取采样点,采样密度为4个点/km2~500个点/km2;(1.1) Select sampling points in the survey area, and the sampling density is 4 points/km 2 to 500 points/km 2 ;
可以选取采样密度为4个点/km2、10个点/km2、20个点/km2、30个点/km2、40个点/km2、50个点/km2、100个点/km2、200个点/km2、300个点/km2、400个点/km2或500个点/km2。The sampling density can be selected as 4 points/km 2 , 10 points/km 2 , 20 points/km 2 , 30 points/km 2 , 40 points/km 2 , 50 points/km 2 and 100 points /km 2 , 200 points/km 2 , 300 points/km 2 , 400 points/km 2 or 500 points/km 2 .
(1.2)在每一采样点采集B层顶部的土壤200g~500g,将采集的B层顶部的土壤过-80目筛。取每一采样点过筛后的土壤10g~50g,在105℃~110℃下,烘2h,冷却至室温后备用。(1.2) Collect 200g-500g of soil at the top of layer B at each sampling point, and pass the collected soil at the top of layer B through a -80 mesh sieve. Take 10g-50g of sieved soil at each sampling point, bake at 105°C-110°C for 2 hours, cool to room temperature and set aside.
可以采集B层顶部的土壤200g、300g、400g或500g,可以在105℃、107℃或110℃下烘2h。200g, 300g, 400g or 500g of soil at the top of layer B can be collected and baked at 105°C, 107°C or 110°C for 2 hours.
(2)测量勘查区土壤中的铀分量(2) Measure the uranium content in the soil of the exploration area
(2.1)铀分量的提取(2.1) Extraction of uranium content
①从上述步骤(1)中每一采样点备用的B层顶部的土壤中取2.5000g试样,并分别将每个试样置于50ml烧杯中;1. Take 2.5000g sample from the soil at the top of layer B prepared at each sampling point in the above step (1), and place each sample in a 50ml beaker;
②在每个50ml烧杯中均分别加入20ml浓度为0.1mol/L的柠檬酸铵与0.1mol/L碳酸铵混合溶液,将该混合溶液搅拌、放置24h后过滤,可以采用普通漏斗滤纸过滤,滤液用25ml具塞比色管承接;②Add 20ml of mixed solution of ammonium citrate and 0.1mol/L ammonium carbonate with a concentration of 0.1mol/L to each 50ml beaker, stir the mixed solution and let it sit for 24 hours before filtering it. It can be filtered with ordinary funnel filter paper. Use a 25ml stoppered colorimetric tube to undertake;
柠檬酸铵和碳酸铵均为分析纯。Ammonium citrate and ammonium carbonate were of analytical grade.
③将上述步骤②比色管中的滤液用去离子水冲至25ml刻度、摇匀;③ Rinse the filtrate in the colorimetric tube in the above step ② to the 25ml mark with deionized water, and shake well;
④分别提取1.00ml上述步骤③中制备的滤液于10ml比色管中,再向该比色管种加入1ml硝酸(1+2)溶液,用去离子水冲至10ml刻度、摇匀。④Extract 1.00ml of the filtrate prepared in the above step ③ into a 10ml colorimetric tube, then add 1ml of nitric acid (1+2) solution to the colorimetric tube, flush to the 10ml mark with deionized water, and shake well.
(2.2)铀分量的测定(2.2) Determination of uranium content
用ICP-MS法(等离子体质谱法)测定上述步骤(2.1)的第④步骤中的用去离子水冲后的、10ml比色管中的溶液的铀分量,即得到该采样点的铀分量,铀分量即土壤中活性铀的含量,铀分量的单位为ng/g。Use the ICP-MS method (plasma mass spectrometry) to measure the uranium content of the solution in the 10ml colorimetric tube after flushing with deionized water in the ④ step of the above-mentioned steps (2.1), that is, obtain the uranium content of the sampling point , the uranium content is the content of active uranium in the soil, and the unit of uranium content is ng/g.
(3)测量210Po(3) Measure 210 Po
(3.1)210Po的提取(3.1) Extraction of 210 Po
①从上述步骤(1)中每一采样点备用的B层顶部的土壤中取2.0000g试样,放在100ml烧杯中,分别向100ml烧杯中加入20毫升2mol/L的盐酸,向盐酸溶液中放入用硝酸处理好的圆紫铜片,圆紫铜片直径1.9厘米,厚度0.2~0.5mm;① Take 2.0000g sample from the soil at the top of the B layer at each sampling point in the above step (1), put it in a 100ml beaker, add 20ml of 2mol/L hydrochloric acid to the 100ml beaker respectively, and add 2mol/L hydrochloric acid to the hydrochloric acid solution Put in the round copper sheet treated with nitric acid, the diameter of the round copper sheet is 1.9 cm, and the thickness is 0.2-0.5 mm;
②将上述步骤①中的含有用硝酸处理好的圆紫铜片的盐酸溶液在60℃~80℃下振荡3小时~5小时,此时210Po富集在圆紫铜片上,取出圆紫铜片后用去离子水冲洗、然后用滤纸吸干。② Shake the hydrochloric acid solution containing the round copper sheet treated with nitric acid in the above step ① at 60°C-80°C for 3 hours to 5 hours. At this time, 210 Po is enriched on the round copper sheet. Rinse with deionized water and blot dry with filter paper.
振荡温度可以为60℃、70℃或80℃。振荡时间可以为3小时、4小时或5小时。The shaking temperature may be 60°C, 70°C or 80°C. The shaking time can be 3 hours, 4 hours or 5 hours.
(3.2)210Po的测定(3.2) Determination of 210 Po
用α射线强度测量仪测量圆紫铜片正面(即不涂漆的一面)的α射线强度(单位:Bq.Kg-1),即得到土壤中210Po的含量。Use an α-ray intensity measuring instrument to measure the α-ray intensity (unit: Bq.Kg -1 ) of the front side (that is, the side that is not painted) of the round copper sheet to obtain the content of 210 Po in the soil.
测定210Po时,每个采样点的试样读数时间为10分钟。When measuring 210 Po, the sample reading time for each sampling point is 10 minutes.
(4)制作铀分量、210Po元素平面等值线图(4) Make plane contour maps of uranium content and 210 Po elements
根据上述步骤(2)和(3)测量的结果,采用Sufer软件分别制作出铀分量等值线图和210Po元素平面等值线图,初步圈出成矿远景区。According to the measurement results of the above steps (2) and (3), the uranium component contour map and the 210 Po element plane contour map were respectively produced by Sufer software, and the mineralization prospect area was preliminarily circled.
也可以采用现有技术中的任何软件制作出铀分量等值线图和210Po元素平面等值线图。It is also possible to use any software in the prior art to make a uranium component contour map and a 210 Po element plane contour map.
(5)通过矿致异常识别,判断勘查区是否存在热液型铀矿(5) Determine whether there are hydrothermal uranium deposits in the exploration area through the identification of ore-induced anomalies
(5.1)根据铀分量/铀总量比值判断是否为矿致铀分量异常(5.1) According to the ratio of uranium content/total uranium content, it is judged whether it is abnormal mineral-induced uranium content
如果铀分量/铀总量比值大于等于0.1为矿致铀分量异常;如果铀分量/铀总量比值小于0.1为非矿致铀分量异常。If the ratio of uranium content/total uranium is greater than or equal to 0.1, it is an anomaly of uranium content caused by ore; if the ratio of uranium content/total uranium is less than 0.1, it is an anomaly of uranium content caused by non-mineralization.
勘查区土壤的铀总量用ICP-MS法(等离子体质谱法)测定。The total amount of uranium in the soil in the exploration area was determined by ICP-MS (plasma mass spectrometry).
(5.2)如果经上述步骤(5.1)判断勘查区为矿致铀分量异常,则进一步结合下列条件推断勘查区是否存在热液型铀矿:(5.2) If it is judged by the above steps (5.1) that the exploration area is abnormal in ore-induced uranium content, it is further inferred whether there is a hydrothermal uranium deposit in the exploration area based on the following conditions:
①通过铀分量等值线图,看是否有逐步浓集的铀分量异常分布及较强的铀分量异常浓集中心,铀分量异常浓集中心即为从外带到中带、再到内带铀分量逐渐升高的区域;① Through the uranium content contour map, check whether there is an abnormal distribution of gradually enriched uranium content and a strong uranium content abnormal concentration center. The abnormal uranium content concentration center is from the outer zone to the middle zone and then to the inner zone Areas where the uranium content gradually increases;
②通过210Po等值线图,看是否有铀分量、210Po异常组合,即相应异常区是否基本重合;② Through the 210 Po contour map, check whether there is a combination of uranium content and 210 Po anomaly, that is, whether the corresponding anomalous areas basically overlap;
③铀分量异常区是否与有利的成矿断裂构造蚀变带对应复合地段,即将异常区叠放在该区地质图上,看成矿断裂构造蚀变带是否通过异常区。③Whether the uranium component anomalous area corresponds to the favorable ore-forming fault structural alteration zone is a composite section, that is, the anomalous area is superimposed on the geological map of the area to see whether the ore-forming fault structural alteration zone passes through the anomalous area.
若上述步骤(5.2)中的步骤①-③的推断结论至少有2条为肯定,则判定该勘查区存在热液型铀矿;否则,该勘查区不存在热液型铀矿。If at least two of the inference conclusions of steps ①-③ in the above step (5.2) are affirmative, it is determined that there are hydrothermal uranium deposits in the exploration area; otherwise, there is no hydrothermal uranium deposit in the exploration area.
下面是采用本发明的方法在我国某地区进行勘查的具体过程:Below is the concrete process that adopts method of the present invention to carry out prospecting in certain area of my country:
从该地区取样、提取铀分量和210Po,经ICP-MS法、α射线测量仪测定后,该区铀分量等值线图如图1所示,210Po等值线图如图2所示。Sampling and extraction of uranium content and 210 Po from this area, after the measurement by ICP-MS method and α-ray measuring instrument, the contour map of uranium content in this area is shown in Figure 1, and the contour map of 210 Po is shown in Figure 2 .
采用上述方法测量该地区绝大多数测点的铀分量/铀总量比值大于等于0.1,即为矿致活性铀异常。Using the above method to measure the ratio of uranium content/total uranium in most of the measuring points in this area is greater than or equal to 0.1, which is an anomaly of mineral-induced active uranium.
经迭代剔除统计学法计算,得出本地区铀分量异常下限值为1150ng/g。按1150ng/g作为外带异常下限值,圈出面积近100Km2的铀分量区域异常区;在此面积近100Km2的区域异常区内,以1870ng/g作为中带异常下限值,圈出面积近50Km2的铀分量局部异常区;同理,在此面积近50Km2的局部异常区内,以2660ng/g作为内带异常下限值,圈出铀分量异常浓集中心区。通过附图1可以看出,由此可知,该地区存在从外带到中带、再到内带铀分量逐渐升高的区域;即存在铀分量异常浓集中心。The lower limit of abnormal uranium content in this area is 1150ng/g calculated by iterative elimination statistical method. With 1150ng/g as the lower limit of the outer zone anomaly, circle the regional anomalous area of uranium content with an area of nearly 100Km 2 ; A local anomalous area of uranium content with an area of nearly 50Km2 is found; similarly, in this local anomalous area with an area of nearly 50Km2 , 2660ng/g is used as the lower limit value of the inner band anomaly to circle the central area of abnormal concentration of uranium content. As can be seen from Figure 1, it can be seen that there is an area where the uranium content gradually increases from the outer zone to the middle zone, and then to the inner zone; that is, there is an abnormal concentration center of uranium content.
结合附图2,可以看出,本地区铀分量、210Po异常各区域重合度较高(按210Po 37Bq/Kg作为外带异常下限值,57Bq/Kg作为中带异常下限值,75Bq/Kg作为内带异常下限值)。经水文、地质等方面的调查发现,该地区土壤铀分量异常区与有利成矿的断裂构造蚀变带对应复合。综上可知,推断该地区地下存在热液型铀矿,并经钻探工程证实。Combined with Figure 2, it can be seen that the uranium content and 210 Po anomalies in this region have a high coincidence degree (according to 210 Po 37Bq/Kg as the lower limit of the outer anomaly, 57Bq/Kg as the lower limit of the middle anomaly, and 75Bq /Kg is used as the lower limit of the inner belt abnormality). Hydrological, geological and other investigations have found that the anomalous area of soil uranium content in this area is correspondingly compounded with the fault structural alteration zone that is favorable for mineralization. In summary, it is inferred that there are hydrothermal uranium deposits underground in this area, which has been confirmed by drilling engineering.
上面结合附图对本发明的实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。本发明说明书中未作详细描述的内容均可以采用现有技术。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above embodiments. Within the scope of knowledge of those of ordinary skill in the art, various modifications can be made without departing from the gist of the present invention. kind of change. The content that is not described in detail in the description of the present invention can adopt the prior art.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010560191 CN102478674B (en) | 2010-11-25 | 2010-11-25 | A Method for Tracing and Exploring Hydrothermal Uranium Deposits with Combination of Geochemical Elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010560191 CN102478674B (en) | 2010-11-25 | 2010-11-25 | A Method for Tracing and Exploring Hydrothermal Uranium Deposits with Combination of Geochemical Elements |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102478674A true CN102478674A (en) | 2012-05-30 |
CN102478674B CN102478674B (en) | 2013-06-26 |
Family
ID=46091381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010560191 Active CN102478674B (en) | 2010-11-25 | 2010-11-25 | A Method for Tracing and Exploring Hydrothermal Uranium Deposits with Combination of Geochemical Elements |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102478674B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103837908A (en) * | 2014-03-05 | 2014-06-04 | 核工业北京地质研究院 | Rapid prospecting positioning method applicable to hidden sandstone-type uranium mine |
CN103886382A (en) * | 2012-12-20 | 2014-06-25 | 核工业北京地质研究院 | Volcanic rock type uranium mine target optimization method based on element geochemical abnormity |
CN103903057A (en) * | 2012-12-25 | 2014-07-02 | 核工业北京地质研究院 | Carbonaceous-siliceous-argillitic rock type uranium deposit target region optimization method based on elemental geochemical anomaly |
CN103913780A (en) * | 2014-03-18 | 2014-07-09 | 核工业北京地质研究院 | Method for prospection of calcrete type uranium ore |
CN104678452A (en) * | 2013-11-28 | 2015-06-03 | 核工业北京地质研究院 | Method for quantitatively evaluating ore-forming contribution degree of uranium resource body for sandstone type uranium ore |
CN107505659A (en) * | 2017-07-05 | 2017-12-22 | 佛山诸广矿业有限公司 | A kind of method for finding In The Granite Area concealed uranium deposit |
CN107976718A (en) * | 2016-10-25 | 2018-05-01 | 核工业北京地质研究院 | A kind of deep sandstone type uranium mineralization direct information exploration method |
CN108008456A (en) * | 2016-10-27 | 2018-05-08 | 核工业北京地质研究院 | A kind of method for drawing a circle to approve mesothermal gold deposits deep three-dimensional emphasis U metallogeny Favourable Target Areas |
CN108446835A (en) * | 2018-03-02 | 2018-08-24 | 核工业二六大队 | Drilling radioactive anomaly comments sequence method in a kind of radioactivity GEOLOGICAL ENVIRONMENT SURVEY |
CN108761550A (en) * | 2018-04-24 | 2018-11-06 | 湖南湘核三零二地质勘查有限公司 | A kind of south granite type U-ore method of prospecting |
CN111044519A (en) * | 2019-12-31 | 2020-04-21 | 核工业北京地质研究院 | Mineral combination method for indicating deep hydrothermal uranium mineralization |
CN112462406A (en) * | 2020-11-11 | 2021-03-09 | 核工业北京地质研究院 | Deep uranium mineralization radioactivity and deep penetration geochemical combination identification method |
CN114675345A (en) * | 2022-03-28 | 2022-06-28 | 核工业二七0研究所 | Concealed silicification broken belt type uranium ore detection method |
CN118447963A (en) * | 2024-05-07 | 2024-08-06 | 昆明理工大学 | A method of determining the occurrence of deep concealed plate-like ore bodies using a characteristic element combination anomaly derivative method for hydrothermal deposits |
CN119375968A (en) * | 2024-12-27 | 2025-01-28 | 核工业北京地质研究院 | Geochemical exploration methods for hydrothermal concealed uranium deposits |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1321895A (en) * | 2000-04-29 | 2001-11-14 | 中国科学院长沙大地构造研究所 | Adsrption extraction exploration method for blind deposit |
CN1421709A (en) * | 2001-11-29 | 2003-06-04 | 中国科学院长沙大地构造研究所 | Multielement optimizing control method for prospecting ore deposit |
CN1421683A (en) * | 2001-11-29 | 2003-06-04 | 中国科学院长沙大地构造研究所 | Foamed-plastic carried extraction and exploration method of blind uranium ore deposit |
CN1590997A (en) * | 2003-08-27 | 2005-03-09 | 桂林矿产地质研究院 | Electro-adsorption prospecting method |
CN101676747A (en) * | 2008-09-18 | 2010-03-24 | 核工业北京地质研究院 | Low background earth atmosphere exploration method suitable for uranium resource exploration |
-
2010
- 2010-11-25 CN CN 201010560191 patent/CN102478674B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1321895A (en) * | 2000-04-29 | 2001-11-14 | 中国科学院长沙大地构造研究所 | Adsrption extraction exploration method for blind deposit |
CN1421709A (en) * | 2001-11-29 | 2003-06-04 | 中国科学院长沙大地构造研究所 | Multielement optimizing control method for prospecting ore deposit |
CN1421683A (en) * | 2001-11-29 | 2003-06-04 | 中国科学院长沙大地构造研究所 | Foamed-plastic carried extraction and exploration method of blind uranium ore deposit |
CN1590997A (en) * | 2003-08-27 | 2005-03-09 | 桂林矿产地质研究院 | Electro-adsorption prospecting method |
CN101676747A (en) * | 2008-09-18 | 2010-03-24 | 核工业北京地质研究院 | Low background earth atmosphere exploration method suitable for uranium resource exploration |
Non-Patent Citations (2)
Title |
---|
方锡珩: "中国火山岩型铀矿的主要地质特征", 《铀矿地质》 * |
郭冬发等: "与地浸砂岩型铀矿有关的分析测试技术发展趋势", 《世界核地质科学》 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103886382A (en) * | 2012-12-20 | 2014-06-25 | 核工业北京地质研究院 | Volcanic rock type uranium mine target optimization method based on element geochemical abnormity |
CN103903057A (en) * | 2012-12-25 | 2014-07-02 | 核工业北京地质研究院 | Carbonaceous-siliceous-argillitic rock type uranium deposit target region optimization method based on elemental geochemical anomaly |
CN104678452A (en) * | 2013-11-28 | 2015-06-03 | 核工业北京地质研究院 | Method for quantitatively evaluating ore-forming contribution degree of uranium resource body for sandstone type uranium ore |
CN104678452B (en) * | 2013-11-28 | 2017-05-17 | 核工业北京地质研究院 | Method for quantitatively evaluating ore-forming contribution degree of uranium resource body for sandstone type uranium ore |
CN103837908A (en) * | 2014-03-05 | 2014-06-04 | 核工业北京地质研究院 | Rapid prospecting positioning method applicable to hidden sandstone-type uranium mine |
CN103913780A (en) * | 2014-03-18 | 2014-07-09 | 核工业北京地质研究院 | Method for prospection of calcrete type uranium ore |
CN107976718A (en) * | 2016-10-25 | 2018-05-01 | 核工业北京地质研究院 | A kind of deep sandstone type uranium mineralization direct information exploration method |
CN107976718B (en) * | 2016-10-25 | 2019-07-12 | 核工业北京地质研究院 | A direct information exploration method for deep sandstone-type uranium mineralization |
CN108008456B (en) * | 2016-10-27 | 2019-08-13 | 核工业北京地质研究院 | A method of delineation mesothermal gold deposits deep three-dimensional emphasis U metallogeny Favourable Target Areas |
CN108008456A (en) * | 2016-10-27 | 2018-05-08 | 核工业北京地质研究院 | A kind of method for drawing a circle to approve mesothermal gold deposits deep three-dimensional emphasis U metallogeny Favourable Target Areas |
CN107505659A (en) * | 2017-07-05 | 2017-12-22 | 佛山诸广矿业有限公司 | A kind of method for finding In The Granite Area concealed uranium deposit |
CN107505659B (en) * | 2017-07-05 | 2019-06-04 | 佛山诸广矿业有限公司 | A method for finding hidden uranium deposits in granite areas |
CN108446835A (en) * | 2018-03-02 | 2018-08-24 | 核工业二六大队 | Drilling radioactive anomaly comments sequence method in a kind of radioactivity GEOLOGICAL ENVIRONMENT SURVEY |
CN108761550A (en) * | 2018-04-24 | 2018-11-06 | 湖南湘核三零二地质勘查有限公司 | A kind of south granite type U-ore method of prospecting |
CN111044519A (en) * | 2019-12-31 | 2020-04-21 | 核工业北京地质研究院 | Mineral combination method for indicating deep hydrothermal uranium mineralization |
CN111044519B (en) * | 2019-12-31 | 2022-02-18 | 核工业北京地质研究院 | Mineral combination method for indicating deep hydrothermal uranium mineralization |
CN112462406A (en) * | 2020-11-11 | 2021-03-09 | 核工业北京地质研究院 | Deep uranium mineralization radioactivity and deep penetration geochemical combination identification method |
CN112462406B (en) * | 2020-11-11 | 2024-03-19 | 核工业北京地质研究院 | A combined radioactivity and deep penetration geochemical identification method for deep uranium mineralization |
CN114675345A (en) * | 2022-03-28 | 2022-06-28 | 核工业二七0研究所 | Concealed silicification broken belt type uranium ore detection method |
CN114675345B (en) * | 2022-03-28 | 2024-06-11 | 核工业二七0研究所 | Hidden siliconizing broken strip type uranium ore detection method |
CN118447963A (en) * | 2024-05-07 | 2024-08-06 | 昆明理工大学 | A method of determining the occurrence of deep concealed plate-like ore bodies using a characteristic element combination anomaly derivative method for hydrothermal deposits |
CN118447963B (en) * | 2024-05-07 | 2025-01-21 | 昆明理工大学 | A method of determining the occurrence of deep concealed plate-like ore bodies using a characteristic element combination anomaly derivative method |
CN119375968A (en) * | 2024-12-27 | 2025-01-28 | 核工业北京地质研究院 | Geochemical exploration methods for hydrothermal concealed uranium deposits |
Also Published As
Publication number | Publication date |
---|---|
CN102478674B (en) | 2013-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102478674A (en) | A Method for Tracing and Exploring Hydrothermal Uranium Deposits with Combination of Geochemical Elements | |
Youn et al. | Geochemical composition and provenance of muddy shelf deposits in the East China Sea | |
Yuan et al. | High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry | |
CN111044549B (en) | A method for quickly judging whether black rock series has uranium polymetallic mining value | |
Lima et al. | Geochemical baselines for the radioelements K, U, and Th in the Campania region, Italy: a comparison of stream-sediment geochemistry and gamma-ray surveys | |
CN112557612B (en) | A method for analyzing heavy metal pollution sources and pollution boundaries of groundwater in metal mining areas using water system sediments | |
Xu et al. | Groundwater source discrimination and proportion determination of mine inflow using ion analyses: a case study from the Longmen coal mine, Henan Province, China | |
CN114062476B (en) | A Soil Cd/Pb Composite Pollution Bimetallic Isotope Source Analysis Method and System | |
Zaarur et al. | Late Quaternary climate in southern China deduced from Sr–Nd isotopes of Huguangyan Maar sediments | |
CN106596536A (en) | Natural particle size soil nitrogen grading method | |
CN106842345A (en) | A kind of method for recognizing URANIUM DEPOSITS IN THE DEPTH information | |
Huang et al. | A multiple isotope (S, H, O and C) approach to estimate sulfate increasing mechanism of groundwater in coal mine area | |
Das et al. | Sr-Nd-Hf isotopic analysis of reference materials and natural and anthropogenic particulate matter sources: Implications for accurately tracing North African dust in complex urban atmospheres | |
CN106289916A (en) | The selective extraction method of sedimentary origin strontium barium in terrigenous clastic deposit | |
Hong et al. | Characterization of acidity and sulfate in dust obtained from the Wuda coal base, northern China: spatial distribution and pollution assessment | |
CN107203011A (en) | One kind is based on remote sensing and geophysical ancient land block image-recognizing method | |
Xu et al. | Novel insights into Pb source apportionment in sediments from two cascade reservoirs, North China | |
CN106507974B (en) | Sandstone-type uranium mineralization with respect gamma-ray power spectrum weak information extraction method | |
CN106645378A (en) | Method for identifying weathering degree of ion-absorbing type rare earth ores | |
CN106932460A (en) | A kind of latent sandstone type uranium mineralization information identifying method | |
CN108918240B (en) | A kind of leaching method of active lithium in soil | |
Zhao et al. | Aggregate Evolution Mechanism during Ion‐Adsorption Rare Earth Ore Leaching | |
Yokoyama et al. | Determination of trace gold in rock samples by a combination of two-stage solvent extraction and graphite furnace atomic absorption spectrometry: the problem of iron interference and its solution | |
CN113670909A (en) | Method for rapidly screening mineral-containing weathering crust and evaluating rare earth ore type in field | |
CN102721588A (en) | Rapid in-situ measurement method for content of antimony in acid mine waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20120530 Assignee: BEIJING CNNC DADI MINING PROSPECTING DEVELOPMENT CO., LTD. Assignor: Beijing Geology Research Inst., Ministry of Nuclear Industry Contract record no.: 2013990000680 Denomination of invention: Method for combined tracing exploration on hydrothermal uranium ore through geochemical elements Granted publication date: 20130626 License type: Exclusive License Record date: 20131015 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model |