CN102476980A - Application of tungsten-based catalyst in preparation of aromatic compound by catalytic hydrogenation of lignin - Google Patents
Application of tungsten-based catalyst in preparation of aromatic compound by catalytic hydrogenation of lignin Download PDFInfo
- Publication number
- CN102476980A CN102476980A CN2010105878457A CN201010587845A CN102476980A CN 102476980 A CN102476980 A CN 102476980A CN 2010105878457 A CN2010105878457 A CN 2010105878457A CN 201010587845 A CN201010587845 A CN 201010587845A CN 102476980 A CN102476980 A CN 102476980A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- tungsten
- lignin
- described application
- loading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 90
- 229920005610 lignin Polymers 0.000 title claims abstract description 54
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 45
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 239000010937 tungsten Substances 0.000 title claims abstract description 33
- 150000001491 aromatic compounds Chemical class 0.000 title abstract description 11
- 238000002360 preparation method Methods 0.000 title description 13
- 238000009903 catalytic hydrogenation reaction Methods 0.000 title description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 30
- 239000001257 hydrogen Substances 0.000 claims abstract description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 24
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 10
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 10
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 10
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 9
- 239000002028 Biomass Substances 0.000 claims abstract description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 7
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000003513 alkali Substances 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 5
- 239000010941 cobalt Substances 0.000 claims abstract description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 239000010949 copper Substances 0.000 claims abstract description 3
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 3
- 150000003624 transition metals Chemical class 0.000 claims abstract description 3
- 229920001732 Lignosulfonate Polymers 0.000 claims abstract 2
- 238000005336 cracking Methods 0.000 claims abstract 2
- 238000011068 loading method Methods 0.000 claims description 28
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 13
- 238000005984 hydrogenation reaction Methods 0.000 claims description 13
- 239000002808 molecular sieve Substances 0.000 claims description 12
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 9
- 238000003763 carbonization Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- -1 peroxide tungstate Chemical class 0.000 claims description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 6
- 230000003197 catalytic effect Effects 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 239000010948 rhodium Substances 0.000 claims description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 4
- 239000002023 wood Substances 0.000 claims description 4
- 239000004480 active ingredient Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 3
- 229910000906 Bronze Inorganic materials 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 239000002585 base Substances 0.000 claims description 2
- 239000010974 bronze Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 239000011135 tin Substances 0.000 claims description 2
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 2
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims 3
- 239000004411 aluminium Substances 0.000 claims 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 2
- 229910019142 PO4 Inorganic materials 0.000 claims 2
- 229910002796 Si–Al Inorganic materials 0.000 claims 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 2
- 239000010452 phosphate Substances 0.000 claims 2
- 239000002798 polar solvent Substances 0.000 claims 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 claims 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims 1
- 241000208140 Acer Species 0.000 claims 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims 1
- 235000017491 Bambusa tulda Nutrition 0.000 claims 1
- 235000018185 Betula X alpestris Nutrition 0.000 claims 1
- 235000018212 Betula X uliginosa Nutrition 0.000 claims 1
- 244000166124 Eucalyptus globulus Species 0.000 claims 1
- 240000000731 Fagus sylvatica Species 0.000 claims 1
- 235000010099 Fagus sylvatica Nutrition 0.000 claims 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims 1
- 244000082204 Phyllostachys viridis Species 0.000 claims 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims 1
- 241000351396 Picea asperata Species 0.000 claims 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims 1
- 241000018646 Pinus brutia Species 0.000 claims 1
- 235000011613 Pinus brutia Nutrition 0.000 claims 1
- 241000219000 Populus Species 0.000 claims 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 1
- 241000775848 Syringa oblata Species 0.000 claims 1
- 240000007313 Tilia cordata Species 0.000 claims 1
- 239000011425 bamboo Substances 0.000 claims 1
- 150000002191 fatty alcohols Chemical class 0.000 claims 1
- 239000012467 final product Substances 0.000 claims 1
- 235000019357 lignosulphonate Nutrition 0.000 claims 1
- 150000002978 peroxides Chemical class 0.000 claims 1
- 229920006395 saturated elastomer Polymers 0.000 claims 1
- 238000004904 shortening Methods 0.000 claims 1
- 239000010902 straw Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 11
- 150000002989 phenols Chemical class 0.000 abstract description 7
- 238000004517 catalytic hydrocracking Methods 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 150000007522 mineralic acids Chemical class 0.000 abstract description 2
- 230000007062 hydrolysis Effects 0.000 abstract 1
- 238000006460 hydrolysis reaction Methods 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 244000274847 Betula papyrifera Species 0.000 description 4
- 235000009113 Betula papyrifera Nutrition 0.000 description 4
- 235000009109 Betula pendula Nutrition 0.000 description 4
- 235000010928 Betula populifolia Nutrition 0.000 description 4
- 235000002992 Betula pubescens Nutrition 0.000 description 4
- 239000012018 catalyst precursor Substances 0.000 description 4
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- URRHWTYOQNLUKY-UHFFFAOYSA-N [AlH3].[P] Chemical compound [AlH3].[P] URRHWTYOQNLUKY-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910020515 Co—W Inorganic materials 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000010842 industrial wastewater Substances 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- YHEWWEXPVKCVFY-UHFFFAOYSA-N 2,6-Dimethoxy-4-propylphenol Chemical compound CCCC1=CC(OC)=C(O)C(OC)=C1 YHEWWEXPVKCVFY-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical class CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- ZRHZYGRMXGKHNE-UHFFFAOYSA-N 4-(2-hydroxybutyl)-2,6-dimethoxyphenol Chemical compound CCC(O)Cc1cc(OC)c(O)c(OC)c1 ZRHZYGRMXGKHNE-UHFFFAOYSA-N 0.000 description 1
- PXIKRTCSSLJURC-UHFFFAOYSA-N Dihydroeugenol Chemical compound CCCC1=CC=C(O)C(OC)=C1 PXIKRTCSSLJURC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- MWOMNLDJNQWJMK-UHFFFAOYSA-N dihydroconiferyl alcohol Chemical compound COC1=CC(CCCO)=CC=C1O MWOMNLDJNQWJMK-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- MOWMLACGTDMJRV-UHFFFAOYSA-N nickel tungsten Chemical compound [Ni].[W] MOWMLACGTDMJRV-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical group O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012450 pharmaceutical intermediate Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YOUIDGQAIILFBW-UHFFFAOYSA-J tetrachlorotungsten Chemical group Cl[W](Cl)(Cl)Cl YOUIDGQAIILFBW-UHFFFAOYSA-J 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical group S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- BDPNSNXYBGIFIE-UHFFFAOYSA-J tungsten;tetrahydroxide Chemical group [OH-].[OH-].[OH-].[OH-].[W] BDPNSNXYBGIFIE-UHFFFAOYSA-J 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及木质素的加氢裂解,具体地说是一种钨基催化剂催化木质素加氢裂解制备芳香族化合物的方法;该方法所使用的催化剂以非零价钨为主要活性组分,以零价镍、钴、钌、铱、钯、铂、铁、铜等其中一种或几种少量过渡金属为第二金属组分。该方法以天然木质素、生物质水解残渣、木质素磺酸盐、碱木质素等为原料在120-450oC,氢气压力1-20MPa的水热条件下催化加氢,高选择性裂解为C6-C9的酚类化合物,酚产率最高达55.6%。与现有方法相比,本发明能使用可再生天然生物质为原料,原料廉价且来源广泛;无需使用无机酸、碱,避免了传统木质素催化大量碱液的产生;还具有钨基催化剂廉价、反应过程绿色、原子经济性等特征。The present invention relates to the hydrocracking of lignin, specifically a method for preparing aromatic compounds by catalyzing the hydrocracking of lignin with a tungsten-based catalyst; the catalyst used in the method uses non-zero-valent tungsten as the main active component, and One or more small amounts of transition metals such as zero-valent nickel, cobalt, ruthenium, iridium, palladium, platinum, iron, copper, etc. are the second metal components. The method uses natural lignin, biomass hydrolysis residue, lignosulfonate, alkali lignin, etc. as raw materials to catalytically hydrogenate under hydrothermal conditions of 120-450 o C and hydrogen pressure of 1-20MPa, and high-selectivity cracking is For C6-C9 phenolic compounds, the yield of phenol is as high as 55.6%. Compared with the existing method, the present invention can use renewable natural biomass as raw material, and the raw material is cheap and has a wide range of sources; it does not need to use inorganic acid and alkali, and avoids the production of a large amount of lye catalyzed by traditional lignin; it also has low-cost tungsten-based catalysts. , green reaction process, atom economy and other characteristics.
Description
技术领域 technical field
本发明涉及芳香族化合物的制备,具体地说是一种负载型碳化钨催化剂催化木质素资源加氢裂解制备单酚类芳香族化合物的方法。The invention relates to the preparation of aromatic compounds, in particular to a method for preparing monophenolic aromatic compounds by catalyzing hydrocracking of lignin resources with a supported tungsten carbide catalyst.
背景技术 Background technique
世界经济的高速发展得益于化石能源,如石油、天然气、煤炭的广泛应用。随着不可循环的化石资源不断消耗,能源危机及环境问题已经变得日益严峻。开发可再生新能源取代化石资源成为社会发展的必然趋势。The rapid development of the world economy has benefited from the wide application of fossil energy, such as oil, natural gas, and coal. With the continuous consumption of non-recyclable fossil resources, the energy crisis and environmental problems have become increasingly severe. The development of renewable new energy to replace fossil resources has become an inevitable trend of social development.
生物质资源大量存在于自然界,是地球上最丰富、最廉价且符合可持续发展要求的可再生资源。在生物质中,木质素的含量仅次于纤维素,是自然界中最丰富的天然芳香化合物资源,且每年都以500亿吨的速度再生。制浆造纸工业每年要从植物中分离出大约1.4亿吨纤维素,同时得到5000万吨左右的木质素副产品。但迄今为止,木质素的转化利用仍缺乏有效途径,超过95%的木质素以“黑液”形式排入江河或烧掉,不仅浪费了生物质资源,且严重污染了环境,由此产生的废水占到全国工业废水量的30%,是我国工业废水控制的第一对象。Biomass resources exist in large quantities in nature, and are the most abundant and cheapest renewable resources that meet the requirements of sustainable development on the earth. In biomass, the content of lignin is second only to cellulose, and it is the most abundant resource of natural aromatic compounds in nature, and it is regenerated at a rate of 50 billion tons every year. The pulp and paper industry separates about 140 million tons of cellulose from plants every year, and at the same time obtains about 50 million tons of lignin by-products. But so far, there is still no effective way to transform and utilize lignin. More than 95% of lignin is discharged into rivers or burned in the form of "black liquor", which not only wastes biomass resources, but also seriously pollutes the environment. Wastewater accounts for 30% of the national industrial wastewater volume, and is the first object of my country's industrial wastewater control.
芳香族化合物在化学工业中有极为重要的应用,例如苯酚和对苯二甲酸及其衍生物不仅是应用广泛的大宗化学品,同时也是生产树脂、橡胶、医药中间体及其它精细化学品的重要原料。从结构上看,木质素是以芳环为结构主体的三维网状聚合物,主要包括三种结构单元:愈创木基、紫丁香基、对羟基苯基结构。结构单元之间通过醚键或碳碳键相连。通过设计合适的催化剂,选择性对木质素加氢还原,切断结构单元之间的链接,可实现由木质素资源制备芳香族酚类化合物,从而作为化石资源的替代品应用于各个领域,在一定程度上减轻世界能源危机的窘境,同时也避免了废弃“黑液”的排放。Aromatic compounds have extremely important applications in the chemical industry, such as phenol and terephthalic acid and their derivatives are not only widely used bulk chemicals, but also important for the production of resins, rubber, pharmaceutical intermediates and other fine chemicals raw material. From a structural point of view, lignin is a three-dimensional network polymer with aromatic rings as the main structure, mainly including three structural units: guaiacyl, syringyl, and p-hydroxyphenyl structures. The structural units are connected by ether bonds or carbon-carbon bonds. By designing a suitable catalyst, selectively hydrogenating and reducing lignin, and cutting off the links between structural units, aromatic phenolic compounds can be prepared from lignin resources, which can be used in various fields as a substitute for fossil resources. To a certain extent, the plight of the world's energy crisis can be alleviated, and at the same time, the discharge of waste "black liquor" can be avoided.
但是,因木质素复杂的结构和顽固的物理化学性质,将其催化裂解存在极大困难。美国专利(US 4,900,873)在300-400℃使用联苯或萘为溶剂热解木质素制备芳香族化合物,但产率不足20%。美国专利(US5,807,952)在400-600℃下KOH等强碱催化木质素在空气氛下热解制备酚类化合物,酚最高产率可达60%,但反应条件苛刻,且产生大量废碱液。世界专利(WO99/10450)在260-310℃于氢气氛中以碱催化木质素加氢制备汽油组分,但苯环完全加氢需要更多氢源,且碱催化剂产生大量废液,污染环境。加拿大专利采用金属硫化物为催化剂于250-450℃和15-45MPa下催化木质素降解获取酚类化合物,最高得到40%酚产率。中国专利(CN 101768052A)描述了以零价Ni为主要活性组分的双金属催化剂催化木质素加氢,原料最高转化率达到53%。从文献的调研结果看,目前报道的木质素加氢催化剂多以Pd、Pt等贵金属为主,尚未有任何报道是以木质素为原料,经过廉价的非零价钨基催化剂在非碱性条件下高效、高选择性地催化降解制取芳香族化合物。However, due to the complex structure and stubborn physical and chemical properties of lignin, it is very difficult to catalytically crack it. The US patent (US 4,900,873) uses biphenyl or naphthalene as a solvent to pyrolyze lignin to prepare aromatic compounds at 300-400°C, but the yield is less than 20%. U.S. Patent (US5,807,952) prepares phenolic compounds by pyrolyzing lignin under air atmosphere with KOH and other strong bases at 400-600°C. The maximum yield of phenols can reach 60%, but the reaction conditions are harsh and a large amount of spent alkali is produced. liquid. The world patent (WO99/10450) uses alkali-catalyzed hydrogenation of lignin to prepare gasoline components in a hydrogen atmosphere at 260-310°C, but complete hydrogenation of benzene rings requires more hydrogen sources, and the alkali catalyst produces a large amount of waste liquid, polluting the environment . The Canadian patent uses metal sulfide as a catalyst to catalyze the degradation of lignin at 250-450°C and 15-45MPa to obtain phenolic compounds, with a maximum yield of 40% phenol. Chinese patent (CN 101768052A) describes a bimetallic catalyst with zero-valent Ni as the main active component to catalyze the hydrogenation of lignin, and the maximum conversion rate of raw materials reaches 53%. According to the research results of the literature, most of the currently reported lignin hydrogenation catalysts are based on noble metals such as Pd and Pt. There has not been any report using lignin as a raw material. Efficient and selective catalytic degradation to produce aromatic compounds.
发明内容 Contents of the invention
本发明的目的在于提供一种钨基催化剂催化木质素原料降解制芳香族化合物的方法;其可实现在水热加氢的反应条件下,催化木质素高収率、高选择性地转化为单酚类芳香族化合物。The purpose of the present invention is to provide a method for catalyzing the degradation of lignin raw materials to produce aromatic compounds with a tungsten-based catalyst; it can realize the high yield and high selectivity conversion of catalyzed lignin into mono Phenolic aromatic compounds.
为实现上述目的,本发明采取的技术方案为:In order to achieve the above object, the technical scheme that the present invention takes is:
本发明所述用于木质素加氢裂解催化剂为非零价钨基催化剂,描述如下:The catalyst for lignin hydrocracking described in the present invention is a non-zero-valent tungsten-based catalyst, described as follows:
所述钨基催化剂可为负载型碳化钨催化剂,由活性组分碳化钨和载体构成。载体为活性炭、氧化铝、氧化硅、氧化钛、氧化锆、二氧化钛、硅铝分子筛、磷铝分子筛中的一种或多种;钨于载体中的担载量为5-80wt%,优选担载量为10-50wt%,更优选担载量为15-40wt%;The tungsten-based catalyst can be a supported tungsten carbide catalyst, which is composed of active component tungsten carbide and a carrier. The carrier is one or more of activated carbon, alumina, silica, titania, zirconia, titania, silica-alumina molecular sieve, and phosphorus-aluminum molecular sieve; the loading amount of tungsten in the carrier is 5-80wt%, preferably The amount is 10-50wt%, more preferably the loading amount is 15-40wt%;
所述负载型碳化钨催化剂也可由主要活性组分、载体和第二金属组分三部分构成。所述主要活性组分为碳化钨,钨于载体中的担载量为5-80wt%,优选担载量为10-50wt%,更优选担载量为15-40wt%;所述载体为活性炭、氧化铝、氧化硅、氧化钛、氧化锆、二氧化钛、硅铝分子筛、磷铝分子筛中的一种或多种;所述第二金属组分为金属态的镍、铱、铂、钌、铑、钯、铁、钴、铜、铝、锡、钼、铬、锶中的一种或几种,优选镍、铱、钌、钯、铂中的一种或几种;第二金属组分于载体中的担载量为0.05-30wt%,优选担载量为0.1-15wt%,更优选担载量为0.2-5wt%。The supported tungsten carbide catalyst can also be composed of three parts: the main active component, the carrier and the second metal component. The main active component is tungsten carbide, and the loading amount of tungsten in the carrier is 5-80wt%, preferably 10-50wt%, more preferably 15-40wt%; the carrier is activated carbon , aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, titanium dioxide, silicon aluminum molecular sieve, phosphorus aluminum molecular sieve or one or more; The second metal component is nickel, iridium, platinum, ruthenium, rhodium in metallic state , palladium, iron, cobalt, copper, aluminum, tin, molybdenum, chromium, strontium, preferably one or more of nickel, iridium, ruthenium, palladium, platinum; the second metal component is The loading amount in the carrier is 0.05-30wt%, preferably 0.1-15wt%, more preferably 0.2-5wt%.
所述钨基催化剂可为复合型催化剂,包括催化剂A和催化剂B,催化剂A的活性成分为第8、9、10族的过渡金属铁、钴、镍、钌、铑、钯、铱、铂中的一种或多种,催化剂B的活性成分为钨的氧化物、钨的硫化物、钨的氯化物、钨的氢氧化物、钨青铜、钨酸、钨酸盐、偏钨酸、偏钨酸盐、仲钨酸、仲钨酸盐、过氧钨酸、过氧钨酸盐、钨杂多酸中的一种或多种;催化剂A的金属活性成分与催化剂B的活性成分(以金属钨重量计)重量比在0.02-3000倍范围之间。The tungsten-based catalyst can be a composite catalyst, including catalyst A and catalyst B, and the active ingredient of catalyst A is the transition metal iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, and platinum of the 8th, 9th, and 10th groups. One or more, the active ingredient of catalyst B is tungsten oxide, tungsten sulfide, tungsten chloride, tungsten hydroxide, tungsten bronze, tungstic acid, tungstate, metatungstic acid, metatungsten one or more of salt, paratungstic acid, paratungstate, peroxytungstic acid, peroxytungstate, tungstic heteropoly acid; the metal active component of catalyst A and the active component of catalyst B (in the form of metal Tungsten weight meter) weight ratio is between 0.02-3000 times.
所述催化剂A可为负载型催化剂,载体为活性炭、氧化铝、氧化硅、碳化硅、氧化锆、氧化锌、二氧化钛一种或二种以上的复合载体;活性组分金属于催化剂上的含量为0.05-50wt%,优选在1-30wt%。The catalyst A can be a supported catalyst, and the carrier is a composite carrier of one or more of activated carbon, alumina, silicon oxide, silicon carbide, zirconia, zinc oxide, and titanium dioxide; the content of the active component metal on the catalyst is 0.05-50wt%, preferably 1-30wt%.
所述催化剂A也可以是非负载的、以活性组分作为催化剂骨架的骨架金属催化剂。The catalyst A can also be an unsupported metal catalyst with an active component as the catalyst skeleton.
所述负载型催化剂采用负载法制备,将活性组分盐溶液担载在载体上,获得催化剂前体。经过100-160℃干燥后,在氢气或甲烷/氢气(甲烷含量为10-100%v/v)进行程序升温还原反应。The supported catalyst is prepared by a loading method, and the active component salt solution is loaded on the carrier to obtain a catalyst precursor. After drying at 100-160° C., a temperature-programmed reduction reaction is carried out in hydrogen or methane/hydrogen (methane content is 10-100% v/v).
所述负载型碳化钨催化剂的还原温度在600-900℃之间,优选还原温度为700-800℃,还原气氛为氢气或甲烷/氢气(甲烷含量为20%v/v),碳化时间不少于0.5小时。The reduction temperature of the supported tungsten carbide catalyst is between 600-900°C, preferably the reduction temperature is 700-800°C, the reducing atmosphere is hydrogen or methane/hydrogen (methane content is 20% v/v), and the carbonization time is long in 0.5 hours.
所述负载型催化剂A的还原温度在250-800℃之间,优选还原温度为300-500℃,还原气氛为氢气或甲烷/氢气(甲烷含量为20%v/v),碳化时间不少于0.5小时。The reduction temperature of the supported catalyst A is between 250-800°C, preferably the reduction temperature is 300-500°C, the reducing atmosphere is hydrogen or methane/hydrogen (methane content is 20% v/v), and the carbonization time is not less than 0.5 hours.
实现木质素催化加氢裂解制酚类化合物的反应过程如下:所述木质素原料加氢降解反应于密闭高压反应釜中进行,反应原料与溶剂的质量比为1∶500-1∶1,优选1∶100-1∶5;催化剂用量为催化剂量的即可,为加快反应速度,木质素与催化剂的质量比通常为1∶2-100∶1,优选比例为2∶1-20∶1;室温下反应釜中填充氢气的初始压力为1-20MPa,优选3-10MPa;反应温度为120-450℃,优选150-300℃;反应时间为10min-24h。The reaction process for realizing the catalytic hydrocracking of lignin to produce phenolic compounds is as follows: the hydrogenation degradation reaction of the lignin raw material is carried out in a closed high-pressure reactor, and the mass ratio of the reaction raw material to the solvent is 1:500-1:1, preferably 1:100-1:5; the amount of the catalyst is the amount of the catalyst. In order to speed up the reaction, the mass ratio of lignin to the catalyst is usually 1:2-100:1, and the preferred ratio is 2:1-20:1; The initial pressure of hydrogen filling in the reactor at room temperature is 1-20MPa, preferably 3-10MPa; the reaction temperature is 120-450°C, preferably 150-300°C; the reaction time is 10min-24h.
与现有技术相比,本发明有如下优点:Compared with prior art, the present invention has following advantage:
1.本发明的原料木质素是自然界中最丰富的天然可再生芳香化合物资源,来源广泛,成本低廉。与现有石油基工业合成路线制备芳香化合物相比,本发明不消耗化石资源,具有原料可再生的优点,符合可持续发展的要求。1. The raw material lignin of the present invention is the most abundant natural renewable aromatic compound resource in nature, with wide sources and low cost. Compared with the preparation of aromatic compounds by existing petroleum-based industrial synthesis routes, the invention does not consume fossil resources, has the advantage of renewable raw materials, and meets the requirements of sustainable development.
2.本发明为工业木质素的利用提供了新途径,减少了因工业木质素排放和焚烧所造成的污染。2. The invention provides a new approach for the utilization of industrial lignin, and reduces the pollution caused by industrial lignin discharge and incineration.
3.催化剂以非零价钨为主要活性组分,成本低廉,活性高,单酚类化合物产率最高达55.6%。3. The catalyst uses non-zero-valent tungsten as the main active component, which is low in cost and high in activity, and the yield of monophenolic compounds is as high as 55.6%.
4.以水为溶剂时反应体系环境友好,无污染;反应过程中不使用无机酸、碱,避免了木质素降解工艺中常见的环境污染问题。4. When water is used as the solvent, the reaction system is environmentally friendly and pollution-free; no inorganic acid or alkali is used in the reaction process, which avoids the common environmental pollution problems in the lignin degradation process.
下面通过具体实施例予以进一步的详细说明。Further detailed description will be given below through specific examples.
具体实施方式Detailed ways
实施例1Example 1
活性炭负载的镍-碳化钨催化剂(Ni-W2C/AC)的制备:将偏钨酸氨和硝酸镍按照钨/镍重量比为15∶1的比例制成混合溶液,其中,偏钨酸氨的质量浓度为0.4g/ml。而后,以等体积浸渍的方法将混合溶液浸渍活性炭载体(AC)。经120℃烘箱干燥12h后,将催化剂前体置于H2气氛中进行程序升温碳热反应,具体反应过程为:1.0g前体在石英反应管中由室温1h升温至400℃,而后以1℃/min升温至700℃并保持1h进行碳化,氢气流速为60ml/min。得到钨担载量为30wt%、镍担载量为2wt%的Ni-W2C/AC催化剂,表示为Ni-W2C/AC(2wt%Ni-30wt%W2C)。Preparation of activated carbon-supported nickel-tungsten carbide catalyst (Ni-W 2 C/AC): Ammonium metatungstate and nickel nitrate are prepared into a mixed solution according to the ratio of tungsten/nickel weight ratio of 15:1, wherein metatungstate The mass concentration of ammonia is 0.4g/ml. Then, the mixed solution was impregnated with activated carbon support (AC) by equal volume impregnation method. After being dried in an oven at 120°C for 12 hours, the catalyst precursor was placed in an H2 atmosphere for a temperature-programmed carbothermal reaction. The specific reaction process was: 1.0 g of the precursor was heated from room temperature to 400°C in a quartz reaction tube for 1 hour, and then heated at 1°C. /min to raise the temperature to 700°C and keep it for 1h for carbonization, and the hydrogen flow rate is 60ml/min. A Ni-W 2 C/AC catalyst with a tungsten loading of 30 wt % and a nickel loading of 2 wt % was obtained, expressed as Ni-W 2 C/AC (2 wt % Ni-30 wt % W 2 C).
其它条件不变,仅改变浸渍液中偏钨酸氨和硝酸镍的浓度,或者经过多次浸渍,可以得到活性组分担载量不同的催化剂;其组成如下:Ni担载量为2wt%,钨担载量分别为5wt%,10wt%,15wt%,60wt%,80wt%的Ni-W2C/AC催化剂,以及钨担载量为30wt%,镍担载量分别为0.05wt%,0.2wt%,5wt%,10wt%,30wt%的Ni-W2C/AC催化剂。Other conditions remain the same, only changing the concentrations of ammonium metatungstate and nickel nitrate in the impregnating solution, or through multiple impregnations, catalysts with different loadings of active components can be obtained; the composition is as follows: Ni loading is 2wt%, tungsten Ni-W 2 C/AC catalysts with loadings of 5wt%, 10wt%, 15wt%, 60wt%, and 80wt%, and tungsten loadings of 30wt%, nickel loadings of 0.05wt%, 0.2wt% %, 5wt%, 10wt%, 30wt% Ni-W 2 C/AC catalyst.
实施例2Example 2
Ni-WxC/AC催化剂的制备:制备过程类似于实施例1,不同之处在于碳化温度为850℃,得到钨担载量为30wt%、镍担载量为2wt%的Ni-WxC/AC催化剂,其中,WxC为W2C与WC的混合晶相,1<x<2。表示为Ni-WxC/AC(2wt%Ni-30wt%WxC)。Preparation of Ni-WxC/AC catalyst: The preparation process is similar to Example 1, except that the carbonization temperature is 850°C, and a Ni-WxC/AC catalyst with a tungsten loading of 30wt% and a nickel loading of 2wt% is obtained , wherein, WxC is a mixed crystal phase of W 2 C and WC, 1<x<2. Expressed as Ni-WxC/AC (2wt%Ni-30wt%WxC).
实施例3Example 3
WxC/AC催化剂的制备:制备过程类似于实施例1,不同之处在于前体中仅使用了偏钨酸氨而未加入硝酸镍,碳化温度为800℃,由此得到W2C/AC催化剂;或在850℃下碳化,得到WxC/AC催化剂,为W2C与WC的混合晶相,1<x<2。Preparation of WxC/AC catalyst: The preparation process is similar to Example 1, except that only ammonium metatungstate is used in the precursor without adding nickel nitrate, and the carbonization temperature is 800°C, thus obtaining W 2 C/AC catalyst ; or carbonized at 850° C. to obtain a WxC/AC catalyst, which is a mixed crystal phase of W 2 C and WC, 1<x<2.
实施例4-9Example 4-9
Co-W2C/AC、Fe-W2C/AC、Pt-W2C/AC、Ru-W2C/AC、Ir-W2C/AC、Pd-W2C/AC催化剂的制备:制备过程类似于实施例1,不同之处在于前体中分别使用了硝酸钴、硝酸铁、氯铂酸、氯化钌、氯铱酸和氯化钯而非硝酸镍,催化剂中W担载量为30wt%,Co、Fe、Pt、Ru、Ir、Pd担载量分别为2wt%、2wt%、1wt%、1wt%、1wt%和1wt%,由此得到Co-W2C/A、Fe-W2C/AC、Pt-W2C/AC、Ru-W2C/AC、Ir-W2C/AC和Pd-W2C/AC催化剂。Preparation of Co-W 2 C/AC, Fe-W 2 C/AC, Pt-W 2 C/AC, Ru-W 2 C/AC, Ir-W 2 C/AC, Pd-W 2 C/AC Catalysts : The preparation process is similar to Example 1, and the difference is that cobalt nitrate, ferric nitrate, chloroplatinic acid, ruthenium chloride, chloroiridic acid and palladium chloride are used instead of nickel nitrate in the precursor, and W is loaded in the catalyst The loading amount of Co, Fe, Pt, Ru, Ir, and Pd is 30wt%, respectively, 2wt%, 2wt%, 1wt%, 1wt%, 1wt%, and 1wt%, thus obtaining Co-W 2 C/A, Fe-W 2 C/AC, Pt-W 2 C/AC, Ru-W 2 C/AC, Ir-W 2 C/AC and Pd-W 2 C/AC catalysts.
实施例10-15Examples 10-15
Ni-WC分别担载于氧化铝、氧化硅、氧化钛、氧化锆、二氧化钛、硅铝分子筛上制备负载型Ni-WC催化剂:制备过程类似于实施例1,不同之处在于载体分别使用的是氧化铝、氧化硅、氧化钛、氧化锆、二氧化钛、硅铝分子筛而非活性炭,同时,碳化气体由氢气换为CH4/H2(体积比1∶4),催化剂中W担载量为30wt%,Ni担载量为2wt%,碳化钨晶相为WC,由此得到Ni-WC担载于氧化铝、氧化硅、氧化钛、氧化锆、二氧化钛、硅铝分子筛、磷铝分子筛上共七种催化剂。Ni-WC was respectively supported on alumina, silica, titania, zirconia, titania, and silica-alumina molecular sieves to prepare supported Ni-WC catalysts: the preparation process was similar to Example 1, except that the carriers were respectively Alumina, silica, titania, zirconia, titania, silica-alumina molecular sieve instead of activated carbon, at the same time, the carbonization gas is changed from hydrogen to CH 4 /H 2 (volume ratio 1:4), and the W loading in the catalyst is 30wt %, the loading amount of Ni is 2wt%, and the crystal phase of tungsten carbide is WC. Thus, Ni-WC is loaded on alumina, silica, titania, zirconia, titania, silicon-aluminum molecular sieve, and phosphorus-aluminum molecular sieve. kind of catalyst.
实施例16Example 16
负载型催化剂Pt/AC的制备:将0.279g氯铂酸溶于4ml水中,等体积浸渍于2g活性炭载体上,经120℃干燥12h后,获得催化剂前体。催化剂前体在氢气氛中进行程序升温还原反应。具体反应过程为:将前体在石英反应管中由室温1h升温至350℃,并保持2h,氢气流速为120ml/min,得到5wt%的Pt/AC催化剂。Preparation of supported catalyst Pt/AC: Dissolve 0.279g of chloroplatinic acid in 4ml of water, impregnate an equal volume on 2g of activated carbon support, and dry at 120°C for 12h to obtain a catalyst precursor. The catalyst precursor undergoes a temperature-programmed reduction reaction in a hydrogen atmosphere. The specific reaction process is as follows: the temperature of the precursor is raised from room temperature to 350° C. in a quartz reaction tube for 1 h, and maintained for 2 h, and the hydrogen flow rate is 120 ml/min to obtain a 5 wt % Pt/AC catalyst.
所述其它负载型催化剂A的制备过程类似。分别将不同质量的硝酸钴、硝酸镍、氯化钌、氯铱酸和氯化钯负载于多孔载体上,在氢气氛中于450℃程序升温还原制得Co/AC、Ni/AC、Ru/AC、Ir/AC、Pd/AC。The preparation process of the other supported catalysts A is similar. Co/AC, Ni/AC, Ru/AC, Ni/AC, Ru/ AC, Ir/AC, Pd/AC.
实施例17Example 17
不同碳化钨催化剂催化天然木质素于水溶液中加氢反应:将含天然木质素的1.0g白桦木粉,0.4g催化剂和100ml水加入到300ml反应釜中,通入氢气置换三次气体后,充氢气至6MPa,以1000转/min的速度进行搅拌,升温至235℃反应4h。反应结束后,降至室温,上层清液离心后取样分析。所使用催化剂在表1中依次对应为:(1)30wt%W2C/AC、(2)30wt%WxC/AC(1<x<2)、(3)Ni-W2C/AC(4wt%Ni-30wt%W2C)、(4)Ni-WxC/AC(4wt%Ni-30wt%WxC,1<x<2)、(5)Pt-W2C/AC(1wt%Pt-30wt%W2C)、(6)Ru-W2C/AC(1wt%Ru-30wt%W2C)、(7)Ir-W2C/AC(1wt%Ir-30wt%W2C)、(8)Pd-W2C/AC(1wt%Pd-30wt%W2C)、(9)Ni-W2C/Al2O3、(10)Ni-W2C/SiO2、(11)Pd-W2C/Al2O3、(12)0.05wt%Ni-80wt%W2C/AC、(13)20wt%Ni-5wt%W2C/AC。产物定性分析通过GC-MS联用技术及标样对照,定量分析通过气相色谱内标法实现。结果见表1。产物除了愈创木基丙烷、紫丁香基丙烷、愈创木基丙醇及紫丁香基丙醇以外,还包括苯酚、2-甲基苯酚、4-乙基苯酚等C6-C9的酚类化合物,在表中归类为其它酚。Different tungsten carbide catalysts catalyze the hydrogenation reaction of natural lignin in aqueous solution: add 1.0g white birch wood powder containing natural lignin, 0.4g catalyst and 100ml water into a 300ml reaction kettle, replace the gas with hydrogen for three times, and fill with hydrogen to 6MPa, stirred at a speed of 1000 rpm, and heated to 235°C for 4 hours. After the reaction was completed, it was lowered to room temperature, and the supernatant was centrifuged and then sampled for analysis. The catalysts used in Table 1 correspond to: (1) 30wt% W 2 C/AC, (2) 30wt% WxC/AC (1<x<2), (3) Ni-W 2 C/AC (4wt %Ni-30wt%W 2 C), (4) Ni-WxC/AC (4wt%Ni-30wt%WxC, 1<x<2), (5) Pt-W 2 C/AC (1wt%Pt-30wt %W 2 C), (6) Ru-W 2 C/AC (1wt% Ru-30wt% W 2 C), (7) Ir-W 2 C/AC (1wt% Ir-30wt% W 2 C), (8) Pd-W 2 C/AC (1wt% Pd-30wt% W 2 C), (9) Ni-W 2 C/Al 2 O 3 , (10) Ni-W 2 C/SiO 2 , (11 ) Pd-W 2 C/Al 2 O 3 , (12) 0.05 wt% Ni-80 wt% W 2 C/AC, (13) 20 wt% Ni-5 wt% W 2 C/AC. Qualitative analysis of the product was carried out by GC-MS technology and standard sample control, and quantitative analysis was realized by gas chromatography internal standard method. The results are shown in Table 1. In addition to guaiacyl propane, syringyl propane, guaiacyl propanol and syringyl propanol, the products also include phenol, 2-methylphenol, 4-ethylphenol and other C6-C9 phenolic compounds , classified as other phenols in the table.
表1不同碳化钨催化剂上天然木质素催化加氢性能比较Table 1 Comparison of catalytic hydrogenation performance of natural lignin over different tungsten carbide catalysts
从表中可以看出,不同金属促进的碳化钨催化剂都能催化木质素加氢获得芳香酚化合物,不同的载体负载的碳化钨催化剂均有优良的催化活性。It can be seen from the table that the tungsten carbide catalysts promoted by different metals can catalyze the hydrogenation of lignin to obtain aromatic phenol compounds, and the tungsten carbide catalysts supported by different supports have excellent catalytic activity.
实施例18Example 18
不同复合型催化剂A-B(A与B质量比为1∶3)催化天然木质素于水溶液中加氢反应:将含天然木质素的1.0g白桦木粉,0.4g催化剂和100ml水加入到300ml反应釜中,通入氢气置换三次气体后,充氢气至6MPa,以1000转/min的速度进行搅拌,升温至235℃反应4h。反应结束后,降至室温,上层清液离心后取样分析。产物分析方法同实施例17。结果见表2。Different composite catalysts A-B (the mass ratio of A to B is 1:3) catalyze the hydrogenation reaction of natural lignin in aqueous solution: add 1.0g white birch wood powder containing natural lignin, 0.4g catalyst and 100ml water into a 300ml reaction kettle In the process, after replacing the gas with hydrogen for three times, fill the mixture with hydrogen to 6 MPa, stir at a speed of 1000 rpm, and raise the temperature to 235°C for 4 hours. After the reaction was completed, it was lowered to room temperature, and the supernatant was centrifuged and then sampled for analysis. The product analysis method is the same as in Example 17. The results are shown in Table 2.
表2复合型催化剂A-B催化天然木质素加氢性能比较Table 2 Composite Catalyst A-B Catalytic Performance Comparison of Natural Lignin Hydrogenation
实施例19Example 19
天然木质素于小分子溶液中催化转化反应:将含天然木质素的1.0g白桦木粉,0.4g Ni-W2C/AC(4wt%Ni-30wt%W2C)催化剂和100ml小分子溶剂加入到300ml反应釜中,通入氢气置换三次气体后,充氢气至6MPa,以1000转/min的速度进行搅拌,同时升温至235℃反应4h。反应结束后,降至室温,上层清液离心后取样分析。产物分析方法同实施例17。结果见表3。Catalytic conversion reaction of natural lignin in small molecule solution: 1.0g white birch wood powder containing natural lignin, 0.4g Ni-W 2 C/AC (4wt%Ni-30wt%W 2 C) catalyst and 100ml small molecule solvent Add it into a 300ml reactor, replace the gas with hydrogen for three times, fill it with hydrogen to 6MPa, stir at a speed of 1000 rpm, and raise the temperature to 235°C for 4 hours. After the reaction was completed, it was lowered to room temperature, and the supernatant was centrifuged and then sampled for analysis. The product analysis method is the same as in Example 17. The results are shown in Table 3.
从表中可以看出,在能形成氢键的小分子溶剂中,木质素的加氢反应更容易进行,其中以乙二醇为溶剂时,Ni-W2C/AC催化剂上芳香酚收率高达50.6%。其原因在于通过木质素与小分子溶剂间的氢键作用,木质素溶解度增加,从而增大了木质素与催化剂的接触表面,使催化反应更易进行。It can be seen from the table that the hydrogenation reaction of lignin is easier to proceed in small molecular solvents capable of forming hydrogen bonds. When ethylene glycol is used as solvent, the yield of aromatic phenol on Ni-W 2 C/AC catalyst is Up to 50.6%. The reason is that the solubility of lignin increases through the hydrogen bond between lignin and small molecule solvent, thereby increasing the contact surface between lignin and catalyst, making the catalytic reaction easier to proceed.
表3不同溶剂中Ni-W2C/AC催化天然木质素加氢结果Table 3 Hydrogenation results of natural lignin catalyzed by Ni-W 2 C/AC in different solvents
实施例20Example 20
不同木质素原料催化加氢反应:将1.0g不同来源的木质素原料(40目颗粒),0.4g Ni-W2C/AC(4wt%Ni-30wt%W2C)催化剂和100ml水加入到300ml反应釜中,通入氢气置换三次气体后,充氢气至6MPa,以1000转/min的速度进行搅拌,同时升温至235℃反应4h。反应结束后,降至室温,上层清液离心后取样分析。产物分析方法同实施例17。结果见表4。Catalytic hydrogenation reaction of different lignin raw materials: 1.0g lignin raw materials (40 mesh particles) from different sources, 0.4g Ni-W 2 C/AC (4wt%Ni-30wt%W 2 C) catalyst and 100ml water were added to In a 300ml reactor, after passing through hydrogen to replace the gas three times, fill it with hydrogen to 6MPa, stir at a speed of 1000 rpm, and raise the temperature to 235°C for 4 hours. After the reaction was completed, it was lowered to room temperature, and the supernatant was centrifuged and then sampled for analysis. The product analysis method is the same as in Example 17. The results are shown in Table 4.
表4Ni-W2C/AC催化不同木质素原料加氢结果Table 4 Ni-W 2 C/AC catalyzed hydrogenation results of different lignin raw materials
实施例21Example 21
天然木质素在不同反应条件下的催化加氢反应:将不同质量的白桦木粉(40目)和催化剂(4wt%Ni-30wt%W2C/AC)与100ml水混合,加入到300ml反应釜中,通入氢气置换三次气体后,充氢气至制定压力,以1000转/min的速度进行搅拌,同时升温至制定温度反应一定时间。其它过程同实施例17。结果见表5。Catalytic hydrogenation reaction of natural lignin under different reaction conditions: mix different qualities of white birch powder (40 mesh) and catalyst (4wt%Ni-30wt%W 2 C/AC) with 100ml water, add to 300ml reactor In the process, after replacing the gas with hydrogen for three times, fill it with hydrogen to the specified pressure, stir at a speed of 1000 rpm, and at the same time raise the temperature to the specified temperature for a certain period of time. Other processes are the same as in Example 17. The results are shown in Table 5.
表5天然木质素在不同反应条件下的催化加氢裂解结果Table 5 Catalytic hydrocracking results of natural lignin under different reaction conditions
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010587845.7A CN102476980B (en) | 2010-11-30 | 2010-12-14 | Application of tungsten-based catalyst in lignin catalytic hydrogenation for producing aromatic compound |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010566787.X | 2010-11-30 | ||
CN201010566787 | 2010-11-30 | ||
CN201010587845.7A CN102476980B (en) | 2010-11-30 | 2010-12-14 | Application of tungsten-based catalyst in lignin catalytic hydrogenation for producing aromatic compound |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102476980A true CN102476980A (en) | 2012-05-30 |
CN102476980B CN102476980B (en) | 2014-06-04 |
Family
ID=46089771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010587845.7A Active CN102476980B (en) | 2010-11-30 | 2010-12-14 | Application of tungsten-based catalyst in lignin catalytic hydrogenation for producing aromatic compound |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102476980B (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103087739A (en) * | 2013-02-04 | 2013-05-08 | 安徽省建辉可再生能源科技有限公司 | Biomass material thermal cracking furnace and material thereof, and method for preparing natural gas by using biomass material thermal cracking furnace |
CN103819310A (en) * | 2012-11-16 | 2014-05-28 | 中国科学院大连化学物理研究所 | Method for degrading lignin in seawater |
WO2014108031A1 (en) * | 2013-01-08 | 2014-07-17 | 天津大学 | Use of catalyst of subgroup vi element for preparing organic chemical product from lignin |
CN104177223A (en) * | 2013-05-27 | 2014-12-03 | 天津大学 | Application of transition metal phosphide in catalytic conversion of lignin |
CN104177228A (en) * | 2013-05-27 | 2014-12-03 | 天津大学 | Method for depolymerization of lignin by using molybdenum nitride catalyst |
CN104326875A (en) * | 2014-10-13 | 2015-02-04 | 东南大学 | Method for preparing bio-oil through hydrogenation degradation of lignin |
CN104854219A (en) * | 2012-10-28 | 2015-08-19 | 拜奥开姆泰克股份公司 | Improved process for conversion of lignin to useful compounds |
CN105503540A (en) * | 2014-09-24 | 2016-04-20 | 中国科学院大连化学物理研究所 | Method for preparation of benzene ring phenol compound from alkali lignin |
CN105622419A (en) * | 2014-10-28 | 2016-06-01 | 中国科学院大连化学物理研究所 | Method for preparing from glycolic acid ester from carbohydrate |
CN106179496A (en) * | 2016-09-21 | 2016-12-07 | 华侨大学 | A kind of preparation method and application of lignin-base hydro-thermal charcoal sulfonic acid catalyst |
CN106316804A (en) * | 2015-06-30 | 2017-01-11 | 中国科学院大连化学物理研究所 | Catalytic cracking method of lignosulfonate and model compounds thereof |
CN106423241A (en) * | 2016-09-19 | 2017-02-22 | 中国科学院过程工程研究所 | Preparing method for ionic-liquid-modified tungsten carbide and application of ionic-liquid-modified tungsten carbide to straw degradation |
CN106480766A (en) * | 2016-09-05 | 2017-03-08 | 中国林业科学研究院林产化学工业研究所 | A kind of method that wood fibre is hydrogenated with separating lignin |
CN107473944A (en) * | 2016-06-08 | 2017-12-15 | 中国科学院大连化学物理研究所 | ReOxThe method of/AC catalytic pyrolysis lignin aryl oxide keys |
CN108080004A (en) * | 2016-11-21 | 2018-05-29 | 北京华石联合能源科技发展有限公司 | A kind of hydrogenating catalyst composition and application |
CN109161395A (en) * | 2018-09-11 | 2019-01-08 | 南昌大学 | A kind of method of catalytic hydrogenolysis stalk biogasoline |
CN109647441A (en) * | 2017-10-11 | 2019-04-19 | 中国科学院大连化学物理研究所 | A kind of monatomic catalyst adds the application in hydrogen aromatic compound in catalytic lignin |
CN109647387A (en) * | 2018-12-26 | 2019-04-19 | 万华化学集团股份有限公司 | The method and catalyst of the cracking recycling diphenol of catalytic hydrogenation containing phenolic tar |
CN109894131A (en) * | 2017-12-07 | 2019-06-18 | 中国科学院大连化学物理研究所 | A kind of dimethyl terephthalate (DMT) (DMT) hydrogenation catalyst and preparation method thereof |
CN106316804B (en) * | 2015-06-30 | 2019-07-16 | 中国科学院大连化学物理研究所 | A kind of method of lignosulfonates and its model compound catalytic pyrolysis |
CN110028389A (en) * | 2019-05-17 | 2019-07-19 | 中国科学院广州能源研究所 | A kind of method that lignocellulosic catalytic hydrogenation prepares polyalcohol and aromatic compound |
CN111215090A (en) * | 2018-11-27 | 2020-06-02 | 中国科学院大连化学物理研究所 | Application of oxygen-enriched vacancy tungsten oxide supported catalyst in lignin depolymerization |
CN111217679A (en) * | 2018-11-27 | 2020-06-02 | 中国科学院大连化学物理研究所 | A method for depolymerizing lignin to phenol by one-step depolymerization of bifunctional catalysts |
CN111266109A (en) * | 2018-12-04 | 2020-06-12 | 中国科学院上海硅酸盐研究所 | Ru-WOxNanowire HER catalyst and preparation method thereof |
CN112094304A (en) * | 2020-09-19 | 2020-12-18 | 周静 | Separation and purification method of enzymatic hydrolysis lignin |
CN112403521A (en) * | 2020-12-04 | 2021-02-26 | 北华大学 | Polyacid catalyst, preparation method and application in preparation of phenolic compounds |
CN112824368A (en) * | 2019-11-21 | 2021-05-21 | 中国科学院大连化学物理研究所 | Application of tungsten oxide supported monatomic catalyst in preparation of aromatic compounds through hydrogenolysis of lignin |
CN113136240A (en) * | 2021-04-13 | 2021-07-20 | 中国科学院广州能源研究所 | Method for selectively preparing C5-C6 liquid alkane from cellulose biomass raw material through aqueous phase catalytic conversion |
CN113224394A (en) * | 2021-04-20 | 2021-08-06 | 淄博火炬能源有限责任公司 | Low-temperature lead-carbon battery electrolyte |
CN113842911A (en) * | 2020-06-28 | 2021-12-28 | 中国石油化工股份有限公司 | Tungsten bronze catalyst and catalyst composition for the production of biomass-based ethylene glycol |
CN115646390A (en) * | 2022-11-02 | 2023-01-31 | 沈阳理工大学 | Device and method for preparing phenol biological oil by continuously depolymerizing lignin |
CN118142522A (en) * | 2024-05-10 | 2024-06-07 | 内蒙古工业大学 | Preparation method of metal oxide/ruthenium-tungsten composite catalyst and its application in catalyzing C-O bond cleavage in lignin |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101768052A (en) * | 2008-12-26 | 2010-07-07 | 中国科学院大连化学物理研究所 | Method for preparing aromatic compound by catalytic hydrocracking of lignin |
-
2010
- 2010-12-14 CN CN201010587845.7A patent/CN102476980B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101768052A (en) * | 2008-12-26 | 2010-07-07 | 中国科学院大连化学物理研究所 | Method for preparing aromatic compound by catalytic hydrocracking of lignin |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104854219A (en) * | 2012-10-28 | 2015-08-19 | 拜奥开姆泰克股份公司 | Improved process for conversion of lignin to useful compounds |
CN103819310B (en) * | 2012-11-16 | 2015-07-15 | 中国科学院大连化学物理研究所 | Method for degrading lignin in seawater |
CN103819310A (en) * | 2012-11-16 | 2014-05-28 | 中国科学院大连化学物理研究所 | Method for degrading lignin in seawater |
WO2014108031A1 (en) * | 2013-01-08 | 2014-07-17 | 天津大学 | Use of catalyst of subgroup vi element for preparing organic chemical product from lignin |
US9789473B2 (en) | 2013-01-08 | 2017-10-17 | Tianjin University | Use of catalyst prepared with a subgroup VI element for the production of organic chemicals and fuels from lignin |
CN103087739A (en) * | 2013-02-04 | 2013-05-08 | 安徽省建辉可再生能源科技有限公司 | Biomass material thermal cracking furnace and material thereof, and method for preparing natural gas by using biomass material thermal cracking furnace |
CN104177223A (en) * | 2013-05-27 | 2014-12-03 | 天津大学 | Application of transition metal phosphide in catalytic conversion of lignin |
CN104177228A (en) * | 2013-05-27 | 2014-12-03 | 天津大学 | Method for depolymerization of lignin by using molybdenum nitride catalyst |
CN104177228B (en) * | 2013-05-27 | 2016-01-20 | 天津大学 | A kind of method utilizing Nitrides Catalysts depolymerization xylogen |
CN105503540A (en) * | 2014-09-24 | 2016-04-20 | 中国科学院大连化学物理研究所 | Method for preparation of benzene ring phenol compound from alkali lignin |
CN104326875B (en) * | 2014-10-13 | 2016-03-02 | 东南大学 | A kind of xylogen hydrogenation degraded preparation bio oil method |
CN104326875A (en) * | 2014-10-13 | 2015-02-04 | 东南大学 | Method for preparing bio-oil through hydrogenation degradation of lignin |
CN105622419B (en) * | 2014-10-28 | 2018-01-23 | 中国科学院大连化学物理研究所 | A kind of method that carbohydrate prepares ethyl glycolate |
CN105622419A (en) * | 2014-10-28 | 2016-06-01 | 中国科学院大连化学物理研究所 | Method for preparing from glycolic acid ester from carbohydrate |
CN106316804A (en) * | 2015-06-30 | 2017-01-11 | 中国科学院大连化学物理研究所 | Catalytic cracking method of lignosulfonate and model compounds thereof |
CN106316804B (en) * | 2015-06-30 | 2019-07-16 | 中国科学院大连化学物理研究所 | A kind of method of lignosulfonates and its model compound catalytic pyrolysis |
CN107473944B (en) * | 2016-06-08 | 2020-12-25 | 中国科学院大连化学物理研究所 | ReOxMethod for catalyzing and cracking lignin aromatic ether bond by AC |
CN107473944A (en) * | 2016-06-08 | 2017-12-15 | 中国科学院大连化学物理研究所 | ReOxThe method of/AC catalytic pyrolysis lignin aryl oxide keys |
CN106480766A (en) * | 2016-09-05 | 2017-03-08 | 中国林业科学研究院林产化学工业研究所 | A kind of method that wood fibre is hydrogenated with separating lignin |
CN106480766B (en) * | 2016-09-05 | 2019-01-22 | 中国林业科学研究院林产化学工业研究所 | A kind of method of lignocellulose hydrogenation to separate lignin |
CN106423241A (en) * | 2016-09-19 | 2017-02-22 | 中国科学院过程工程研究所 | Preparing method for ionic-liquid-modified tungsten carbide and application of ionic-liquid-modified tungsten carbide to straw degradation |
CN106423241B (en) * | 2016-09-19 | 2019-10-18 | 中国科学院过程工程研究所 | Preparation of an ionic liquid modified tungsten carbide and its application in straw degradation |
CN106179496B (en) * | 2016-09-21 | 2018-10-16 | 华侨大学 | A kind of preparation method and application of lignin-base hydro-thermal charcoal sulfonic acid catalyst |
CN106179496A (en) * | 2016-09-21 | 2016-12-07 | 华侨大学 | A kind of preparation method and application of lignin-base hydro-thermal charcoal sulfonic acid catalyst |
CN108080004B (en) * | 2016-11-21 | 2021-04-06 | 北京华石联合能源科技发展有限公司 | Hydrogenation catalyst composition and application thereof |
CN108080004A (en) * | 2016-11-21 | 2018-05-29 | 北京华石联合能源科技发展有限公司 | A kind of hydrogenating catalyst composition and application |
CN109647441A (en) * | 2017-10-11 | 2019-04-19 | 中国科学院大连化学物理研究所 | A kind of monatomic catalyst adds the application in hydrogen aromatic compound in catalytic lignin |
CN109647441B (en) * | 2017-10-11 | 2022-06-24 | 中国科学院大连化学物理研究所 | Application of monoatomic catalyst in preparation of aromatic compound by catalytic hydrogenation of lignin |
CN109894131A (en) * | 2017-12-07 | 2019-06-18 | 中国科学院大连化学物理研究所 | A kind of dimethyl terephthalate (DMT) (DMT) hydrogenation catalyst and preparation method thereof |
CN109894131B (en) * | 2017-12-07 | 2022-03-08 | 中国科学院大连化学物理研究所 | A kind of dimethyl terephthalate (DMT) hydrogenation catalyst and preparation method thereof |
CN109161395A (en) * | 2018-09-11 | 2019-01-08 | 南昌大学 | A kind of method of catalytic hydrogenolysis stalk biogasoline |
CN111217679B (en) * | 2018-11-27 | 2022-07-22 | 中国科学院大连化学物理研究所 | Method for depolymerizing lignin to phenol by one-step method through bifunctional catalyst |
CN111215090A (en) * | 2018-11-27 | 2020-06-02 | 中国科学院大连化学物理研究所 | Application of oxygen-enriched vacancy tungsten oxide supported catalyst in lignin depolymerization |
CN111217679A (en) * | 2018-11-27 | 2020-06-02 | 中国科学院大连化学物理研究所 | A method for depolymerizing lignin to phenol by one-step depolymerization of bifunctional catalysts |
CN111266109A (en) * | 2018-12-04 | 2020-06-12 | 中国科学院上海硅酸盐研究所 | Ru-WOxNanowire HER catalyst and preparation method thereof |
CN109647387A (en) * | 2018-12-26 | 2019-04-19 | 万华化学集团股份有限公司 | The method and catalyst of the cracking recycling diphenol of catalytic hydrogenation containing phenolic tar |
CN109647387B (en) * | 2018-12-26 | 2022-04-22 | 万华化学集团股份有限公司 | Method and catalyst for recovering diphenol by catalytic hydrocracking of phenol-containing tar |
CN110028389B (en) * | 2019-05-17 | 2022-04-01 | 中国科学院广州能源研究所 | Method for preparing polyalcohol and aromatic compound by catalytic hydrogenation of lignocellulose |
CN110028389A (en) * | 2019-05-17 | 2019-07-19 | 中国科学院广州能源研究所 | A kind of method that lignocellulosic catalytic hydrogenation prepares polyalcohol and aromatic compound |
CN112824368A (en) * | 2019-11-21 | 2021-05-21 | 中国科学院大连化学物理研究所 | Application of tungsten oxide supported monatomic catalyst in preparation of aromatic compounds through hydrogenolysis of lignin |
CN113842911A (en) * | 2020-06-28 | 2021-12-28 | 中国石油化工股份有限公司 | Tungsten bronze catalyst and catalyst composition for the production of biomass-based ethylene glycol |
CN113842911B (en) * | 2020-06-28 | 2023-08-29 | 中国石油化工股份有限公司 | Tungsten bronze catalyst and catalyst composition for producing biomass-based ethylene glycol |
CN112094304A (en) * | 2020-09-19 | 2020-12-18 | 周静 | Separation and purification method of enzymatic hydrolysis lignin |
CN112403521A (en) * | 2020-12-04 | 2021-02-26 | 北华大学 | Polyacid catalyst, preparation method and application in preparation of phenolic compounds |
CN113136240A (en) * | 2021-04-13 | 2021-07-20 | 中国科学院广州能源研究所 | Method for selectively preparing C5-C6 liquid alkane from cellulose biomass raw material through aqueous phase catalytic conversion |
CN113224394A (en) * | 2021-04-20 | 2021-08-06 | 淄博火炬能源有限责任公司 | Low-temperature lead-carbon battery electrolyte |
CN115646390A (en) * | 2022-11-02 | 2023-01-31 | 沈阳理工大学 | Device and method for preparing phenol biological oil by continuously depolymerizing lignin |
CN118142522A (en) * | 2024-05-10 | 2024-06-07 | 内蒙古工业大学 | Preparation method of metal oxide/ruthenium-tungsten composite catalyst and its application in catalyzing C-O bond cleavage in lignin |
CN118142522B (en) * | 2024-05-10 | 2024-08-02 | 内蒙古工业大学 | Preparation method of metal oxide/ruthenium-tungsten composite catalyst and its application in catalyzing C-O bond cleavage in lignin |
Also Published As
Publication number | Publication date |
---|---|
CN102476980B (en) | 2014-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102476980A (en) | Application of tungsten-based catalyst in preparation of aromatic compound by catalytic hydrogenation of lignin | |
CN101768052B (en) | Method for preparing aromatic compound by catalytic hydrocracking of lignin | |
CN104744204A (en) | Method for preparing aromatic hydrocarbon by carrying out catalytic hydrodeoxygenation on lignin | |
CN106179421B (en) | The preparation of sulfide catalyst and its application in lignin conversion | |
CN104387223B (en) | It is the method for aromatic hydrocarbons by two-step method catalyzed conversion lignin | |
Yang et al. | The catalytic hydrodeoxygenation of bio-oil for upgradation from lignocellulosic biomass | |
Cheng et al. | Nonprecious metal/bimetallic catalytic hydrogenolysis of lignin in a mixed-solvent system | |
Liu et al. | Unlocking birch lignin hydrocracking through tandem catalysis: unraveling the role of moderate hydrogen spillover | |
CN107602362A (en) | The method that molybdenum oxide catalyst Catalytic lignin prepares single phenols aromatic compound | |
CN109647441B (en) | Application of monoatomic catalyst in preparation of aromatic compound by catalytic hydrogenation of lignin | |
CN103508858A (en) | Method for preparing aromatic compounds employing catalytic cracking of industrial lignins | |
CN106238075A (en) | Molybdenum sulfide catalyst and preparation thereof and the application in fragrance phenol and ether compound hydrogenation degraded | |
CN108218673B (en) | A method for selective depolymerization of lignin catalyzed by non-precious metals | |
CN104388110B (en) | Method for preparing chain alkane from lignin | |
Tymchyshyn et al. | Catalytic hydrodeoxygenation of guaiacol for organosolv lignin depolymerization–Catalyst screening and experimental validation | |
CN103691429B (en) | Catalyst for rapid pyrolysis and liquefaction of biomass as well as preparation method and application thereof | |
CN109942378A (en) | A kind of method for preparing alkylphenol and alkyldiphenol from lignin oil | |
CN111215090A (en) | Application of oxygen-enriched vacancy tungsten oxide supported catalyst in lignin depolymerization | |
CN111217679B (en) | Method for depolymerizing lignin to phenol by one-step method through bifunctional catalyst | |
Cui et al. | Catalytic transfer hydrogenolysis of C–O bonds in lignin model compounds without arene hydrogenation | |
Zhang et al. | Efficient depolymerization of alkali lignin to monophenols using one-step synthesized Cu–Ni bimetallic catalysts inlaid in homologous biochar | |
Mukundan et al. | Thermocatalytic hydrodeoxygenation and depolymerization of waste lignin to oxygenates and biofuels in a continuous flow reactor at atmospheric pressure | |
CN111229237B (en) | Preparation method and application of novel metal-biochar-based hydrogenation catalyst | |
Lu et al. | Efficient lignin conversion over Ni/(Fe/Zn/Co/Mo/Cu)–WO 3/Al 2 O 3 for selectively yielding alkyl phenols | |
CN104177223A (en) | Application of transition metal phosphide in catalytic conversion of lignin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |