CN102470675B - Printhead having polysilsesquioxane coating on ink ejection face - Google Patents
Printhead having polysilsesquioxane coating on ink ejection face Download PDFInfo
- Publication number
- CN102470675B CN102470675B CN200980160209.1A CN200980160209A CN102470675B CN 102470675 B CN102470675 B CN 102470675B CN 200980160209 A CN200980160209 A CN 200980160209A CN 102470675 B CN102470675 B CN 102470675B
- Authority
- CN
- China
- Prior art keywords
- printhead
- nozzle
- ink
- polymeric material
- inkjet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000734 polysilsesquioxane polymer Polymers 0.000 title claims abstract description 9
- 238000000576 coating method Methods 0.000 title description 10
- 239000011248 coating agent Substances 0.000 title description 8
- 239000000463 material Substances 0.000 claims abstract description 37
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 22
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 229910010293 ceramic material Inorganic materials 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 238000012423 maintenance Methods 0.000 abstract description 10
- 239000000976 ink Substances 0.000 description 64
- 239000010410 layer Substances 0.000 description 42
- 238000000034 method Methods 0.000 description 37
- 239000002105 nanoparticle Substances 0.000 description 37
- 229920000642 polymer Polymers 0.000 description 29
- 229910052751 metal Inorganic materials 0.000 description 27
- 239000002184 metal Substances 0.000 description 27
- 239000002245 particle Substances 0.000 description 27
- 238000004519 manufacturing process Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 22
- 235000012431 wafers Nutrition 0.000 description 20
- 239000004205 dimethyl polysiloxane Substances 0.000 description 18
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 18
- 229920002120 photoresistant polymer Polymers 0.000 description 15
- 238000005530 etching Methods 0.000 description 14
- -1 polydimethylsiloxane Polymers 0.000 description 13
- 238000007639 printing Methods 0.000 description 13
- 238000005452 bending Methods 0.000 description 11
- 239000012530 fluid Substances 0.000 description 11
- 238000007641 inkjet printing Methods 0.000 description 11
- 238000000429 assembly Methods 0.000 description 9
- 230000000712 assembly Effects 0.000 description 9
- 239000004642 Polyimide Substances 0.000 description 8
- 238000005299 abrasion Methods 0.000 description 8
- 238000004380 ashing Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 229920001721 polyimide Polymers 0.000 description 8
- 229920001296 polysiloxane Polymers 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 229920001600 hydrophobic polymer Polymers 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000008531 maintenance mechanism Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 101000869523 Homo sapiens Phosphatidylinositide phosphatase SAC2 Proteins 0.000 description 4
- 101000869517 Homo sapiens Phosphatidylinositol-3-phosphatase SAC1 Proteins 0.000 description 4
- 102100032287 Phosphatidylinositide phosphatase SAC2 Human genes 0.000 description 4
- 102100032286 Phosphatidylinositol-3-phosphatase SAC1 Human genes 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 3
- 239000004640 Melamine resin Substances 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 229910000428 cobalt oxide Inorganic materials 0.000 description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000708 deep reactive-ion etching Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000005661 hydrophobic surface Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- YARNEMCKJLFQHG-UHFFFAOYSA-N prop-1-ene;styrene Chemical group CC=C.C=CC1=CC=CC=C1 YARNEMCKJLFQHG-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229920005573 silicon-containing polymer Polymers 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- HIMLGVIQSDVUJQ-UHFFFAOYSA-N aluminum vanadium Chemical compound [Al].[V] HIMLGVIQSDVUJQ-UHFFFAOYSA-N 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000007648 laser printing Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- KBXJHRABGYYAFC-UHFFFAOYSA-N octaphenylsilsesquioxane Chemical compound O1[Si](O2)(C=3C=CC=CC=3)O[Si](O3)(C=4C=CC=CC=4)O[Si](O4)(C=5C=CC=CC=5)O[Si]1(C=1C=CC=CC=1)O[Si](O1)(C=5C=CC=CC=5)O[Si]2(C=2C=CC=CC=2)O[Si]3(C=2C=CC=CC=2)O[Si]41C1=CC=CC=C1 KBXJHRABGYYAFC-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920003255 poly(phenylsilsesquioxane) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000013047 polymeric layer Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/165—Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
- B41J2/16517—Cleaning of print head nozzles
- B41J2/16535—Cleaning of print head nozzles using wiping constructions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
- B41J2/1433—Structure of nozzle plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1606—Coating the nozzle area or the ink chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/162—Manufacturing of the nozzle plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1626—Manufacturing processes etching
- B41J2/1628—Manufacturing processes etching dry etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1626—Manufacturing processes etching
- B41J2/1629—Manufacturing processes etching wet etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1631—Manufacturing processes photolithography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/165—Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/20—Ink jet characterised by ink handling for preventing or detecting contamination of compounds
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Coating Apparatus (AREA)
Abstract
本发明公开一种打印头,所述打印头具有涂覆疏水聚合材料的喷墨面。所述聚合材料包括聚倍半硅氧烷,比如聚甲基倍半硅氧烷或聚苯基倍半硅氧烷。所述打印头能够和需要与所述喷墨面接触的各种打印头维护操作相容。
The present invention discloses a printhead having an ink ejection face coated with a hydrophobic polymeric material. The polymeric material includes polysilsesquioxanes, such as polymethylsilsesquioxane or polyphenylsilsesquioxane. The printhead is compatible with various printhead maintenance operations that require contact with the ink ejection face.
Description
技术领域 technical field
本发明涉及打印机领域并且具体地涉及喷墨打印头。它主要被开发用于提高高分辨率打印头的打印质量和打印头维护。The present invention relates to the field of printers and in particular to inkjet printheads. It was primarily developed to improve print quality and printhead maintenance for high-resolution printheads.
背景技术 Background technique
已经发明许多不同类型的印刷,它们中的许多目前在使用。已知的印刷形式具有用于通过相关印制介质来印制印刷介质的多种方法。常用的印刷形式包括胶版印刷、激光印刷和复印装置、点阵型击打式打印机、热敏纸打印机、胶片记录器、热蜡打印机、染料热升华印刷机及按需滴墨式和连续流动式喷墨打印机。当考虑成本、速度、质量、可靠性、构造和操作的简单性等等时每种类型的打印机均具有其自身的优点和问题。Many different types of printing have been invented and many of them are currently in use. Known printing formats have a variety of methods for printing a print medium with the relevant print medium. Commonly used printing formats include offset printing, laser printing and duplicating devices, dot-matrix impact printers, thermal paper printers, film recorders, thermal wax printers, dye-sublimation printers, and drop-on-demand and continuous-flow inkjet printers. ink printer. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation, and the like.
近年来,其中墨的每个单独像素源自一个或多个墨喷嘴的喷墨打印技术主要由于其廉价和通用性而变得越来越流行。In recent years, inkjet printing techniques, in which each individual pixel of ink originates from one or more ink nozzles, have become more popular mainly due to their cheapness and versatility.
已经发明关于喷墨打印的许多不同的技术。为全面解本领域,参照J Moore的文章:“Non-Impact Printing:Introduction and HistoricalPerspective”(非击打式打印:介绍和历史展望),Output Hard CopyDevices(输出硬拷贝装置),R Dubeck和S Sherr编辑,第207-220页(1998)。Many different technologies have been invented for inkjet printing. For a comprehensive understanding of the field, refer to J Moore's article: "Non-Impact Printing: Introduction and Historical Perspective" (non-impact printing: introduction and historical perspective), Output Hard CopyDevices (output hard copy device), edited by R Dubeck and S Sherr , pp. 207-220 (1998).
喷墨打印机自身呈现为多种类型。喷墨打印中连续墨流的利用至少可追溯至1929年,其中Hansell的美国专利No.1941001公开连续流静电喷墨打印的一种简单形式。Inkjet printers present themselves in a variety of types. The utilization of a continuous stream of ink in inkjet printing dates back to at least 1929, where US Patent No. 1941001 to Hansell discloses a simple form of continuous stream electrostatic inkjet printing.
Sweet的美国专利3596275也公开一种连续喷墨打印工艺,包括其中通过高频静电场对喷墨流进行调节以导致墨滴分离的步骤。该技术仍被若干制造商采用,包括Elmjet和Scitex(也参见Sweet等人的美国专利No.3373437)。US Patent 3,596,275 to Sweet also discloses a continuous inkjet printing process including a step in which the inkjet flow is conditioned by a high frequency electrostatic field to cause ink drop separation. This technology is still used by several manufacturers, including Elmjet and Scitex (see also US Patent No. 3,373,437 to Sweet et al.).
压电喷墨打印机也是常用喷墨打印装置的一种形式。在采用隔膜操作模式的Kyser等人的美国专利No.3946398(1970)中,在公开压电晶体的挤压操作模式的Zolten的美国专利3683212(1970)中,在公开压电操作的弯曲模式的Stemme的美国专利No.3747120(1972)中,在公开喷墨流的压电推动模式致动的Howkins的美国专利No.4459601中,以及在公开压电换能器元件的剪切模式类型的Fischbeck的美国4584590中公开压电系统。Piezoelectric inkjet printers are also a form of commonly used inkjet printing devices. In U.S. Patent No. 3,946,398 (1970) to Kyser et al., which employs a diaphragm mode of operation, in U.S. Patent 3,683,212 (1970) to Zolten, which discloses a squeeze mode of operation for a piezoelectric crystal, in U.S. Patent No. 3,683,212 (1970) which discloses a piezoelectric mode of operation for a piezoelectric crystal In U.S. Patent No. 3,747,120 (1972) to Stemme, in U.S. Patent No. 4,459,601 to Howkins disclosing piezoelectric push mode actuation of an inkjet stream, and in Fischbeck disclosing a shear mode type of piezoelectric transducer element Piezoelectric systems are disclosed in US 4584590.
近来,热喷墨打印已经成为喷墨打印的一种非常流行的形式。喷墨打印技术包括在Endo等人的GB 2007162(1979)和Vaught等人的美国专利4490728中公开的那些。前述两个文献公开依靠电热致动器的启动的喷墨打印技术,所述电热致动器的启动在压缩空间(比如喷嘴)中产生气泡,由此导致墨从连接到受限空间上的开孔喷射到相关的打印介质上。采用电热致动器的打印装置由诸如佳能和惠普等的制造商制造。Recently, thermal inkjet printing has become a very popular form of inkjet printing. Inkjet printing techniques include those disclosed in Endo et al., GB 2007162 (1979) and Vaught et al., U.S. Patent 4,490,728. The aforementioned two documents disclose inkjet printing techniques that rely on the actuation of electrothermal actuators that generate air bubbles in compressed spaces such as nozzles, thereby causing ink to flow from openings connected to the confined spaces. The holes jet onto the associated print media. Printing devices employing electrothermal actuators are manufactured by manufacturers such as Canon and Hewlett-Packard.
如从前述可见,很多不同类型的打印技术是可用的。理想地,打印技术应当具有多个期望的属性。这些包括廉价的构造和操作、高速操作、安全和连续长期操作等等。每种技术可以在成本、速度、质量、可靠性、耗电量、构造操作的简单性、耐用性和耗材方面具有其自身优点和缺点。As can be seen from the foregoing, many different types of printing techniques are available. Ideally, a printing technique should have several desirable attributes. These include inexpensive construction and operation, high-speed operation, safe and continuous long-term operation, and more. Each technology may have its own advantages and disadvantages in terms of cost, speed, quality, reliability, power consumption, simplicity of construction operation, durability, and consumables.
在任何喷墨打印系统的构造中,相当多的重要因素必须彼此权衡,尤其在构造大型打印头、尤其是页宽型大型打印头的情况下。多个这些因素归纳如下。In the construction of any inkjet printing system, a considerable number of important factors must be weighed against one another, especially in the case of constructing large printheads, especially pagewide large printheads. A number of these factors are summarized below.
首先,通常采用微电机系统(MEMS)技术构造喷墨打印头。因此,它们倾向于依靠将平面层沉积在硅片上并且蚀刻平面层的某些部分的标准集成电路构造/制造技术。在硅电路制造技术中,某些技术比其他技术更公知。例如,与产生CMOS电路相关联的技术很可能比与产生包括铁电体、砷化镓等的奇异(exotic)电路相关联的技术更容易使用。由此,期望的是在任何MEMS构造中采用不需要任何“奇异”工艺或材料的众所周知的半导体制造技术。当然,将进行一定程度的权衡,这是因为如果使用奇异材料的优点远超其缺点,则无论如何采用该材料是期望的。但是,如果可以使用更普通材料获得相同或相似的性质,则能够避免奇异材料的问题。First, inkjet printheads are typically constructed using micro-electromechanical systems (MEMS) technology. Therefore, they tend to rely on standard integrated circuit construction/manufacturing techniques of depositing a planar layer on a silicon wafer and etching some portion of the planar layer. In the art of silicon circuit fabrication, some techniques are better known than others. For example, techniques associated with creating CMOS circuits are likely to be easier to use than techniques associated with creating exotic circuits including ferroelectrics, gallium arsenide, and the like. Thus, it is desirable to employ well-known semiconductor fabrication techniques that do not require any "exotic" processes or materials in any MEMS configuration. Of course, some trade-offs will be made, as it is desirable to employ exotic materials anyway if the advantages of using the materials far outweigh the disadvantages. However, the problem of exotic materials can be avoided if the same or similar properties can be obtained using more general materials.
喷墨打印头的期望特性是疏水喷墨面(“正面”或“喷嘴面”),优选地与亲水喷嘴室和墨供应通道组合。亲水喷嘴室和墨供应通道提供毛细管作用并且由此最佳地用于启动(priming)和用于在每次墨滴喷射之后将墨再供应到喷嘴室。疏水正面使墨在打印头的正面上溢流的倾向最小化。利用疏水正面,含水喷墨不太可能离开喷嘴开口从旁边溢流。此外,从喷嘴开口溢流的任意墨不太可能在面上扩散并且在正面上混合——而是它们将形成能够通过合适的维护操作更容易管理的离散的球形微滴。A desirable characteristic of an inkjet printhead is a hydrophobic ink ejection face ("front side" or "nozzle face"), preferably in combination with hydrophilic nozzle chambers and ink supply channels. The hydrophilic nozzle chamber and ink supply channel provide capillary action and are thus optimally used for priming and for resupplying ink to the nozzle chamber after each ink drop ejection. The hydrophobic front side minimizes the tendency of ink to flood on the front side of the printhead. With a hydrophobic front, aqueous inkjet is less likely to exit the nozzle opening and flood sideways. Furthermore, any ink overflowing the nozzle openings is less likely to spread on the face and mix on the front side - instead they will form discrete spherical droplets that can be more easily managed with proper maintenance operations.
迄今,本申请人已经描述使用聚二甲基硅氧烷(PDMS)涂覆打印头的正面并且提供疏水表面。但是,尽管PDMS具有优异的疏水性并且能够容易地结合到打印头MEMS制造工艺中,但是其具有相对较差的耐磨性并且可能被用于打印头维护的擦拭刷划坏或另外地破坏(参见,例如2008年1月16日提交的美国申请No.12/014,772,该申请通过参引的方式并入本文)。因此,期望的是提供一种具有疏水喷墨面的打印头,该打印头能够通过MEMS制造工艺容易地生产并且具有良好的耐磨性。Heretofore, the applicant has described the use of polydimethylsiloxane (PDMS) to coat the front side of a printhead and provide a hydrophobic surface. However, although PDMS has excellent hydrophobicity and can be easily incorporated into the printhead MEMS fabrication process, it has relatively poor wear resistance and may be scratched or otherwise damaged by wipers used for printhead maintenance ( See, eg, US Application No. 12/014,772, filed January 16, 2008, which is incorporated herein by reference). Therefore, it is desirable to provide a printhead with a hydrophobic inkjet face that can be easily produced by MEMS fabrication processes and has good wear resistance.
发明内容 Contents of the invention
在第一方面,提供一种具有喷墨面的打印头,其中,所述喷墨面的至少一部分涂覆有疏水聚合材料,所述聚合材料包括聚倍半硅氧烷。根据本发明的打印头具有优异的耐用性和耐磨性,从而使它们能够相容于涉及与喷墨面相接触(例如,擦拭)的各种打印头维护操作。此外,聚倍半硅氧烷能够通过旋涂工艺沉积为薄层(0.5微米到2微米),该旋涂工艺能够容易地结合到MEMS打印头制造工艺中。In a first aspect, there is provided a printhead having an ink-ejecting face, wherein at least a portion of the ink-ejecting face is coated with a hydrophobic polymeric material, the polymeric material comprising polysilsesquioxane. Printheads according to the present invention have excellent durability and wear resistance, making them compatible with various printhead maintenance operations involving contact with the ink ejection face (eg, wiping). Furthermore, polysilsesquioxanes can be deposited as thin layers (0.5 microns to 2 microns) by a spin-coating process that can be easily incorporated into the MEMS printhead manufacturing process.
可选地,聚倍半硅氧烷从由聚烷基倍半硅氧烷和聚芳基倍半硅氧烷组成的组中选取。Optionally, the polysilsesquioxane is selected from the group consisting of polyalkylsilsesquioxanes and polyarylsilsesquioxanes.
可选地,聚倍半硅氧烷从由聚甲基倍半硅氧烷和聚苯基倍半硅氧烷组成的组中选取。Optionally, the polysilsesquioxane is selected from the group consisting of polymethylsilsesquioxane and polyphenylsilsesquioxane.
可选地,聚合材料在MEMS打印头制造期间沉积并硬烘烤(hardbake)到打印头的喷嘴板上。Optionally, the polymeric material is deposited and hard baked onto the nozzle plate of the printhead during MEMS printhead fabrication.
可选地,所述打印头包括形成在基底上的多个喷嘴组件,每个喷嘴组件包括喷嘴室、限定在所述喷嘴室的顶部中的喷嘴开口、以及用于通过所述喷嘴开口喷墨的致动器。Optionally, the printhead includes a plurality of nozzle assemblies formed on a substrate, each nozzle assembly including a nozzle chamber, a nozzle opening defined in the top of the nozzle chamber, and a nozzle for ejecting ink through the nozzle opening. the actuator.
可选地,所述聚合材料涂覆在所述打印头的喷嘴板上,所述喷嘴板至少部分地由每个喷嘴室的顶部限定。Optionally, the polymeric material is coated on a nozzle plate of the printhead defined at least in part by the top of each nozzle chamber.
可选地,每个顶部借助于所述疏水涂层而具有相对于每个喷嘴室的内侧表面的疏水外侧表面。Optionally, each top has, by means of said hydrophobic coating, a hydrophobic outer side surface relative to the inner side surface of each nozzle chamber.
可选地,每个喷嘴室包括具有陶瓷材料的顶部和侧壁。Optionally, each nozzle chamber includes a top and side walls of ceramic material.
可选地,所述陶瓷材料从由氮化硅、氧化硅和氮氧化硅组成的组中选取。Optionally, the ceramic material is selected from the group consisting of silicon nitride, silicon oxide and silicon oxynitride.
可选地,所述顶部与基底间隔开,使得每个喷嘴室的侧壁在所述喷嘴板与所述基底之间延伸。Optionally, the top is spaced apart from the base such that a side wall of each nozzle chamber extends between the nozzle plate and the base.
可选地,所述致动器是加热器元件,所述加热器元件构造为用于加热所述室中的墨以形成气泡,由此迫使墨滴穿过所述喷嘴开口。Optionally, the actuator is a heater element configured to heat ink in the chamber to form bubbles thereby forcing ink drops through the nozzle opening.
可选地,所述加热器元件悬挂在所述喷嘴室中。Optionally, the heater element is suspended in the nozzle chamber.
可选地,所述致动器是热弯曲致动器,包括:Optionally, the actuator is a thermal bending actuator comprising:
第一主动元件,所述第一主动元件用于与驱动电路的连接;以及a first active element for connection to a drive circuit; and
第二被动元件,所述第二被动元件与所述第一元件机械协作,使得当电流穿过所述第一元件时,所述第一元件相对于所述第二元件扩展,从而导致所述致动器弯曲。a second passive element that mechanically cooperates with the first element such that when current passes through the first element, the first element expands relative to the second element, causing the The actuator is bent.
可选地,所述热弯曲致动器限定每个喷嘴室的顶部的至少一部分,由此所述致动器的致动使所述顶部的活动部分朝向所述喷嘴室的底部移动。Optionally, the thermal bending actuator defines at least a portion of the top of each nozzle chamber, whereby actuation of the actuator moves a movable portion of the top towards the bottom of the nozzle chamber.
可选地,所述喷嘴开口限定在所述顶部的所述活动部分中。Optionally, said nozzle opening is defined in said movable portion of said top.
可选地,喷嘴开口限定在所述顶部的固定部分中。Optionally, a nozzle opening is defined in a fixed portion of said top.
可选地,所述聚合材料限定所述顶部的所述活动部分与固定部分之间的机械密封,由此使所述致动器致动期间的墨泄漏最小化。Optionally, said polymeric material defines a mechanical seal between said movable and fixed parts of said top, thereby minimizing ink leakage during actuation of said actuator.
在第二方面,提供一种具有喷墨面的打印头,其中,所述喷墨面的至少一部分涂覆有聚合材料,所述聚合材料包括结合有纳米颗粒的聚硅氧烷。根据第二方面,所述纳米颗粒将诸如耐用性、耐磨性、抗疲劳性、疏水性、亲水性等等之类的期望特性赋予给聚合涂层。In a second aspect, there is provided a printhead having an ink-ejecting face, wherein at least a portion of the ink-ejecting face is coated with a polymeric material comprising polysiloxane incorporating nanoparticles. According to a second aspect, the nanoparticles impart desired properties such as durability, abrasion resistance, fatigue resistance, hydrophobicity, hydrophilicity, etc. to the polymeric coating.
可选地,聚硅氧烷从由聚烷基倍半硅氧烷、聚芳基倍半硅氧烷和聚二烷基硅氧烷组成的组中选取。Optionally, the polysiloxane is selected from the group consisting of polyalkylsilsesquioxanes, polyarylsilsesquioxanes and polydialkylsilsesquioxanes.
可选地,聚硅氧烷从由聚甲基倍半硅氧烷、聚苯基倍半硅氧烷和聚二甲基硅氧烷组成的组中选取。Optionally, the polysiloxane is selected from the group consisting of polymethylsilsesquioxane, polyphenylsilsesquioxane and polydimethylsilsesquioxane.
可选地,所述纳米颗粒从由无机纳米颗粒和有机纳米颗粒组成的组中选取。Optionally, said nanoparticles are selected from the group consisting of inorganic nanoparticles and organic nanoparticles.
可选地,所述无机纳米颗粒从由金属氧化物、金属碳酸盐和金属硫酸盐组成的组中选取。Optionally, said inorganic nanoparticles are selected from the group consisting of metal oxides, metal carbonates and metal sulfates.
可选地,所述无机纳米颗粒从由二氧化硅、氧化锆、氧化钛、氧化铝、碳酸钙、氧化锡、氧化锌、氧化铜、氧化铬、氧化钙、氧化钨、氧化铁、氧化钴以及硫酸钡组成的组中选取。Optionally, the inorganic nanoparticles are made of silica, zirconia, titania, alumina, calcium carbonate, tin oxide, zinc oxide, copper oxide, chromium oxide, calcium oxide, tungsten oxide, iron oxide, cobalt oxide and selected from the group consisting of barium sulfate.
可选地,所述有机纳米颗粒从由交联有机硅树脂颗粒、交联聚烯烃树脂颗粒、交联丙烯树脂颗粒、交联苯乙烯-丙烯树脂颗粒、交联聚酯颗粒、聚酰亚胺颗粒、密胺树脂颗粒以及碳纳米管组成的组中选取。Optionally, the organic nanoparticles are selected from cross-linked silicone resin particles, cross-linked polyolefin resin particles, cross-linked propylene resin particles, cross-linked styrene-propylene resin particles, cross-linked polyester particles, polyimide Particles, melamine resin particles and carbon nanotubes are selected from the group.
可选地,所述纳米颗粒以从1%-70%重量百分比的量的范围结合到聚硅氧烷中。Optionally, the nanoparticles are incorporated into polysiloxane in an amount ranging from 1% to 70% by weight.
可选地,所述纳米颗粒具有1nm到100nm范围内的平均颗粒尺寸。Optionally, the nanoparticles have an average particle size in the range of 1 nm to 100 nm.
可选地,所述打印头包括形成在基底上的多个喷嘴组件,每个喷嘴组件包括:喷嘴室、限定在所述喷嘴室的顶部中的喷嘴开口、以及用于通过所述喷嘴开口喷墨的致动器。Optionally, the printhead includes a plurality of nozzle assemblies formed on a substrate, each nozzle assembly including: a nozzle chamber, a nozzle opening defined in the top of the nozzle chamber, and a ink actuator.
可选地,聚合材料涂覆在所述打印头的喷嘴板上,所述喷嘴板至少部分地由每个喷嘴室的顶部限定。Optionally, a polymeric material coats a nozzle plate of the printhead at least partially defined by the top of each nozzle chamber.
可选地,每个喷嘴室包括具有陶瓷材料的顶部和侧壁,所述陶瓷材料从由氮化硅、氧化硅和氮氧化硅组成的组中选取。Optionally, each nozzle chamber includes a top and side walls having a ceramic material selected from the group consisting of silicon nitride, silicon oxide and silicon oxynitride.
可选地,所述顶部与基底间隔开,使得每个喷嘴室的侧壁在所述喷嘴板与所述基底之间延伸。Optionally, the top is spaced apart from the base such that a side wall of each nozzle chamber extends between the nozzle plate and the base.
可选地,所述致动器是加热器元件,所述加热器元件构造为加热所述室中的墨以形成气泡,由此迫使墨滴穿过所述喷嘴开口。Optionally, the actuator is a heater element configured to heat ink in the chamber to form bubbles thereby forcing ink drops through the nozzle opening.
可选地,所述加热器元件悬挂在所述喷嘴室中。Optionally, the heater element is suspended in the nozzle chamber.
可选地,所述致动器是热弯曲致动器,包括:Optionally, the actuator is a thermal bending actuator comprising:
第一主动元件,所述第一主动元件用于与驱动电路的连接;以及a first active element for connection to a drive circuit; and
第二被动元件,所述第二被动元件与所述第一元件机械协作,使得当电流穿过所述第一元件时,所述第一元件相对于所述第二元件扩展,从而导致所述致动器弯曲a second passive element that mechanically cooperates with the first element such that when current passes through the first element, the first element expands relative to the second element, causing the Actuator bends
可选地,所述热弯曲致动器限定每个喷嘴室的顶部的至少一部分,由此所述致动器的致动使所述顶部的活动部分朝向所述喷嘴室的底部移动。Optionally, the thermal bending actuator defines at least a portion of the top of each nozzle chamber, whereby actuation of the actuator moves a movable portion of the top towards the bottom of the nozzle chamber.
可选地,所述喷嘴开口限定在所述顶部的所述活动部分或所述顶部的固定部分中的任一个中。Optionally, the nozzle opening is defined in either of the movable portion of the top or the fixed portion of the top.
可选地,所述聚合材料限定所述顶部的所述活动部分与所述固定部分之间的机械密封,由此使所述致动器致动期间的墨泄漏最小化。Optionally, said polymeric material defines a mechanical seal between said movable part and said fixed part of said top, thereby minimizing ink leakage during actuation of said actuator.
在第三方面,提供一种用于喷射可喷射流体的喷墨打印头,所述打印头具有涂覆了结合纳米颗粒的聚合材料的喷墨面,其中,所述纳米颗粒将一个或多个预定的特性赋予给所述喷墨面,所述预定特性补足如下中的至少一个:In a third aspect, there is provided an inkjet printhead for ejecting a jettable fluid, the printhead having an inkjet face coated with a polymeric material incorporating nanoparticles, wherein the nanoparticles incorporate one or more Predetermined properties are imparted to the ink-ejection face, the predetermined properties complementing at least one of the following:
可喷射流体的固有特性;Inherent properties of jettable fluids;
与所述打印头相关联的打印头维护机制;以及a printhead maintenance mechanism associated with the printhead; and
喷嘴致动器的类型。Type of nozzle actuator.
根据第三方面的本发明能够将所述喷墨面的表面特性调制为打印机的预定特性。例如,打印头的维护可以在一些打印机中为优先,而最佳的流体喷射可以在其他打印机中为优先。可替代地,纳米颗粒可以选取为提供折中的打印机特性。The present invention according to the third aspect can modulate the surface characteristics of the ink ejection face to predetermined characteristics of the printer. For example, printhead maintenance may be a priority in some printers, while optimal fluid ejection may be a priority in other printers. Alternatively, the nanoparticles can be selected to provide compromised printer properties.
可选地,所述一个或多个预定特性从由亲水性、疏水性、耐磨性以及抗疲劳性组成的组中选取。Optionally, the one or more predetermined properties are selected from the group consisting of hydrophilicity, hydrophobicity, abrasion resistance and fatigue resistance.
可选地,所述一个或多个预定特性由纳米颗粒的表面能特性、纳米颗粒的尺寸、纳米颗粒的量以及纳米颗粒的耐磨性中的一个或多个来赋予。Optionally, the one or more predetermined properties are imparted by one or more of the surface energy properties of the nanoparticles, the size of the nanoparticles, the amount of the nanoparticles, and the wear resistance of the nanoparticles.
可选地,所述纳米颗粒从由无机纳米颗粒和有机纳米颗粒组成的组中选取。Optionally, said nanoparticles are selected from the group consisting of inorganic nanoparticles and organic nanoparticles.
可选地,所述无机纳米颗粒从由二氧化硅、氧化锆、氧化钛、氧化铝、碳酸钙、氧化锡、氧化锌、氧化铜、氧化铬、氧化钙、氧化钨、氧化铁、氧化钴以及硫酸钡组成的组中选取。Optionally, the inorganic nanoparticles are made of silica, zirconia, titania, alumina, calcium carbonate, tin oxide, zinc oxide, copper oxide, chromium oxide, calcium oxide, tungsten oxide, iron oxide, cobalt oxide and selected from the group consisting of barium sulfate.
可选地,所述有机纳米颗粒从由交联有机硅树脂颗粒、交联聚烯烃树脂颗粒、交联丙烯树脂颗粒、交联苯乙烯-丙烯树脂颗粒、交联聚酯颗粒、聚酰亚胺颗粒、密胺树脂颗粒以及碳纳米管组成的组中选取。Optionally, the organic nanoparticles are selected from cross-linked silicone resin particles, cross-linked polyolefin resin particles, cross-linked propylene resin particles, cross-linked styrene-propylene resin particles, cross-linked polyester particles, polyimide Particles, melamine resin particles and carbon nanotubes are selected from the group.
可选地,所述可喷射流体的固有特性从由亲水性、疏水性、粘性、表面张力以及沸点组成的组中选取。Optionally, the intrinsic property of the jettable fluid is selected from the group consisting of hydrophilicity, hydrophobicity, viscosity, surface tension and boiling point.
可选地,所述可喷射流体从由含水流体和不含水流体组成的组中选取。Optionally, said sprayable fluid is selected from the group consisting of aqueous fluids and non-aqueous fluids.
可选地,所述打印头维护机制包括从由打印头封顶、打印头擦拭、打印头溢流、以及非接触式墨去除组成的组中选取的一个或多个操作。Optionally, the printhead maintenance mechanism includes one or more operations selected from the group consisting of printhead capping, printhead wiping, printhead flooding, and non-contact ink removal.
可选地,所述聚合材料包括聚硅氧烷。Optionally, the polymeric material comprises polysiloxane.
可选地,聚硅氧烷从由聚烷基倍半硅氧烷、聚芳基倍半硅氧烷、以及聚二烷基硅氧烷组成的组中选取。Optionally, the polysiloxane is selected from the group consisting of polyalkylsilsesquioxanes, polyarylsilsesquioxanes, and polydialkylsilsesquioxanes.
可选地,聚硅氧烷从由聚甲基倍半硅氧烷、聚苯基倍半硅氧烷和聚二甲基硅氧烷组成的组中选取。Optionally, the polysiloxane is selected from the group consisting of polymethylsilsesquioxane, polyphenylsilsesquioxane and polydimethylsilsesquioxane.
根据第三方面的打印头的其他可选实施例与根据第一方面和第二方面的那些可选实施例相同。Other optional embodiments of the printhead according to the third aspect are the same as those according to the first and second aspects.
附图说明 Description of drawings
现在将仅作为示例参照附图对本发明的可选实施例进行描述,其中:Alternative embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
图1是热喷墨打印头的喷嘴组件阵列的局部立体图;1 is a partial perspective view of a nozzle assembly array of a thermal inkjet printhead;
图2是图1中所示的喷嘴组件单元的侧视图;Figure 2 is a side view of the nozzle assembly unit shown in Figure 1;
图3是图2中所示的喷嘴组件的立体图;Figure 3 is a perspective view of the nozzle assembly shown in Figure 2;
图4示出在将侧壁和顶部材料沉积到牺牲光致抗蚀剂层上之后部分形成的喷嘴组件;Figure 4 shows the partially formed nozzle assembly after depositing sidewall and top material onto the sacrificial photoresist layer;
图5是图4中所示的喷嘴组件的立体图;Figure 5 is a perspective view of the nozzle assembly shown in Figure 4;
图6是与图7中所示的喷嘴缘蚀刻相关联的掩膜;Figure 6 is a mask associated with the nozzle edge etch shown in Figure 7;
图7示出顶部层的蚀刻以形成喷嘴开口缘;Figure 7 shows the etching of the top layer to form the nozzle opening edge;
图8是图7中所示的喷嘴组件的立体图;Figure 8 is a perspective view of the nozzle assembly shown in Figure 7;
图9是与图10中所示的喷嘴开口蚀刻相关联的掩膜;Figure 9 is a mask associated with the nozzle opening etch shown in Figure 10;
图10示出顶部材料的蚀刻以形成椭圆形喷嘴开口;Figure 10 shows etching of the top material to form an elliptical nozzle opening;
图11是图10中所示的喷嘴组件的立体图;Figure 11 is a perspective view of the nozzle assembly shown in Figure 10;
图12示出第一和第二牺牲层的氧气等离子体灰化;Figure 12 shows oxygen plasma ashing of first and second sacrificial layers;
图13是图12中所示的喷嘴组件的立体图;Figure 13 is a perspective view of the nozzle assembly shown in Figure 12;
图14示出在灰化之后的喷嘴组件、以及晶片的相对侧;Figure 14 shows the nozzle assembly after ashing, and the opposite side of the wafer;
图15是图14中所示的喷嘴组件的立体图;Figure 15 is a perspective view of the nozzle assembly shown in Figure 14;
图16是与图17中所示的背侧蚀刻相关联的掩膜;Figure 16 is a mask associated with the backside etch shown in Figure 17;
图17示出墨供应通道到晶片内的背侧蚀刻;Figure 17 shows backside etching of ink supply channels into the wafer;
图18是图17中所示的喷嘴组件的立体图;Figure 18 is a perspective view of the nozzle assembly shown in Figure 17;
图19示出在疏水聚合涂层的沉积之后图7的喷嘴组件;Figure 19 shows the nozzle assembly of Figure 7 after deposition of a hydrophobic polymeric coating;
图20是图19中所示的喷嘴组件的立体图;Figure 20 is a perspective view of the nozzle assembly shown in Figure 19;
图21示出在防护金属薄膜沉积之后图19的喷嘴组件;以及FIG. 21 shows the nozzle assembly of FIG. 19 after deposition of a protective metal film; and
图22示出在蚀刻穿过防护金属薄膜、聚合涂层和喷嘴顶部之后图21的喷嘴组件;Figure 22 shows the nozzle assembly of Figure 21 after etching through the protective metal film, polymeric coating and nozzle top;
图23示出在背侧MEMS加工和去除光致抗蚀剂之后完成的喷组组件;Figure 23 shows the completed jetpack assembly after backside MEMS processing and photoresist removal;
图24是图23中所示的喷嘴组件的立体图;Figure 24 is a perspective view of the nozzle assembly shown in Figure 23;
图25是在其中形成喷嘴室侧壁的第一步骤顺序之后部分制成的可代替喷墨喷嘴组件的侧剖视图;Figure 25 is a side cross-sectional view of a partially fabricated alternative inkjet nozzle assembly following a first sequence of steps in which nozzle chamber sidewalls are formed;
图26是图25中所示的部分制成的喷墨喷嘴组件的立体图;Figure 26 is a perspective view of the partially fabricated inkjet nozzle assembly shown in Figure 25;
图27是在其中以聚酰亚胺填充喷嘴室的第二步骤顺序之后部分制成的喷墨喷嘴组件的侧剖视图;27 is a side cross-sectional view of a partially fabricated inkjet nozzle assembly after a second sequence of steps in which the nozzle chambers are filled with polyimide;
图28是图27中所示的部分制成的喷墨喷嘴组件的立体图;Figure 28 is a perspective view of the partially fabricated inkjet nozzle assembly shown in Figure 27;
图29是在其中连接器柱形成直到室顶部的第三步骤顺序之后部分制成的喷墨喷嘴组件的侧剖视图;Figure 29 is a side cross-sectional view of a partially fabricated inkjet nozzle assembly after a third sequence of steps in which connector posts are formed up to the top of the chamber;
图30是图29中所示的部分制成的喷墨喷嘴组件的立体图;Figure 30 is a perspective view of the partially fabricated inkjet nozzle assembly shown in Figure 29;
图31是在其中形成导电金属板的第四步骤顺序之后部分制成的喷墨喷嘴组件的侧剖视图;Figure 31 is a side cross-sectional view of a partially fabricated inkjet nozzle assembly after a fourth sequence of steps in which a conductive metal plate is formed;
图32是图31中所示的部分制成的喷墨喷嘴组件的立体图;Figure 32 is a perspective view of the partially fabricated inkjet nozzle assembly shown in Figure 31;
图33是在其中形成热弯曲致动器的主动梁构件的第五步骤顺序之后部分制成的喷墨喷嘴组件的侧剖视图;33 is a side cross-sectional view of a partially fabricated inkjet nozzle assembly following a fifth sequence of steps in which an active beam member of a thermal bending actuator is formed;
图34是图33中所示的部分制成的喷墨喷嘴组件的立体图;Figure 34 is a perspective view of the partially fabricated inkjet nozzle assembly shown in Figure 33;
图35是在其中涂覆聚合层、以金属层防护以及蚀刻喷嘴开口的第六步骤顺序之后部分制成的喷墨喷嘴组件的侧剖视图;35 is a side cross-sectional view of a partially fabricated inkjet nozzle assembly after a sixth sequence of steps in which a polymeric layer is applied, shielded with a metal layer, and the nozzle opening is etched;
图36是在背侧MEMS加工和去除光致抗蚀剂后完成的喷墨喷嘴组件的侧剖视图;Figure 36 is a side cross-sectional view of the completed inkjet nozzle assembly after backside MEMS processing and photoresist removal;
图37是图36中所示的喷墨喷嘴组件的截面立体图。37 is a cross-sectional perspective view of the inkjet nozzle assembly shown in FIG. 36 .
具体实施方式 Detailed ways
本发明可以与任何类型的打印头一起使用。本申请人先前已经描述很多喷墨打印头。这里无需描述所有这些打印头用于理解本发明。但是,现在将结合热气泡形成喷墨打印头和机械热弯曲致动喷墨打印头来描述本发明。本发明的优点从如下的描述中变得很明显。The present invention can be used with any type of printhead. The applicant has previously described a number of inkjet printheads. It is not necessary to describe all of these printheads here for an understanding of the present invention. However, the invention will now be described in connection with thermal bubble forming inkjet printheads and mechanical thermal bend actuated inkjet printheads. The advantages of the present invention will become apparent from the following description.
热气泡形成喷墨打印头Thermal bubble formation inkjet printhead
参照图1,其示出包括多个喷嘴组件的打印头的一部分。图2和图3以侧剖视图和截面立体图示出这些喷嘴组件中的其中一个。Referring to Figure 1, a portion of a printhead including a plurality of nozzle assemblies is shown. Figures 2 and 3 show one of these nozzle assemblies in side sectional view and in sectional perspective view.
每个喷嘴组件包括通过MEMS制造技术形成在硅片基底2上的喷嘴室24。喷嘴室24由顶部21和从顶部21延伸至硅基底2的侧壁22限定。如图1中所示,每个顶部由喷嘴表面56的一部分限定,该喷嘴表面56跨过打印头的喷射面。喷嘴表面56和侧壁22由相同的材料形成,该材料在MEMS制造期间通过PECVD沉积到光致抗蚀剂的牺牲支架(sacrificial scaffold)上。典型地,喷嘴表面56和侧壁22由陶瓷材料(比如二氧化硅或氮化硅)形成。这些硬的材料具有用于打印头的坚固性的优异特性,并且它们固有的亲水性对于通过毛细管作用将墨供应给喷嘴室24是有利的。但是,喷嘴表面56的外(喷墨)表面也是亲水性的,这导致任何溢流的墨在表面上扩散。Each nozzle assembly includes a nozzle chamber 24 formed on a silicon wafer substrate 2 by MEMS fabrication techniques. The nozzle chamber 24 is defined by a top 21 and side walls 22 extending from the top 21 to the silicon substrate 2 . As shown in FIG. 1, each top is defined by a portion of the nozzle surface 56 that spans the jetting face of the printhead. The nozzle surface 56 and the sidewall 22 are formed from the same material that is deposited by PECVD onto a sacrificial scaffold of photoresist during MEMS fabrication. Typically, nozzle surface 56 and sidewall 22 are formed of a ceramic material such as silicon dioxide or silicon nitride. These hard materials have excellent properties for robustness of the printhead, and their inherent hydrophilicity is advantageous for supplying ink to the nozzle chambers 24 by capillary action. However, the outer (ink ejection) surface of the nozzle surface 56 is also hydrophilic, which causes any overflow ink to spread across the surface.
回到喷嘴室24的细节,将见到的是喷嘴开口26限定在每个喷嘴室24的顶部中。每个喷嘴开口26通常是椭圆形的并且具有关联的喷嘴缘25。喷嘴缘25在打印期间辅助墨滴的方向性以及至少在某种程度上减小来自喷嘴开口26的墨溢流。用于从喷嘴室24喷墨的致动器是加热器元件29,该加热器元件29设置在喷嘴开口26的下面并且悬挂在凹部8中。经由连接到位于基底2的下层CMOS层5中的驱动电路上的电极9将电流供应给加热器元件29。当电流通过加热器元件29时,其使围绕的墨快速过热以形成气泡,这迫使墨穿过喷嘴开口。通过悬挂加热器元件29,在喷嘴室24启动时加热器元件29完全浸入墨中。这提高打印头的效率,这是因为较少的热扩散到下层基底2内而较多的输入能量用于产生气泡。Returning to the details of the nozzle chambers 24 , it will be seen that nozzle openings 26 are defined in the top of each nozzle chamber 24 . Each nozzle opening 26 is generally oval and has an associated nozzle lip 25 . The nozzle lip 25 aids in the directionality of the ink drops during printing and reduces ink overflow from the nozzle opening 26 at least to some extent. The actuator for ejecting ink from the nozzle chamber 24 is a heater element 29 arranged below the nozzle opening 26 and suspended in the recess 8 . Electric current is supplied to the heater element 29 via an electrode 9 connected to a driving circuit in the lower CMOS layer 5 of the substrate 2 . When current is passed through the heater element 29, it rapidly superheats the surrounding ink to form air bubbles, which forces the ink through the nozzle opening. By suspending the heater element 29, the heater element 29 is fully immersed in ink when the nozzle chamber 24 is activated. This improves the efficiency of the printhead, since less heat is diffused into the underlying substrate 2 and more input energy is used to generate air bubbles.
如图1中最清楚见到的,喷嘴以行布置并且沿着行纵向延伸的墨供应通道27将墨供应给行中的每个喷嘴。墨供应通道27将墨输送到用于每个喷嘴的墨入口通路15,该墨入口通路15经由墨导管23将墨从喷嘴开口26的侧部供应到喷嘴室24中。As best seen in Figure 1, the nozzles are arranged in rows and ink supply channels 27 extending longitudinally along the row supply ink to each nozzle in the row. An ink supply channel 27 delivers ink to the ink inlet passage 15 for each nozzle, which supplies ink into the nozzle chamber 24 from the side of the nozzle opening 26 via the ink conduit 23 .
在申请人于2005年10月11日提交的先前提交美国申请No.11/246,684中详细地描述用于制造这种打印头的MEMS制造工艺,该申请的全部公开内容通过参引的方式并入本文。为清楚起见,这里再次参看该制造工艺的后期阶段。The MEMS fabrication process for making such a printhead is described in detail in Applicant's previously filed U.S. Application No. 11/246,684, filed October 11, 2005, the entire disclosure of which is incorporated by reference This article. For clarity, reference is made here again to later stages of the fabrication process.
图4和图5示出包括喷嘴室24的部分制成的打印头,该喷嘴室24包封牺牲光致抗蚀剂10(“SAC1”)和16(“SAC2”)。SAC1光致抗蚀剂10作为用于沉积加热器材料的支架以形成悬挂的加热器元件29。SAC2光致抗蚀剂16作为用于沉积侧壁22和顶部21(该顶部21限定喷嘴表面56的一部分)的支架。4 and 5 illustrate a partially fabricated printhead including nozzle chamber 24 enclosing sacrificial photoresists 10 ("SAC1") and 16 ("SAC2"). The SAC1 photoresist 10 serves as a scaffold for the deposition of heater material to form suspended heater elements 29 . The SAC2 photoresist 16 serves as a scaffold for the deposition of the sidewalls 22 and the top 21 which defines a portion of the nozzle surface 56 .
在现有技术的工艺中,并且参照图6至图8,MEMS制造的下一阶段通过蚀刻掉2微米的顶部材料20而限定出顶部21中的椭圆形喷嘴缘25。该蚀刻使用通过图6中所示的暗色缘掩膜暴露的一层光致抗蚀剂(未示出)来限定。椭圆形缘25包括两个共轴的缘唇25a和25b,这两个缘唇25a和25b设置在它们相应的热致动器29上。In the prior art process, and with reference to FIGS. 6-8 , the next stage of MEMS fabrication defines an elliptical nozzle edge 25 in the top 21 by etching away 2 microns of top material 20 . The etch is defined using a layer of photoresist (not shown) exposed through the dark fringe mask shown in FIG. 6 . The elliptical lip 25 comprises two coaxial lips 25a and 25b which are arranged on their respective thermal actuators 29 .
参照图9至图11,下一阶段通过一直穿过剩余的顶部材料进行蚀刻而限定出顶部21中的椭圆形喷嘴开孔26,该开孔26由缘25限界。该蚀刻使用通过图9中所示的暗色顶部掩膜暴露的一层光致抗蚀剂(未示出)来限定。如图11中所示,椭圆形喷嘴开孔26设置在热致动器29上。Referring to FIGS. 9 to 11 , the next stage defines an oval nozzle opening 26 in the top 21 , bounded by a rim 25 , by etching all the way through the remaining top material. The etch is defined using a layer of photoresist (not shown) exposed through the dark top mask shown in FIG. 9 . As shown in FIG. 11 , an oval nozzle opening 26 is provided on a thermal actuator 29 .
随着所有MEMS喷嘴特征现在全部形成,下一阶段通过O2等离子体灰化去除SAC1和SAC2光致抗蚀剂层10和16(图12和图13)。图14和图15示出在SAC1和SAC2光致抗蚀剂层10和16灰化之后硅片2的总厚度(150微米)。With all MEMS nozzle features now fully formed, the next stage removes the SAC1 and SAC2 photoresist layers 10 and 16 by O2 plasma ashing (FIGS. 12 and 13). Figures 14 and 15 show the total thickness of the silicon wafer 2 (150 microns) after ashing of the SAC1 and SAC2 photoresist layers 10 and 16 .
参照图16至图18,一旦晶片的前侧MEMS加工完成,就使用标准各向异性DRIE从晶片的背侧蚀刻出墨供应通道27以与墨入口15相遇。该背侧蚀刻使用通过图16中所示的暗色掩膜暴露的一层光致抗蚀剂(未示出)来限定。墨供应通道27形成晶片的背侧与墨入口15之间的流体连接。Referring to Figures 16-18, once the front side MEMS processing of the wafer is complete, the ink supply channel 27 is etched from the back side of the wafer to meet the ink inlet 15 using standard anisotropic DRIE. The backside etch is defined using a layer of photoresist (not shown) exposed through the dark mask shown in FIG. 16 . Ink supply channel 27 forms a fluid connection between the backside of the wafer and ink inlet 15 .
最后,并且参照图2和图3,通过背侧蚀刻使晶片变薄到大约135微米。图1以完成的打印头集成电路的截面立体图示出三行相邻的喷嘴。喷嘴中的每一行具有沿着其长度延伸且将墨供应给每行中的多个墨入口15的相应的墨供应通道27。墨入口又将墨供应给用于每行的墨导管23,其中每个喷嘴室从用于该行的共用墨导管接收墨。Finally, and referring to Figures 2 and 3, the wafer is thinned to approximately 135 microns by backside etching. Figure 1 shows three adjacent rows of nozzles in a cross-sectional perspective view of a completed printhead integrated circuit. Each row of nozzles has a respective ink supply channel 27 extending along its length and supplying ink to the plurality of ink inlets 15 in each row. The ink inlets in turn supply ink to ink conduits 23 for each row, with each nozzle chamber receiving ink from a common ink conduit for that row.
如上面已经讨论的,该现有技术的MEMS制造工艺借助于由诸如二氧化硅、氮化硅、氮氧化硅、氮化铝等等之类的陶瓷材料形成的喷嘴表面56而不可避免地留下亲水喷墨面。As already discussed above, this prior art MEMS fabrication process inevitably leaves Lower hydrophilic inkjet side.
在用于使喷嘴表面56疏水化的优选工艺(并且如在US2009/0139961中描述的,该专利的公开内容通过参引的方式并入本文)中,晶片在图7和图8中示例的喷嘴缘蚀刻阶段之后立即涂覆疏水聚合物80。In a preferred process for hydrophobizing the nozzle surface 56 (and as described in US2009/0139961, the disclosure of which is incorporated herein by reference), wafers are exposed to the nozzles illustrated in FIGS. 7 and 8 . The hydrophobic polymer 80 is applied immediately after the edge etch stage.
疏水聚合物100的薄层(大约1微米到2微米)旋涂到晶片上并且进行硬烘烤(hardbaked)以提供图19和图20中所示的部分制成的打印头。A thin layer (approximately 1 micron to 2 microns) of hydrophobic polymer 100 was spun onto the wafer and hard baked to provide the partially fabricated printhead shown in FIGS. 19 and 20 .
现在参照图21,防护金属薄膜90(大约100nm的厚度)随后沉积到聚合物层80上。金属薄膜典型地由钛或铝构成并且防护疏水聚合物80免受以后阶段的氧灰化条件。因此,聚合物层80没有暴露给侵略性的灰化条件并且贯穿整个MEMS工艺步骤保持其疏水特性。Referring now to FIG. 21 , a protective metal film 90 (approximately 100 nm in thickness) is then deposited onto polymer layer 80 . The metal film is typically composed of titanium or aluminum and protects the hydrophobic polymer 80 from the oxygen ashing conditions of later stages. Thus, the polymer layer 80 is not exposed to aggressive ashing conditions and retains its hydrophobic properties throughout the MEMS process steps.
图22示出穿过金属薄膜110、聚合物层80和喷嘴顶部21蚀刻出喷嘴开口26之后的晶片。该蚀刻步骤利用常规图案(patterned)的光致抗蚀剂层(未示出)作为用于所有喷嘴蚀刻步骤的通用掩膜。在典型的蚀刻顺序中,金属薄膜90首先通过标准干式金属蚀刻(例如,BCl3/Cl2)或通过湿式金属蚀刻(例如,H2O2或HF)进行蚀刻。第二干蚀刻随后用于蚀刻穿过聚合物层80和喷嘴顶部21。典型地,第二蚀刻步骤是采用O2和氟化蚀刻气体(例如,SF6或CF4)的干蚀刻。FIG. 22 shows the wafer after the nozzle openings 26 have been etched through the metal film 110 , the polymer layer 80 and the nozzle top 21 . This etch step utilizes a conventionally patterned photoresist layer (not shown) as a common mask for all nozzle etch steps. In a typical etch sequence, the metal film 90 is first etched by a standard dry metal etch (eg, BCl 3 /Cl 2 ) or by a wet metal etch (eg, H 2 O 2 or HF). A second dry etch is then used to etch through the polymer layer 80 and the nozzle top 21 . Typically, the second etch step is a dry etch with O2 and a fluorinated etch gas (eg, SF6 or CF4 ).
一旦如图22中所示地限定喷嘴开口26,就能够根据与以上结合图14至图18描述的步骤相似的已知程式进行背侧MEMS加工步骤(例如,蚀刻墨供应通道、晶片薄化等等)和后续阶段的光致抗蚀剂的灰化。使用H2O2或HF清洗的金属薄膜90的最终去除产生图23和图24中所示的完成的喷嘴组件,从而具有疏水聚合物层80。Once the nozzle openings 26 are defined as shown in FIG. 22, backside MEMS processing steps (e.g., etching ink supply channels, wafer thinning, etc.) can be performed according to known protocols similar to those described above in connection with FIGS. etc.) and subsequent stages of ashing of the photoresist. The final removal of the thin metal film 90 using H 2 O 2 or HF cleaning yields the finished nozzle assembly shown in FIGS. 23 and 24 , having the hydrophobic polymer layer 80 .
热弯曲致动器打印头Thermal Bending Actuator Printheads
从前述,将理解的是任何类型的打印头均可以以相似的方式疏水化。但是,聚合物涂层是特别有利地用在申请人的热弯曲致动器喷嘴组件中,这是因为聚合物层作为打印头的活动顶部部分与固定本体之间的机械密封。这些优点在申请人的美国公布No.2008/0225076中更详细地讨论,该公布的内容通过参引的方式并入本文。From the foregoing, it will be appreciated that any type of printhead can be hydrophobized in a similar manner. However, polymer coatings are particularly advantageous for use in Applicant's thermal bend actuator nozzle assemblies because the polymer layer acts as a mechanical seal between the movable top portion of the printhead and the stationary body. These advantages are discussed in more detail in Applicant's US Publication No. 2008/0225076, the contents of which are incorporated herein by reference.
图25至图37示出用于在申请人的早期美国公布No.2008/0309728中描述的喷墨喷嘴组件100的MEMS制造工艺的顺序,该公布的内容通过参引的方式并入本文。图36和图37中所示的完成的喷墨喷嘴组件100采用热弯曲致动,由此顶部的活动部分朝向基底弯曲,从而导致墨喷射。25-37 illustrate the sequence of the MEMS fabrication process for the inkjet nozzle assembly 100 described in Applicant's earlier US Publication No. 2008/0309728, the contents of which are incorporated herein by reference. The completed inkjet nozzle assembly 100 shown in Figures 36 and 37 employs thermal bending actuation whereby the active portion of the top bends towards the base, causing ink ejection.
用于MEMS制造的起始点是具有形成在硅片的上部分中的CMOS驱动电路的标准CMOS晶片。在MEMS制造工艺的最后,该晶片被切割成单独的打印头集成电路(IC),其中每个IC包括驱动电路和多个喷嘴组件。The starting point for MEMS fabrication is a standard CMOS wafer with CMOS drive circuitry formed in the upper portion of the silicon wafer. At the end of the MEMS fabrication process, the wafer is diced into individual printhead integrated circuits (ICs), where each IC includes driver circuitry and multiple nozzle assemblies.
如图25和图26中所示,基底101具有形成在其上部分中的电极102。电极102是用于将电力供应给喷墨喷嘴100的致动器的一对相邻电极(正和接地)中的其中一个。电极从基底101的上层中的CMOS驱动电路(未示出)接收电力。As shown in FIGS. 25 and 26 , a substrate 101 has an electrode 102 formed in an upper portion thereof. Electrode 102 is one of a pair of adjacent electrodes (positive and ground) for supplying electrical power to actuators of inkjet nozzle 100 . The electrodes receive power from a CMOS driver circuit (not shown) in the upper layer of the substrate 101 .
图25和图26中所示的另一电极103用于将电力供应给相邻的喷墨喷嘴。总体而言,附图示出用于喷嘴组件的MEMS制造步骤,该喷嘴组件是喷嘴组件阵列中的其中一个。以下描述关注用于这些喷嘴组件中的其中一个的制造步骤。但是,当然应当理解的是,用于在晶片上形成的所有喷嘴组件的对应的步骤被同时执行。尽管相邻的喷嘴组件在附图中被部分地显示,但是其能够被忽略用于本目的。因此,本文将不详细描述电极103和相邻的喷嘴组件的全部特征。事实上,出于清楚的益处,一些MEMS制造步骤将不被显示在相邻的喷嘴组件中。Another electrode 103 shown in FIGS. 25 and 26 is used to supply electric power to adjacent inkjet nozzles. In general, the figures illustrate MEMS fabrication steps for a nozzle assembly that is one of an array of nozzle assemblies. The following description focuses on the manufacturing steps for one of these nozzle assemblies. However, it should of course be understood that the corresponding steps for all nozzle assemblies formed on the wafer are performed simultaneously. Although the adjacent nozzle assembly is partially shown in the figures, it can be omitted for this purpose. Accordingly, not all features of the electrode 103 and adjacent nozzle assembly will be described in detail herein. In fact, some MEMS fabrication steps will not be shown in the adjacent nozzle assembly for the benefit of clarity.
在图25和图26中所示的步骤顺序中,8微米的二氧化硅层初始沉积在基底101上。二氧化硅的深度限定用于喷墨喷嘴的喷嘴室105的深度。在沉积SiO2层之后,其被蚀刻以限定出壁104,该壁104将成为喷嘴室105的侧壁,在图26中最清楚显示。In the sequence of steps shown in FIGS. 25 and 26 , an 8 micron layer of silicon dioxide was initially deposited on substrate 101 . The depth of the silica defines the depth of the nozzle chamber 105 for the inkjet nozzle. After the SiO2 layer is deposited, it is etched to define the walls 104 which will become the side walls of the nozzle chamber 105, shown most clearly in FIG. 26 .
如图27和图28中所示,喷嘴室105随后填充光致抗蚀剂或聚酰亚胺106,该光致抗蚀剂或聚酰亚胺作为用于后续沉积步骤的牺牲支架。聚酰亚胺106利用标准技术、UV固化和/或硬烘烤而被旋涂到晶片上,并且随后经受化学机械平整(CMP),从而停止在SiO2壁104的顶表面处。As shown in Figures 27 and 28, the nozzle chamber 105 is then filled with photoresist or polyimide 106, which acts as a sacrificial standoff for subsequent deposition steps. Polyimide 106 is spin-coated onto the wafer using standard techniques, UV curing and/or hard-baking, and then subjected to chemical mechanical planarization (CMP), stopping at the top surface of the SiO 2 wall 104 .
在图29和图30中,形成喷嘴室105的顶部构件107并且高导电连接器柱108向下延伸到电极102。初始地,1.7微米的SiO2层沉积到聚酰亚胺106和壁104上。该SiO2层限定喷嘴室105的顶部107。接下来,利用标准各向异性的DRIE在壁104中形成一对向下到电极102的通孔。该蚀刻使该对电极102通过相应的通孔暴露。接下来,利用化学镀(electroless plating)将高导电金属(比如铜)填充到通孔。沉积的铜柱108经受CMP,从而停止在SiO2顶部构件107上以提供平面结构。可见的是,在化学镀铜期间形成的铜连接器柱108与相应的电极102相遇以提供直到顶部构件107的线性导电路径。In FIGS. 29 and 30 , the top member 107 of the nozzle chamber 105 is formed and the highly conductive connector post 108 extends down to the electrode 102 . Initially, a 1.7 micron layer of SiO 2 is deposited onto polyimide 106 and wall 104 . This SiO 2 layer defines the top 107 of the nozzle chamber 105 . Next, a pair of via holes down to electrode 102 are formed in wall 104 using standard anisotropic DRIE. The etching exposes the counter electrode 102 through the corresponding via hole. Next, a highly conductive metal, such as copper, is filled into the via holes by electroless plating. The deposited copper pillars 108 are subjected to CMP, stopping on the SiO 2 top member 107 to provide a planar structure. It can be seen that copper connector posts 108 formed during electroless copper plating meet corresponding electrodes 102 to provide a linear conductive path to top member 107 .
在图31和图32中,通过在顶部构件107和连接器柱108上初始沉积0.3微米的铝层形成金属垫109。可以使用任何高导电金属(例如,铝、钛等)并且应当沉积为大约0.5微米或更小的厚度以便不太严重地影响喷嘴组件的总体平面性。金属垫109设置在连接器柱108上方并且在热弹性主动(active)梁构件的预定“弯曲区域”中设置在顶部构件107上。In FIGS. 31 and 32 , metal pads 109 are formed by initially depositing a 0.3 micron layer of aluminum on top member 107 and connector post 108 . Any highly conductive metal (eg, aluminum, titanium, etc.) can be used and should be deposited to a thickness of about 0.5 microns or less so as not to seriously affect the overall planarity of the nozzle assembly. A metal pad 109 is disposed over the connector post 108 and on the top member 107 in a predetermined "bend region" of the thermoelastic active beam member.
在图33和图34中,热弹性主动梁构件110形成在SiO2顶部107上。借助于熔接到主动梁构件110,SiO2顶部构件107的一部分作为机械热弯曲致动器的下被动梁构件116,该机械热弯曲致动器由主动梁110和被动梁116限定。热弹性主动梁构件110可以由任意合适的热弹性材料(比如氮化钛、氮化铝钛及铝合金)构成。如在申请人的早期美国公布No.2008/0129793(该公布的内容以参引的方式并入本文)中解释的,铝钒合金是优选的材料,这是因为它们结合了高热膨胀、低密度和高杨氏模量的有利特性。In FIGS. 33 and 34 , thermoelastic active beam members 110 are formed on top 107 of SiO 2 . By means of welding to the active beam member 110 , a portion of the SiO 2 top member 107 serves as the lower passive beam member 116 of the mechanothermal bending actuator defined by the active beam 110 and the passive beam 116 . The thermoelastic active beam member 110 may be composed of any suitable thermoelastic material, such as titanium nitride, titanium aluminum nitride, and aluminum alloys. As explained in Applicant's earlier U.S. Publication No. 2008/0129793, the contents of which are incorporated herein by reference, aluminum vanadium alloys are preferred materials because of their combination of high thermal and the favorable properties of high Young's modulus.
为形成主动梁构件110,通过标准PECVD初始地沉积1.5微米的主动梁材料层。随后利用标准金属蚀刻来蚀刻梁材料以限定出主动梁构件110。在完成金属蚀刻之后并且如图33和图34中所示,主动梁构件110包括部分的喷嘴开口111和梁元件112,该主动梁构件110经由连接器柱108在每个端部处电连接至正电极和接地电极102。平面梁元件112从第一(正)连接器柱的顶部延伸并且弯曲约180度以回到第二(接地)连接器柱的顶部。To form active beam member 110, a 1.5 micron layer of active beam material is initially deposited by standard PECVD. The beam material is then etched using standard metal etching to define active beam members 110 . After metal etching is complete and as shown in FIGS. Positive and ground electrodes 102 . A planar beam element 112 extends from the top of the first (positive) connector post and bends approximately 180 degrees to return to the top of the second (ground) connector post.
仍然参照图33和图34,金属垫109设置为便于在潜在的高电阻区域中的电流流动。一个金属垫109设置在梁元件112的弯曲区域处,并且夹在主动梁元件110与被动梁元件116之间。另一金属垫109设置在连接器柱109的顶部与梁元件112的端部之间。Still referring to FIGS. 33 and 34 , metal pads 109 are provided to facilitate current flow in potentially high resistive regions. A metal pad 109 is disposed at the bending region of the beam element 112 and is sandwiched between the active beam element 110 and the passive beam element 116 . Another metal pad 109 is provided between the top of the connector post 109 and the end of the beam element 112 .
参照图35,疏水聚合物层80沉积到晶片上并且覆盖有防护金属层90(例如,100nm铝)。在适当掩膜之后,金属层90、聚合物层80和SiO2顶部构件107随后被蚀刻以完全限定顶部的喷嘴开口113和活动部分114。蚀刻典型地为如上面结合图22描述的两阶段蚀刻工艺。Referring to Figure 35, a hydrophobic polymer layer 80 is deposited onto the wafer and covered with a protective metal layer 90 (eg, 100 nm aluminum). After appropriate masking, the metal layer 90, polymer layer 80 and SiO 2 top member 107 are then etched to fully define the nozzle opening 113 and active portion 114 of the top. Etching is typically a two-stage etch process as described above in connection with FIG. 22 .
活动部分114包括热弯曲致动器115,该弯曲致动器115自身包括活动梁构件110和下层被动梁构件116。喷嘴开口113限定在顶部的活动部分114中,使得喷嘴开口在致动期间随致动器一起移动。如在美国公布No.2008/0129793中描述的,其中喷嘴开口113相对于活动部分114固定的构型也是可能的并且在本发明的范围内。The active portion 114 includes a thermal bending actuator 115 which itself includes an active beam member 110 and an underlying passive beam member 116 . A nozzle opening 113 is defined in the top movable portion 114 such that the nozzle opening moves with the actuator during actuation. Configurations in which the nozzle opening 113 is fixed relative to the movable portion 114, as described in US Publication No. 2008/0129793, are also possible and within the scope of the present invention.
围绕顶部的活动部分114的周边空间或间隙117将活动部分与顶部的固定部分118分离开。当致动器115致动时,该间隙117允许活动部分114弯曲到喷嘴室105内并且朝向基底101弯曲。疏水聚合物层80填充间隙117以提供顶部107的活动部分114与固定部分118之间的机械密封。聚合物具有足够低的杨氏模量以允许在致动期间致动器朝向基底101弯曲,同时防止墨通过间隙117溢出。A peripheral space or gap 117 around the movable portion 114 of the top separates the movable portion from the fixed portion 118 of the top. This gap 117 allows the movable portion 114 to flex into the nozzle chamber 105 and towards the substrate 101 when the actuator 115 is actuated. Hydrophobic polymer layer 80 fills gap 117 to provide a mechanical seal between movable portion 114 and fixed portion 118 of top 107 . The polymer has a Young's modulus low enough to allow the actuator to flex towards the substrate 101 during actuation while preventing ink from escaping through the gap 117 .
在最后的MEMS加工步骤中,并且如图36和图37中所示,墨供应通道120从基底101的背侧蚀刻穿过到喷嘴室105。虽然在图36和图37中墨供应通道120示出为与喷嘴开口113对准,但是其当然能够设置为与喷嘴开口偏离。In a final MEMS processing step, and as shown in FIGS. 36 and 37 , an ink supply channel 120 is etched from the backside of the substrate 101 through to the nozzle chamber 105 . Although the ink supply channels 120 are shown in alignment with the nozzle openings 113 in FIGS. 36 and 37 , they could of course be arranged offset from the nozzle openings.
在墨供应通道的蚀刻之后,填充喷嘴室105的聚酰亚胺106通过在氧化性等离子体中的灰化去除,并且金属薄膜90通过HF或H2O2清洗被去除以提供喷嘴组件100。After the etching of the ink supply channel, the polyimide 106 filling the nozzle chamber 105 is removed by ashing in oxidative plasma, and the metal thin film 90 is removed by HF or H 2 O 2 cleaning to provide the nozzle assembly 100 .
包括MSQ的聚合物层Polymer layer including MSQ
疏水聚合物层80已经证实为本申请人的打印头的重要特征。其不但使打印头的正面疏水(这有助于提高整体的打印质量),其还通过呈现用于打印头维护装置(例如,擦拭刷)的平面化疏水表面来辅助打印头维护,该打印头维护装置被采用以维持打印头处于可操作的条件中。当然,在上述热弯曲致动打印头100的情况下,聚合物80提供使喷嘴的活动部分从打印头的本体机械密封的额外功能。The hydrophobic polymer layer 80 has proven to be an important feature of the Applicant's printhead. Not only does it make the front face of the printhead hydrophobic (which helps improve overall print quality), it also aids printhead maintenance by presenting a planarized hydrophobic surface for printhead maintenance devices (e.g., wipers), which A maintenance device is employed to maintain the printhead in an operable condition. Of course, in the case of the thermally bend-actuated printhead 100 described above, the polymer 80 provides the additional function of mechanically sealing the active portion of the nozzle from the body of the printhead.
迄今,本申请人已经提出使用聚二甲基硅氧烷(PDMS)。该材料能够容易地结合到MEMS制造工艺中,具有优异的疏水性和允许有效的热弯曲致动的杨氏模量。但是,PDMS具有相对较差的耐磨性并且可能通过与例如擦拭刷的重复接触而被划坏或另外地破坏。Hitherto, the applicant has proposed the use of polydimethylsiloxane (PDMS). The material can be easily incorporated into MEMS fabrication processes, has excellent hydrophobicity and a Young's modulus that allows efficient thermal bending actuation. However, PDMS has relatively poor abrasion resistance and can be scratched or otherwise damaged by repeated contact with, for example, a squeegee brush.
申请人现已发现聚倍半硅氧烷(polysilsesquioxanes)提供优于PDMS的耐磨性,同时仍然保持PDMS的所有优点。聚倍半硅氧烷属于已知为聚合硅氧烷或聚合硅酮的一般类的聚合物,并且具有经验公式(RSiO1.5)n,其中R是氢或有机团,n是表示聚合物链的长度的整数。有机团可以为C1-12烷基(例如,甲基)、C1-10芳基(例如,苯基)或C1-16芳烷基(例如苄基)。聚合物链可以为本领域中任意已知的长度(例如,n为从2到10,000)。Applicants have now found that polysilsesquioxanes provide abrasion resistance superior to PDMS while still maintaining all the advantages of PDMS. Polysilsesquioxanes belong to the general class of polymers known as polymeric siloxanes or polymeric silicones, and have the empirical formula (RSiO 1.5 ) n , where R is hydrogen or an organic group and n is the number representing the polymer chain Integer of length. The organic group can be C 1-12 alkyl (eg, methyl), C 1-10 aryl (eg, phenyl) or C 1-16 aralkyl (eg, benzyl). The polymer chains can be of any length known in the art (eg, n is from 2 to 10,000).
聚烷基倍半硅氧烷(poly(alkylsilsesquioxanes))和聚芳基倍半硅氧烷(poly(arylsilsesquioxanes))(比如聚甲基倍半硅氧烷(poly(methylsilsesquioxanes))和聚苯基倍半硅氧烷(poly(phenylsilsesquioxanes)))当用作申请人的打印头中的聚合物层80时已显示为具有优异的疏水性、耐用性和耐磨性。例如,涂覆有MSQ或PSQ的打印头能够被擦拭干净而没有破坏,即使在墨和纸张纤维被烘烤到打印头上达1小时之后。Poly(alkylsilsesquioxanes) and polyarylsilsesquioxanes (poly(arylsilsesquioxanes)) (such as poly(methylsilsesquioxanes)) and polyphenylsilsesquioxanes Poly(phenylsilsesquioxanes)) have been shown to have excellent hydrophobicity, durability and abrasion resistance when used as polymer layer 80 in Applicants' printheads. For example, a printhead coated with MSQ or PSQ was able to be wiped clean without damage even after the ink and paper fibers were baked onto the printhead for 1 hour.
聚甲基倍半硅氧烷在本领域中也称为甲基倍半硅氧烷、MSQ、MSSQ、PMSQ和PMSSQ。聚苯基倍半硅氧烷在本领域中也被称为苯基倍半硅氧烷、PSQ、PSSQ、PPSQ和PPSSQ。为简洁起见,申请人将在下文中将聚甲基倍半硅氧烷称为MSQ,并且将聚苯基倍半硅氧烷称为PSQ。Polymethylsilsesquioxane is also known in the art as methylsilsesquioxane, MSQ, MSSQ, PMSQ, and PMSSQ. Polyphenylsilsesquioxane is also known in the art as phenylsilsesquioxane, PSQ, PSSQ, PPSQ, and PPSSQ. For the sake of brevity, applicants will hereinafter refer to polymethylsilsesquioxane as MSQ and polyphenylsilsesquioxane as PSQ.
MSQ具有较低的介电常数(k=2.7)并且已经先前用作绝缘材料。但是,先前并不知道使用MSQ作为用于MEMS喷墨打印头的疏水涂层。MSQ has a low dielectric constant (k=2.7) and has been previously used as an insulating material. However, the use of MSQ as a hydrophobic coating for MEMS inkjet printheads was not previously known.
MSQ或PSQ可以通过上述的MEMS制造工艺结合到打印头中作为聚合物层80。MSQ或PSQ溶液旋涂到晶片上为大约0.5微米到5微米(例如,1微米)的厚度并且随后进行硬烘烤以提高对喷嘴板的粘附并且提供用于打印头的耐用喷墨面。硬烘烤可以包括UV固化步骤。例如,典型的硬烘烤工艺可以包括如下步骤:MSQs or PSQs can be incorporated into the printhead as polymer layer 80 by the MEMS fabrication process described above. The MSQ or PSQ solution is spin-coated onto the wafer to a thickness of approximately 0.5 micron to 5 micron (eg, 1 micron) and then hard baked to improve adhesion to the nozzle plate and provide a durable inkjet surface for the printhead. A hard bake may include a UV curing step. For example, a typical hard bake process may include the following steps:
1.在涂覆之后立即在110℃接触烘烤2分钟1. Contact bake at 110°C for 2 minutes immediately after coating
2.在300℃接触烘烤6.5分钟2. Contact bake at 300°C for 6.5 minutes
3.UV暴露130秒(~1300mJ)3. UV exposure for 130 seconds (~1300mJ)
4.烘箱固化1小时(开始在180℃并且以~4℃/分钟倾斜上升)4. Oven cure for 1 hour (start at 180°C and ramp up at ~4°C/min)
虽然申请人的上述硬烘烤工艺提供具有优异耐用性的MSQ涂覆式或PSQ涂覆式打印头,但是应当理解的是硬烘烤可以遵循任意常规的过程。While Applicants' above-described hardbake process provides MSQ coated or PSQ coated printheads with excellent durability, it should be understood that the hardbake may follow any conventional procedure.
MSQ和PSQ各具有大约3 GPa的杨氏模量,这略大于PDMS的杨氏模量。但是,申请人已经发现,当聚合物层80包括MSQ或PSQ时,尽管其较高的杨氏模量,热弯曲致动打印头仍然有效地操作。此外,MSQ和PSQ的总体坚固度的重要性通常超过由它们较高的杨氏模量引起的任何不利方面。当然,在其中没有活动部件的热气泡形成打印头中,聚合物层80的杨氏模量与喷嘴致动不相关。MSQ and PSQ each have a Young's modulus of about 3 GPa, which is slightly larger than that of PDMS. However, applicants have discovered that thermally bend-actuated printheads operate efficiently when polymer layer 80 comprises MSQ or PSQ despite their higher Young's modulus. Furthermore, the overall firmness of MSQ and PSQ generally outweighs any disadvantages caused by their higher Young's modulus. Of course, in a thermal bubble forming printhead where there are no moving parts, the Young's modulus of the polymer layer 80 is not correlated with nozzle actuation.
本发明人认为使用MSQ或PSQ代表喷墨打印头技术中的重大突破。疏水喷墨打印头,尤其是通过MEMS制造工艺制造的疏水喷墨打印头对于所有的行业参与者而言均被视为非常重大的挑战。本申请人已经证实MSQ或PSQ可以结合到MEMS制造工艺中并且提供具有优异耐用性和耐磨性的疏水喷墨面。该理想的特征组合在本领域中先前没有实现过。The inventors believe that the use of MSQ or PSQ represents a major breakthrough in inkjet printhead technology. Hydrophobic inkjet printheads, especially those manufactured by MEMS manufacturing processes, are considered a very significant challenge for all industry players. The applicant has demonstrated that MSQ or PSQ can be incorporated into the MEMS fabrication process and provide a hydrophobic inkjet face with excellent durability and abrasion resistance. This ideal combination of features has not been previously achieved in the art.
包含纳米颗粒的聚合物层Polymer layer containing nanoparticles
如上述,虽然MSQ和PSQ用作聚合物涂层比PDMS具有显著的优点,但是存在PDMS仍为被选择材料的一些示例。例如,在低功率的热弯曲致动打印头中,PDMS的低杨氏模量可以有利地用于使墨滴喷射能量最小化。理想的是改进例如PDMS的耐磨特性而不包括其低杨氏模量。As mentioned above, while MSQ and PSQ have significant advantages over PDMS for use as polymer coatings, there are some examples where PDMS is still the material of choice. For example, in low power thermal bend actuated printheads, the low Young's modulus of PDMS can be advantageously used to minimize ink drop ejection energy. It would be desirable to improve the wear resistance properties of eg PDMS apart from its low Young's modulus.
在其他情况下,打印头的聚合物涂层可以具有不适于从打印头喷射出的特定流体的特性。应当注意的是,热弯曲致动打印头可以喷射含水和不含水的液体(例如,用于印制OLED的聚合物),并且打印头的喷墨面可以具有补足所喷射流体的固有性质的特性。这些性质可以包括例如流体的亲水性、疏水性、粘性、表面张力和/或沸点。In other cases, the polymer coating of the printhead may have properties that are unsuitable for a particular fluid being ejected from the printhead. It should be noted that thermal bend-actuated printheads can jet both aqueous and non-aqueous liquids (e.g., polymers for printing OLEDs), and that the ink-jet face of the printhead can have properties that complement the intrinsic properties of the jetted fluid. . These properties may include, for example, the hydrophilicity, hydrophobicity, viscosity, surface tension, and/or boiling point of the fluid.
可选地,喷墨面可以具有补足所采用的特定类型的打印头维护机制的特性(例如,如在通过参引的方式并入本文的美国申请No.12/014,772中描述的打印头顶封(capping)/擦拭;或者如在通过参引的方式并入本文的US 7,401,886中描述的打印头溢流/非接触式维护)。例如,耐磨性对于涉及与打印头接触的打印头维护机制而言是重要的,但对于非接触式维护机制是不太重要的。Alternatively, the ink-ejection face may have properties that complement the particular type of printhead maintenance mechanism employed (e.g., a printhead overseal as described in U.S. Application No. 12/014,772, incorporated herein by reference ( capping)/wiping; or printhead flooding/non-contact maintenance as described in US 7,401,886 incorporated herein by reference). For example, abrasion resistance is important for printhead maintenance mechanisms that involve contact with the printhead, but is less important for non-contact maintenance mechanisms.
可选地,喷墨面可以具有补足特定类型的喷嘴致动器的特性。例如,抗疲劳性对于热弯曲致动器而言是重要的,在该热弯曲致动器中聚合材料将喷嘴的活动部分密封到打印头的本体上。但是,在不活动喷嘴(比如上述热气泡形成喷嘴)中抗疲劳性是不太重要的。Optionally, the ink ejection face may have properties that complement a particular type of nozzle actuator. For example, fatigue resistance is important for thermal bend actuators where a polymeric material seals the active portion of the nozzle to the body of the printhead. However, fatigue resistance is less important in inactive nozzles such as the hot bubble forming nozzles described above.
在不根本改变MEMS制造工艺的情况下“调制”喷墨面的特性的能力将是非常期望的。该“调制”可以改进例如喷墨面的韧性、耐磨性、抗疲劳性和/或表面能特性。作为普通示例,当打印诸如聚合物的疏水液体时,喷墨面应当优选地相对亲水而非疏水(与打印含水墨进行比较)。The ability to "modulate" the properties of the jetting face without fundamentally changing the MEMS fabrication process would be highly desirable. This "modulation" can improve, for example, the toughness, abrasion resistance, fatigue resistance and/or surface energy properties of the inkjet face. As a general example, when printing hydrophobic liquids such as polymers, the ink ejection side should preferably be relatively hydrophilic rather than hydrophobic (compared to printing aqueous inks).
结合有纳米颗粒(在本领域中有时称为“填料”)的硅酮聚合物的可得性意味着硅酮聚合物(例如,PDMS、MSQ、PSQ)的特性可以通过改变结合到其中的纳米颗粒而调整。不同纳米颗粒的使用将对应地“调制”由聚合物层80限定的喷墨面的特性。The availability of silicone polymers incorporating nanoparticles (sometimes referred to in the art as "fillers") means that the properties of silicone polymers (e.g., PDMS, MSQ, PSQ) can be modified by changing the nanoparticle Particles are adjusted. The use of different nanoparticles will correspondingly "modulate" the properties of the ink-ejection face defined by the polymer layer 80 .
当然,纳米颗粒依据特定的应用可以是任意合适的类型、尺寸和形状。纳米颗粒可以包括无机颗粒、有机颗粒或它们的组合。无机纳米颗粒的一些示例是金属氧化物、金属碳酸盐和金属硫酸盐。更具体地,无机纳米颗粒可以是例如二氧化硅(包括硅胶)、氧化锆、氧化钛、氧化铝、碳酸钙、氧化锡、氧化锌、氧化铜、氧化铬、氧化钙、氧化钨、氧化铁、氧化钴、硫酸钡等。有机纳米颗粒的一些示例是交联硅酮树脂颗粒(例如PDMS、MSQ、PSQ)、交联聚烯烃树脂颗粒(例如聚苯乙烯、聚乙烯、聚丙烯)、交联丙烯树脂颗粒、交联苯乙烯-丙烯树脂颗粒、交联聚酯颗粒、聚酰亚胺颗粒、蜜胺树脂颗粒、碳纳米管等。Nanoparticles can, of course, be of any suitable type, size and shape depending on the particular application. Nanoparticles can include inorganic particles, organic particles, or combinations thereof. Some examples of inorganic nanoparticles are metal oxides, metal carbonates and metal sulfates. More specifically, the inorganic nanoparticles can be, for example, silica (including silica gel), zirconia, titania, alumina, calcium carbonate, tin oxide, zinc oxide, copper oxide, chromium oxide, calcium oxide, tungsten oxide, iron oxide , cobalt oxide, barium sulfate, etc. Some examples of organic nanoparticles are cross-linked silicone resin particles (e.g. PDMS, MSQ, PSQ), cross-linked polyolefin resin particles (e.g. polystyrene, polyethylene, polypropylene), cross-linked propylene resin particles, cross-linked benzene Ethylene-propylene resin particles, cross-linked polyester particles, polyimide particles, melamine resin particles, carbon nanotubes, etc.
如本文使用的,术语“纳米颗粒”指的是具有平均颗粒尺寸在1nm到1000nm范围内的颗粒,更通常的为1nm到100nm范围内的颗粒,并且更通常的为1nm到50nm范围内的颗粒。大约20nm的平均颗粒尺寸是通常优选地。颗粒可以是单分散或多分散的。As used herein, the term "nanoparticle" refers to a particle having an average particle size in the range of 1 nm to 1000 nm, more typically in the range of 1 nm to 100 nm, and more typically in the range of 1 nm to 50 nm . An average particle size of about 20 nm is generally preferred. Particles can be monodisperse or polydisperse.
纳米颗粒可以呈现为重量百分比从1%到70%范围内的量,可选地为5%到60%范围内的量,可选地为10%到50%范围内的量。纳米颗粒呈现的量将取决于聚合物薄膜的需求特性。The nanoparticles may be present in an amount ranging from 1% to 70%, alternatively in an amount ranging from 5% to 60%, alternatively in an amount ranging from 10% to 50% by weight. The amount of nanoparticles present will depend on the desired properties of the polymer film.
纳米颗粒可以通过任意合适的工艺组合到聚合物内,比如溶胶-凝胶工艺,这是本领域中的技术人员众所周知的。产生的聚合物可以通过任意合适的工艺沉积,比如旋涂工艺并后继硬烘烤。Nanoparticles can be incorporated into polymers by any suitable process, such as sol-gel processes, which are well known to those skilled in the art. The resulting polymer can be deposited by any suitable process, such as a spin coating process followed by a hard bake.
结合有二氧化硅纳米颗粒的PDMS聚合物在本领域中是公知的并且这种聚合物可以用作本发明的聚合物层80。二氧化硅纳米颗粒将期望的耐磨性和抗疲劳性赋予给PDMS聚合物。取决于二氧化硅颗粒呈现的量,PDMS也可以具有较亲水的表面,这在某些应用中是有用的。PDMS polymers incorporating silica nanoparticles are well known in the art and such polymers may be used as the polymer layer 80 of the present invention. Silica nanoparticles impart desirable wear and fatigue resistance to PDMS polymers. Depending on the amount of silica particles present, PDMS can also have a more hydrophilic surface, which is useful in certain applications.
本领域的普通技术人员将会理解的是,可以如具体实施例所示对本发明进行许多变化和/或修改而不偏离广义描述的本发明的精神和范围。因此,本实施例应当在所有方面被认为是示例性的而非限制性的。Those skilled in the art will appreciate that many variations and/or modifications may be made to the invention as shown in the specific examples without departing from the spirit and scope of the invention as broadly described. Therefore, the present embodiment should be considered in all respects as illustrative rather than restrictive.
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/AU2009/000936 WO2011009153A1 (en) | 2009-07-24 | 2009-07-24 | Printhead having polysilsesquioxane coating on ink ejection face |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102470675A CN102470675A (en) | 2012-05-23 |
CN102470675B true CN102470675B (en) | 2014-11-12 |
Family
ID=43498651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980160209.1A Expired - Fee Related CN102470675B (en) | 2009-07-24 | 2009-07-24 | Printhead having polysilsesquioxane coating on ink ejection face |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP2490898B1 (en) |
JP (1) | JP5608737B2 (en) |
KR (1) | KR101356333B1 (en) |
CN (1) | CN102470675B (en) |
AU (1) | AU2009350310B2 (en) |
CA (1) | CA2760206C (en) |
SG (1) | SG176101A1 (en) |
WO (1) | WO2011009153A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020032580A (en) * | 2018-08-28 | 2020-03-05 | 東芝テック株式会社 | Liquid ejection device and multi-nozzle liquid ejection device |
CN113174108A (en) * | 2021-04-26 | 2021-07-27 | 理光感热技术(无锡)有限公司 | Preparation method of composite hollow reflecting layer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6053600A (en) * | 1997-01-22 | 2000-04-25 | Minolta Co., Ltd. | Ink jet print head having homogeneous base plate and a method of manufacture |
US6341842B1 (en) * | 2000-05-03 | 2002-01-29 | Lexmark International, Inc. | Surface modified nozzle plate |
CN1713993A (en) * | 2002-11-23 | 2005-12-28 | 西尔弗布鲁克研究有限公司 | Thermal inkjet printhead with cantilever heater |
WO2008109910A1 (en) * | 2007-03-12 | 2008-09-18 | Silverbrook Research Pty Ltd | Method of fabricating printhead having hydrophobic ink ejection face |
WO2009067730A1 (en) * | 2007-11-29 | 2009-06-04 | Silverbrook Research Pty Ltd | Printhead with pressure-dampening structures |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1477208A (en) | 1921-11-05 | 1923-12-11 | Bohlin Nels | Transmission gearing for motor vehicles |
JPH01217352A (en) * | 1988-02-25 | 1989-08-30 | Fujitsu Ltd | electrophotographic photoreceptor |
JP2960608B2 (en) * | 1992-06-04 | 1999-10-12 | キヤノン株式会社 | Method for manufacturing liquid jet recording head |
JPH06322356A (en) * | 1993-05-12 | 1994-11-22 | Toshiba Silicone Co Ltd | Surface protecting agent |
JP3599358B2 (en) * | 1993-08-06 | 2004-12-08 | ジーイー東芝シリコーン株式会社 | Composition for coating |
JP3143308B2 (en) | 1994-01-31 | 2001-03-07 | キヤノン株式会社 | Method of manufacturing ink jet recording head |
JPH10250072A (en) * | 1997-03-18 | 1998-09-22 | Minolta Co Ltd | Ink jet head |
US7344783B2 (en) * | 2003-07-09 | 2008-03-18 | Shell Oil Company | Durable hydrophobic surface coatings using silicone resins |
JP2006035763A (en) * | 2004-07-29 | 2006-02-09 | Canon Inc | Method for manufacturing inkjet recording head |
JP2006240020A (en) * | 2005-03-02 | 2006-09-14 | Fuji Photo Film Co Ltd | Liquid delivering head and method for manufacturing liquid delivering head |
US7605009B2 (en) * | 2007-03-12 | 2009-10-20 | Silverbrook Research Pty Ltd | Method of fabrication MEMS integrated circuits |
-
2009
- 2009-07-24 WO PCT/AU2009/000936 patent/WO2011009153A1/en active Application Filing
- 2009-07-24 AU AU2009350310A patent/AU2009350310B2/en not_active Ceased
- 2009-07-24 SG SG2011084365A patent/SG176101A1/en unknown
- 2009-07-24 CA CA2760206A patent/CA2760206C/en active Active
- 2009-07-24 KR KR1020127004240A patent/KR101356333B1/en not_active Expired - Fee Related
- 2009-07-24 EP EP09847455.4A patent/EP2490898B1/en not_active Not-in-force
- 2009-07-24 CN CN200980160209.1A patent/CN102470675B/en not_active Expired - Fee Related
- 2009-07-24 JP JP2012514288A patent/JP5608737B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6053600A (en) * | 1997-01-22 | 2000-04-25 | Minolta Co., Ltd. | Ink jet print head having homogeneous base plate and a method of manufacture |
US6341842B1 (en) * | 2000-05-03 | 2002-01-29 | Lexmark International, Inc. | Surface modified nozzle plate |
CN1713993A (en) * | 2002-11-23 | 2005-12-28 | 西尔弗布鲁克研究有限公司 | Thermal inkjet printhead with cantilever heater |
WO2008109910A1 (en) * | 2007-03-12 | 2008-09-18 | Silverbrook Research Pty Ltd | Method of fabricating printhead having hydrophobic ink ejection face |
WO2009067730A1 (en) * | 2007-11-29 | 2009-06-04 | Silverbrook Research Pty Ltd | Printhead with pressure-dampening structures |
Also Published As
Publication number | Publication date |
---|---|
KR101356333B1 (en) | 2014-01-27 |
JP5608737B2 (en) | 2014-10-15 |
EP2490898A4 (en) | 2014-07-23 |
EP2490898B1 (en) | 2016-07-13 |
AU2009350310A1 (en) | 2013-02-07 |
AU2009350310B2 (en) | 2013-09-05 |
JP2012529383A (en) | 2012-11-22 |
EP2490898A1 (en) | 2012-08-29 |
KR20120037015A (en) | 2012-04-18 |
CA2760206C (en) | 2014-09-16 |
SG176101A1 (en) | 2011-12-29 |
CA2760206A1 (en) | 2011-01-27 |
WO2011009153A1 (en) | 2011-01-27 |
CN102470675A (en) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7938974B2 (en) | Method of fabricating printhead using metal film for protecting hydrophobic ink ejection face | |
US8425004B2 (en) | Printhead having polymer incorporating nanoparticles coated on ink ejection face | |
JP5205396B2 (en) | Method for manufacturing a print head having a hydrophobic ink ejection surface | |
CN102470675B (en) | Printhead having polysilsesquioxane coating on ink ejection face | |
TWI476113B (en) | a print head coated with a polymer containing nano particles on an inkjet surface | |
US20110018937A1 (en) | Printhead having ink ejection face complementing ink or other features of printhead | |
TWI503235B (en) | Printhead having polysilsesquioxane coating on ink ejection face | |
US8342650B2 (en) | Printhead having polysilsesquioxane coating on ink ejection face | |
US8029097B2 (en) | Inkjet nozzle assembly having moving roof structure and sealing bridge | |
US7862734B2 (en) | Method of fabricating nozzle assembly having moving roof structure and sealing bridge | |
TW201103761A (en) | Printhead having ink ejection face complementing ink or other features of printhead | |
TWI460079B (en) | Inkjet nozzle assembly having moving roof structure and sealing bridge | |
EP2349724B1 (en) | Inkjet nozzle assembly having moving roof structure and sealing bridge | |
US7901054B2 (en) | Printhead including moving portions and sealing bridges | |
TW201020124A (en) | Method of fabricating nozzle assembly having moving roof structure and sealing bridge | |
TW201020120A (en) | Printhead including moving portions and sealing bridges |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: ZAMTEC LTD. Free format text: FORMER OWNER: SILVERBROOK RESEARCH PTY LTD. Effective date: 20130409 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20130409 Address after: Dublin, Ireland Applicant after: SILVERBROOK RESEARCH Pty Ltd. Address before: New South Wales, Australia Applicant before: Silverbrook Research Pty Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee |
Owner name: MAGTE TECHNOLOGY CO., LTD. Free format text: FORMER NAME: ZAMTEC LTD. |
|
CP01 | Change in the name or title of a patent holder |
Address after: Dublin, Ireland Patentee after: Memjet Technology Ltd. Address before: Dublin, Ireland Patentee before: Silverbrook Research Pty Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141112 |