[go: up one dir, main page]

CN102468238A - Semiconductor element with metal grid and manufacturing method thereof - Google Patents

Semiconductor element with metal grid and manufacturing method thereof Download PDF

Info

Publication number
CN102468238A
CN102468238A CN2010105374760A CN201010537476A CN102468238A CN 102468238 A CN102468238 A CN 102468238A CN 2010105374760 A CN2010105374760 A CN 2010105374760A CN 201010537476 A CN201010537476 A CN 201010537476A CN 102468238 A CN102468238 A CN 102468238A
Authority
CN
China
Prior art keywords
layer
metal
manufacture method
dielectric layer
metal level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105374760A
Other languages
Chinese (zh)
Inventor
谢雅雪
蔡腾群
陈佳禧
张振辉
黄柏诚
许信国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CN2010105374760A priority Critical patent/CN102468238A/en
Publication of CN102468238A publication Critical patent/CN102468238A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本申请公开了一种具有金属栅极的半导体元件及其制作方法,该金属栅极的半导体元件包含提供基底,该基底上形成有至少一半导体元件与覆盖该半导体元件的接触洞蚀刻停止层与介电层,且该半导体元件至少包含一虚置栅极。进行虚置栅极移除步骤,以于该半导体元件内形成至少一开口,该虚置栅极移除步骤同时移除部分该接触洞蚀刻停止层,使该接触洞蚀刻停止层的顶部低于该半导体元件与该介电层而形成多个凹槽。之后进行凹槽移除步骤,以于该基底上形成约略平坦的介电层表面。

Figure 201010537476

The present application discloses a semiconductor element with a metal gate and a method for manufacturing the same. The semiconductor element with a metal gate includes providing a substrate, on which at least one semiconductor element and a contact hole etching stop layer and a dielectric layer covering the semiconductor element are formed, and the semiconductor element includes at least one dummy gate. A dummy gate removal step is performed to form at least one opening in the semiconductor element. The dummy gate removal step simultaneously removes a portion of the contact hole etching stop layer so that the top of the contact hole etching stop layer is lower than the semiconductor element and the dielectric layer to form a plurality of grooves. Thereafter, a groove removal step is performed to form a roughly flat dielectric layer surface on the substrate.

Figure 201010537476

Description

具有金属栅极的半导体元件及其制作方法Semiconductor element with metal gate and manufacturing method thereof

技术领域 technical field

本发明涉及一种具有金属栅极(metal gate)的半导体元件及其制作方法,尤指一种实施后栅极(gate last)工艺的具有金属栅极的半导体元件及其制作方法。The invention relates to a semiconductor element with a metal gate and a manufacturing method thereof, in particular to a semiconductor element with a metal gate that implements a gate last process and a manufacturing method thereof.

背景技术 Background technique

随着CMOS元件尺寸持续微缩,传统方法中利用降低栅极介电层的厚度,例如降低二氧化硅层的厚度,以达到最佳化目的的方法,面临到因电子的穿遂效应(tunneling effect)而导致漏电流过大的物理限制。为了有效延展逻辑元件的世代演进,高介电常数(high-K)材料因具有可有效降低物理极限厚度,并且在相同的等效氧化厚度(equivalent oxide thickness,以下简称为EOT)下,有效降低漏电流并实现等效电容以控制沟道开关等优点,而被用以取代传统二氧化硅层或氮氧化硅层作为栅极介电层。As the size of CMOS devices continues to shrink, the traditional method of reducing the thickness of the gate dielectric layer, such as reducing the thickness of the silicon dioxide layer, to achieve the purpose of optimization, is facing problems due to the tunneling effect of electrons. ) and lead to physical limitations of excessive leakage current. In order to effectively extend the generation evolution of logic components, high dielectric constant (high-K) materials can effectively reduce the physical limit thickness, and under the same equivalent oxide thickness (equivalent oxide thickness, hereinafter referred to as EOT), effectively reduce Leakage current and achieve equivalent capacitance to control channel switching and other advantages, it is used to replace the traditional silicon dioxide layer or silicon oxynitride layer as the gate dielectric layer.

而传统的多晶硅栅极则因硼穿透(boron penetration)效应,导致元件效能降低等问题;且多晶硅栅极也遭遇难以避免的耗层效应(depletion effect),使得等效的栅极介电层厚度增加、栅极电容值下降,进而导致元件驱动能力的衰退等困境。故目前便有新的栅极材料被研制生产,其利用双功能函数(double work function)金属来取代传统的多晶硅栅极,用以作为匹配high-K栅极介电层的控制电极。However, the traditional polysilicon gate suffers from boron penetration (boron penetration) effect, which leads to problems such as lower device performance; and the polysilicon gate also suffers from the unavoidable depletion effect, making the equivalent gate dielectric layer The increase in thickness and the decrease in gate capacitance value lead to the decline of device driving ability and other difficulties. Therefore, a new gate material has been developed and produced at present, which uses a double work function metal to replace the traditional polysilicon gate, and is used as a control electrode matching a high-K gate dielectric layer.

双功能函数金属栅极与NMOS元件搭配,则与PMOS元件搭配,因此使得相关元件的整合技术以及工艺控制更加复杂,且各材料的厚度与成分控制要求亦更加严苛。双功函数金属栅极的制作方法可概分为前栅极(gate first)工艺及后栅极(gate last)工艺两大类,其中前栅极工艺会在形成金属栅极后始进行源极/漏极超浅结面活化回火以及形成金属硅化物等高热预算工艺,因此使得材料的选择与调整面临较多的挑战。为避免上述高热预算环境并获得较宽的材料选择,业界提出以后栅极工艺取代前栅极工艺的方法。The combination of dual-function metal gates with NMOS elements and PMOS elements makes the integration technology and process control of related elements more complicated, and the thickness and composition control requirements of each material are also more stringent. The fabrication methods of dual work function metal gates can be broadly divided into two categories: gate first process and gate last process. /Drain ultra-shallow junction activation tempering and the formation of metal silicide and other high thermal budget processes, so the selection and adjustment of materials face more challenges. In order to avoid the above-mentioned high thermal budget environment and obtain a wider selection of materials, the industry proposes a method of replacing the gate-front process with a gate-later process.

而已知的后栅极工艺中,是先形成虚置栅极(dummy gate)或取代栅极(replacement gate),并在完成一般MOS晶体管的制作后,将虚置/取代栅极移除而形成栅极凹槽(gate trench),再依电性需求于栅极凹槽内填入不同的金属。由此可知,后栅极工艺虽可避免源极/漏极超浅结面活化回火以及形成金属硅化物等高热预算工艺,而具有较宽广的材料选择,但仍面临复杂工艺的整合性等可靠度要求。In the known gate-last process, a dummy gate or a replacement gate is formed first, and after the fabrication of a general MOS transistor is completed, the dummy/replacement gate is removed to form The gate trench is filled with different metals according to electrical requirements. It can be seen that although the gate-last process can avoid high thermal budget processes such as source/drain ultra-shallow junction activation tempering and the formation of metal silicides, and has a wider choice of materials, it still faces the integration of complex processes, etc. Reliability requirements.

发明内容 Contents of the invention

因此,本发明的目的是在于提供一种实施后栅极工艺的具有金属栅极的半导体元件制作方法。Therefore, the object of the present invention is to provide a method for fabricating a semiconductor element with a metal gate implementing a gate-last process.

根据本发明所提供的权利要求,提供一种具有金属栅极的半导体元件的制作方法,该方法首先提供基底,该基底上形成有至少一半导体元件与覆盖该半导体元件的接触洞蚀刻停止层(contact etch stop layer,以下简称为CESL)与介电层,且该半导体元件至少包含一虚置栅极。随后进行虚置栅极移除步骤,以于该半导体元件内形成至少一开口。该虚置栅极移除步骤同时移除部分该CESL,使该CESL的顶部低于该半导体元件与该介电层而形成多个凹槽。而在形成该开口与这些凹槽之后,进行凹槽移除步骤,以于该基底上形成约略平坦的介电层表面。According to the claims provided by the present invention, a method for manufacturing a semiconductor element with a metal gate is provided. The method firstly provides a substrate on which at least one semiconductor element and a contact hole etch stop layer covering the semiconductor element are formed ( contact etch stop layer, hereinafter referred to as CESL) and a dielectric layer, and the semiconductor element includes at least one dummy gate. A dummy gate removal step is then performed to form at least one opening in the semiconductor device. The dummy gate removal step removes part of the CESL at the same time, so that the top of the CESL is lower than the semiconductor device and the dielectric layer to form a plurality of grooves. After forming the opening and the grooves, a groove removal step is performed to form a substantially flat dielectric layer surface on the substrate.

根据本发明所提供的权利要求,另提供一种具有金属栅极的半导体元件的制作方法,该方法首先提供基底,该基底上形成有至少一第一晶体管、第二晶体管、覆盖该第一晶体管与该第二晶体管的CESL与介电层。接下来进行第一虚置栅极移除步骤,以于该第一晶体管内形成第一开口。该第一虚置栅极移除步骤同时移除部分该CESL,使该CESL的顶部低于该第一晶体管与该介电层,而形成多个第一凹槽。在形成该第一开口与这些第一凹槽之后,进行第一蚀刻工艺,移除部分该介电层,使该介电层表面与这些第一凹槽底部共平面,随后于该第一开口内形成第一金属层。接下来进行第二虚置栅极移除步骤,以于该第二晶体管内形成第二开口,随后于该第二开口内形成第二金属层。According to the claims provided by the present invention, there is also provided a method for manufacturing a semiconductor element with a metal gate. The method firstly provides a substrate on which at least a first transistor, a second transistor, and a substrate covering the first transistor are formed. with the CESL and dielectric layer of the second transistor. Next, a first dummy gate removal step is performed to form a first opening in the first transistor. The first dummy gate removing step removes part of the CESL at the same time, so that the top of the CESL is lower than the first transistor and the dielectric layer, thereby forming a plurality of first grooves. After forming the first opening and the first grooves, a first etching process is performed to remove part of the dielectric layer so that the surface of the dielectric layer is coplanar with the bottom of the first grooves, and then the first opening is formed The first metal layer is formed inside. Next, a second dummy gate removal step is performed to form a second opening in the second transistor, and then a second metal layer is formed in the second opening.

根据本发明所提供的权利要求,还提供一种具有金属栅极的半导体元件的制作方法,该方法首先提供基底,该基底上形成有至少一第一晶体管、第二晶体管、覆盖该第一晶体管与该第二晶体管的CESL与介电层。随后,进行第一虚置栅极移除步骤,以于该第一晶体管内形成第一开口,该第一虚置栅极移除步骤同时移除部分该CESL。在形成该第一开口之后,于该第一开口内形成第一金属层。接下来进行第二虚置栅极移除步骤,以于该第二晶体管内形成第二开口,该第二虚置栅极移除步骤同时移除部分该CESL。在形成该第二开口之后,在该第二开口内形成第二金属层,随后于该基底上形成填充金属层,且该填充金属层至少填满该第二开口。形成该填充金属层之后,依序进行金属化学机械抛光步骤,以移除部分该填充金属层,以及进行非选择性金属化学机械抛光步骤,使该CESL、该介电层与该填充金属层共平面。According to the claims provided by the present invention, there is also provided a method for manufacturing a semiconductor element with a metal gate. The method firstly provides a substrate on which at least a first transistor, a second transistor, and a substrate covering the first transistor are formed. with the CESL and dielectric layer of the second transistor. Subsequently, a first dummy gate removal step is performed to form a first opening in the first transistor, and a part of the CESL is simultaneously removed during the first dummy gate removal step. After forming the first opening, a first metal layer is formed in the first opening. Next, a second dummy gate removal step is performed to form a second opening in the second transistor, and a part of the CESL is simultaneously removed during the second dummy gate removal step. After forming the second opening, a second metal layer is formed in the second opening, and then a filling metal layer is formed on the base, and the filling metal layer at least fills up the second opening. After the filling metal layer is formed, a metal chemical mechanical polishing step is sequentially performed to remove part of the filling metal layer, and a non-selective metal chemical mechanical polishing step is performed to make the CESL, the dielectric layer and the filling metal layer share flat.

根据本发明所提供的权利要求,还提供一种具有金属栅极的半导体元件,该半导体元件包含有基底、形成于该基底上的金属栅极、形成于该金属栅极侧壁的间隙壁、覆盖该间隙壁的CESL与介电层,该CESL的顶部低于该间隙壁顶部与该介电层而形成有至少一凹槽。该半导体元件还包含至少一填满该凹槽的金属层。According to the claims provided by the present invention, there is also provided a semiconductor element having a metal gate, the semiconductor element comprising a base, a metal gate formed on the base, a spacer formed on a sidewall of the metal gate, The CESL and the dielectric layer covering the spacer, the top of the CESL is lower than the top of the spacer and the dielectric layer to form at least one groove. The semiconductor device also includes at least one metal layer filling the groove.

根据本发明所提供的具有金属栅极的半导体元件的制作方法,形成在CESL内的凹槽可通过凹槽移除步骤,例如进行于形成金属层之前的蚀刻工艺或进行于形成金属层之后的二阶段平坦化工艺等被移除,因此可避免形成于凹槽内的金属层在后续工艺中影响半导体元件的电性表现等问题。According to the method for manufacturing a semiconductor element with a metal gate provided by the present invention, the grooves formed in the CESL can be removed through a groove removal step, such as an etching process before forming a metal layer or after forming a metal layer. The two-stage planarization process and the like are removed, so problems such as the metal layer formed in the groove affecting the electrical performance of the semiconductor device in subsequent processes can be avoided.

附图说明 Description of drawings

图1至图4为本发明所提供的具有金属栅极的半导体元件的制作方法的第一优选实施例的示意图;1 to 4 are schematic diagrams of a first preferred embodiment of a method for manufacturing a semiconductor element with a metal gate provided by the present invention;

图5至图7为本发明所提供的具有金属栅极的半导体元件的制作方法的第二优选实施例的示意图;5 to 7 are schematic diagrams of a second preferred embodiment of the method for manufacturing a semiconductor element with a metal gate provided by the present invention;

图8至图12为本发明所提供的具有金属栅极的半导体元件的制作方法的第三优选实施例的示意图;8 to 12 are schematic diagrams of a third preferred embodiment of the method for manufacturing a semiconductor element with a metal gate provided by the present invention;

图13为本第三优选实施例的变化型的示意图;Fig. 13 is a schematic diagram of a variant of the third preferred embodiment;

图14至图17为本发明所提供的具有金属栅极的半导体元件的制作方法的第四优选实施例的示意图;以及14 to 17 are schematic diagrams of a fourth preferred embodiment of the method for manufacturing a semiconductor element with a metal gate provided by the present invention; and

图18为本第四优选实施例的变化型的示意图。Fig. 18 is a schematic diagram of a variation of the fourth preferred embodiment.

附图标记说明Explanation of reference signs

100、200、300、400                    基底100, 200, 300, 400 Base

102、202、302、402                    浅沟隔离102, 202, 302, 402 shallow trench isolation

104、204、304、404                    栅极介电层104, 204, 304, 404 Gate dielectric layer

306、406                              虚置栅极306, 406 dummy gate

110、210、310、410                    第一有源区域110, 210, 310, 410 The first active area

112、212、312、412                    第二有源区域112, 212, 312, 412 Second active area

120、220、320、420                    第一导电型晶体管120, 220, 320, 420 Transistors of the first conductivity type

122、222、322、422                    第二导电型晶体管122, 222, 322, 422 Second conductivity type transistor

130、230、330、430                    第一轻掺杂漏极130, 230, 330, 430 The first lightly doped drain

132、232、332、432                    第二轻掺杂漏极132, 232, 332, 432 Second lightly doped drain

134、234、334、434                    间隙壁134, 234, 334, 434 Space Wall

136、336a、336b                       间隙壁凸出部分136, 336a, 336b Protruding portion of spacer wall

338a、338b、438a、438b                图案化硬掩模338a, 338b, 438a, 438b Patterned Hardmask

140、240、340、440                    第一源极/漏极140, 240, 340, 440 First source/drain

142、242、342、442                    第二源极/漏极142, 242, 342, 442 Second source/drain

144、244、344、444                    金属硅化物144, 244, 344, 444 Metal silicides

150、250、350、450                    接触洞蚀刻停止层150, 250, 350, 450 Contact hole etch stop layer

152、252、352、452                    层间介电层152, 252, 352, 452 Interlayer dielectric layer

154、254、354a、354b、454a、454b      凹槽154, 254, 354a, 354b, 454a, 454b groove

156、356a、356b、456a、456b           虚置栅极移除步骤156, 356a, 356b, 456a, 456b Dummy gate removal procedure

158、358a、358b                       稀释氟化氢蚀刻工艺158, 358a, 358b Diluted hydrogen fluoride etching process

258a、458a                            金属化学机械抛光工艺258a, 458a Metal chemical mechanical polishing process

258b、458b                            非选择性化学机械抛光工艺258b, 458b Non-selective chemical mechanical polishing process

160、260、360、460                    第一开口160, 260, 360, 460 First opening

162、262、362、462                    第二开口162, 262, 362, 462 Second opening

170、270、370、470                    第一金属层170, 270, 370, 470 The first metal layer

172、272、372、472                    第二金属层172, 272, 372, 472 Second metal layer

174、274、374、474                    填充金属层174, 274, 374, 474 Filled metal layer

180、280、380、480                    第一金属栅极180, 280, 380, 480 The first metal grid

182、282、382、482                    第二金属栅极182, 282, 382, 482 Second metal grid

具体实施方式 Detailed ways

请参阅图1至图4,图1至图4为本发明所提供的具有金属栅极的半导体元件的制作方法的第一优选实施例的示意图。如图1所示,首先提供基底100,如硅基底、含硅基底或硅覆绝缘(silicon-on-insulator,SOI)基底等,基底100表面定义有第一有源区域110与第二有源区域112,且基底100内形成有多个用以电性隔离第一有源区域110与第二有源区域112的浅沟绝缘(shallow trench isolation,以下简称为STI)102。接下来于第一有源区域110与第二有源区域112内的基底100上分别形成第一导电型晶体管120与第二导电型晶体管122。在本优选实施例中,第一导电型晶体管120为P型晶体管;而第二导电型晶体管122则为N型晶体管,但本领域的一般技术人员应知反之亦可。由此可知本优选实施例所提供的半导体元件为互补式金属氧化物半导体(complementary metal-oxide semiconductor,CMOS)晶体管元件。Please refer to FIG. 1 to FIG. 4 . FIG. 1 to FIG. 4 are schematic diagrams of a first preferred embodiment of a method for manufacturing a semiconductor device with a metal gate provided by the present invention. As shown in FIG. 1 , firstly, a substrate 100 is provided, such as a silicon substrate, a silicon-containing substrate, or a silicon-on-insulator (SOI) substrate, etc., and a first active region 110 and a second active region 110 are defined on the surface of the substrate 100. region 112 , and a plurality of shallow trench isolation (STI) 102 for electrically isolating the first active region 110 and the second active region 112 is formed in the substrate 100 . Next, the first conductive type transistor 120 and the second conductive type transistor 122 are respectively formed on the substrate 100 in the first active region 110 and the second active region 112 . In this preferred embodiment, the first conductive type transistor 120 is a P-type transistor; and the second conductive type transistor 122 is an N-type transistor, but those skilled in the art should know that the reverse is also possible. It can be seen that the semiconductor device provided in this preferred embodiment is a complementary metal-oxide semiconductor (CMOS) transistor device.

如图1所示,第一导电型晶体管120与第二导电型晶体管122各包含栅极介电层104、虚置栅极(图未示)如多晶硅层、与图案化硬掩模(图未示)。在本优选实施例中,栅极介电层104可为传统的二氧化硅层,亦可为高介电常数(high-K)栅极介电层,而此high-K栅极介电层选自氮化硅(SiN)、氮氧化硅(SiON)以及金属氧化物所组成的群组,其中金属氧化物则包含氧化铪(hafnium oxide,HfO)、硅酸铪氧化合物(hafnium silicon oxide,HfSiO)、硅酸铪氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化铝(aluminum oxide,AlO)、氧化镧(lanthanum oxide,LaO)、铝酸镧(lanthanum aluminum oxide,LaAlO)、氧化钽(tantalum oxide,TaO)、氧化锆(zirconium oxide,ZrO)、硅酸锆氧化合物(zirconium silicon oxide,ZrSiO)、或锆酸铪(hafnium zirconiumoxide,HfZrO)等。As shown in FIG. 1 , the first conductive type transistor 120 and the second conductive type transistor 122 each include a gate dielectric layer 104, a dummy gate (not shown) such as a polysilicon layer, and a patterned hard mask (not shown in the figure). Show). In this preferred embodiment, the gate dielectric layer 104 may be a conventional silicon dioxide layer, or may be a high-k (high-K) gate dielectric layer, and the high-K gate dielectric layer Selected from the group consisting of silicon nitride (SiN), silicon oxynitride (SiON) and metal oxides, wherein the metal oxides include hafnium oxide (HfO), hafnium silicon oxide (hafnium silicon oxide, HfSiO), hafnium silicon oxynitride (HfSiON), aluminum oxide (aluminum oxide, AlO), lanthanum oxide (lanthanum oxide, LaO), lanthanum aluminate (lanthanum aluminum oxide, LaAlO), tantalum oxide (tantalum oxide, TaO), zirconium oxide (zirconium oxide, ZrO), zirconium silicon oxide (ZrSiO), or hafnium zirconium oxide (HfZrO), etc.

请继续参阅图1。第一导电型晶体管120与第二导电型晶体管122分别包含第一轻掺杂漏极(light doped drain,以下简称为LDD)130与第二LDD132、间隙壁134、与第一源极/漏极140与第二源极/漏极142。间隙壁134可为包含氧化硅(SiO)或高温氧化硅层(high temperature oxide,HTO)等介电材料的单层结构或氧化硅-氮化硅-氧化硅(oxide-nitride-oxide,ONO)复合膜层结构。另外,在本优选实施例中,亦可利用选择性外延生长(selective epitaxialgrowth,以下简称为SEG)方法来制作第一源极/漏极140与第二源极/漏极142。例如,当第一导电型晶体管120为P型晶体管,而第二导电型晶体管122为N型晶体管时,可利用包含有锗化硅(SiGe)的外延层以及包含有碳化硅(SiC)的外延层分别制作第一源极/漏极140与第二源极/漏极142,以利用外延层与沟道硅之间的应力作用进一步改善电性表现。此外,第一源极/漏极140与第二源极/漏极142表面分别包含有金属硅化物144。而在形成第一导电型晶体管120与第二导电型晶体管122之后,于基底100上依序形成覆盖第一导电型晶体管120与第二导电型晶体管122的接触洞蚀刻停止层(CESL)150与层间介电(inter-layer dielectric,以下简称为ILD)层152。Please continue with Figure 1. The first conductive type transistor 120 and the second conductive type transistor 122 respectively include a first lightly doped drain (light doped drain, hereinafter referred to as LDD) 130 and a second LDD 132, a spacer 134, and a first source/drain 140 and a second source/drain 142 . The spacer 134 can be a single-layer structure including silicon oxide (SiO) or high temperature oxide (high temperature oxide, HTO) and other dielectric materials or silicon oxide-silicon nitride-silicon oxide (oxide-nitride-oxide, ONO) Composite film structure. In addition, in this preferred embodiment, the first source/drain 140 and the second source/drain 142 may also be fabricated by a selective epitaxial growth (hereinafter referred to as SEG) method. For example, when the first conductivity type transistor 120 is a P-type transistor and the second conductivity type transistor 122 is an N-type transistor, an epitaxial layer containing silicon germanium (SiGe) and an epitaxial layer containing silicon carbide (SiC) can be used. The first source/drain 140 and the second source/drain 142 are respectively formed in each layer, so as to further improve the electrical performance by using the stress effect between the epitaxial layer and the channel silicon. In addition, the surfaces of the first source/drain 140 and the second source/drain 142 respectively include metal silicide 144 . After the first conductive type transistor 120 and the second conductive type transistor 122 are formed, a contact etch stop layer (CESL) 150 and a contact hole etch stop layer (CESL) 150 covering the first conductive type transistor 120 and the second conductive type transistor 122 are sequentially formed on the substrate 100 An inter-layer dielectric (inter-layer dielectric, hereinafter referred to as ILD) layer 152 .

请继续参阅图1。接下来可利用已知平坦化工艺,如CMP工艺,用以平坦化ILD层152与CESL 150,直至暴露出虚置栅极。在平坦化工艺后,则利用虚置栅极移除步骤156同时移除第一导电型晶体管120与第二导电型晶体管122的虚置栅极,而于第一导电型晶体管120与第二导电型晶体管122内分别形成第一开口(opening)160与第二开口162,且栅极介电层104暴露于第一开口160与第二开口162的底部。另外值得注意的是,虚置栅极移除步骤156在移除虚置栅极时,同时移除部分CESL 150,使CESL 150的顶部低于第一导电型晶体管120与第二导电型晶体管122的间隙壁134与ILD层152,而形成多个凹槽(recess)154,凹槽154具有深度,且该深度的范围介于50~150埃(angstrom)。Please continue with Figure 1. Next, a known planarization process, such as a CMP process, can be used to planarize the ILD layer 152 and the CESL 150 until the dummy gates are exposed. After the planarization process, the dummy gates of the first conductivity type transistor 120 and the second conductivity type transistor 122 are simultaneously removed by using the dummy gate removal step 156, and the dummy gates of the first conductivity type transistor 120 and the second conductivity type transistor 120 are removed simultaneously. A first opening 160 and a second opening 162 are respectively formed in the type transistor 122 , and the gate dielectric layer 104 is exposed at the bottom of the first opening 160 and the second opening 162 . It is also worth noting that in the dummy gate removal step 156, part of the CESL 150 is removed at the same time when the dummy gate is removed, so that the top of the CESL 150 is lower than the first conductivity type transistor 120 and the second conductivity type transistor 122. The spacers 134 and the ILD layer 152 are used to form a plurality of recesses 154 . The recesses 154 have a depth ranging from 50˜150 angstrom.

请参阅图2。接下来,进行凹槽移除步骤,优选为稀释氟化氢(dilute HF,DHF)蚀刻工艺158,例如包含DHF的湿蚀刻(wet etching)或干蚀刻(dryetching)工艺。凹槽移除步骤158用以移除部分ILD层152,使ILD层152与CESL 150、以及凹槽154的底部共平面。因此在凹槽移除步骤158之后,凹槽154如图2所示被移除,且形成约略平坦的ILD层152表面,以及凸出于ILD层152表面的间隙壁凸出部分136。See Figure 2. Next, a groove removal step is performed, preferably a dilute hydrogen fluoride (dilute HF, DHF) etching process 158, such as a wet etching or dry etching process including DHF. The groove removal step 158 is used to remove a portion of the ILD layer 152 so that the ILD layer 152 is coplanar with the CESL 150 and the bottom of the groove 154 . Thus, after the groove removal step 158 , the grooves 154 are removed as shown in FIG. 2 , and a substantially planar surface of the ILD layer 152 is formed, and the spacer protrusions 136 protrude from the surface of the ILD layer 152 .

请参阅图3。在进行凹槽移除步骤158之后,于第一开口160与第二开口162内分别形成阻障层(barrier layer)(图未示),用以避免high-K栅极介电层104与后续形成的金属层产生反应或扩散效应。并在形成阻障层之后分别于第一开口160与第二开口162内形成第一金属层170与第二金属层172。第一金属层170可为满足P型晶体管所需功函数要求的金属,如氮化钛(titanium nitride,TiN)或碳化钽(tantalum carbide,TaC)等;而第二金属层172则可为满足N型晶体管所需功函数要求的金属,例如选自铝化钛(TiAl)、铝化锆(ZrAl)、铝化钨(WAl)、铝化钽(TaAl)或铝化铪(HfAl)所组成的群组。在形成第一金属层170与第二金属层172之后,于基底100上形成填满第一开口160与第二开口162的填充金属(filling metal)层174,填充金属层174为填洞能力优秀的金属,例如铝、钨、铜等金属,且优选为铝,但不限于此。See Figure 3. After the groove removal step 158, a barrier layer (barrier layer) (not shown) is formed in the first opening 160 and the second opening 162 to prevent the high-K gate dielectric layer 104 from The metal layer formed produces a reaction or diffusion effect. After forming the barrier layer, a first metal layer 170 and a second metal layer 172 are respectively formed in the first opening 160 and the second opening 162 . The first metal layer 170 can be a metal that meets the work function requirements of a P-type transistor, such as titanium nitride (titanium nitride, TiN) or tantalum carbide (tantalum carbide, TaC); The metal required for the work function required by the N-type transistor is, for example, selected from titanium aluminide (TiAl), zirconium aluminide (ZrAl), tungsten aluminide (WAl), tantalum aluminide (TaAl) or hafnium aluminide (HfAl) group. After forming the first metal layer 170 and the second metal layer 172, a filling metal layer 174 filling the first opening 160 and the second opening 162 is formed on the substrate 100. The filling metal layer 174 has excellent hole filling ability. Metals, such as aluminum, tungsten, copper and other metals, and preferably aluminum, but not limited thereto.

值得注意的是,第一金属层170与第二金属层172可以是单层结构或复合层结构,其形成方法具有多种方式;其形成顺序亦有多种组合。举例来说,可在于第一开口160与第二开口162内皆形成第一金属层170之后,先移除第二有源区域112内的第一金属层170,再于基底100上形成第二金属层172,随后移除第一有源区域110内的第二金属层172。或者可在于第一开口160与第二开口162内皆形成第一金属层170之后,再于第二开口162内形成第二金属层172,随后移除第一有源区域110内的第二金属层172。此外亦可在移除第一有源区域110内的第二金属层172后再利用热处理(anneal)调整(tuning)第二开口162内的金属组合,使第二开口162内最终的金属复合层进一步满足N型晶体管所需功函数要求。又或者,可在基底100上全面性地形成第二金属层172,随后利用离子掺杂,将第一有源区域110内的第二金属层172转变(convert)成为满足P型晶体管所需功函数要求的第一金属层170。上述形成第一金属层170与第二金属层172的方法仅为例示,本领域一般技术人员应知这些方法可根据产品与工艺需求实施,且不限于此,故于此不再赘述。此外,本优选实施例也可整合high-K last的工艺,亦即在进行凹槽移除步骤158之后,旋即形成high-K的栅极介电层(图未示),然后再填入各种所需的栅极金属层。It is worth noting that the first metal layer 170 and the second metal layer 172 can be a single-layer structure or a composite layer structure, and there are various ways of forming them; there are also various combinations of their forming sequences. For example, after the first metal layer 170 is formed in the first opening 160 and the second opening 162 , the first metal layer 170 in the second active region 112 can be removed first, and then the second metal layer 170 can be formed on the substrate 100 . The metal layer 172 , and then the second metal layer 172 in the first active region 110 is removed. Alternatively, after the first metal layer 170 is formed in the first opening 160 and the second opening 162, the second metal layer 172 is formed in the second opening 162, and then the second metal in the first active region 110 is removed. Layer 172. In addition, after removing the second metal layer 172 in the first active region 110, anneal can be used to adjust (tuning) the metal combination in the second opening 162, so that the final metal composite layer in the second opening 162 The work function requirement required by the N-type transistor is further satisfied. Alternatively, the second metal layer 172 can be formed on the substrate 100, and then ion doping is used to convert the second metal layer 172 in the first active region 110 to meet the required power of the P-type transistor. The first metal layer 170 required by the function. The above-mentioned methods for forming the first metal layer 170 and the second metal layer 172 are only examples, and those skilled in the art should know that these methods can be implemented according to product and process requirements, and are not limited thereto, so details are not repeated here. In addition, this preferred embodiment can also integrate the high-K last process, that is, after the groove removal step 158 is performed, a high-K gate dielectric layer (not shown) is formed immediately, and then filled in each the desired gate metal layer.

请参阅图4。接下来进行平坦化工艺,例如化学机械抛光(chemical-mechanical polishing,CMP)工艺,用以移除多余的填充金属层174、第一金属层170与第二金属层172。值得注意的是,由于CMP工艺对于平面上的凸起物较为敏感,因此在进行CMP工艺移除上述金属层的同时,会将凸出于ILD层152表面的间隙壁凸出部分136一并移除。故在CMP工艺后,可获得第一导电型晶体管120的第一金属栅极180与第二导电型晶体管122的第二金属栅极182。如图4所示,第一金属栅极180与第二金属栅极182的顶部与ILD层152以及CESL 150共平面。See Figure 4. Next, a planarization process, such as a chemical-mechanical polishing (CMP) process, is performed to remove the redundant filling metal layer 174 , the first metal layer 170 and the second metal layer 172 . It should be noted that since the CMP process is more sensitive to protrusions on the plane, when the above metal layer is removed by the CMP process, the spacer protruding portion 136 protruding from the surface of the ILD layer 152 will also be removed. remove. Therefore, after the CMP process, the first metal gate 180 of the first conductivity type transistor 120 and the second metal gate 182 of the second conductivity type transistor 122 can be obtained. As shown in FIG. 4 , tops of the first metal gate 180 and the second metal gate 182 are coplanar with the ILD layer 152 and the CESL 150 .

根据本发明所提供的第一优选实施例,在同时移除第一导电型晶体管120与第二导电型晶体管122的虚置栅极且形成凹槽154后,还利用DHF蚀刻工艺158移除部分ILD层152,使ILD层152与凹槽154的底部共平面。换句话说,本优选实施例是利用DHF蚀刻工艺158消除凹槽154的存在,而在ILD层152上形成了间隙壁凸出部分136。因此,在后续完成各金属层170/172/174的制作并利用CMP工艺平坦化基底100表面时,可利用CMP工艺对于基底100上的凸出部分较为敏感此特点,一次性地成功移除间隙壁凸出部分136,使基底100上除第一金属栅极180与第二金属栅极182之外没有残余的金属存在。According to the first preferred embodiment of the present invention, after removing the dummy gates of the transistors of the first conductivity type 120 and the transistors of the second conductivity type 122 at the same time and forming the groove 154, a portion is also removed by a DHF etching process 158 ILD layer 152 , making ILD layer 152 coplanar with the bottom of recess 154 . In other words, the present preferred embodiment utilizes the DHF etching process 158 to eliminate the existence of the groove 154 and form the spacer protrusion 136 on the ILD layer 152 . Therefore, when the fabrication of the metal layers 170/172/174 is completed and the surface of the substrate 100 is planarized by the CMP process, the gap can be successfully removed at one time by utilizing the fact that the CMP process is sensitive to the protruding parts on the substrate 100 The wall protruding portion 136 makes no residual metal exist on the substrate 100 except for the first metal gate 180 and the second metal gate 182 .

接下来请参阅图5至图7,图5至图7为本发明所提供的具有金属栅极的半导体元件的制作方法的第二优选实施例的示意图。首先值得注意的是,本第二优选实施例中各元件所包含的材料选择同于第一优选实施例,因此本领域一般技术人员可参酌第一优选实施例而得知,故这些材料不再于第二优选实施例中赘述。如图5所示,本优选实施例首先提供基底200,基底200表面定义有第一有源区域210与第二有源区域212,且基底200内形成有多个用以电性隔离第一有源区域210与第二有源区域212的STI 202。接下来于第一有源区域210与第二有源区域212内的基底200上分别形成第一导电型晶体管220与第二导电型晶体管222。在本优选实施例中,第一导电型晶体管220为P型晶体管;而第二导电型晶体管222则为N型晶体管,但本领域一般技术人员应知反之亦可。由此可知本优选实施例所提供的半导体元件亦为CMOS元件。Next, please refer to FIGS. 5 to 7 , which are schematic diagrams of a second preferred embodiment of a method for fabricating a semiconductor device with a metal gate provided by the present invention. First of all, it should be noted that the material selection of each element in this second preferred embodiment is the same as that of the first preferred embodiment, so those skilled in the art can learn from the first preferred embodiment, so these materials are no longer It will be described in detail in the second preferred embodiment. As shown in Figure 5, this preferred embodiment firstly provides a substrate 200, the surface of the substrate 200 defines a first active region 210 and a second active region 212, and a plurality of active regions 210 and 212 are formed in the substrate 200 to electrically isolate the first active The STI 202 of the source region 210 and the second active region 212. Next, the first conductive type transistor 220 and the second conductive type transistor 222 are respectively formed on the substrate 200 in the first active region 210 and the second active region 212 . In this preferred embodiment, the first conductive type transistor 220 is a P-type transistor; and the second conductive type transistor 222 is an N-type transistor, but those skilled in the art should know that the reverse is also possible. It can be seen that the semiconductor device provided by this preferred embodiment is also a CMOS device.

如图5所示,第一导电型晶体管220与第二导电型晶体管222各包含栅极介电层204、虚置栅极(图未示)如多晶硅层、与图案化硬掩模(图未示)。此外,第一导电型晶体管220与第二导电型晶体管222分别包含第一LDD230与第二LDD 232、间隙壁234、与第一源极/漏极240与第二源极/漏极242。如前所述,在本优选实施例中,亦可利用SEG方法来制作第一源极/漏极240与第二源极/漏极242。此外,第一源极/漏极240与第二源极/漏极242表面分别包含有金属硅化物244。而在形成第一导电型晶体管220与第二导电型晶体管222之后,于基底200上依序形成覆盖第一导电型晶体管220与第二导电型晶体管222的CESL 250与ILD层252。As shown in FIG. 5 , the first conductive type transistor 220 and the second conductive type transistor 222 each include a gate dielectric layer 204, a dummy gate (not shown) such as a polysilicon layer, and a patterned hard mask (not shown in the figure). Show). In addition, the first conductive type transistor 220 and the second conductive type transistor 222 respectively include a first LDD 230 and a second LDD 232, a spacer 234, and a first source/drain 240 and a second source/drain 242. As mentioned above, in this preferred embodiment, the first source/drain 240 and the second source/drain 242 can also be fabricated by using the SEG method. In addition, the surfaces of the first source/drain 240 and the second source/drain 242 respectively include metal silicide 244 . After forming the first conductive type transistor 220 and the second conductive type transistor 222, the CESL 250 and the ILD layer 252 covering the first conductive type transistor 220 and the second conductive type transistor 222 are sequentially formed on the substrate 200.

请继续参阅图5。接下来可利用已知平坦化工艺,如CMP工艺,用以平坦化ILD层252与CESL 250,直至暴露出虚置栅极。在平坦化工艺后,则利用虚置栅极移除步骤同时移除第一导电型晶体管220与第二导电型晶体管222的虚置栅极,而于第一导电型晶体管220与第二导电型晶体管222内分别形成第一开口260与第二开口262,且栅极介电层204暴露于第一开口260与第二开口262的底部。另外值得注意的是,虚置栅极移除步骤在移除虚置栅极时,同时移除部分CESL 250,使CESL 250的顶部低于第一导电型晶体管220与第二导电型晶体管222的间隙壁234与ILD层252而形成多个凹槽254,凹槽254具有深度,且该深度的范围介于50~150埃。Please continue with Figure 5. Next, a known planarization process, such as a CMP process, can be used to planarize the ILD layer 252 and the CESL 250 until the dummy gates are exposed. After the planarization process, the dummy gates of the first conductivity type transistor 220 and the second conductivity type transistor 222 are simultaneously removed by using the dummy gate removal step, and the dummy gates of the first conductivity type transistor 220 and the second conductivity type transistor 220 are removed simultaneously. A first opening 260 and a second opening 262 are respectively formed in the transistor 222 , and the gate dielectric layer 204 is exposed at the bottom of the first opening 260 and the second opening 262 . It is also worth noting that in the step of removing the dummy gate, part of the CESL 250 is removed at the same time, so that the top of the CESL 250 is lower than that of the first conductivity type transistor 220 and the second conductivity type transistor 222. The spacers 234 and the ILD layer 252 form a plurality of grooves 254 , and the grooves 254 have a depth ranging from 50˜150 angstroms.

请仍然参阅图5。接下来,在第一开口260与第二开口262内分别形成阻障层(图未示),并在形成阻障层之后分别于第一开口260与第二开口262内形成第一金属层270与第二金属层272。第一金属层270可为满足P型晶体管所需功函数要求的金属;而第二金属层272则可为满足N型晶体管所需功函数要求的金属。而在形成第一金属层270与第二金属层272后,于基底200上形成填满第一开口260与第二开口262的填充金属层274。值得注意的是,第一金属层270、第二金属层272与填充金属层274如图5所示填入了凹槽254之内。如前所述,第一金属层270与第二金属层272可以是单层结构或复合层结构,其形成方法具有多种方式;其形成顺序亦有多种组合,且第一金属层270与第二金属层272的制作方法以及可选择性整合high-Klast的工艺亦可参考第一优选实施例的说明,故于此亦不再赘述。Please still refer to Figure 5. Next, a barrier layer (not shown) is formed in the first opening 260 and the second opening 262 respectively, and a first metal layer 270 is formed in the first opening 260 and the second opening 262 respectively after forming the barrier layer. and the second metal layer 272 . The first metal layer 270 can be a metal meeting the work function requirements of the P-type transistor; and the second metal layer 272 can be a metal meeting the work function requirements of the N-type transistor. After forming the first metal layer 270 and the second metal layer 272 , a filling metal layer 274 filling the first opening 260 and the second opening 262 is formed on the substrate 200 . It should be noted that the first metal layer 270 , the second metal layer 272 and the filling metal layer 274 are filled into the groove 254 as shown in FIG. 5 . As mentioned above, the first metal layer 270 and the second metal layer 272 can be a single-layer structure or a composite layer structure, and there are many ways to form them; The manufacturing method of the second metal layer 272 and the process of optionally integrating the high-Klast can also refer to the description of the first preferred embodiment, so details are not repeated here.

请参阅图6。在完成第一金属层270、第二金属层272与填充金属层274之后,进行凹槽移除步骤。在本优选实施例中,凹槽移除步骤可包含两部分,首先是进行金属化学机械抛光(metal-chemical mechanical polish,metal-CMP)步骤258a,用以移除多余的填充金属层274、第一金属层270与第二金属层272。值得注意的是,金属CMP步骤258a停止于ILD层252的表面,而获得第一导电型晶体管220的第一金属栅极280与第二导电型晶体管222的第二金属栅极282,且第一金属栅极280与第二金属栅极282与ILD层252共平面。See Figure 6. After the first metal layer 270 , the second metal layer 272 and the filling metal layer 274 are completed, the groove removal step is performed. In this preferred embodiment, the step of removing the groove may include two parts. First, a metal-chemical mechanical polish (metal-CMP) step 258a is performed to remove the redundant filling metal layer 274, the second A metal layer 270 and a second metal layer 272 . It should be noted that the metal CMP step 258a stops on the surface of the ILD layer 252 to obtain the first metal gate 280 of the first conductivity type transistor 220 and the second metal gate 282 of the second conductivity type transistor 222, and the first The metal gate 280 and the second metal gate 282 are coplanar with the ILD layer 252 .

至此,本优选实施例还提供一种具有金属栅极的半导体元件,其包含有基底200、形成于基底200上的金属栅极280/282、形成于金属栅极280/282侧壁上的间隙壁234、与覆盖间隙壁234的CESL 250与ILD层252。值得注意的是,CESL 250的顶部低于间隙壁234与ILD层252而形成有凹槽254,凹槽254内则填满金属层270、272、或274。如前所述,金属栅极280/282包含设置于基底200上的栅极介电层204、设置于栅极介电层204上的功函数(work function)金属层270或272、与设置于功函数金数层270或272上的填充金属层274。如前所述,第一金属栅极280的第一金属层272包含P型晶体管所需功函数要求的金属,故作为第一金属栅极280的功函数金属层;而第二金属栅极282的第二金属层272包含N型晶体管所需功函数要求的金属,故作为第二金属栅极282的功函数金属层。凹槽254具有深度,且该深度的范围介于50~150埃。So far, this preferred embodiment also provides a semiconductor device with a metal gate, which includes a substrate 200, a metal gate 280/282 formed on the substrate 200, and a gap formed on the sidewall of the metal gate 280/282. Wall 234, and CESL 250 and ILD layer 252 covering spacer 234. It should be noted that the top of the CESL 250 is lower than the spacer 234 and the ILD layer 252 to form a groove 254, and the groove 254 is filled with the metal layer 270, 272, or 274. As mentioned above, the metal gate 280/282 includes the gate dielectric layer 204 disposed on the substrate 200, the work function (work function) metal layer 270 or 272 disposed on the gate dielectric layer 204, and disposed on the Fill metal layer 274 on work function gold layer 270 or 272 . As mentioned above, the first metal layer 272 of the first metal gate 280 includes the metal required for the work function of the P-type transistor, so it serves as the work function metal layer of the first metal gate 280; and the second metal gate 282 The second metal layer 272 includes the metal required for the work function of the N-type transistor, so it serves as the work function metal layer of the second metal gate 282 . The groove 254 has a depth ranging from 50-150 angstroms.

请参阅图7。接下来进行凹槽移除步骤的第二部分,即进行非选择性(non-selectivity)化学机械抛光步骤258b。与金属CMP步骤258a不同的是,非选择性CMP步骤258b为不具选择性的平坦化方法,因此非选择性CMP步骤258b用以同时移除ILD层252、凹槽254内的金属层270、272、274,故可完全移除凹槽254及其内的金属。如图7所示,在非选择性CMP步骤258b之后,ILD层252、CESL 250、间隙壁234、第一金属层270、第二金属层272与填充金属层274皆共平面,且与原本凹槽254的底部共平面。See Figure 7. Next, the second part of the groove removal step is performed, ie, a non-selectivity chemical mechanical polishing step 258b is performed. Unlike the metal CMP step 258a, the non-selective CMP step 258b is a non-selective planarization method, so the non-selective CMP step 258b is used to simultaneously remove the ILD layer 252 and the metal layers 270, 272 in the recess 254 , 274, so the groove 254 and the metal therein can be completely removed. As shown in FIG. 7, after the non-selective CMP step 258b, the ILD layer 252, the CESL 250, the spacer 234, the first metal layer 270, the second metal layer 272, and the fill metal layer 274 are all coplanar and aligned with the original concave The bottoms of the grooves 254 are coplanar.

根据本发明所提供的第二优选实施例,在形成第一金属层270、第二金属层272与填充金属层274之后,利用凹槽移除步骤移除凹槽254及其内的金属层。首先,利用金属CMP步骤258a移除多余的填充金属层274、第一金属层270与第二金属层272;再利用非选择性CMP步骤258b移除ILD层252与凹槽254内的金属层270、272、274。通过此两步骤CMP工艺,可成功地移除凹槽254与其内的金属层,使基底200上除第一金属栅极280与第二金属栅极282之外没有残余的金属存在。According to the second preferred embodiment of the present invention, after forming the first metal layer 270 , the second metal layer 272 and the filling metal layer 274 , the groove 254 and the metal layer therein are removed by a groove removal step. First, the metal CMP step 258a is used to remove the redundant filling metal layer 274, the first metal layer 270 and the second metal layer 272; then the non-selective CMP step 258b is used to remove the ILD layer 252 and the metal layer 270 in the groove 254 , 272, 274. Through the two-step CMP process, the groove 254 and the metal layer inside can be successfully removed, so that there is no residual metal on the substrate 200 except for the first metal gate 280 and the second metal gate 282 .

请参阅图8至图12,图8至图12为本发明所提供的具有金属栅极的半导体元件的制作方法的第三优选实施例的示意图。首先值得注意的是,本第三优选实施例中各元件所包含的材料选择同于前述优选实施例,因此本领域一般技术人员可参酌前述优选实施例而得知,故这些材料不再于第三优选实施例中赘述。如图8所示,本优选实施例首先提供基底300,其表面定义有第一有源区域310与第二有源区域312,且基底300内形成有多个用以电性隔离第一有源区域310与第二有源区域312的STI 302。接下来于第一有源区域310与第二有源区域312内的基底300上分别形成第一导电型晶体管320与第二导电型晶体管322。在本优选实施例中,第一导电型晶体管320为P型晶体管;而第二导电型晶体管322则为N型晶体管,但本领域一般技术人员应知反之亦可。Please refer to FIG. 8 to FIG. 12 . FIG. 8 to FIG. 12 are schematic diagrams of a third preferred embodiment of a method for manufacturing a semiconductor device with a metal gate provided by the present invention. First of all, it is worth noting that the material selection of each element in this third preferred embodiment is the same as that of the aforementioned preferred embodiments, so those skilled in the art can learn from the aforementioned preferred embodiments, so these materials are no longer listed in the first preferred embodiment. The three preferred embodiments will be described in detail. As shown in FIG. 8 , this preferred embodiment firstly provides a substrate 300 whose surface defines a first active region 310 and a second active region 312 , and a plurality of active regions 310 and 312 are formed in the substrate 300 to electrically isolate the first active regions. STI 302 of region 310 and second active region 312. Next, a first conductive type transistor 320 and a second conductive type transistor 322 are respectively formed on the substrate 300 in the first active region 310 and the second active region 312 . In this preferred embodiment, the first conductive type transistor 320 is a P-type transistor; and the second conductive type transistor 322 is an N-type transistor, but those skilled in the art should know that the reverse is also possible.

如图8所示,第一导电型晶体管320与第二导电型晶体管322各包含栅极介电层304、与虚置栅极306如多晶硅层、与图案化硬掩模(图未示)。此外,第一导电型晶体管320与第二导电型晶体管322分别包含第一LDD 330与第二LDD 332、间隙壁334、与第一源极/漏极340与第二源极/漏极342。如前所述,在本优选实施例中,亦可利用SEG方法来制作第一源极/漏极340与第二源极/漏极342。此外,第一源极/漏极340与第二源极/漏极342表面分别包含有金属硅化物344。而在形成第一导电型晶体管320与第二导电型晶体管322之后,于基底300上依序形成覆盖第一导电型晶体管320与第二导电型晶体管322的CESL 350与ILD层352。As shown in FIG. 8 , the first conductivity type transistor 320 and the second conductivity type transistor 322 each include a gate dielectric layer 304 , a dummy gate 306 such as a polysilicon layer, and a patterned hard mask (not shown). In addition, the first conductive type transistor 320 and the second conductive type transistor 322 respectively include a first LDD 330 and a second LDD 332, a spacer 334, and a first source/drain 340 and a second source/drain 342. As mentioned above, in this preferred embodiment, the first source/drain 340 and the second source/drain 342 can also be fabricated by using the SEG method. In addition, the surfaces of the first source/drain 340 and the second source/drain 342 respectively include metal silicide 344 . After the first conductive type transistor 320 and the second conductive type transistor 322 are formed, the CESL 350 and the ILD layer 352 covering the first conductive type transistor 320 and the second conductive type transistor 322 are sequentially formed on the substrate 300 .

请继续参阅图8。接下来可利用已知平坦化工艺,如CMP工艺,用以平坦化ILD层352与CESL 350,直至暴露出第一导电型晶体管320与第二导电型晶体管322的虚置栅极306。随后于第二有源区域312内形成图案化硬掩模338a,用以保护第二有源区域312内的虚置栅极306。待形成图案化硬掩模338a后,进行第一虚置栅极移除步骤356a移除第一导电型晶体管320的虚置栅极306,而于第一导电型晶体管320内形成第一开口360,且栅极介电层304暴露于第一开口360的底部。另外值得注意的是,第一虚置栅极移除步骤356a在移除虚置栅极306时,同时移除部分CESL 350,使CESL 350的顶部低于第一导电型晶体管320的间隙壁334与ILD层352而形成多个凹槽354a,凹槽354a具有深度,且该深度的范围介于50~150埃。Please continue with Figure 8. Next, a known planarization process, such as a CMP process, can be used to planarize the ILD layer 352 and the CESL 350 until the dummy gates 306 of the first conductive type transistor 320 and the second conductive type transistor 322 are exposed. A patterned hard mask 338 a is then formed in the second active region 312 to protect the dummy gate 306 in the second active region 312 . After the patterned hard mask 338a is formed, a first dummy gate removal step 356a is performed to remove the dummy gate 306 of the transistor of the first conductivity type 320 , and a first opening 360 is formed in the transistor of the first conductivity type 320 , and the gate dielectric layer 304 is exposed at the bottom of the first opening 360 . It is also worth noting that in the first dummy gate removal step 356a, when removing the dummy gate 306, part of the CESL 350 is removed at the same time, so that the top of the CESL 350 is lower than the spacer 334 of the transistor 320 of the first conductivity type. A plurality of grooves 354 a are formed with the ILD layer 352 , and the grooves 354 a have a depth ranging from 50˜150 angstroms.

请参阅图9。接下来进行第一蚀刻工艺,优选为DHF蚀刻工艺358a,例如包含DHF的湿蚀刻或干蚀刻工艺。第一蚀刻工艺是用以移除部分ILD层352,使ILD层352与凹槽354a的底部共平面。因此在第一蚀刻工艺之后,凹槽354a被移除,而如图9所示形成约略平坦的ILD层352表面,仅有间隙壁凸出部分336a约略凸出于ILD层352的表面。See Figure 9. Next, a first etching process is performed, preferably a DHF etching process 358a, such as a wet etching process or a dry etching process including DHF. The first etching process is used to remove part of the ILD layer 352, so that the ILD layer 352 is coplanar with the bottom of the groove 354a. Therefore, after the first etching process, the groove 354a is removed, and a roughly flat surface of the ILD layer 352 is formed as shown in FIG.

请参阅图10。在移除第一凹槽354并形成间隙壁凸出部分336a之后,移除图案化硬掩模338a,随后于第一开口360内依序形成阻障层(图未示)、第一金属层370与填满第一开口360的填充金属层374。如前所述,第一金属层370可为满足P型晶体管所需功函数要求的金属;填充金属层374则为填洞能力优秀的金属材料。同样的,在第一蚀刻工艺之后亦可选择性先形成high-K栅极介电层(图未示)。随后进行第一平坦化工艺,例如CMP工艺,用以移除部分的填充金属层374与第一金属层370,完成第一导电型晶体管320的第一金属栅极380的制作。See Figure 10. After removing the first groove 354 and forming the spacer protrusion 336a, the patterned hard mask 338a is removed, and then a barrier layer (not shown) and a first metal layer are sequentially formed in the first opening 360 370 and a fill metal layer 374 filling the first opening 360 . As mentioned above, the first metal layer 370 can be a metal that satisfies the work function requirement of the P-type transistor; the filling metal layer 374 is a metal material with excellent hole-filling ability. Similarly, a high-K gate dielectric layer (not shown) may optionally be formed first after the first etching process. Then, a first planarization process, such as a CMP process, is performed to remove part of the filling metal layer 374 and the first metal layer 370 to complete the fabrication of the first metal gate 380 of the first conductivity type transistor 320 .

请继续参阅图10。在完成第一金属栅极380的制作后,还于第一有源区域310内形成图案化硬掩模338b,用以保护第一有源区域312内的第一金属栅极380。随后,利用第二虚置栅极移除步骤356b移除第二导电型晶体管322的虚置栅极306,而于第二导电型晶体管322内形成第二开口362,且栅极介电层304亦暴露于第二开口362的底部。同理,第二虚置栅极移除步骤356b在移除虚置栅极306时,同时移除部分CESL 350,使CESL 350的顶部低于第二导电型晶体管322的间隙壁334与ILD层352,而形成多个凹槽354b,凹槽354b的深度同于凹槽354a。Please continue with Figure 10. After the fabrication of the first metal gate 380 is completed, a patterned hard mask 338 b is formed in the first active region 310 to protect the first metal gate 380 in the first active region 312 . Subsequently, the dummy gate 306 of the transistor of the second conductivity type 322 is removed by the second dummy gate removal step 356b, and a second opening 362 is formed in the transistor of the second conductivity type 322, and the gate dielectric layer 304 It is also exposed at the bottom of the second opening 362 . Similarly, when removing the dummy gate 306 in the second dummy gate removal step 356b, part of the CESL 350 is removed at the same time, so that the top of the CESL 350 is lower than the spacer 334 and the ILD layer of the second conductivity type transistor 322 352, and form a plurality of grooves 354b, and the depth of the grooves 354b is the same as that of the grooves 354a.

请参阅图11。接下来进行第二蚀刻工艺,优选为DHF蚀刻工艺358b,例如包含DHF的湿蚀刻或干蚀刻工艺,用以移除部分ILD层352,使ILD层352与凹槽354b的底部共平面。因此在第二蚀刻工艺之后,凹槽354b被移除,而如图11所示形成约略平坦的ILD层352表面,仅有间隙壁凸出部分336b约略凸出于ILD层352的表面。See Figure 11. Next, a second etching process, preferably a DHF etching process 358b, such as wet etching or dry etching including DHF, is performed to remove a portion of the ILD layer 352 so that the ILD layer 352 is coplanar with the bottom of the groove 354b. Therefore, after the second etching process, the groove 354b is removed, and a roughly flat surface of the ILD layer 352 is formed as shown in FIG.

请参阅图12。在移除凹槽354b并形成间隙壁凸出部分336b之后,移除图案化硬掩模338b,随后于第二开口362内依序形成阻障层(图未示)、第二金属层372与填满第二开口362的填充金属层374,其中第二金属层372可为满足N型晶体管所需功函数要求的金属。此外,在第二蚀刻工艺之后亦可选择性先形成high-K栅极介电层(图未示)。在形成第二金属层372与填充金属层374之后,进行第二平坦化工艺,例如CMP工艺,用以移除部分的填充金属层374与第二金属层372,完成第二导电型晶体管322的第二金属栅极382的制作。值得注意的是,由于CMP工艺对于基底上的凸起物较为敏感,因此在进行CMP工艺移除上述金属层的同时,会将凸出于ILD层352表面的间隙壁凸出部分336a/336b与残余于ILD层352上的金属层一并移除,使得第一金属栅极380、第二金属栅极382、ILD层352与CESL 350如图12所示共平面。See Figure 12. After removing the groove 354b and forming the spacer protrusion 336b, the patterned hard mask 338b is removed, and then a barrier layer (not shown), a second metal layer 372 and a second metal layer 372 are sequentially formed in the second opening 362. The filling metal layer 374 that fills the second opening 362 , wherein the second metal layer 372 can be a metal satisfying the work function requirement of the N-type transistor. In addition, a high-K gate dielectric layer (not shown) may optionally be formed first after the second etching process. After forming the second metal layer 372 and the filling metal layer 374, a second planarization process, such as a CMP process, is performed to remove part of the filling metal layer 374 and the second metal layer 372 to complete the second conductivity type transistor 322. Fabrication of the second metal gate 382 . It should be noted that since the CMP process is more sensitive to protrusions on the substrate, when the above metal layer is removed by the CMP process, the spacer protrusions 336a/336b protruding from the surface of the ILD layer 352 will be combined with The remaining metal layer on the ILD layer 352 is removed together, so that the first metal gate 380, the second metal gate 382, the ILD layer 352 and the CESL 350 are coplanar as shown in FIG. 12 .

此外,为更有效地移除金属与间隙壁凸出部分336a/336b,在本优选实施例的变化型中,是将CMP工艺分为二步骤进行,首先进行金属化学机械抛光步骤(图未示),以移除多余的填充金属层374、第一金属层370与第二金属层372。之后,再利用非选择性CMP步骤(图未示)移除ILD层352与凹槽354a/354b内的金属层370、372、374。通过此两步骤CMP工艺,可成功地移除凹槽354a/354b与其内的金属层。In addition, in order to remove the metal and spacer protrusions 336a/336b more effectively, in the modification of this preferred embodiment, the CMP process is divided into two steps, and the metal chemical mechanical polishing step (not shown in the figure) is performed first. ) to remove the redundant filling metal layer 374 , the first metal layer 370 and the second metal layer 372 . Afterwards, a non-selective CMP step (not shown) is used to remove the ILD layer 352 and the metal layers 370 , 372 , 374 in the grooves 354 a / 354 b . Through this two-step CMP process, the grooves 354a/354b and the metal layer therein can be successfully removed.

另外请参阅图13。图13为本第三优选实施例的变化型的示意图。本变化型与第三优选实施例的主要不同之处在于填满第一开口360与第二开口362的填充金属层374是同时形成的。例如在本变化型中,第一金属层370形成之后,先于第一有源区域310内形成图案化硬掩模(图未示),以保护第一有源区域310内的第一金属层370,随后移除第二导电型晶体管322的虚置栅极306。而在移除虚置栅极306后,再移除第一有源区域310内的图案化硬掩模,随后于基底300上依序形成第二金属层372与填满第一开口360与第二开口362的填充金属层374。待完成所有金属层的制作后,才通过CMP工艺一次性地或通过如前述的二阶段CMP工艺移除多余的填充金属层374、第二金属层372与第一金属层370,而形成如图12所示的约略平坦的表面。此外如前所述,CMP工艺对于基底上的凸起物较为敏感,因此在进行CMP工艺移除上述金属层的同时,会将凸出于ILD层352表面的间隙壁凸出部分336a/336b一并移除。Also see Figure 13. Fig. 13 is a schematic diagram of a variation of the third preferred embodiment. The main difference between this variation and the third preferred embodiment is that the filling metal layer 374 filling the first opening 360 and the second opening 362 is formed simultaneously. For example, in this variation, after the first metal layer 370 is formed, a patterned hard mask (not shown) is formed in the first active region 310 to protect the first metal layer in the first active region 310 370. Then remove the dummy gate 306 of the transistor 322 of the second conductivity type. After the dummy gate 306 is removed, the patterned hard mask in the first active region 310 is removed, and then the second metal layer 372 is sequentially formed on the substrate 300 to fill the first opening 360 and the first opening 360 . Two openings 362 are filled with a metal layer 374 . After the fabrication of all the metal layers is completed, the redundant filling metal layer 374, the second metal layer 372 and the first metal layer 370 are removed through the CMP process at one time or through the aforementioned two-stage CMP process to form the 12 shows a roughly flat surface. In addition, as mentioned above, the CMP process is relatively sensitive to the protrusions on the substrate, so when the CMP process is performed to remove the above metal layer, the spacer protrusions 336a/336b protruding from the surface of the ILD layer 352 will be removed. and remove.

根据本发明所提供的第三优选实施例,在分别移除第一导电型晶体管320与第二导电型晶体管322的虚置栅极306且于CESL 350内形成凹槽354a/354b后,分别利用DHF蚀刻工艺358a/358b移除相对应的部分ILD层352,使ILD层352与凹槽354a/354b的底部共平面。换句话说,利用两次的DHF蚀刻工艺358a/358b分别消除凹槽354a/354b的存在,而在基底300上分别形成了间隙壁凸出部分336a/336b。因此,在后续完成各金属层的制作并利用CMP工艺平坦化基底300表面时,可利用CMP工艺对于基底300上的凸出部分较为敏感此特点,成功地移除间隙壁凸出部分336a/336b,使基底300上除第一金属栅极380与第二金属栅极382之外没有残余的金属存在。According to the third preferred embodiment provided by the present invention, after removing the dummy gates 306 of the transistors of the first conductivity type 320 and the transistors of the second conductivity type 322 and forming the grooves 354a/354b in the CESL 350, using The DHF etch process 358a/358b removes a corresponding portion of the ILD layer 352, making the ILD layer 352 coplanar with the bottom of the recess 354a/354b. In other words, the presence of the grooves 354a/354b are eliminated by two DHF etching processes 358a/358b, respectively, and the spacer protrusions 336a/336b are formed on the substrate 300, respectively. Therefore, when the fabrication of each metal layer is completed and the surface of the substrate 300 is planarized using the CMP process, the feature that the CMP process is sensitive to the protruding portion on the substrate 300 can be used to successfully remove the protruding portion 336a/336b of the spacer , so that there is no residual metal on the substrate 300 except for the first metal gate 380 and the second metal gate 382 .

请参阅图14至图17,图14至图17为本发明所提供的具有金属栅极的半导体元件的制作方法的第四优选实施例的示意图。如前所述,本第四优选实施例中各元件所包含的材料选择同于前述优选实施例,因此本领域一般技术人员可参酌前述优选实施例而得知,故这些材料亦不再于第四优选实施例中赘述。如图14所示,本优选实施例首先提供基底400,其表面定义有第一有源区域410与第二有源区域412,且基底400内形成有多个用以电性隔离第一有源区域410与第二有源区域412的STI 402。接下来于第一有源区域410与第二有源区域412内的基底400上分别形成第一导电型晶体管420与第二导电型晶体管422。在本优选实施例中,第一导电型晶体管420为P型晶体管;而第二导电型晶体管422则为N型晶体管,但本领域一般技术人员应知反之亦可。Please refer to FIG. 14 to FIG. 17 . FIG. 14 to FIG. 17 are schematic diagrams of a fourth preferred embodiment of a method for manufacturing a semiconductor device with a metal gate provided by the present invention. As mentioned above, the material selection of each element in this fourth preferred embodiment is the same as that of the aforementioned preferred embodiment, so those skilled in the art can learn from the aforementioned preferred embodiment, so these materials are no longer included in the fourth preferred embodiment. The four preferred embodiments will be described in detail. As shown in Figure 14, this preferred embodiment firstly provides a substrate 400, the surface of which defines a first active region 410 and a second active region 412, and a plurality of active regions are formed in the substrate 400 to electrically isolate the first active regions. STI 402 of region 410 and second active region 412. Next, a first conductive type transistor 420 and a second conductive type transistor 422 are respectively formed on the substrate 400 in the first active region 410 and the second active region 412 . In this preferred embodiment, the first conductive type transistor 420 is a P-type transistor; and the second conductive type transistor 422 is an N-type transistor, but those skilled in the art should know that the reverse is also possible.

如图14所示,第一导电型晶体管420与第二导电型晶体管422各包含栅极介电层404、与虚置栅极406如多晶硅层、与图案化硬掩模(图未示)。此外,第一导电型晶体管420与第二导电型晶体管422分别包含第一LDD430与第二LDD 432、间隙壁434、与第一源极/漏极440与第二源极/漏极442。如前所述,在本优选实施例中,亦可利用SEG方法来制作第一源极/漏极440与第二源极/漏极442。此外,第一源极/漏极440与第二源极/漏极442表面分别包含有金属硅化物444。而在形成第一导电型晶体管420与第二导电型晶体管422之后,于基底400上依序形成覆盖第一导电型晶体管420与第二导电型晶体管422的CESL 450与ILD层452。As shown in FIG. 14 , the first conductivity type transistor 420 and the second conductivity type transistor 422 each include a gate dielectric layer 404 , a dummy gate 406 such as a polysilicon layer, and a patterned hard mask (not shown). In addition, the first conductive type transistor 420 and the second conductive type transistor 422 respectively include a first LDD 430 and a second LDD 432, a spacer 434, and a first source/drain 440 and a second source/drain 442. As mentioned above, in this preferred embodiment, the first source/drain 440 and the second source/drain 442 can also be fabricated by using the SEG method. In addition, the surfaces of the first source/drain 440 and the second source/drain 442 respectively include metal silicide 444 . After forming the first conductive type transistor 420 and the second conductive type transistor 422, the CESL 450 and the ILD layer 452 covering the first conductive type transistor 420 and the second conductive type transistor 422 are sequentially formed on the substrate 400.

请继续参阅图14。接下来可利用已知平坦化工艺,如CMP工艺,用以平坦化ILD层452与CESL 450。随后于第二有源区域412内形成图案化硬掩模438a,用以保护第二有源区域412内的虚置栅极406。待形成图案化硬掩模438a后,进行第一虚置栅极移除步骤456a移除第一导电型晶体管420的虚置栅极406,而于第一导电型晶体管420内形成第一开口460,且栅极介电层404暴露于第一开口460的底部。另外值得注意的是,第一虚置栅极移除步骤456a在移除虚置栅极时406,同时移除部分CESL 450,使CESL 450的顶部低于第一导电型晶体管420的间隙壁434与ILD层452而形成多个凹槽454a,凹槽454a具有深度,且该深度的范围介于50~150埃。Please continue with Figure 14. Next, a known planarization process, such as a CMP process, can be used to planarize the ILD layer 452 and the CESL 450. A patterned hard mask 438 a is then formed in the second active region 412 to protect the dummy gate 406 in the second active region 412 . After the patterned hard mask 438a is formed, a first dummy gate removal step 456a is performed to remove the dummy gate 406 of the transistor of the first conductivity type 420 , and a first opening 460 is formed in the transistor of the first conductivity type 420 , and the gate dielectric layer 404 is exposed at the bottom of the first opening 460 . It is also worth noting that the first dummy gate removal step 456a removes part of the CESL 450 while removing the dummy gate 406, so that the top of the CESL 450 is lower than the spacer 434 of the first conductivity type transistor 420 A plurality of grooves 454 a are formed with the ILD layer 452 , and the grooves 454 a have a depth ranging from 50˜150 angstroms.

请参阅图15。移除图案化硬掩模438a后,接下来于第一开口460内依序形成阻障层(图未示)、第一金属层470与填满第一开口460的填充金属层474。如前所述,第一金属层470可为满足P型晶体管所需功函数要求的金属;填充金属层474则为填洞能力优秀的金属材料。此外,在移除虚置栅极时406之后亦可选择性先形成high-K栅极介电层(图未示)。随后进行第一平坦化工艺,优选为金属CMP工艺,用以移除部分的填充金属层474与第一金属层470,完成第一导电型晶体管420的第一金属栅极480的制作。值得注意的是,金属CMP步骤停止于ILD层452的表面,故如图15所示,金属CMP工艺之后,部分第一金属层470或填充金属层474仍存留于凹槽454a内。See Figure 15. After the patterned hard mask 438a is removed, a barrier layer (not shown), a first metal layer 470 and a filling metal layer 474 filling the first opening 460 are sequentially formed in the first opening 460 . As mentioned above, the first metal layer 470 can be a metal that satisfies the work function requirement of the P-type transistor; the filling metal layer 474 is a metal material with excellent hole-filling ability. In addition, a high-K gate dielectric layer (not shown) may optionally be formed first after removing the dummy gate 406 . Then, a first planarization process, preferably a metal CMP process, is performed to remove part of the filling metal layer 474 and the first metal layer 470 to complete the fabrication of the first metal gate 480 of the first conductivity type transistor 420 . It should be noted that the metal CMP step stops on the surface of the ILD layer 452 , so as shown in FIG. 15 , after the metal CMP process, part of the first metal layer 470 or the filling metal layer 474 still remains in the groove 454 a.

请继续参阅图15。在完成第一金属栅极480的制作后,还于第一有源区域410内形成图案化硬掩模438b,用以保护第一有源区域412内的第一金属栅极480。随后,利用第二虚置栅极移除步骤456b移除第二导电型晶体管422的虚置栅极406,而于第二导电型晶体管422内形成第二开口462,且栅极介电层404亦暴露于第二开口462的底部。同理,第二虚置栅极移除步骤456b在移除虚置栅极406时,同时移除部分CESL 450,使CESL 450的顶部低于第二导电型晶体管422的间隙壁434与ILD层452而形成多个凹槽454b,凹槽454b的深度同于凹槽454a。Please continue with Figure 15. After the fabrication of the first metal gate 480 is completed, a patterned hard mask 438 b is formed in the first active region 410 to protect the first metal gate 480 in the first active region 412 . Subsequently, the dummy gate 406 of the transistor 422 of the second conductivity type is removed by using the second dummy gate removal step 456b, and a second opening 462 is formed in the transistor 422 of the second conductivity type, and the gate dielectric layer 404 It is also exposed at the bottom of the second opening 462 . Similarly, when removing the dummy gate 406 in the second dummy gate removal step 456b, part of the CESL 450 is removed at the same time, so that the top of the CESL 450 is lower than the spacer 434 and the ILD layer of the second conductivity type transistor 422 452 to form a plurality of grooves 454b, and the depth of the grooves 454b is the same as that of the grooves 454a.

请参阅图16。接下来移除图案化硬掩模438b,随后于第二开口462内可选择性先形成high-K栅极介电层(图未示)并依序形成阻障层(图未示)、第二金属层472与填充金属层474,第二金属层472可为满足N型晶体管所需功函数要求的金属。在形成第二金属层472与填充金属层474之后,进行金属CMP工艺458a,用以移除多余的填充金属层474与第二金属层472。值得注意的是,金属CMP工艺458a停止于ILD层452的表面,而获得第二导电型晶体管422的第二金属栅极482。See Figure 16. Next, the patterned hard mask 438b is removed, and then a high-K gate dielectric layer (not shown) can be selectively formed in the second opening 462 first, and a barrier layer (not shown), a barrier layer (not shown), and a barrier layer (not shown) can be formed sequentially. The second metal layer 472 and the filling metal layer 474, the second metal layer 472 can be a metal that meets the work function requirement of the N-type transistor. After forming the second metal layer 472 and the filling metal layer 474 , a metal CMP process 458 a is performed to remove the redundant filling metal layer 474 and the second metal layer 472 . It should be noted that the metal CMP process 458 a stops on the surface of the ILD layer 452 to obtain the second metal gate 482 of the second conductivity type transistor 422 .

请参阅图17。接下来还进行非选择性CMP工艺458b。与金属CMP工艺458a不同的是,非选择性CMP工艺458b为不具选择性的平坦化方法,因此非选择性CMP工艺458b用以移除ILD层452与凹槽454a/454b内的金属层470/472/474,故可完全移除凹槽454a/454b及其内的金属。换句话说,在非选择性CMP工艺458b之后,基底400表面,尤其是ILD层452、CESL450、间隙壁434、第一金属层470、第二金属层472与填充金属层474皆共平面,且与凹槽454a/454b的底部共平面。See Figure 17. A non-selective CMP process 458b is also performed next. Unlike the metal CMP process 458a, the non-selective CMP process 458b is a non-selective planarization method, so the non-selective CMP process 458b is used to remove the ILD layer 452 and the metal layer 470/ in the grooves 454a/454b. 472/474, so the groove 454a/454b and the metal in it can be completely removed. In other words, after the non-selective CMP process 458b, the surface of the substrate 400, especially the ILD layer 452, the CESL 450, the spacer 434, the first metal layer 470, the second metal layer 472, and the filling metal layer 474 are all coplanar, and Coplanar with the bottom of the recess 454a/454b.

另外请参阅图18。图18为本第四优选实施例的变化型的示意图。相类似的,本变化型与第四优选实施例的主要不同之处在于填满第一开口460与第二开口462的金属层474是同时形成的。例如在本变化型中,第一金属层470形成之后,于第一有源区域410内形成图案化硬掩模(图未示),以保护第一有源区域410内的第一金属层470,随后移除第二导电型晶体管422的虚置栅极406。而在移除虚置栅极406后,再移除第一有源区域410内的图案化硬掩模,随后于基底400上依序形成第二金属层472与填满第一开口460与第二开口462的填充金属层474。待完成所有金属层的制作后,先进行金属CMP工艺458a,移除多余的第三金属层474、第二金属层472与第一金属层470,而形成如图16所示的约略平坦的表面。如前所述,金属CMP工艺458a后,第一金属层470与第三金属层474仍存留于凹槽454a之内;而第二金属层472与第三金属层474存留于凹槽454b之内。接下来还进行非选择性CMP步骤458b,用以移除ILD层452与凹槽454a/454b内的金属层470/472/474,故可完全移除凹槽454a/454b及其内的金属。在非选择性CMP步骤458b之后,ILD层452、CESL 450、间隙壁434、第一金属层470、第二金属层472与填充金属层474皆共平面,且与凹槽454a/454b的底部共平面。Also see Figure 18. Fig. 18 is a schematic diagram of a variation of the fourth preferred embodiment. Similarly, the main difference between this variation and the fourth preferred embodiment is that the metal layer 474 filling the first opening 460 and the second opening 462 is formed simultaneously. For example, in this variation, after the first metal layer 470 is formed, a patterned hard mask (not shown) is formed in the first active region 410 to protect the first metal layer 470 in the first active region 410 , and then remove the dummy gate 406 of the transistor 422 of the second conductivity type. After the dummy gate 406 is removed, the patterned hard mask in the first active region 410 is removed, and then the second metal layer 472 is sequentially formed on the substrate 400 to fill the first opening 460 and the first opening 460 . Two openings 462 are filled with a metal layer 474 . After the fabrication of all the metal layers is completed, the metal CMP process 458a is first performed to remove the redundant third metal layer 474, the second metal layer 472 and the first metal layer 470 to form a roughly flat surface as shown in FIG. 16 . As mentioned above, after the metal CMP process 458a, the first metal layer 470 and the third metal layer 474 still remain in the groove 454a; while the second metal layer 472 and the third metal layer 474 remain in the groove 454b . Next, a non-selective CMP step 458b is performed to remove the ILD layer 452 and the metal layers 470/472/474 in the recesses 454a/454b, so that the recesses 454a/454b and the metals in the recesses 454a/454b can be completely removed. After non-selective CMP step 458b, ILD layer 452, CESL 450, spacer 434, first metal layer 470, second metal layer 472, and fill metal layer 474 are all coplanar and coplanar with the bottom of recess 454a/454b flat.

此外还须注意的事,本第四优选实施例与其变化型也不限于在形成第一开口460与凹槽454a之后先进行DHF蚀刻工艺,移除部分的ILD层452,使ILD层与原来的凹槽454a底部共平面。同理,亦不限于在形成第二开口462与凹槽454b之后进行DHF蚀刻工艺,移除部分的ILD层452,使ILD层与原来的凹槽454b底部共平面。待完成第一金属层470、第二金属层472与第三金属层474的制作后,依序进行上述的金属CMP步骤458a与非选择性CMP步骤458b。In addition, it should be noted that the fourth preferred embodiment and its variants are not limited to performing a DHF etching process after forming the first opening 460 and the groove 454a to remove part of the ILD layer 452, so that the ILD layer is consistent with the original The bottoms of the grooves 454a are coplanar. Similarly, it is not limited to performing the DHF etching process after forming the second opening 462 and the groove 454b to remove part of the ILD layer 452 so that the ILD layer is coplanar with the bottom of the original groove 454b. After the first metal layer 470 , the second metal layer 472 and the third metal layer 474 are fabricated, the above-mentioned metal CMP step 458 a and non-selective CMP step 458 b are performed in sequence.

根据本发明所提供的第四优选实施例,在分别形成第一开口460与第二开口462,以及分别形成第一金属层470、第二金属层472与填充金属层474之后,先利用金属CMP步骤458a移除多余的填充金属层474、第一金属层470与第二金属层472;再利用非选择性CMP步骤458b移除ILD层452与凹槽454a/454b内的金属层470、472、474。通过此两步骤CMP工艺,可成功地移除凹槽454a/454b与其内的金属层,使基底400上除第一金属栅极480与第二金属栅极482之外没有残余的金属存在。According to the fourth preferred embodiment of the present invention, after forming the first opening 460 and the second opening 462 respectively, and forming the first metal layer 470, the second metal layer 472 and the filling metal layer 474 respectively, first use metal CMP Step 458a removes redundant filling metal layer 474, first metal layer 470 and second metal layer 472; then non-selective CMP step 458b removes ILD layer 452 and metal layers 470, 472, 474. Through the two-step CMP process, the groove 454 a / 454 b and the metal layer inside can be successfully removed, so that there is no residual metal on the substrate 400 except for the first metal gate 480 and the second metal gate 482 .

综上所述,根据本发明所提供的具有金属栅极的半导体元件的制作方法,形成在CESL内的凹槽可通过凹槽移除步骤,例如进行于形成金属层之前的蚀刻工艺或进行于形成金属层之后的二阶段平坦化工艺等被移除,因此可避免形成于凹槽内的金属层在后续工艺中影响半导体元件的电性表现等问题。In summary, according to the method for manufacturing a semiconductor element with a metal gate provided by the present invention, the grooves formed in the CESL can be removed through a groove removal step, such as an etching process before forming a metal layer or in The two-stage planarization process after the formation of the metal layer is removed, so problems such as the metal layer formed in the groove affecting the electrical performance of the semiconductor device in subsequent processes can be avoided.

以上所述仅为本发明的优选实施例,凡依本发明的权利要求所做的等同变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

Claims (30)

1. manufacture method with semiconductor element of metal gates includes:
Substrate is provided, be formed with in this substrate at least one semiconductor element with cover this semiconductor element contact hole etching stopping layer and dielectric layer, and this semiconductor element comprises a nominal grid at least;
Carry out nominal grid and remove step,, remove this contact hole etching stopping layer of part simultaneously, make the top of this contact hole etching stopping layer be lower than this semiconductor element and this dielectric layer and form a plurality of grooves in this semiconductor element, to form at least one opening; And
Carry out groove and remove step, in this substrate, to form smooth dielectric layer surface.
2. manufacture method as claimed in claim 1, wherein this groove removes step and comprises dilution hydrogen fluoride etch technology, in order to this dielectric layer of etching.
3. manufacture method as claimed in claim 2, wherein this groove removes the bottom copline on this dielectric layer surface and this groove after the step.
4. manufacture method as claimed in claim 2 also is contained in this substrate surface and forms at least one metal level and the step of carrying out flatening process, is carried out at this groove in regular turn and removes after the step.
5. manufacture method as claimed in claim 1 also is contained in the step that this substrate surface forms at least one metal level, is carried out at this groove and removes before the step.
6. manufacture method as claimed in claim 5, wherein this groove removes step and also comprises:
Carry out the chemical mechanical polishing of metals step; And
Carry out non-selective chemical-mechanical polishing step.
7. manufacture method as claimed in claim 6, wherein this groove removes this metal level after the step, this dielectric layer contacts hole etching stopping layer copline with this.
8. manufacture method as claimed in claim 1; Wherein this semiconductor element comprises the CMOS transistor unit; This CMOS transistor unit also comprises first conductive-type transistor and second conductive-type transistor, and this first conductive-type transistor and this second conductive-type transistor also comprise this nominal grid respectively.
9. manufacture method as claimed in claim 8, wherein this nominal grid removes this nominal grid that step removes this first conductive-type transistor and this second conductive-type transistor simultaneously.
10. manufacture method with semiconductor element of metal gates includes:
Substrate is provided, be formed with at least one the first transistor, transistor seconds in this substrate, cover this first transistor and this transistor seconds contact hole etching stopping layer and dielectric layer;
Carry out first nominal grid and remove step,, remove this contact hole etching stopping layer of part simultaneously, make the top of this contact hole etching stopping layer be lower than this first transistor and this dielectric layer and form a plurality of first grooves in this first transistor, to form first opening;
Carry out first etch process, remove this dielectric layer of part, make this dielectric layer surface and these first bottom portion of groove coplines;
In this first opening, form the first metal layer;
Carry out second nominal grid and remove step, in this transistor seconds, to form second opening; And
In this second opening, form second metal level.
11. manufacture method as claimed in claim 10, wherein this second nominal grid removes step and removes this contact hole etching stopping layer of part simultaneously, makes the top of this contact hole etching stopping layer be lower than this transistor seconds and this dielectric layer and forms a plurality of second grooves.
12. manufacture method as claimed in claim 11 also comprises second etch process, is carried out to form after this second opening, in order to remove this dielectric layer of part, makes this dielectric layer surface and these second bottom portion of groove coplines.
13. manufacture method as claimed in claim 10 also is contained in the step that forms the 3rd metal level in this substrate.
14. manufacture method as claimed in claim 13, wherein the 3rd metal level is formed at before this second nominal grid that removes this transistor seconds, and the 3rd metal level fills up this first opening.
15. manufacture method as claimed in claim 14 also comprises the step of carrying out flatening process, in order to remove the 3rd metal level and this first metal layer of part.
16. manufacture method as claimed in claim 13, wherein the 3rd metal level is formed at and forms after this second metal level, and the 3rd metal level fills up this first opening and this second opening.
17. manufacture method as claimed in claim 16; Also comprise the step of carrying out flatening process; Remove the 3rd metal level, this first metal layer and this second metal level of part, make this first metal layer, this second metal level, the 3rd metal level, this dielectric layer contact hole etching stopping layer copline with this.
18. manufacture method as claimed in claim 17, wherein this flatening process also comprises:
Carry out the chemical mechanical polishing of metals step; And
Carry out non-selective chemical-mechanical polishing step.
19. the manufacture method with semiconductor element of metal gates includes:
Substrate is provided, be formed with at least one the first transistor, transistor seconds in this substrate, cover this first transistor and this transistor seconds contact hole etching stopping layer and dielectric layer;
Carry out first nominal grid and remove step,, remove this contact hole etching stopping layer of part simultaneously in this first transistor, to form first opening;
In this first opening, form the first metal layer;
Carry out second nominal grid and remove step,, remove this contact hole etching stopping layer of part simultaneously in this transistor seconds, to form second opening;
In this second opening, form second metal level;
In this substrate, form and fill metal level, and this filling metal level fills up this second opening at least;
Carry out chemical mechanical polishing of metals technology, to remove this filling metal level of part; And
Carry out non-selective chemical mechanical polishing of metals technology, so that should contact hole etching stopping layer, this dielectric layer and this filling metal level copline.
20. manufacture method as claimed in claim 19, wherein this first nominal grid removes the top that step makes this contact hole etching stopping layer and is lower than this first transistor and this dielectric layer, and forms a plurality of first grooves.
21. manufacture method as claimed in claim 20 also comprises first etch process, be carried out at form this first opening and these first grooves after, in order to remove this dielectric layer of part, make this dielectric layer surface and these first bottom portion of groove coplines.
22. manufacture method as claimed in claim 19 also comprises the step that forms the 3rd metal level, be carried out to form after this first metal layer, and the 3rd metal level fills up this first opening.
23. manufacture method as claimed in claim 22 also comprises the step of carrying out flatening process, is carried out to form after the 3rd metal level, in order to remove part the 3rd metal level.
24. manufacture method as claimed in claim 19, wherein this second nominal grid removes top that step makes this contact hole etching stopping layer and is lower than this transistor seconds and this dielectric layer and forms a plurality of second grooves.
25. manufacture method as claimed in claim 24 also comprises second etch process, be carried out at form this second opening and these second grooves after, in order to remove this dielectric layer of part, make this dielectric layer surface and these second bottom portion of groove coplines.
26. manufacture method as claimed in claim 19, wherein this non-selective chemical mechanical polishing of metals technology is in order to remove this first groove and this second groove.
27. the semiconductor element with metal gates includes:
Substrate;
Metal gates is formed in this substrate;
Clearance wall is formed at the sidewall of this metal gates;
Contact hole etching stopping layer and dielectric layer cover this clearance wall, and the top of this contact hole etching stopping layer is lower than this clearance wall top and dielectric layer and is formed with at least one groove; And
At least one metal level fills up this groove.
28. semiconductor element as claimed in claim 27, wherein this metal gate structure also includes:
Gate dielectric is arranged in this substrate;
Workfunction layers is arranged on this gate dielectric; And
Fill metal level, be arranged on this work function golden number layer.
29. semiconductor element as claimed in claim 28, wherein this metal level one of comprises in this workfunction layers and this filling metal level at least.
30. semiconductor element as claimed in claim 27, wherein this groove has a degree of depth, and the scope of this degree of depth is between 50~150 dusts.
CN2010105374760A 2010-11-04 2010-11-04 Semiconductor element with metal grid and manufacturing method thereof Pending CN102468238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105374760A CN102468238A (en) 2010-11-04 2010-11-04 Semiconductor element with metal grid and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105374760A CN102468238A (en) 2010-11-04 2010-11-04 Semiconductor element with metal grid and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN102468238A true CN102468238A (en) 2012-05-23

Family

ID=46071691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105374760A Pending CN102468238A (en) 2010-11-04 2010-11-04 Semiconductor element with metal grid and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN102468238A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681504A (en) * 2012-09-19 2014-03-26 中国科学院微电子研究所 Semiconductor device manufacturing method
CN103903968A (en) * 2012-12-24 2014-07-02 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof
CN104810368A (en) * 2014-01-28 2015-07-29 中芯国际集成电路制造(上海)有限公司 Cmos transistor and forming method thereof
CN109309003A (en) * 2017-07-26 2019-02-05 中芯国际集成电路制造(上海)有限公司 Method of forming a fin field effect transistor
CN109427682A (en) * 2017-08-30 2019-03-05 台湾积体电路制造股份有限公司 Semiconductor device and method for forming the same
CN109727919A (en) * 2017-10-30 2019-05-07 中芯国际集成电路制造(上海)有限公司 A kind of semiconductor devices and its manufacturing method and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027761A (en) * 2004-07-28 2007-08-29 英特尔公司 Planarizing a semiconductor structure to form replacement metal gates
US20080064153A1 (en) * 2005-03-03 2008-03-13 Agency For Science, Technology And Research Fully salicided (FUCA) MOSFET structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027761A (en) * 2004-07-28 2007-08-29 英特尔公司 Planarizing a semiconductor structure to form replacement metal gates
US20080064153A1 (en) * 2005-03-03 2008-03-13 Agency For Science, Technology And Research Fully salicided (FUCA) MOSFET structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681504A (en) * 2012-09-19 2014-03-26 中国科学院微电子研究所 Semiconductor device manufacturing method
CN103681504B (en) * 2012-09-19 2017-07-21 中国科学院微电子研究所 Semiconductor device manufacturing method
CN103903968A (en) * 2012-12-24 2014-07-02 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof
CN103903968B (en) * 2012-12-24 2017-02-08 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof
CN104810368A (en) * 2014-01-28 2015-07-29 中芯国际集成电路制造(上海)有限公司 Cmos transistor and forming method thereof
CN109309003A (en) * 2017-07-26 2019-02-05 中芯国际集成电路制造(上海)有限公司 Method of forming a fin field effect transistor
CN109427682A (en) * 2017-08-30 2019-03-05 台湾积体电路制造股份有限公司 Semiconductor device and method for forming the same
CN109427682B (en) * 2017-08-30 2021-05-07 台湾积体电路制造股份有限公司 Semiconductor element and method of forming the same
CN109727919A (en) * 2017-10-30 2019-05-07 中芯国际集成电路制造(上海)有限公司 A kind of semiconductor devices and its manufacturing method and electronic device
CN109727919B (en) * 2017-10-30 2020-12-18 中芯国际集成电路制造(上海)有限公司 Semiconductor device, manufacturing method thereof and electronic device

Similar Documents

Publication Publication Date Title
TWI618242B (en) Semiconductor device and method of forming same
CN105470200B (en) Semiconductor device with metal gate and method of making the same
CN106328539B (en) Multigate device and its manufacturing method
US9431404B2 (en) Techniques providing high-k dielectric metal gate CMOS
US9299704B2 (en) Semiconductor device and method for fabricating the same
US9184100B2 (en) Semiconductor device having strained fin structure and method of making the same
CN102456691B (en) Semiconductor device and manufacturing method for semiconductor device
CN106803484B (en) Semiconductor element and manufacturing method thereof
CN102237399B (en) Semiconductor element with metal gate and manufacturing method thereof
US9601620B2 (en) Transistor and fabrication method thereof
US20120319214A1 (en) Structure of metal gate and fabrication method thereof
CN114300363A (en) Semiconductor element and manufacturing method thereof
TW201342578A (en) Low starting voltage complementary MOS device
US10340381B2 (en) Method for fabricating semiconductor structure
US10043882B2 (en) Method of forming semiconductor device
US20120098043A1 (en) Semiconductor device having metal gate and manufacturing method thereof
CN109994472B (en) Semiconductor device and method for fabricating the same
US9524967B1 (en) Semiconductor device and method of forming the same
CN102468238A (en) Semiconductor element with metal grid and manufacturing method thereof
CN104916590A (en) Semiconductor device and manufacturing method thereof
CN101499440A (en) Method for manufacturing complementary metal oxide semiconductor element with dual metal grid
CN102956453B (en) Semiconductor device and manufacturing method thereof
CN114597129A (en) Semiconductor element and manufacturing method thereof
TWI591730B (en) Semiconductor device and fabricating method thereof
TWI497716B (en) Semiconductor device having metal gate and manufacturing methd thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120523