CN102478556A - Enrichment method of polycyclic aromatic hydrocarbons in environmental water sample - Google Patents
Enrichment method of polycyclic aromatic hydrocarbons in environmental water sample Download PDFInfo
- Publication number
- CN102478556A CN102478556A CN2010105629914A CN201010562991A CN102478556A CN 102478556 A CN102478556 A CN 102478556A CN 2010105629914 A CN2010105629914 A CN 2010105629914A CN 201010562991 A CN201010562991 A CN 201010562991A CN 102478556 A CN102478556 A CN 102478556A
- Authority
- CN
- China
- Prior art keywords
- solid
- phase extraction
- magnesium oxide
- organic modifier
- extraction column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
本发明涉及一种环境水样中多环芳烃的富集方法,a)十八烷基修饰氧化镁微球的制备;b)以十八烷基修饰的氧化镁微球为填料制备固相萃取柱;c)依次使用二氯甲烷、有机修饰剂和有机修饰剂水溶液对固相萃取柱进行活化;然后将含有有机修饰剂的水样进行上样;d)使用乙腈水溶液对固相萃取柱进行淋洗,然后再用有机溶剂对固相萃取柱进行洗脱,得洗脱液;e)洗脱液挥发溶剂后即得到富集后的多环芳烃,然后用乙腈水溶液定容,并进行高效液相色谱分析。相对于氧化镁和商品化的Sep-PakC18来说,在实现富集因子相同的条件下,本发明方法获得了较高的萃取效率。The invention relates to a method for enriching polycyclic aromatic hydrocarbons in environmental water samples, a) preparation of octadecyl-modified magnesium oxide microspheres; b) preparation of solid-phase extraction using octadecyl-modified magnesium oxide microspheres as filler column; c) sequentially use dichloromethane, organic modifier and organic modifier aqueous solution to activate the solid-phase extraction column; then load the water sample containing the organic modifier; d) use acetonitrile aqueous solution to activate the solid-phase extraction column Rinse, and then use an organic solvent to elute the solid-phase extraction column to obtain an eluent; e) After the eluent volatilizes the solvent, the enriched polycyclic aromatic hydrocarbons are obtained, and then the acetonitrile aqueous solution is used to constant volume, and the high-efficiency Liquid chromatography analysis. Compared with magnesium oxide and commercialized Sep-PakC18, under the same conditions of realizing the enrichment factor, the method of the present invention obtains higher extraction efficiency.
Description
技术领域 technical field
本发明涉及环境水样中多环芳烃的富集方法,具体地说是一种利用十八烷基修饰的氧化镁微球作为固相萃取吸附剂,对环境水样中存在的多环芳烃进行富集的新方法。 The invention relates to a method for enriching polycyclic aromatic hydrocarbons in environmental water samples, specifically a method for polycyclic aromatic hydrocarbons present in environmental water samples by using octadecyl-modified magnesium oxide microspheres as a solid-phase extraction adsorbent. A new method of enrichment.
背景技术 Background technique
多环芳烃作为一种在环境中广泛存在的环境污染物,由于其潜在的致癌、致突变效应,受到了广泛的关注。其中16种多环芳烃被美国环保署列为优先控制污染物。根据大量的研究和调查,世界健康卫生组织国际癌症研究机构已经将多环芳烃对人类产生的致癌性进行了评价和分类。由于多环芳烃是一类疏水性化合物,且疏水性随着其分子量的增大而增加,从而决定了其在水中具有极低的溶解度。因此在测定环境水样中多环芳烃的含量时,需要有效的富集和萃取技术。 As a kind of environmental pollutants widely existing in the environment, polycyclic aromatic hydrocarbons have received extensive attention due to their potential carcinogenic and mutagenic effects. Among them, 16 kinds of polycyclic aromatic hydrocarbons are listed as priority pollutants by the US Environmental Protection Agency. According to a large number of studies and investigations, the International Agency for Research on Cancer of the World Health Organization has evaluated and classified the carcinogenicity of polycyclic aromatic hydrocarbons to humans. Since polycyclic aromatic hydrocarbons are a class of hydrophobic compounds, and their hydrophobicity increases with the increase of their molecular weight, it is determined that they have extremely low solubility in water. Therefore, when determining the content of PAHs in environmental water samples, effective enrichment and extraction techniques are needed.
目前已报道的富集和萃取方法包括液液萃取、固相萃取、固相微萃取、液相微萃取、加速溶剂萃取、搅拌棒吸附萃取、浊点萃取、基质固相分散萃取、固相纳萃取等。其中固相萃取作为一种普遍的萃取技术受到了广泛的应用,而固相萃取吸附剂种类的多样性为实现有效的富集提供了保障。例如硅胶基质(C8、C18、C30和苯乙烯-二乙烯基苯共聚物等)(Kiss, G., Puchony, Z. V., Hlavay, J., J. Chromatogr. A;Erustes, J. A., Eiroa, A. A., Cladera, A. et al., Analyst;Bogusz, M. J., El Hajj, S. A., Ehaideb, Z., et al., J. Chromatogr. A;Li, K., Li, H. F., Liu, L. B., et al., J. Chromatogr. A;Brown, J. N., Peake, B. M., Anal. Chim. Acta.)、多壁碳纳米管(W.D. Wang, Y.M. Huang, W.Q. Shu, et al., J. Chromatogr. A)、十八烷基官能化的磁性氧化铁(Liu, Y., Li, H. F., Lin, J. M., Talanta)、聚合物(Lai, J. P., Niessner, R., Knopp, D., Anal. Chim. Acta;Yu, J. C., Jiang, Z. T., Liu, H. Y., et al., Anal. Chim. Acta;Zhou, Y. Y., Yan, X. P., Kim, K. N., et al., J. Chromatogr.A;Qi, D. J., Kang, X. J., Chen, L. Q., et al., Anal. Bioanal. Chem.; Krupadam, R. J., Bhagat, B., Wate, S. R., et al., Environ. Sci. Technol.)、半胶束涂覆的磁性纳米颗粒(A. Ballesteros-Gómez, S. Rubio, Anal. Chem.)和氧化镁微球(Jin, J., Zhang, Z.P., Li, Y., et al., Anal. Chim. Acta)等,然而对于十八烷基修饰的氧化镁微球而言,其在环境分析中的应用还未见报道。 The reported enrichment and extraction methods include liquid-liquid extraction, solid-phase extraction, solid-phase microextraction, liquid-phase microextraction, accelerated solvent extraction, stirring bar adsorption extraction, cloud point extraction, matrix solid-phase dispersion extraction, solid-phase nano extraction etc. Among them, solid phase extraction has been widely used as a common extraction technology, and the variety of solid phase extraction adsorbents provides a guarantee for effective enrichment. For example, silica gel matrix (C8, C18, C30 and styrene-divinylbenzene copolymer, etc.) (Kiss, G., Puchony, Z. V., Hlavay, J., J. Chromatogr. A; Erustes, J. A ., Eiroa, A. A., Cladera, A. et al., Analyst; Bogusz, M. J., El Hajj, S. A., Ehaideb, Z., et al., J. Chromatogr. A; Li , K., Li, H. F., Liu, L. B., et al., J. Chromatogr. A; Brown, J. N., Peake, B. M., Anal. Chim. Acta.), Multi-walled carbon nanotubes (W.D. Wang, Y.M. Huang, W.Q. Shu, et al., J. Chromatogr. A), octadecyl-functionalized magnetic iron oxide (Liu, Y., Li, H. F., Lin , J. M., Talanta), polymers (Lai, J. P., Niessner, R., Knopp, D., Anal. Chim. Acta; Yu, J. C., Jiang, Z. T., Liu , H. Y., et al., Anal. Chim. Acta; Zhou, Y. Y., Yan, X. P., Kim, K. N., et al., J. Chromatogr.A; Qi, D . J., Kang, X. J., Chen, L. Q., et al., Anal. Bioanal. Chem.; Krupadam, R. J., Bhagat, B., Wate, S. R., et al ., Environ. Sci. Technol.), semi-micelle-coated magnetic nanoparticles (A. Ballesteros-Gómez, S. Rubio, Anal. Chem.) and magnesium oxide microspheres (Jin, J., Zhang, Z.P., Li, Y., et al., Anal. Chim. Acta), etc. However, for octadecyl-modified magnesium oxide microspheres, their application in environmental analysis has not been reported.
发明内容 Contents of the invention
本发明的目的在于以十八烷基修饰的氧化镁微球作为固相萃取吸附剂,发展一种适合于对环境水样中存在的多环芳烃进行富集的新方法。 The purpose of the present invention is to use octadecyl-modified magnesium oxide microspheres as a solid-phase extraction adsorbent to develop a new method suitable for enriching polycyclic aromatic hydrocarbons present in environmental water samples.
为解决上述技术问题,本发明所采用的技术方案是: In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:
首先制备十八烷基修饰的氧化镁微球,以其作为填料装填固相萃取柱,然后通过对影响固相萃取效率的各因素进行优化,包括上样过程中有机修饰剂的种类和浓度,上样流速和体积,淋洗剂和洗脱溶剂的种类,发展一种适合于对环境水样中存在的多环芳烃进行富集的新方法。 First, octadecyl-modified magnesia microspheres were prepared, and filled with solid-phase extraction columns as fillers, and then by optimizing various factors affecting the efficiency of solid-phase extraction, including the type and concentration of organic modifiers during the loading process, The flow rate and volume of sample loading, the types of eluent and elution solvent, and the development of a new method suitable for the enrichment of polycyclic aromatic hydrocarbons in environmental water samples.
具体操作为: The specific operation is:
a)十八烷基修饰氧化镁微球制备: a) Preparation of octadecyl-modified magnesium oxide microspheres:
b)以十八烷基修饰的氧化镁微球为填料制备固相萃取柱; b) preparing a solid-phase extraction column with octadecyl-modified magnesium oxide microspheres as filler;
c)依次使用二氯甲烷、有机修饰剂和一定浓度的有机修饰剂水溶液对固相萃取柱进行活化;然后将含有一定浓度有机修饰剂的水样进行上样; c) sequentially using dichloromethane, an organic modifier, and a certain concentration of an organic modifier aqueous solution to activate the solid-phase extraction column; and then loading a water sample containing a certain concentration of the organic modifier;
d)使用乙腈水溶液对固相萃取柱进行淋洗,然后再用非极性有机溶剂对固相萃取柱进行洗脱,得洗脱液; d) washing the solid-phase extraction column with an aqueous acetonitrile solution, and then eluting the solid-phase extraction column with a non-polar organic solvent to obtain an eluent;
e) 洗脱液挥发溶剂后即得到富集后的多环芳烃,然后用乙腈水溶液定容,并进行高效液相色谱分析。 e) After the eluent evaporates the solvent, the enriched polycyclic aromatic hydrocarbons are obtained, and then the acetonitrile aqueous solution is used to make up the volume, and perform high-performance liquid chromatography analysis.
步骤a中采用氧化镁微球和十八烷基硅烷化试剂为原料,在表面活性剂存在的情况下,于非极性有机溶剂中,将十八烷基修饰到氧化镁微球表面; In step a, magnesium oxide microspheres and octadecyl silylating reagent are used as raw materials, and octadecyl groups are modified to the surface of magnesium oxide microspheres in a non-polar organic solvent in the presence of a surfactant;
其中以氧化镁1.5 g计,表面活性剂0.01-0.10 g,十八烷基硅烷化试剂的用量为0.5-2.0 mL,反应温度为105-120℃,反应时间为5-24h; Among them, based on 1.5 g of magnesium oxide, 0.01-0.10 g of surfactant, 0.5-2.0 mL of octadecyl silylating reagent, the reaction temperature is 105-120 ° C, and the reaction time is 5-24 h;
具体操作过程为,反应前,先向1.5 g氧化镁和0.01-0.10 g表面活性剂的混合物中加入到40-100 mL非极性有机溶剂,然后将其加热到105-120℃,并持续搅拌保持5-20 min,得到氧化镁的悬浮液; The specific operation process is, before the reaction, add 40-100 mL of non-polar organic solvent to the mixture of 1.5 g of magnesium oxide and 0.01-0.10 g of surfactant, then heat it to 105-120 °C and keep stirring Keep for 5-20 min to obtain a suspension of magnesium oxide;
然后按照氧化镁与十八烷基硅烷化试剂的比例1.5 g:0.5-2 mL,将十八烷基硅烷化试剂溶解到5-30 mL非极性溶剂中配制成硅烷化化试剂溶液,再将该硅烷化试剂溶液逐滴加入到不断搅拌地氧化镁悬浮液中,反应时间为5-24 h,所得固体依次用甲醇、甲苯分别洗涤2-3次后,经真空干燥即可得到十八烷基修饰的氧化镁微球。 Then, according to the ratio of magnesium oxide to octadecyl silylating reagent 1.5 g: 0.5-2 mL, dissolve the octadecyl silylating reagent in 5-30 mL of non-polar solvent to prepare a silylating reagent solution, and then The silylating reagent solution is added dropwise to the constantly stirring magnesium oxide suspension, the reaction time is 5-24 h, and the obtained solid is washed with methanol and toluene for 2-3 times respectively, and vacuum-dried to obtain 18 Alkyl-modified magnesium oxide microspheres.
所述悬浮液中可加入表面活性剂作为分散剂,目的是调节改性产物的表面均一性,类型可以为阴离子表面活性剂、阳离子表面活性剂或非离子型表面活性剂。 A surfactant can be added to the suspension as a dispersant for the purpose of adjusting the surface uniformity of the modified product, and the type can be an anionic surfactant, a cationic surfactant or a nonionic surfactant.
该反应所使用的非极性有机溶剂为甲苯或正己烷;十八硅烷化试剂为十八烷基三氯硅烷。 The non-polar organic solvent used in the reaction is toluene or n-hexane; the octadecylsilylating reagent is octadecyltrichlorosilane.
步骤b中十八烷基修饰氧化镁微球的质量与固相萃取管的体积比为200mg:6mL; The mass of octadecyl-modified magnesium oxide microspheres and the volume ratio of the solid-phase extraction tube in step b are 200mg:6mL;
步骤c中对固相萃取柱进行活化时,有机修饰剂种类应与水样中添加到有机修饰剂种类相同,可以为甲醇、丙酮、异丙醇;有机修饰剂水溶液的浓度(体积比)应与水样中有机修饰剂的浓度相同;上样时,水样中含有体积比为0%-20%的有机修饰剂(0%就是指不加入有机修饰剂时的浓度,这个浓度是考察的对象),目的是增加多环芳烃在水溶液中的溶解度,减少固相萃取过程中多环芳烃在管壁上的损失,并且当固相萃取柱的柱管体积为6mL时,上样流速控制在1-5 mL/min,样品溶液体积控制在20-250 mL之间; When the solid-phase extraction column is activated in step c, the type of organic modifier should be the same as that added to the water sample, which can be methanol, acetone, or isopropanol; the concentration (volume ratio) of the aqueous solution of the organic modifier should be It is the same as the concentration of the organic modifier in the water sample; when the sample is loaded, the water sample contains an organic modifier with a volume ratio of 0%-20% (0% refers to the concentration when no organic modifier is added, and this concentration is investigated object), the purpose is to increase the solubility of polycyclic aromatic hydrocarbons in aqueous solution, reduce the loss of polycyclic aromatic hydrocarbons on the tube wall during solid phase extraction, and when the column tube volume of the solid phase extraction column is 6mL, the sample loading flow rate is controlled at 1-5 mL/min, the sample solution volume is controlled between 20-250 mL;
步骤d中,在淋洗阶段,当固相萃取柱的柱管体积为6mL时,使用1-4 mL体积比为0%-20%的乙腈或甲醇的水溶液作为淋洗剂,不仅不会干扰目标分析物的富集,而且可以除去部分极性化合物;洗脱阶段可以采用极性强度≤二氯甲烷极性强度的有机溶剂或其混合溶液对固相萃取柱进行洗脱。 In step d, in the eluting stage, when the column volume of the solid-phase extraction column is 6mL, use 1-4 mL of acetonitrile or methanol aqueous solution with a volume ratio of 0%-20% as eluent, not only will not interfere The enrichment of the target analyte, and can remove some polar compounds; the elution stage can use the organic solvent with polarity ≤ dichloromethane polarity or its mixed solution to elute the solid phase extraction column.
步骤e中洗脱液蒸发溶剂至50-100 mL,目的是尽量减少分子量较小的多环芳烃的损失。 Evaporate the solvent from the eluent in step e to 50-100 mL, in order to minimize the loss of polycyclic aromatic hydrocarbons with smaller molecular weights.
本发明具有如下优点: The present invention has the following advantages:
(1)在实现富集因子相同的条件下,相对于氧化镁微球和商品化的Sep-Pak C18固相萃取柱而言, 该发明方法在应用于富集环境水样中的多环芳烃时,表现出较高的萃取效率;(2)相对于商品化的吸附剂而言,本发明所使用的有机修饰剂较少,少于其用量的一半。 (1) Under the same conditions of achieving enrichment factors, compared with magnesium oxide microspheres and commercialized Sep-Pak C18 solid-phase extraction columns, the inventive method is applied to the enrichment of polycyclic aromatic hydrocarbons in environmental water samples , showing higher extraction efficiency; (2) Compared with commercial adsorbents, the organic modifier used in the present invention is less, less than half of its amount.
附图说明 Description of drawings
图1为采用本发明方法,通过调节丙酮含量得到的多环芳烃的回收率对比图;萘:NAPH;苊:ACEN;芴:FLUO;菲:PHEN;蒽:ANTH;芘:PYR;苯并[a]芘:BaP;苯并[ghi]苝:BghiP。 Fig. 1 adopts the method of the present invention, obtains the comparison chart of the recovery rate of the polycyclic aromatic hydrocarbon by adjusting acetone content; Naphthalene: NAPH; Acenaphthene: ACEN; Fluorene: FLUO; Phenanthrene: PHEN; a] pyrene: BaP; benzo[ghi]perylene: BghiP.
图2为采用本发明方法,通过调节异丙醇含量得到的多环芳烃的回收率对比图;萘:NAPH;苊:ACEN;芴:FLUO;菲:PHEN;蒽:ANTH;芘:PYR;苯并[a]芘:BaP;苯并[ghi]苝:BghiP。 Fig. 2 is a comparison chart of recovery rates of polycyclic aromatic hydrocarbons obtained by adjusting the content of isopropanol using the method of the present invention; naphthalene: NAPH; acenaphthene: ACEN; fluorene: FLUO; phenanthrene: PHEN; anthracene: ANTH; And[a]pyrene: BaP; benzo[ghi]perylene: BghiP.
图3为采用本发明方法,通过调节上样流速得到的多环芳烃的回收率对比图;萘:NAPH;苊:ACEN;芴:FLUO;菲:PHEN;蒽:ANTH;芘:PYR;苯并[a]芘:BaP;苯并[ghi]苝:BghiP。 Fig. 3 is a comparison chart of the recovery rate of polycyclic aromatic hydrocarbons obtained by adjusting the loading flow rate by adopting the method of the present invention; naphthalene: NAPH; acenaphthylene: ACEN; fluorene: FLUO; phenanthrene: PHEN; anthracene: ANTH; [a]pyrene: BaP; benzo[ghi]perylene: BghiP.
图4为采用本发明方法,通过调节样品溶液体积得到的多环芳烃的回收率对比图;萘:NAPH;苊:ACEN;芴:FLUO;菲:PHEN;蒽:ANTH;芘:PYR;苯并[a]芘:BaP;苯并[ghi]苝:BghiP。 Figure 4 is a comparison chart of the recovery rate of polycyclic aromatic hydrocarbons obtained by adjusting the volume of the sample solution by adopting the method of the present invention; naphthalene: NAPH; acenaphthene: ACEN; fluorene: FLUO; phenanthrene: PHEN; anthracene: ANTH; [a]pyrene: BaP; benzo[ghi]perylene: BghiP.
图5为采用本发明方法,通过调节洗脱溶剂种类得到的多环芳烃洗脱效率的对比图;萘:NAPH;苊:ACEN;芴:FLUO;菲:PHEN;蒽:ANTH;芘:PYR;苯并[a]芘:BaP;苯并[ghi]苝:BghiP。 Fig. 5 is a comparison diagram of the elution efficiency of polycyclic aromatic hydrocarbons obtained by adjusting the type of elution solvent by adopting the method of the present invention; naphthalene: NAPH; acenaphthylene: ACEN; fluorene: FLUO; phenanthrene: PHEN; anthracene: ANTH; pyrene: PYR; Benzo[a]pyrene: BaP; Benzo[ghi]perylene: BghiP.
图6为采用本发明方法,将其与氧化镁和Sep-Pak C18相对比,在最佳优化条件下获得的回收率对比图;萘:NAPH;苊:ACEN;芴:FLUO;菲:PHEN;蒽:ANTH;芘:PYR;苯并[a]芘:BaP;苯并[ghi]苝:BghiP。 Fig. 6 adopts the method of the present invention, compares it with magnesia and Sep-Pak C18, and obtains the comparison figure of the recovery rate under optimal optimization condition; Naphthalene: NAPH; Acenaphthene: ACEN; Fluorene: FLUO; Phenanthrene: PHEN; Anthracene: ANTH; Pyrene: PYR; Benzo[a]pyrene: BaP; Benzo[ghi]perylene: BghiP.
图7为采用本发明方法,对试剂空白和多环芳烃标准混配的自来水中多环芳烃进行富集后所得到的高效液相色谱图;1:萘;2:苊;3:芴;4:菲;5:蒽;6: 荧蒽;7:芘;8:苯并[a]蒽;9:屈;10:苯并[b]荧蒽;11:苯并[k]荧蒽;12:苯并[a]芘;13:二苯并[a,h]蒽;14:苯并[g,h,i]苝;15:茚并[1,2,3-cd]苝。 Fig. 7 adopts the method of the present invention, the high-performance liquid chromatogram that obtains after enriching polycyclic aromatic hydrocarbons in tap water mixed with reagent blank and polycyclic aromatic hydrocarbon standards; 1: naphthalene; 2: acenaphthylene; 3: fluorene; 4 : phenanthrene; 5: anthracene; 6: fluoranthene; 7: pyrene; 8: benzo[a] anthracene; 9: chrysene; 10: benzo[b] fluoranthene; : benzo[a]pyrene; 13: dibenzo[a,h]anthracene; 14: benzo[g,h,i]perylene; 15: indeno[1,2,3-cd]perylene.
具体实施方式 Detailed ways
十八烷基修饰氧化镁微球的制备:采用氧化镁微球和十八烷基三氯硅烷为原料,向1.5g氧化镁和0.01g十二烷基苯磺酸钠的混合物中加入40 mL甲苯溶液中,然后将该悬浮液加热到115℃,并持续搅拌保持10 min,接着将0.5 mL十八烷基三氯硅烷分散到20 mL甲苯溶液中,并将其逐滴加入到不断搅拌地悬浮液中,反应时间为10 h。所得产物经过简单的抽滤,依次用200 mL甲醇和50 mL甲苯分别洗涤3次后,经真空干燥即得到分散的十八烷基修饰的氧化镁微球。 Preparation of octadecyl-modified magnesium oxide microspheres: Using magnesium oxide microspheres and octadecyltrichlorosilane as raw materials, add 40 mL of Then, the suspension was heated to 115°C and kept stirring for 10 min, then 0.5 mL of octadecyltrichlorosilane was dispersed into 20 mL of toluene solution, and added dropwise to the continuously stirring In suspension, the reaction time was 10 h. The obtained product was subjected to simple suction filtration, washed three times with 200 mL methanol and 50 mL toluene, respectively, and then vacuum-dried to obtain dispersed octadecyl-modified magnesium oxide microspheres.
实施例1: Example 1:
将200 mg十八烷基修饰的氧化镁微球通过干法填充到固相萃取空管(6 mL)内,上下分别垫置配套的过滤筛板。上样前,分别使用二氯甲烷、丙酮和体积比为0-15%的丙酮水溶液(与样品溶液中丙酮的体积比相同)对固相萃取柱进行活化;然后将含丙酮0%,5%,9%,10%和15%(体积比)的100 mL去离子水上样(水溶液中含萘:3.520 ng mL-1;苊:10.200 ng mL-1;芴:0.920 ng mL-1;菲:0.576 ng mL-1;蒽:0.272 ng mL-1;芘:1.152 ng mL-1;苯并[a]芘:3.040 ng mL-1;苯并[ghi]苝:1.600 ng mL-1)。上样完毕,使用4 mL去离子水进行淋洗。待淋洗完毕,使用5 mL二氯甲烷进行洗脱,所得洗脱液浓缩至50 mL后,用体积比为60%的乙腈水溶液进行定容,最后进行高效液相色谱分析。以丙酮作为有机修饰剂,其含量的不同对多环芳烃回收率的影响列于图1中。从中可以看出,当丙酮用量为9%时,可以实现对多环芳烃的有效富集,从而确定了该富集方法中有机修饰剂的种类和浓度。 200 mg of octadecyl-modified magnesia microspheres were filled into an empty solid-phase extraction tube (6 mL) by dry method, and matching filter sieves were placed on top and bottom respectively. Before loading the sample, use dichloromethane, acetone and 0-15% volume ratio of acetone aqueous solution (the same volume ratio as acetone in the sample solution) to activate the solid phase extraction column; then use 0% and 5% acetone , 9%, 10% and 15% (volume ratio) in 100 mL deionized water (containing naphthalene in aqueous solution: 3.520 ng mL -1 ; acenaphthene: 10.200 ng mL -1 ; fluorene: 0.920 ng mL -1 ; phenanthrene: 0.576 ng mL -1 ; anthracene: 0.272 ng mL -1 ; pyrene: 1.152 ng mL -1 ; benzo[a]pyrene: 3.040 ng mL -1 ; benzo[ghi]perylene: 1.600 ng mL -1 ). After sample loading, rinse with 4 mL deionized water. After the rinsing was completed, 5 mL of dichloromethane was used for elution, and the obtained eluate was concentrated to 50 mL, then fixed to volume with 60% acetonitrile aqueous solution, and finally analyzed by high performance liquid chromatography. Using acetone as an organic modifier, the impact of different contents on the recovery of polycyclic aromatic hydrocarbons is shown in Figure 1. It can be seen that when the amount of acetone is 9%, the effective enrichment of polycyclic aromatic hydrocarbons can be achieved, thus determining the type and concentration of organic modifiers in this enrichment method.
实施例2: Example 2:
将200 mg十八烷基修饰的氧化镁微球通过干法填充到固相萃取空管(6 mL)内,上下分别垫置配套的过滤筛板。上样前,分别使用二氯甲烷、异丙醇和体积比为0%-15%的异丙醇水溶液(与样品溶液中异丙醇的体积比相同)对固相萃取柱进行活化;然后将含异丙醇0%,5%,9%,10%和15%(体积比)的100 mL去离子水上样(水溶液中含萘:3.520 ng mL-1;苊:10.200 ng mL-1;芴:0.920 ng mL-1;菲:0.576 ng mL-1;蒽:0.272 ng mL-1;芘:1.152 ng mL-1;苯并[a]芘:3.040 ng mL-1;苯并[ghi]苝:1.600 ng mL-1)。上样完毕,使用4 mL去离子水进行淋洗。待淋洗完毕,使用5 mL二氯甲烷进行洗脱,所得洗脱液浓缩至50 mL后,用体积比为60%的乙腈水溶液进行定容,最后进行高效液相色谱分析。以异丙醇作为有机修饰剂,其含量的不同对多环芳烃回收率的影响列于图2中。从中可以看出,当异丙醇用量为10%时,可以实现对多环芳烃的有效富集。同时对比图1和图2,进一步肯定了该富集方法中所使用的有机修饰剂应为体积比为9%的丙酮。 200 mg of octadecyl-modified magnesia microspheres were filled into an empty solid-phase extraction tube (6 mL) by dry method, and matching filter sieves were placed on top and bottom respectively. Before loading the sample, use dichloromethane, isopropanol and 0%-15% isopropanol aqueous solution (the same volume ratio as the sample solution) to activate the solid phase extraction column; 0%, 5%, 9%, 10% and 15% (volume ratio) of isopropanol in 100 mL of deionized water (containing naphthalene in aqueous solution: 3.520 ng mL -1 ; acenaphthene: 10.200 ng mL -1 ; fluorene: 0.920 ng mL -1 ; phenanthrene: 0.576 ng mL -1 ; anthracene: 0.272 ng mL -1 ; pyrene: 1.152 ng mL -1 ; benzo[a]pyrene: 3.040 ng mL -1 ; benzo[ghi]perylene: 1.600 ng mL -1 ). After sample loading, rinse with 4 mL deionized water. After the rinsing was completed, 5 mL of dichloromethane was used for elution, and the obtained eluate was concentrated to 50 mL, then fixed to volume with 60% acetonitrile aqueous solution, and finally analyzed by high performance liquid chromatography. Using isopropanol as an organic modifier, the impact of different contents on the recovery of PAHs is shown in Figure 2. It can be seen that when the amount of isopropanol is 10%, the effective enrichment of PAHs can be achieved. Comparing Figure 1 and Figure 2 at the same time, it is further affirmed that the organic modifier used in this enrichment method should be acetone with a volume ratio of 9%.
实施例3: Example 3:
将200 mg十八烷基修饰的氧化镁微球通过干法填充到固相萃取空管(6 mL)内,上下分别垫置配套的过滤筛板。上样前,分别使用二氯甲烷、丙酮和体积比为9%的丙酮水溶液对固相萃取柱进行活化;然后将含有9%(体积比)丙酮的100 mL去离子水(水溶液中含萘:3.520 ng mL-1;苊:10.200 ng mL-1;芴:0.920 ng mL-1;菲:0.576 ng mL-1;蒽:0.272 ng mL-1;芘:1.152 ng mL-1;苯并[a]芘:3.040 ng mL-1;苯并[ghi]苝:1.600 ng mL-1)。1-10 mL/min的流速上样。上样完毕,使用4 mL去离子水进行淋洗。待淋洗完毕,使用5 mL二氯甲烷进行洗脱,所得洗脱液浓缩至50 mL后,用体积比为60%的乙腈水溶液进行定容,最后进行高效液相色谱分析。从图3中可以看出,当上样流速控制在5 mL/min以内时,可以实现对多环芳烃的有效富集,从而确定了该富集方法中的流速。 200 mg of octadecyl-modified magnesia microspheres were filled into an empty solid-phase extraction tube (6 mL) by dry method, and matching filter sieves were placed on top and bottom respectively. Before loading the sample, use dichloromethane, acetone and 9% acetone aqueous solution to activate the solid-phase extraction; then add 100 mL deionized water containing 9% (volume ratio) acetone (the aqueous solution contains naphthalene: 3.520 ng mL -1 ; acenaphthene: 10.200 ng mL -1 ; fluorene: 0.920 ng mL -1 ; phenanthrene: 0.576 ng mL -1 ; anthracene: 0.272 ng mL -1 ; pyrene: 1.152 ng mL -1 ; ]pyrene: 3.040 ng mL -1 ; benzo[ghi]perylene: 1.600 ng mL -1 ). Load the sample at a flow rate of 1-10 mL/min. After sample loading, rinse with 4 mL deionized water. After the rinsing was completed, 5 mL of dichloromethane was used for elution, and the obtained eluate was concentrated to 50 mL, then fixed to volume with 60% acetonitrile aqueous solution, and finally analyzed by high performance liquid chromatography. It can be seen from Figure 3 that when the sample loading flow rate is controlled within 5 mL/min, the effective enrichment of PAHs can be achieved, thus determining the flow rate in this enrichment method.
实施例4: Example 4:
将200 mg十八烷基修饰的氧化镁微球通过干法填充到固相萃取空管(6 mL)内,上下分别垫置配套的过滤筛板。上样前,分别使用二氯甲烷、丙酮和体积比为9%的丙酮水溶液对固相萃取柱进行活化;然后将含有9%(体积比)丙酮的100-500 mL去离子水(水溶液中含萘:0.704-3.52 ng mL-1;苊:2.040-10.200 ng mL-1;芴:0.184-0.920 ng mL-1;菲:0.115-0.576 ng mL-1;蒽:0.054-0.272 ng mL-1;芘:0.230-1.152 ng mL-1;苯并[a]芘:0.608-3.040 ng mL-1;苯并[ghi]苝:0.320-1.600 ng mL-1)。以5 mL/min的流速上样。上样完毕,使用4 mL去离子水进行淋洗。待淋洗完毕,使用5 mL二氯甲烷进行洗脱,所得洗脱液浓缩至50 mL后,用体积比为60%的乙腈水溶液进行定容,最后进行高效液相色谱分析。从图4中可以看出,当样品溶液体积控制在250mL以内时,可以实现对多环芳烃的有效富集,从而确定了该富集方法中的样品溶液的体积。 200 mg of octadecyl-modified magnesia microspheres were filled into an empty solid-phase extraction tube (6 mL) by dry method, and matching filter sieves were placed on top and bottom respectively. Before loading the sample, use dichloromethane, acetone and 9% volume ratio of acetone aqueous solution to activate the solid-phase extraction column; then add 100-500 mL of deionized water containing Naphthalene: 0.704-3.52 ng mL -1 ; Acenaphthene: 2.040-10.200 ng mL -1 ; Fluorene: 0.184-0.920 ng mL -1 ; Phenanthrene: 0.115-0.576 ng mL -1 ; Anthracene: 0.054-0.272 ng mL -1 ; Pyrene: 0.230-1.152 ng mL -1 ; Benzo[a]pyrene: 0.608-3.040 ng mL -1 ; Benzo[ghi]perylene: 0.320-1.600 ng mL -1 ). Load the sample at a flow rate of 5 mL/min. After sample loading, rinse with 4 mL deionized water. After the rinsing was completed, 5 mL of dichloromethane was used for elution, and the obtained eluate was concentrated to 50 mL, then fixed to volume with 60% acetonitrile aqueous solution, and finally analyzed by high performance liquid chromatography. It can be seen from Figure 4 that when the volume of the sample solution is controlled within 250mL, the effective enrichment of polycyclic aromatic hydrocarbons can be achieved, thereby determining the volume of the sample solution in this enrichment method.
实施例5: Example 5:
将200 mg十八烷基修饰的氧化镁微球通过干法填充到固相萃取空管(6 mL)内,上下分别垫置配套的过滤筛板。上样前,分别使用二氯甲烷、丙酮和体积比为9%的丙酮水溶液对固相萃取柱进行活化;然后将含有9%(体积比)丙酮的250 mL去离子水(水溶液中含萘:1.408 ng mL-1;苊:4.080 ng mL-1;芴:0.368 ng mL-1;菲:0.230 ng mL-1;蒽:0.108 ng mL-1;芘:0.460 ng mL-1;苯并[a]芘:1.216 ng mL-1;苯并[ghi]苝:0.640 ng mL-1)以5 mL/min的流速上样。上样完毕,使用4 mL 20%的乙腈水溶液进行淋洗。待淋洗完毕,分别使用三种不同的有机溶剂(二氯甲烷、正己烷或者二氯甲烷和正己烷的混合溶液)进行洗脱,所得洗脱液浓缩至50 mL后,用体积比为60%的乙腈水溶液进行定容,最后进行高效液相色谱分析。从图5中可以看出,洗脱溶剂种类对不同分子量多环芳烃的洗脱效率具有显著影响,而正己烷和二氯甲烷的混合溶液(体积比1:1)表现出最好的洗脱效果,从而确定了该富集方法中洗脱溶剂的种类。 200 mg of octadecyl-modified magnesia microspheres were filled into an empty solid-phase extraction tube (6 mL) by dry method, and matching filter sieves were placed on top and bottom respectively. Before loading the sample, use dichloromethane, acetone and 9% acetone aqueous solution to activate the solid-phase extraction; then add 250 mL deionized water containing 9% (volume ratio) acetone (the aqueous solution contains naphthalene: 1.408 ng mL -1 ; acenaphthene: 4.080 ng mL -1 ; fluorene: 0.368 ng mL -1 ; phenanthrene: 0.230 ng mL -1 ; anthracene: 0.108 ng mL -1 ; pyrene: 0.460 ng mL -1 ; ]pyrene: 1.216 ng mL -1 ; benzo[ghi]perylene: 0.640 ng mL -1 ) at a flow rate of 5 mL/min. After loading the sample, use 4 mL of 20% acetonitrile aqueous solution to rinse. After the washing is completed, three different organic solvents (dichloromethane, n-hexane or a mixed solution of dichloromethane and n-hexane) are used for elution, and the obtained eluate is concentrated to 50 mL, and the volume ratio is 60 % acetonitrile aqueous solution to constant volume, and finally analyzed by high performance liquid chromatography. It can be seen from Figure 5 that the type of elution solvent has a significant impact on the elution efficiency of PAHs with different molecular weights, and the mixed solution of n-hexane and methylene chloride (volume ratio 1:1) shows the best elution effect, thus determining the type of elution solvent in this enrichment method.
实施例6: Embodiment 6:
将200 mg氧化镁微球和十八烷基修饰的氧化镁微球通过干法分别填充到固相萃取空管(6 mL)内,上下分别垫置配套的过滤筛板。上样前,(a)依次使用二氯甲烷、丙酮和体积比为5%的丙酮水溶液对MgO进行活化,(b)使用二氯甲烷、丙酮和体积比为9%的丙酮水溶液对十八烷基修饰的氧化镁进行活化,(c)使用二氯甲烷、异丙醇和体积比为25%的异丙醇水溶液对Sep-Pak C18进行活化;然后将含有5%丙酮、9%丙酮和25% 异丙醇的250 mL去离子水(水溶液中含萘:1.408 ng mL-1;苊:4.080 ng mL-1;芴:0.368 ng mL-1;菲:0.230 ng mL-1;蒽:0.108 ng mL-1;芘:0.460 ng mL-1;苯并[a]芘:1.216 ng mL-1;苯并[ghi]苝:0.640 ng mL-1)分别以5 mL/min的流速通过a、b、c三种固相萃取柱。上样完毕,分别使用4 mL去离子水对固相萃取柱a和c进行淋洗,而采用4 mL 20% 的乙腈水溶液对b进行淋洗。待淋洗完毕,分别使用5 mL二氯甲烷对a和c进行洗脱,而采用5 mL二氯甲烷和正己烷的混合溶液(体积比1:1)对b进行洗脱;所得洗脱液分别浓缩至50 mL后,用体积比为60%的乙腈水溶液进行定容,最后进行高效液相色谱分析。从图6中可以看出,相对于氧化镁微球和商品化的Sep-Pak C18而言, 该富集方法中所采用的十八烷基修饰的氧化镁微球对水溶液中的多环芳烃表现出更好的富集效果。 200 mg magnesium oxide microspheres and octadecyl-modified magnesium oxide microspheres were filled into solid-phase extraction empty tubes (6 mL) by dry method, and matching filter sieves were placed on top and bottom respectively. Before sample loading, (a) sequentially use dichloromethane, acetone and 5% acetone aqueous solution to activate MgO, (b) use dichloromethane, acetone and 9% acetone aqueous solution to activate octadecane (c) Sep-Pak C18 was activated with dichloromethane, isopropanol and 25% isopropanol aqueous solution by volume; Isopropanol in 250 mL deionized water (contains naphthalene in aqueous solution: 1.408 ng mL -1 ; acenaphthene: 4.080 ng mL -1 ; fluorene: 0.368 ng mL- 1 ; phenanthrene: 0.230 ng mL -1 ; anthracene: 0.108 ng mL -1 ; pyrene: 0.460 ng mL -1 ; benzo[a]pyrene: 1.216 ng mL -1 ; benzo[ghi]perylene: 0.640 ng mL -1 ) through a, b, c Three kinds of solid phase extraction columns. After the sample was loaded, 4 mL of deionized water was used to rinse the SPE columns a and c, while 4 mL of 20% acetonitrile aqueous solution was used to rinse the column b. After the elution is completed, a and c are eluted with 5 mL of dichloromethane, respectively, and b is eluted with a mixed solution of 5 mL of dichloromethane and n-hexane (volume ratio 1:1); the obtained eluate After concentrating to 50 mL respectively, they were fixed to volume with 60% acetonitrile aqueous solution, and finally analyzed by high performance liquid chromatography. It can be seen from Figure 6 that, compared with magnesium oxide microspheres and commercialized Sep-Pak C18, the octadecyl-modified magnesium oxide microspheres used in this enrichment method have a significant effect on the polycyclic aromatic hydrocarbons in aqueous solution. showed a better enrichment effect.
实施例7: Embodiment 7:
将200 mg十八烷基修饰的氧化镁微球通过干法填充到固相萃取空管(6 mL)内,上下分别垫置配套的过滤筛板。上样前,分别使用二氯甲烷、丙酮和体积比为9%的丙酮水溶液对固相萃取柱进行活化;然后将含有9%(体积比)丙酮的250 mL混配自来水(含萘:600 ng L-1;苊:1200 ng L-1;芴、荧蒽、苯并[b]荧蒽、二苯并[a,h]蒽、苯并[ghi]苝:120 ng L-1;菲、蒽、芘、苯并[a]蒽、屈、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3]苝:60 ng L-1)以5 mL/min的流速上样。上样完毕,使用4 mL 20 %的乙腈水溶液进行淋洗。待淋洗完毕,使用5 mL二氯甲烷和正己烷的混合溶液(体积比1:1)进行洗脱,所得洗脱液浓缩至50 mL后,用体积比为60%的乙腈水溶液进行定容,最后进行高效液相色谱分析。从图7中可以看出,通过该方法富集后,可以实现对自来水中多环芳烃的定量测定,表明该方法可以对环境水样中的多环芳烃实现有效富集。
200 mg of octadecyl-modified magnesia microspheres were filled into an empty solid-phase extraction tube (6 mL) by dry method, and matching filter sieves were placed on top and bottom respectively. Before loading the sample, use dichloromethane, acetone and 9% volume ratio of acetone aqueous solution to activate the SPE column respectively; then mix 250 mL of tap water containing 9% (volume ratio) L -1 ; acenaphthene: 1200 ng L -1 ; fluorene, fluoranthene, benzo[b]fluoranthene, dibenzo[a,h]anthracene, benzo[ghi]perylene: 120 ng L -1 ; phenanthrene, Anthracene, pyrene, benzo[a]anthracene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3]perylene: 60 ng L -1 ) at 5 mL/min The flow rate is sampled. After sample loading, rinse with 4 mL of 20% acetonitrile in water. After the rinsing is completed,
相对于氧化镁和商品化的Sep-Pak C18来说,在实现富集因子相同的条件下,该发明以十八烷基修饰的氧化镁微球作为固相萃取吸附剂,建立了一种对环境水样中多环芳烃的富集方法,并获得了较高的萃取效率。 Compared with magnesium oxide and commercialized Sep-Pak C18, under the same conditions of realizing the enrichment factor, the invention uses octadecyl-modified magnesium oxide microspheres as solid-phase extraction adsorbent to establish a pair of The enrichment method of polycyclic aromatic hydrocarbons in environmental water samples, and obtained a higher extraction efficiency.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010562991.4A CN102478556B (en) | 2010-11-29 | 2010-11-29 | Enrichment method of polycyclic aromatic hydrocarbons in environmental water sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010562991.4A CN102478556B (en) | 2010-11-29 | 2010-11-29 | Enrichment method of polycyclic aromatic hydrocarbons in environmental water sample |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102478556A true CN102478556A (en) | 2012-05-30 |
CN102478556B CN102478556B (en) | 2014-06-11 |
Family
ID=46091268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010562991.4A Expired - Fee Related CN102478556B (en) | 2010-11-29 | 2010-11-29 | Enrichment method of polycyclic aromatic hydrocarbons in environmental water sample |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102478556B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106282903A (en) * | 2016-09-12 | 2017-01-04 | 西北师范大学 | The technique that flame method prepares lumpy nanometer iron oxide coatings |
CN106814156A (en) * | 2015-11-27 | 2017-06-09 | 中国科学院大连化学物理研究所 | A kind of method of utilization matrix solid phase dispersion extractive analysis PAHs in soil |
CN106932516A (en) * | 2017-04-18 | 2017-07-07 | 蔡明红 | Original position ultrasound washing device and ultrasonic elution process based on SPE sampling column |
CN108645834A (en) * | 2018-04-18 | 2018-10-12 | 厦门大学 | The detection method of polycyclic aromatic hydrocarbon in a kind of environment water |
CN109154585A (en) * | 2016-02-03 | 2019-01-04 | 科思德株式会社 | For extracting the element of organic component |
CN109358149A (en) * | 2018-11-03 | 2019-02-19 | 浙江环境监测工程有限公司 | The fast quantitative measurement method for detecting of polycyclic aromatic hydrocarbon in a kind of surface water |
CN110586053A (en) * | 2019-09-24 | 2019-12-20 | 山西医科大学 | Solid phase extraction polycyclic aromatic hydrocarbon adsorbent and preparation method thereof |
CN113533593A (en) * | 2021-06-28 | 2021-10-22 | 济南大学 | Separation analysis method for complex oil-water emulsion system |
CN114324670A (en) * | 2021-04-23 | 2022-04-12 | 新疆生产建设兵团第十三师红星医院 | Solid phase extraction column and application thereof |
CN115318814A (en) * | 2022-08-17 | 2022-11-11 | 北京化工大学 | Method for remediation of polycyclic aromatic hydrocarbon-contaminated soil by organic solvent pretreatment combined with ferromanganese oxide activation persulfate |
CN118362659A (en) * | 2024-04-07 | 2024-07-19 | 湖北省农业科学院农业质量标准与检测技术研究所 | Rod-shaped MgO solid-phase extraction adsorbent and application thereof in benzo [ a ] pyrene enrichment and detection |
-
2010
- 2010-11-29 CN CN201010562991.4A patent/CN102478556B/en not_active Expired - Fee Related
Non-Patent Citations (4)
Title |
---|
吕爱娟、沈加林、沈小明: "固相萃取-高效液相色谱法测定地下水中多环芳烃的技术研究", 《中国环境监测》 * |
周晓珍: "固相萃取技术富集水中的多环芳烃", 《江西化工》 * |
肖荣辉、马继平等: "竹炭固相萃取/气相色谱-质谱联用对环境水样中16种多环芳烃的测定", 《分析测试学报》 * |
陈俊: "固相萃取-高效液相色谱法测定海水中多环芳烃", 《海洋环境科学》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106814156A (en) * | 2015-11-27 | 2017-06-09 | 中国科学院大连化学物理研究所 | A kind of method of utilization matrix solid phase dispersion extractive analysis PAHs in soil |
CN109154585A (en) * | 2016-02-03 | 2019-01-04 | 科思德株式会社 | For extracting the element of organic component |
CN106282903B (en) * | 2016-09-12 | 2018-11-30 | 西北师范大学 | The technique that flame method prepares lumpy nanometer iron oxide coatings |
CN106282903A (en) * | 2016-09-12 | 2017-01-04 | 西北师范大学 | The technique that flame method prepares lumpy nanometer iron oxide coatings |
CN106932516A (en) * | 2017-04-18 | 2017-07-07 | 蔡明红 | Original position ultrasound washing device and ultrasonic elution process based on SPE sampling column |
CN108645834B (en) * | 2018-04-18 | 2020-04-03 | 厦门大学 | Method for detecting polycyclic aromatic hydrocarbon in environmental water body |
CN108645834A (en) * | 2018-04-18 | 2018-10-12 | 厦门大学 | The detection method of polycyclic aromatic hydrocarbon in a kind of environment water |
CN109358149A (en) * | 2018-11-03 | 2019-02-19 | 浙江环境监测工程有限公司 | The fast quantitative measurement method for detecting of polycyclic aromatic hydrocarbon in a kind of surface water |
CN110586053A (en) * | 2019-09-24 | 2019-12-20 | 山西医科大学 | Solid phase extraction polycyclic aromatic hydrocarbon adsorbent and preparation method thereof |
CN110586053B (en) * | 2019-09-24 | 2022-06-03 | 山西医科大学 | Solid phase extraction polycyclic aromatic hydrocarbon adsorbent and preparation method thereof |
CN114324670A (en) * | 2021-04-23 | 2022-04-12 | 新疆生产建设兵团第十三师红星医院 | Solid phase extraction column and application thereof |
CN114324670B (en) * | 2021-04-23 | 2024-05-28 | 新疆生产建设兵团第十三师红星医院 | Solid phase extraction column and application thereof |
CN113533593A (en) * | 2021-06-28 | 2021-10-22 | 济南大学 | Separation analysis method for complex oil-water emulsion system |
CN115318814A (en) * | 2022-08-17 | 2022-11-11 | 北京化工大学 | Method for remediation of polycyclic aromatic hydrocarbon-contaminated soil by organic solvent pretreatment combined with ferromanganese oxide activation persulfate |
CN118362659A (en) * | 2024-04-07 | 2024-07-19 | 湖北省农业科学院农业质量标准与检测技术研究所 | Rod-shaped MgO solid-phase extraction adsorbent and application thereof in benzo [ a ] pyrene enrichment and detection |
Also Published As
Publication number | Publication date |
---|---|
CN102478556B (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102478556A (en) | Enrichment method of polycyclic aromatic hydrocarbons in environmental water sample | |
Chen et al. | Facile synthesis of magnetic covalent organic framework nanobeads and application to magnetic solid-phase extraction of trace estrogens from human urine | |
Ding et al. | n-Octadecylphosphonic acid grafted mesoporous magnetic nanoparticle: Preparation, characterization, and application in magnetic solid-phase extraction | |
Qin et al. | MIL-101 (Cr)/MWCNTs-functionalized melamine sponges for solid-phase extraction of triazines from corn samples, and their subsequent determination by HPLC-MS/MS | |
Zhao et al. | Selective solid-phase extraction based on molecularly imprinted technology for the simultaneous determination of 20 triazole pesticides in cucumber samples using high-performance liquid chromatography-tandem mass spectrometry | |
Zhao et al. | Determination of perchlorate from tea leaves using quaternary ammonium modified magnetic carboxyl-carbon nanotubes followed by liquid chromatography-tandem quadrupole mass spectrometry | |
Shi et al. | Magnetic triptycene-based covalent triazine frameworks for the efficient extraction of anthraquinones in slimming tea followed by UHPLC-FLD detection | |
CN103524742B (en) | A kind of preparation method of magnetic multi-template non-steroidal estrogenic molecular imprinting nanometer ball | |
Xin et al. | Molecularly imprinted polymer as sorbent for solid-phase extraction coupling to gas chromatography for the simultaneous determination of trichlorfon and monocrotophos residues in vegetables | |
Tahmasebi et al. | Application of a Zn (ii) based metal–organic framework as an efficient solid-phase extraction sorbent for preconcentration of plasticizer compounds | |
Yan et al. | Synthesis of 3-fluorobenzoyl chloride functionalized magnetic sorbent for highly efficient enrichment of perfluorinated compounds from river water samples | |
Liu et al. | A new 3D COF with excellent fluorescence response for water and good adsorption performance for polychlorinated biphenyls | |
Zhang et al. | β-cyclodextrin functionalized meso-/macroporous magnetic titanium dioxide adsorbent as extraction material combined with gas chromatography-mass spectrometry for the detection of chlorobenzenes in soil samples | |
Zheng et al. | Preparation of poly (butyl methacrylate-co-ethyleneglyceldimethacrylate) monolithic column modified with β-cyclodextrin and nano-cuprous oxide and its application in polymer monolithic microextraction of polychlorinated biphenyls | |
Zhong et al. | Synthesis and characterization of magnetic molecularly imprinted polymers for enrichment of sanguinarine from the extraction wastewater of M. cordata | |
Wang et al. | Preparation of C18-functionalized magnetic polydopamine microspheres for the enrichment and analysis of alkylphenols in water samples | |
Zhang et al. | One-pot preparation of a mixed-mode organic-silica hybrid monolithic capillary column and its application in determination of endogenous gibberellins in plant tissues | |
CN103769056B (en) | The absorption of fragrant phenoxy carboxylic ester type weedicide and one-level metabolin thereof and detection method of content in water sample | |
Bian et al. | Solid-phase extraction approach for phospholipids profiling by titania-coated silica microspheres prior to reversed-phase liquid chromatography–evaporative light scattering detection and tandem mass spectrometry analysis | |
CN102221585A (en) | Application method of magnesium oxide microsphere in environmental water sample | |
Shi et al. | Ferrofluid-based liquid-phase microextraction | |
Zhu et al. | Extraction of natural estrogens in environmental waters by dispersive multiwalled carbon nanotube-based agitation-assisted adsorption and ultrasound-assisted desorption | |
Feizbakhsh et al. | Modified magnetic nanoparticles as a novel sorbent for dispersive magnetic solid-phase extraction of triazine herbicides in aqueous media | |
CN106770733A (en) | A kind of method of the polycyclic aromatic hydrocarbon in detection tea oil | |
Li et al. | Polymer brushes-containing coordination polymer networks on monolith for rapid solid phase extraction of multi-class drug residues in meat samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140611 |