[go: up one dir, main page]

CN102454578A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
CN102454578A
CN102454578A CN2011103218620A CN201110321862A CN102454578A CN 102454578 A CN102454578 A CN 102454578A CN 2011103218620 A CN2011103218620 A CN 2011103218620A CN 201110321862 A CN201110321862 A CN 201110321862A CN 102454578 A CN102454578 A CN 102454578A
Authority
CN
China
Prior art keywords
shaft
thrust
hermetic compressor
thrust surface
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103218620A
Other languages
Chinese (zh)
Inventor
佐藤纯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN102454578A publication Critical patent/CN102454578A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

本发明提供一种密闭式压缩机,包括密闭容器、电动元件和压缩元件。压缩元件的轴具有:主轴部、从主轴部突出的凸缘部、和与凸缘部连接的偏心轴部。主轴承具有轴的凸缘部与其抵接并滑动的推力面。推力面由:与中心轴相比而远离压缩室的第1部分、和与中心轴相比而靠近压缩室的第2部分组成。推力面的第1部分的面积比第2部分的面积大。该密闭式压缩机效率高且可靠性高。

Figure 201110321862

The invention provides a hermetic compressor, which includes a hermetic container, a motor element and a compression element. The shaft of the compression element has a main shaft portion, a flange portion protruding from the main shaft portion, and an eccentric shaft portion connected to the flange portion. The main bearing has a thrust surface on which the flange portion of the shaft abuts and slides. The thrust surface consists of a first portion that is farther from the compression chamber than the central axis, and a second portion that is closer to the compression chamber than the central axis. The area of the first portion of the thrust surface is larger than the area of the second portion. The hermetic compressor has high efficiency and high reliability.

Figure 201110321862

Description

密闭式压缩机hermetic compressor

技术领域 technical field

本发明涉及用于冷冻冰箱等冷冻循环中的密闭式压缩机。The present invention relates to a hermetic compressor used in refrigerating cycles such as refrigerating refrigerators.

背景技术 Background technique

密闭式压缩机在密闭容器内包括:作为支承框体的缸体(block);设置于该缸体上部的压缩元件;和设置于缸体下部的电动元件。A hermetic compressor includes, in a hermetic container, a block as a support frame, a compression element provided at the top of the block, and an electric element provided at the bottom of the block.

固定有电动元件的转子的轴按照能够旋转的方式被支承在设置于缸体的大致中心的轴承部。通过该轴的旋转,将电动元件的驱动力传达到压缩元件。The shaft of the rotor to which the electric element is fixed is rotatably supported by a bearing portion provided substantially at the center of the cylinder. The rotation of the shaft transmits the driving force of the electric element to the compression element.

图8是现有的密闭式压缩机500的纵断面图。图9是密闭式压缩机500的缸体9的俯视图。FIG. 8 is a longitudinal sectional view of a conventional hermetic compressor 500 . FIG. 9 is a plan view of the cylinder 9 of the hermetic compressor 500 .

密闭式压缩机500包括密闭容器1和轴2。转子3和定子4构成作为电动元件的电机。轴2被压入转子3中。The hermetic compressor 500 includes a hermetic container 1 and a shaft 2 . The rotor 3 and the stator 4 constitute a motor as an electric element. The shaft 2 is pressed into the rotor 3 .

连杆5的一端被安装于作为轴2的偏心部的曲柄销11上。活塞销8安装于连杆5的另一端,且固定于活塞7上。连杆5、活塞销8、活塞7和气缸6构成压缩元件。冷冻机油10滞留在密闭容器1的下部。One end of the connecting rod 5 is attached to a crank pin 11 as an eccentric portion of the shaft 2 . Piston pin 8 is installed on the other end of connecting rod 5, and is fixed on the piston 7. Connecting rod 5, piston pin 8, piston 7 and cylinder 6 form a compression element. The refrigerating machine oil 10 stagnates in the lower part of the airtight container 1 .

在轴2的上部设有曲柄销11和平衡板12。曲柄销11偏心旋转,将压缩元件的活塞7往复驱动。在缸体9的轴承部15的上端面设有承受推力负载的推力面14。推力面14和平衡板12的下表面直接滑动,这样就在密闭压缩机500内构成推力滑动部。A crank pin 11 and a balance plate 12 are provided on the upper portion of the shaft 2 . The crank pin 11 rotates eccentrically, driving the piston 7 of the compression element to reciprocate. A thrust surface 14 that receives a thrust load is provided on an upper end surface of a bearing portion 15 of the cylinder 9 . The thrust surface 14 and the lower surface of the balance plate 12 directly slide, thus forming a thrust sliding part in the hermetic compressor 500 .

但是,现有的密闭式压缩机500,有时效率降低。However, the efficiency of the conventional hermetic compressor 500 may decrease.

在日本特开2000-120540号公报中公开了一种与密闭式压缩机500类似的密闭式压缩机。A hermetic compressor similar to the hermetic compressor 500 is disclosed in Japanese Patent Laid-Open No. 2000-120540.

发明内容 Contents of the invention

发明概要Summary of the invention

密闭式压缩机包括密闭容器、电动元件和压缩元件。压缩元件的轴具有:主轴部、从主轴部突出的凸缘部、和与凸缘部连接的偏心轴部。活塞在压缩室内在第1方向和与其相反的第2方向上往复运动。主轴承具有轴的凸缘部与其抵接并滑动的推力面。推力面由以下两个部分组成:在与第1方向平行的方向上,与中心轴相比远离压缩室的第1部分、和在与第1方向平行的方向上,与中心轴相比靠近压缩室的第2部分。推力面的第1部分的面积比第2部分的面积大。A hermetic compressor includes a hermetic container, a motor element and a compression element. The shaft of the compression element has a main shaft portion, a flange portion protruding from the main shaft portion, and an eccentric shaft portion connected to the flange portion. The piston reciprocates in a first direction and a second direction opposite thereto in the compression chamber. The main bearing has a thrust surface on which the flange portion of the shaft abuts and slides. The thrust surface consists of two parts: a first part that is farther away from the compression chamber than the central axis in a direction parallel to the first direction, and a compression chamber that is closer to the central axis than the central axis in a direction parallel to the first direction Part 2 of the room. The area of the first portion of the thrust surface is larger than the area of the second portion.

该密闭式压缩机效率高且可靠性高。The hermetic compressor has high efficiency and high reliability.

附图说明 Description of drawings

图1是本发明的实施方式1中的密闭式压缩机的纵断面图。Fig. 1 is a longitudinal sectional view of a hermetic compressor in Embodiment 1 of the present invention.

图2是实施方式1中的密闭式压缩机的气缸体(cylinder block)的俯视图。FIG. 2 is a plan view of a cylinder block of the hermetic compressor in Embodiment 1. FIG.

图3是实施方式1中的密闭式压缩机的主要部分断面图。3 is a sectional view of main parts of the hermetic compressor in Embodiment 1. FIG.

图4是实施方式1中的密闭式压缩机的电动元件的主要部分放大断面图。4 is an enlarged cross-sectional view of a main part of a motor element of the hermetic compressor in Embodiment 1. FIG.

图5表示对于实施方式1中的密闭式压缩机中的旋转角的反作用负载的变化。FIG. 5 shows changes in the reaction load with respect to the rotation angle in the hermetic-type compressor in Embodiment 1. FIG.

图6是本发明的实施方式2中的密闭式压缩机的压缩元件的纵断面图。Fig. 6 is a longitudinal sectional view of a compression element of a hermetic compressor according to Embodiment 2 of the present invention.

图7是实施方式2中的密闭式压缩机的压缩元件的分解立体图。7 is an exploded perspective view of a compression element of the hermetic compressor in Embodiment 2. FIG.

图8是现有的密闭式压缩机的纵断面图。Fig. 8 is a longitudinal sectional view of a conventional hermetic compressor.

图9是现有的密闭式压缩机的缸体的俯视图。Fig. 9 is a plan view of a cylinder of a conventional hermetic compressor.

具体实施方式 Detailed ways

(实施方式1)(Embodiment 1)

图1是本发明的实施方式1中的密闭式压缩机1001的纵断面图。密闭式压缩机1001包括:密闭容器101、配置于密闭容器101内的电动元件105、和配置于密闭容器101内的压缩元件106。密闭容器101用来贮存润滑油102。电动元件105包括定子103和转子104。压缩元件106附设于电动元件105的上方,且通过电动元件105驱动。Fig. 1 is a longitudinal sectional view of a hermetic compressor 1001 in Embodiment 1 of the present invention. The hermetic compressor 1001 includes an airtight container 101 , an electric element 105 arranged in the airtight container 101 , and a compression element 106 arranged in the airtight container 101 . The airtight container 101 is used to store lubricating oil 102 . The electric element 105 includes a stator 103 and a rotor 104 . The compression element 106 is attached above the electric element 105 and driven by the electric element 105 .

构成压缩元件106的轴110具备:沿着中心轴C111延伸的主轴部111;按照远离中心轴C111的方式从主轴部111突出的凸缘部(flange)112;以及与中心轴C111平行且从凸缘部112的上表面112A延伸的偏心轴部113。中心轴C111在方向轴1001A延伸。在实施方式1中,方向轴1001A沿着垂直方向延伸。主轴部111从凸缘部112在沿着方向轴1001A的方向111C上延伸。在实施方式1中,方向111C朝着垂直方向的下方。偏心轴部113设置在相对于主轴部111偏心的位置,即,偏心轴部113与中心轴C111平行且沿着与中心轴C111不同的中心轴C113延伸,从凸缘部112向与方向111C相反的方向111D延伸。方向111D在实施方式1中朝着垂直方向的上方。转子104热压固定(shrinkfitted)于主轴部111。在轴110的内部设有给油机构114。在轴110的表面设有螺旋状的给油槽114A。给油槽114A的一端与给油机构114连通,另一端向凸缘部112的下表面112B延伸。The shaft 110 constituting the compression element 106 includes: a main shaft part 111 extending along the central axis C111; a flange part (flange) 112 protruding from the main shaft part 111 away from the central axis C111; The eccentric shaft portion 113 extends from the upper surface 112A of the edge portion 112 . Central axis C111 extends along direction axis 1001A. In Embodiment 1, direction axis 1001A extends along the vertical direction. The main shaft portion 111 extends from the flange portion 112 in a direction 111C along the direction axis 1001A. In Embodiment 1, the direction 111C is directed downward in the vertical direction. The eccentric shaft portion 113 is provided at an eccentric position with respect to the main shaft portion 111, that is, the eccentric shaft portion 113 is parallel to the central axis C111 and extends along a central axis C113 different from the central axis C111, and is opposite to the direction 111C from the flange portion 112. The direction 111D extends. Direction 111D is directed upward in the vertical direction in Embodiment 1. FIG. The rotor 104 is shrinkfitted to the main shaft 111 . An oil supply mechanism 114 is provided inside the shaft 110 . A spiral oil supply groove 114A is provided on the surface of the shaft 110 . One end of the oil supply groove 114A communicates with the oil supply mechanism 114 , and the other end extends toward the lower surface 112B of the flange portion 112 .

在构成压缩元件106的汽缸体115中,形成在与方向轴1001A成直角的方向轴1001B上延伸的呈大致圆筒形的压缩室116。在汽缸体115中设有在方向轴1001A上延伸的主轴承117。在主轴承117中设有轴110的主轴部111贯穿其中的轴孔117A。轴孔117A沿着中心轴C117延伸。In the cylinder block 115 constituting the compression element 106 , a substantially cylindrical compression chamber 116 extending on a direction axis 1001B perpendicular to the direction axis 1001A is formed. A main bearing 117 extending on the direction axis 1001A is provided in the cylinder block 115 . A shaft hole 117A through which the main shaft portion 111 of the shaft 110 passes is provided in the main bearing 117 . The shaft hole 117A extends along the central axis C117.

活塞118在方向轴1001B上以自由往复滑动的方式插入气缸体115的压缩室116中。活塞118具有与方向轴1001A平行地延伸的活塞销120。活塞销120即活塞118被连结机构119与轴110连结。连结机构119的一端以能够旋转的方式贯穿活塞销120,连结机构119的另一端以能够旋转的方式贯穿偏心轴部113。压缩室116(活塞118)位于从中心轴C111与方向轴1001B平行的方向116A上。The piston 118 is inserted into the compression chamber 116 of the cylinder block 115 in a free reciprocating sliding manner on the direction axis 1001B. The piston 118 has a piston pin 120 extending parallel to the direction axis 1001A. The piston pin 120 , that is, the piston 118 is coupled to the shaft 110 by a coupling mechanism 119 . One end of the link mechanism 119 is rotatably inserted through the piston pin 120 , and the other end of the link mechanism 119 is rotatably inserted through the eccentric shaft portion 113 . Compression chamber 116 (piston 118 ) is located in direction 116A parallel to direction axis 1001B from center axis C111 .

气缸体115中的主轴承117的端面117C具有平坦的平面的推力面121。推力面121与凸缘部112的下表面112B直接滑动,轴110在贯穿轴孔117A的状态下,支承因转子104和轴110的自重所产生的垂直方向的负载、和因受到活塞118的压缩作用所产生的负载的影响而产生的垂直方向的负载。推力面121与凸缘部112的下面112B直接滑动,这样就构成推力滑动部。An end surface 117C of the main bearing 117 in the cylinder block 115 has a flat, planar thrust surface 121 . The thrust surface 121 slides directly on the lower surface 112B of the flange portion 112, and the shaft 110 supports the load in the vertical direction due to the self-weight of the rotor 104 and the shaft 110 and the compression due to the piston 118 while the shaft 110 passes through the shaft hole 117A. The load in the vertical direction due to the influence of the load generated by the action. The thrust surface 121 directly slides with the lower surface 112B of the flange portion 112, thus constituting a thrust sliding portion.

图2是密闭式压缩机1001的气缸体115的推力面121的从方向111C看到的俯视图。图3是密闭式压缩机1001的主要部分断面图。如图2所示,推力面121在与推力面121相同的平面中完全包围轴孔117A,即推力面121的内边缘121D在与推力面121相同的平面中完全包围轴孔117A。推力面121的外边缘121C在与方向轴1001A(图1)平行的方向上观看具有呈大致正圆形的形状。该正圆形的中心C121位于相对于轴孔117A的中心轴C117,在所限制的方向上仅偏移规定距离L11的偏心位置上。即,推力面121的中心C121在与朝着压缩室116的方向116A相反的方向116B上,从中心轴C117仅偏移规定距离L11。FIG. 2 is a plan view of the thrust surface 121 of the cylinder block 115 of the hermetic compressor 1001 viewed from a direction 111C. FIG. 3 is a sectional view of main parts of the hermetic compressor 1001 . As shown in FIG. 2 , the thrust surface 121 completely surrounds the shaft hole 117A in the same plane as the thrust surface 121 , that is, the inner edge 121D of the thrust surface 121 completely surrounds the shaft hole 117A in the same plane as the thrust surface 121 . The outer edge 121C of the thrust surface 121 has a substantially perfect circular shape when viewed in a direction parallel to the direction axis 1001A ( FIG. 1 ). The center C121 of this perfect circle is located at an eccentric position shifted by a predetermined distance L11 in a restricted direction with respect to the center axis C117 of the shaft hole 117A. That is, the center C121 of the thrust surface 121 is shifted by a predetermined distance L11 from the central axis C117 in the direction 116B opposite to the direction 116A toward the compression chamber 116 .

推力面121的推力宽度124是以中心轴C117为中心的辐射方向上的内边缘121D与外边缘121C之间的距离。在推力宽度124中,离轴孔117A的中心轴C117的方向116A的推力宽度124A最小,离中心轴C117的方向116B的推力宽度124B最大。即,在远离压缩室116的方向116B上,推力宽度124最大。这样,推力面121的面积在离开压缩室116的方向上逐渐增大。在与方向轴1001B平行的方向116A、116B上,与中心轴C117相比更远离压缩室116的方向116B的推力面121的部分121B的面积比与中心轴C117相比更靠近压缩室116的方向116A的推力面121的部分121A的面积大。The thrust width 124 of the thrust surface 121 is the distance between the inner edge 121D and the outer edge 121C in the radial direction centered on the central axis C117 . Among the thrust widths 124, the thrust width 124A in the direction 116A from the central axis C117 of the shaft hole 117A is the smallest, and the thrust width 124B in the direction 116B from the central axis C117 is the largest. That is, thrust width 124 is greatest in direction 116B away from compression chamber 116 . In this way, the area of the thrust surface 121 gradually increases in the direction away from the compression chamber 116 . In the directions 116A, 116B parallel to the direction axis 1001B, the area of the portion 121B of the thrust surface 121 in the direction 116B farther from the compression chamber 116 than the central axis C117 is compared to the direction closer to the compression chamber 116 than the central axis C117 Part 121A of thrust surface 121 of 116A has a large area.

在推力面121中的最靠近压缩室116的位置设有油槽127,其与作为压缩室116的轴线方向的方向轴1001B平行地延伸。从密闭容器101的下部被给油机构114汲起并通过给油槽114A的润滑油102通过油槽127,主要润滑在推力面121和凸缘部112的下面112B中所形成的滑动部。At a position closest to the compression chamber 116 on the thrust surface 121 , an oil groove 127 extending parallel to a direction axis 1001B which is the axial direction of the compression chamber 116 is provided. Lubricating oil 102 sucked up from the lower portion of airtight container 101 by oil supply mechanism 114 and passed through oil supply groove 114A passes through oil groove 127 and mainly lubricates the sliding portion formed in thrust surface 121 and lower surface 112B of flange portion 112 .

将油槽127设置在最靠近压缩室116的位置,这样,在推力面121中的远离压缩室116的部分121B,确保与轴110的凸缘部112滑动的面积。The oil groove 127 is provided at the position closest to the compression chamber 116 so that a sliding area with the flange portion 112 of the shaft 110 is ensured at a portion 121B of the thrust surface 121 away from the compression chamber 116 .

对推力面121实施氮化处理和、利用CrN、TiN等陶瓷的陶瓷涂层处理,将其加工成摩擦小、硬度强的表面。The thrust surface 121 is subjected to nitriding treatment and ceramic coating treatment using ceramics such as CrN and TiN to process it into a surface with low friction and high hardness.

图4是密闭式压缩机1001的电动元件105的主要部分放大断面图。电动元件105的定子103的铁芯具有多个齿部,构成具有集中卷绕在多个齿部上的绕组的集中卷绕式的电动元件105。转子104的磁中心126相对于定子103的磁中心125,在方向111C上仅偏移规定距离L12。在实施方式1中,方向111C朝着垂直方向的下方。FIG. 4 is an enlarged sectional view of main parts of the electric element 105 of the hermetic compressor 1001 . The iron core of the stator 103 of the electric element 105 has a plurality of teeth, and constitutes a concentrated winding type electric element 105 having a winding wound on the plurality of teeth. The magnetic center 126 of the rotor 104 is shifted by a predetermined distance L12 in the direction 111C from the magnetic center 125 of the stator 103 . In Embodiment 1, the direction 111C is directed downward in the vertical direction.

电动元件105能够根据逆变器控制按照不同的转数运转,在实施方式1中,其转数通常是60Hz,最高转数被设定为80Hz。The electric element 105 can operate at different rotation speeds according to inverter control. In the first embodiment, the rotation speed is usually 60 Hz, and the maximum rotation speed is set at 80 Hz.

图8和图9所示的现有的密闭式压缩机500包括:设置于作为支撑框体的缸体9的上部的压缩元件、和设置于缸体9的下部的电动元件。在现有的密闭式压缩机500中,在压缩过程中产生受到气缸6内的压力和孔径控制的活塞负载的反作用力。该反作用力作为负载作用在轴2的曲柄销11的侧面。The conventional hermetic compressor 500 shown in FIGS. 8 and 9 includes a compression element provided on the upper portion of the cylinder 9 as a support frame, and an electric element provided on the lower portion of the cylinder 9 . In the conventional hermetic compressor 500, the reaction force of the piston load controlled by the pressure in the cylinder 6 and the bore diameter is generated during compression. This reaction force acts as a load on the side of the crank pin 11 of the shaft 2 .

在设置于轴2和缸体9的轴承部15中有10~30μm左右的间隙。轴2倾斜,在推力滑动部和轴颈滑动部中与缸体9接触。在推力滑动部中受到该活塞负载的影响,轴2和转子3的自重以上的负载变成负荷而发生作用。There is a gap of about 10 to 30 μm in the bearing portion 15 provided between the shaft 2 and the cylinder 9 . The shaft 2 is inclined, in contact with the cylinder 9 in the thrust slide and the journal slide. In the thrust sliding part, due to the influence of the piston load, the load greater than the self-weight of the shaft 2 and the rotor 3 acts as a load.

由以上可知,在包括设置于作为支承框体的缸体9的上部的压缩元件、以及设置于缸体9的下部的电动元件的压缩机500中,作为推力负载,除了轴2和转子3的自重以外,还附加有活塞7的负载的影响,推力滑动部的面压局部增加,容易发生所谓的一端接触。As can be seen from the above, in the compressor 500 including the compression element provided on the upper part of the cylinder 9 as a supporting frame and the electric element provided on the lower part of the cylinder 9, as thrust loads, the shaft 2 and the rotor 3 In addition to its own weight, the load of the piston 7 is also added, and the surface pressure of the thrust sliding part increases locally, so that so-called one-end contact tends to occur.

由此可知,在密闭式压缩机500中,为了降低局部增加的推力滑动部的面压,确保整个推力滑动部的滑动面积,防止推力滑动部的局部的面压增加。From this, it can be seen that in the hermetic compressor 500 , in order to reduce the locally increased surface pressure of the thrust sliding part, the sliding area of the entire thrust sliding part is ensured, and the local surface pressure of the thrust sliding part is prevented from increasing.

但是,如果增加推力滑动部的滑动面积,那么,推力滑动部中的滑动阻力就会增加,所以,有时推力滑动部的滑动损失增加,效率降低。However, if the sliding area of the thrust sliding portion is increased, the sliding resistance in the thrust sliding portion will increase, so the sliding loss of the thrust sliding portion may increase and the efficiency may decrease.

以下,对于实施方式1中的密闭式压缩机1001说明其作用。密闭式压缩机1001与制冷剂气体在其中循环的冷却系统连接。Hereinafter, the action of hermetic compressor 1001 in Embodiment 1 will be described. The hermetic compressor 1001 is connected to a cooling system in which refrigerant gas circulates.

对电动元件105通电,转子104使轴110旋转,与此同时,以中心轴C111为中心的偏心轴部113的旋转运动通过连结机构119传到活塞销118。结果是,活塞118在压缩室116内与方向轴1001B平行地往复运动。When the electric element 105 is energized, the rotor 104 rotates the shaft 110 , and at the same time, the rotational motion of the eccentric shaft portion 113 around the central axis C111 is transmitted to the piston pin 118 through the coupling mechanism 119 . As a result, the piston 118 reciprocates within the compression chamber 116 parallel to the direction axis 1001B.

根据活塞118的往复运动,制冷剂气体从冷却系统被吸入压缩室116内,被压缩后再次向冷却系统喷出。According to the reciprocating motion of the piston 118, the refrigerant gas is sucked into the compression chamber 116 from the cooling system, compressed, and then sprayed out to the cooling system again.

活塞118在压缩室116中压缩制冷剂气体时承受方向116B的反作用负载F1。随着轴110的旋转,在形成于气缸体115的上端面117C的推力面121的整个表面,如图3所示,转子104和轴110的自重所产生的垂直方向的方向轴1001A的朝下的方向111C的负载F3作用在上面。同时,在推力面121上,因反作用负载F1产生的作为与方向轴1001A平行的方向的分力的负载F2局部发生作用。在设置于轴110中的凸缘部112的下面112B和推力面121的直接滑动中,根据凸缘部112的下表面112B和推力面121的接触面积的大小,负载F2对滑动损失以及面压产生影响。Piston 118 is subjected to a reaction load F1 in direction 116B when compressing refrigerant gas in compression chamber 116 . As the shaft 110 rotates, on the entire surface of the thrust surface 121 formed on the upper end surface 117C of the cylinder block 115, as shown in FIG. The load F3 in the direction 111C acts on it. Simultaneously, on the thrust surface 121 , a load F2 which is a component force in a direction parallel to the direction axis 1001A due to the reaction load F1 acts locally. In the direct sliding between the lower surface 112B of the flange portion 112 provided on the shaft 110 and the thrust surface 121, the load F2 affects the sliding loss and the surface pressure depending on the size of the contact area between the lower surface 112B of the flange portion 112 and the thrust surface 121. make an impact.

图5表示相对于密闭式压缩机1001中的压缩行程的旋转角反作用负载F1的变化。在图5中,纵坐标表示反作用负载F1的大小,横坐标表示轴110的旋转角。在0度旋转角时,活塞118在方向116A上离中心轴C111最远,按照最高的压缩比来压缩制冷剂气体。在轴110从0度旋转角至180度旋转角的旋转中,活塞118在压缩室116内进行吸入制冷剂气体的吸入行程,在轴110从180度旋转角至360度旋转角的旋转中,进行压缩制冷剂气体的压缩行程。参照图3、图5,对在推力面121中局部产生作用的、且因活塞118的反作用负载F1的影响而产生的方向111C(与方向轴1001A平行的方向)的负载F2进行说明。FIG. 5 shows changes in the rotation angle reaction load F1 with respect to the compression stroke in the hermetic compressor 1001 . In FIG. 5 , the ordinate represents the magnitude of the reaction load F1 , and the abscissa represents the rotation angle of the shaft 110 . At a rotation angle of 0 degrees, the piston 118 is farthest from the central axis C111 in the direction 116A, compressing the refrigerant gas at the highest compression ratio. During the rotation of the shaft 110 from 0 to 180 degrees of rotation, the piston 118 performs a suction stroke of sucking refrigerant gas in the compression chamber 116, and during the rotation of the shaft 110 from 180 degrees of rotation to 360 degrees of rotation, A compression stroke that compresses the refrigerant gas is performed. 3 and 5 , load F2 in direction 111C (direction parallel to direction axis 1001A) acting locally on thrust surface 121 and caused by the influence of reaction load F1 of piston 118 will be described.

作用在活塞118上的反作用负载F1由压缩室116内的压力和压缩室116的内径决定。在压缩行程中,轴110在方向116A上按压活塞118,所以,如图5所示,并非在360度旋转角时而是压缩行程后半程的330度附近,反作用负载F1变成最大反作用负载F1max,通过连结机构119极大地作用在轴110上。The reaction load F1 acting on the piston 118 is determined by the pressure in the compression chamber 116 and the inner diameter of the compression chamber 116 . In the compression stroke, the shaft 110 presses the piston 118 in the direction 116A. Therefore, as shown in FIG. 5 , the reaction load F1 becomes the maximum reaction load F1max not at the rotation angle of 360 degrees but at around 330 degrees in the second half of the compression stroke. , greatly acts on the shaft 110 through the coupling mechanism 119 .

在产生最大反作用负载F1max的压缩行程的后半程,偏心轴部113在与方向轴1001B平行的方向上位于与中心轴C117相比更靠近压缩室116的位置,作用在活塞118上的反作用负载F1通过连结机构119作用在偏心轴部113上。In the second half of the compression stroke that generates the maximum reaction load F1max, the eccentric shaft portion 113 is located closer to the compression chamber 116 than the central axis C117 in the direction parallel to the direction axis 1001B, and the reaction load acting on the piston 118 F1 acts on the eccentric shaft portion 113 via the coupling mechanism 119 .

在轴110的主轴部111的直径和主轴承117的轴孔117A的直径上设置有10~30μm左右的间隙。反作用负载F1在方向116B上作用于偏心轴部113上。因上述间隙,在轴110上发生朝着轴孔117A的中心轴C117的倾斜。因该倾斜,在中心轴C117上,在推力面121中的和压缩室116大致相反一侧的区域,作为反作用负载F1的与方向轴1001A平行的方向上的分力的负载F2作用在推力面121上。A gap of about 10 to 30 μm is provided between the diameter of the main shaft portion 111 of the shaft 110 and the diameter of the shaft hole 117A of the main bearing 117 . The reaction load F1 acts on the eccentric shaft portion 113 in the direction 116B. Due to the above clearance, inclination toward the central axis C117 of the shaft hole 117A occurs on the shaft 110 . Due to this inclination, on the center axis C117, in the region of the thrust surface 121 on the side substantially opposite to the compression chamber 116, the load F2, which is the component force of the reaction load F1 in the direction parallel to the direction axis 1001A, acts on the thrust surface. 121 on.

因此,在整个推力面121上,因转子104和轴110的自重所产生的方向111C的负载F3发生作用,对于中心轴C111,在与压缩室116大致相反一侧的部分121B,因反作用负载F1的影响而产生的方向111C的负载F2发生作用。Therefore, the load F3 in the direction 111C due to the self-weight of the rotor 104 and the shaft 110 acts on the entire thrust surface 121, and the reaction load F1 is applied to the portion 121B on the side substantially opposite to the compression chamber 116 on the central axis C111. The load F2 in the direction 111C generated by the effect of the action.

使推力面121的中心C121相对于轴孔117A的中心轴C117仅偏移规定距离L11,这样,形成推力面121的推力宽度124在整个范围变得不均一。By shifting the center C121 of the thrust surface 121 by a predetermined distance L11 from the central axis C117 of the shaft hole 117A, the thrust width 124 forming the thrust surface 121 becomes non-uniform throughout.

即,在局部确保增大承受因活塞118的压缩作用而产生的反作用负载F1的影响所产生的垂直方向的负载F2的推力面121的部分121B(与中心轴C117相比而远离压缩室116的部分121B)的推力宽度124B,使与中心轴C117相比而靠近压缩室116的部分121A的推力宽度124A比推力宽度124B小。这样就能抑制因在推力面121上局部产生作用的负载F2而引起的面压增加。That is, the portion 121B of the thrust surface 121 (the portion farther from the compression chamber 116 than the central axis C117) that receives the load F2 in the vertical direction due to the influence of the reaction load F1 caused by the compression action of the piston 118 is locally increased. The thrust width 124B of the portion 121B) is such that the thrust width 124A of the portion 121A closer to the compression chamber 116 than the central axis C117 is smaller than the thrust width 124B. This suppresses an increase in the face pressure due to the load F2 acting locally on the thrust face 121 .

结果是,能够降低凸缘部112的下面112B和推力面121所形成的推力滑动部的滑动损失。因防止承受负载F2的部分121B的面压增加,降低推力面121的偏磨耗,能够提高密闭式压缩机1001的效率和可靠性。根据该构造,能够减少整个推力面121的面积,进一步降低推力面121的偏磨耗,提高密闭式压缩机1001的效率,提高可靠性。As a result, the sliding loss of the thrust sliding portion formed by the lower surface 112B of the flange portion 112 and the thrust surface 121 can be reduced. The efficiency and reliability of the hermetic compressor 1001 can be improved by preventing the surface pressure of the portion 121B receiving the load F2 from increasing and reducing partial wear of the thrust surface 121 . According to this structure, the area of the entire thrust surface 121 can be reduced, and the partial wear of the thrust surface 121 can be further reduced, thereby improving the efficiency and reliability of the hermetic compressor 1001 .

另外,能够增加从设置于推力面121上的油槽127供给推力面121的给油量,更多的润滑油102润滑推力面121的滑动部。将油槽127设置于推力面121中的比推力宽度124更小的部分121A,能够确保与面压大幅发生作用的一侧的凸缘部112的下表面112B滑动的面积,并且能够防止面压增加。结果是,能够改善推力面121的滑动部的润滑状态,进一步提高密闭式压缩机1001的可靠性。In addition, the amount of oil supplied to the thrust surface 121 from the oil groove 127 provided on the thrust surface 121 can be increased, and more lubricating oil 102 can lubricate the sliding portion of the thrust surface 121 . Providing the oil groove 127 in the portion 121A of the thrust surface 121 that is smaller than the thrust width 124 can ensure a sliding area with the lower surface 112B of the flange portion 112 on the side where the surface pressure largely acts, and can prevent the surface pressure from increasing. . As a result, the lubrication state of the sliding portion of the thrust surface 121 can be improved, and the reliability of the hermetic compressor 1001 can be further improved.

对推力面121实施氮化处理、利用CrN、TiN等陶瓷的陶瓷涂层处理,所以,推力面121变成摩擦少、硬度强的表面,能够进一步减少凸缘部112的下表面112B与滑动面121接触滑动时的滑动阻力。因此,能够进一步减少推力滑动部的滑动损失,提高效率,另外,通过增强推力面121的表面硬度,能够提高推力滑动部的耐磨性。The thrust surface 121 is subjected to nitriding treatment and ceramic coating treatment using ceramics such as CrN and TiN. Therefore, the thrust surface 121 becomes a surface with less friction and high hardness, and the friction between the lower surface 112B of the flange portion 112 and the sliding surface can be further reduced. 121 Sliding resistance when contact sliding. Therefore, the sliding loss of the thrust sliding portion can be further reduced to improve efficiency, and the wear resistance of the thrust sliding portion can be improved by increasing the surface hardness of the thrust surface 121 .

通过推力面121的摩擦少、硬度高的加工,能够进一步缩小作用在整个推力面121的滑动上的面积,实现更少的摩擦。By processing the thrust surface 121 with less friction and high hardness, the area acting on the sliding of the entire thrust surface 121 can be further reduced to achieve less friction.

在推力面121中,按照方向111C的负载F2作用的部分121B从靠近压缩室116的部分121A在方向111C上偏移变低的方式,推力面121发生倾斜。即,推力面121沿着方向116B朝着方向111C倾斜。这样就能使凸缘部112的下表面112B整体抵接推力面121的整个表面。结果是,不仅能够进一步避免推力滑动部的一端接触,而且能够防止局部的面压增加,抑制推力滑动部的偏磨耗。Thrust surface 121 is inclined so that portion 121B where load F2 acts in direction 111C is offset in direction 111C from portion 121A close to compression chamber 116 to become lower. That is, thrust surface 121 is inclined toward direction 111C along direction 116B. In this way, the entire lower surface 112B of the flange portion 112 can be brought into contact with the entire surface of the thrust surface 121 . As a result, not only can one end contact of the thrust sliding portion be further avoided, but also local surface pressure increase can be prevented, and partial wear of the thrust sliding portion can be suppressed.

在电动元件105中,转子104的磁中心126相对于定子103的磁中心125在方向111C上偏移,所以,因磁吸引力,产生将固定在转子104上的轴110朝着上方的方向111D抬起的作用。结果是,在旋转时因转子104和轴110的自重产生的垂直方向111C的负载F3减少。这样,推力面121的面压减少,因此,能够获得密闭式压缩机1001的高可靠性。In the electric element 105, the magnetic center 126 of the rotor 104 is shifted in the direction 111C with respect to the magnetic center 125 of the stator 103, so due to the magnetic attraction force, the shaft 110 fixed on the rotor 104 is directed upward in the direction 111D. lifting effect. As a result, the load F3 in the vertical direction 111C due to the self-weight of the rotor 104 and the shaft 110 during rotation is reduced. In this way, the surface pressure of the thrust surface 121 is reduced, so that the high reliability of the hermetic compressor 1001 can be obtained.

如上所述,密闭式压缩机1001包括密闭容器101和电动元件105以及压缩元件106。电动元件105具有定子103和转子104且设置于在密闭容器101内。压缩元件106被电动元件105驱动且设置于密闭容器101内。压缩元件106具有轴110、气缸体115、活塞118和连结机构119以及主轴承117。轴110具有:沿着中心轴C111延伸的主轴部111、从主轴部111突出的凸缘部112、以及与凸缘部112连接的偏心轴部113,且固定有转子104。气缸体115具有位于从主轴部111的中心轴C111至与中心轴C111成直角的方向116A上的压缩室116。活塞118在压缩室116内,在方向116A和方向116A的相反方向116B上往复运动。连结机构119连结活塞118和偏心轴部113。在主轴承117上形成有将轴110的主轴部111轴支承的轴孔117A。主轴承117具有包围轴孔117A且轴110的凸缘部112与其抵接并滑动的推力面121。推力面121由以下两部分组成:在与方向116A平行的方向116A、116B上,与中心轴C111相比远离压缩室116的部分121B、和与中心轴C111相比靠近压缩室116的部分121A。推力面121的部分121B的面积比部分121A大。As described above, the hermetic compressor 1001 includes the hermetic container 101 , the electric element 105 and the compression element 106 . The electric element 105 has a stator 103 and a rotor 104 and is installed in the airtight container 101 . The compression element 106 is driven by the electric element 105 and is disposed in the airtight container 101 . The compression element 106 has a shaft 110 , a cylinder block 115 , a piston 118 , a coupling mechanism 119 , and a main bearing 117 . Shaft 110 has main shaft portion 111 extending along central axis C111 , flange portion 112 protruding from main shaft portion 111 , and eccentric shaft portion 113 connected to flange portion 112 , and rotor 104 is fixed thereto. The cylinder block 115 has a compression chamber 116 located in a direction 116A from a central axis C111 of the main shaft portion 111 to a direction 116A perpendicular to the central axis C111 . Piston 118 reciprocates within compression chamber 116 in a direction 116A and a direction 116B opposite to direction 116A. The connecting mechanism 119 connects the piston 118 and the eccentric shaft portion 113 . A shaft hole 117A for pivotally supporting the main shaft portion 111 of the shaft 110 is formed in the main bearing 117 . The main bearing 117 has a thrust surface 121 that surrounds the shaft hole 117A and on which the flange portion 112 of the shaft 110 abuts and slides. Thrust surface 121 consists of two parts: part 121B farther from compression chamber 116 than central axis C111 in directions 116A, 116B parallel to direction 116A, and part 121A closer to compression chamber 116 than central axis C111. Portion 121B of thrust surface 121 has a larger area than portion 121A.

推力面121支承因转子104和轴110的自重产生的垂直方向111C上的负载F3、和作为因活塞118的压缩作用而产生的反作用负载F1的方向111C上的分力的负载F2。Thrust surface 121 supports load F3 in vertical direction 111C due to the weight of rotor 104 and shaft 110 and load F2 in direction 111C that is a component force of reaction load F1 due to compression of piston 118 .

密闭容器101内贮存润滑油102。在推力面121上设有与轴孔117A连通且润滑油102通过的油槽127。油槽127设置于推力面121的部分121A上。油槽127从中心轴C111沿着在方向1116A上延伸的直线L101延伸。The lubricating oil 102 is stored in the airtight container 101 . An oil groove 127 communicating with the shaft hole 117A and through which the lubricating oil 102 passes is provided on the thrust surface 121 . The oil groove 127 is disposed on the portion 121A of the thrust surface 121 . Oil groove 127 extends from central axis C111 along straight line L101 extending in direction 1116A.

轴110的主轴部111从凸缘部112沿着与方向116A成直角的方向111C延伸。推力面121沿着方向116B朝着方向111C倾斜。The main shaft portion 111 of the shaft 110 extends from the flange portion 112 in a direction 111C at right angles to the direction 116A. Thrust surface 121 is inclined toward direction 111C along direction 116B.

电动元件105的转子104的磁中心126相对于定子103的磁中心125在方向111C上偏移。转子104的磁中心126与定子103的磁中心125相比位于下方。Magnetic center 126 of rotor 104 of motor element 105 is offset in direction 111C relative to magnetic center 125 of stator 103 . Magnetic center 126 of rotor 104 is located below magnetic center 125 of stator 103 .

在实施方式1中,压缩元件106附设于电动元件105的上部。但是,压缩元件106设置于电动元件105的下部也能获得同样的效果。In Embodiment 1, the compression element 106 is attached to the upper portion of the electric element 105 . However, the same effect can also be obtained by disposing the compression element 106 under the electric element 105 .

(实施方式2)(Embodiment 2)

图6是本发明的实施方式2中的密闭式压缩机1002的压缩元件的纵断面图。图7是密闭式压缩机1002的压缩元件的分解立体图。在图6和图7中,在与图1至图4所示的实施方式1中的密闭式压缩机1001相同的部分标注相同的参考编号。Fig. 6 is a longitudinal sectional view of a compression element of a hermetic compressor 1002 according to Embodiment 2 of the present invention. FIG. 7 is an exploded perspective view of the compression element of the hermetic compressor 1002 . In FIGS. 6 and 7 , the same reference numerals are assigned to the same parts as those of hermetic compressor 1001 in Embodiment 1 shown in FIGS. 1 to 4 .

实施方式2中的密闭式压缩机1002还包括:构成实施方式1中的密闭式压缩机1001中的推力面121的环状的推力轴承210。Hermetic compressor 1002 in Embodiment 2 further includes annular thrust bearing 210 constituting thrust surface 121 in hermetic compressor 1001 in Embodiment 1.

在密闭式压缩机1002中,在构成气缸体115的主轴承117的端面117C设有包围轴孔117A的凹部200。在凹部200中嵌入推力轴承210。主轴承117由:具有轴孔117A的向心轴承117R和推力轴承210构成。In hermetic compressor 1002 , recessed portion 200 surrounding shaft hole 117A is provided on end surface 117C of main bearing 117 constituting cylinder block 115 . A thrust bearing 210 is fitted into the concave portion 200 . The main bearing 117 is composed of a radial bearing 117R having a shaft hole 117A and a thrust bearing 210 .

凹部200具有呈大致正圆形的形状。作为凹部200的底部的支承面201包围轴孔117A,且支承推力轴承210。随着从朝着压缩室116的方向116A向相反的方向116B,支承面201的宽度逐渐增大。在凹部200的周边的一部分设有向外方延伸的小凹部202。The concave portion 200 has a substantially perfect circular shape. The support surface 201 serving as the bottom of the concave portion 200 surrounds the shaft hole 117A and supports the thrust bearing 210 . The width of the support surface 201 gradually increases from the direction 116A toward the compression chamber 116 to the opposite direction 116B. A small recess 202 extending outward is provided in a part of the periphery of the recess 200 .

推力轴承210的外边缘210C具有大致正圆形的形状。推力轴承210具有与实施方式1中的推力面121相同的形状,且具有相同功能的推力面213。在推力轴承210嵌入凹部200中的状态下,按照推力面213从凹部200向方向111D若干突出的方式来设定轴承210的厚度。设置于推力轴承210的中央部的贯通孔211的中心C211与轴孔117A的中心轴C117一致。在推力轴承210的外周的一部分设有与设置于凹部200中的小凹部202嵌合的凸部212。The outer edge 210C of the thrust bearing 210 has a substantially perfect circular shape. Thrust bearing 210 has the same shape as thrust surface 121 in Embodiment 1, and has thrust surface 213 having the same function. The thickness of the bearing 210 is set so that the thrust surface 213 slightly protrudes from the recess 200 in the direction 111D in a state where the thrust bearing 210 is fitted into the recess 200 . The center C211 of the through hole 211 provided in the central portion of the thrust bearing 210 coincides with the central axis C117 of the shaft hole 117A. On a part of the outer circumference of the thrust bearing 210 , a convex portion 212 that fits into the small concave portion 202 provided in the concave portion 200 is provided.

如上所述,主轴承117具有向心轴承117R和推力轴承210。在向心轴承117R上形成轴孔117A。推力轴承210具有推力面121且与向心轴承117R分体形成。As described above, main bearing 117 has radial bearing 117R and thrust bearing 210 . A shaft hole 117A is formed in the radial bearing 117R. The thrust bearing 210 has a thrust surface 121 and is formed separately from the radial bearing 117R.

推力轴承210通过小凹部202和凸部212的嵌合被固定。Thrust bearing 210 is fixed by fitting of small concave portion 202 and convex portion 212 .

与实施方式1同样,对推力轴承210的至少推力面213实施氮化处理、利用CrN、TiN等陶瓷的陶瓷涂层处理,将其加工成摩擦少、强度高的表面。As in the first embodiment, at least the thrust surface 213 of the thrust bearing 210 is subjected to nitriding treatment and ceramic coating treatment with ceramics such as CrN and TiN to have a low-friction and high-strength surface.

推力面213由部分213A、213B形成。部分213A比中心轴C111(中心C211)更靠近压缩室116。部分213B比中心轴C111(中心C211)更远离压缩室116。通过调整推力轴承210的厚度或者加工凹部200的支承面201,这样,按照推力面213的部分213B相对于部分213A在方向111D上偏移变低的方式,推力面213发生倾斜。The thrust face 213 is formed by portions 213A, 213B. Portion 213A is closer to compression chamber 116 than central axis C111 (center C211 ). Portion 213B is farther from compression chamber 116 than central axis C111 (center C211 ). By adjusting the thickness of the thrust bearing 210 or processing the support surface 201 of the concave portion 200, the thrust surface 213 is inclined so that the portion 213B of the thrust surface 213 is offset in the direction 111D relative to the portion 213A.

在推力轴承210的推力面213的一部分上,具有与实施方式1的油槽127相同功能的油槽214沿着贯通孔211的直径方向设置。在实施方式2中,油槽214设置于推力面213中的最靠近压缩室116的位置、即从中心C211沿着方向116A设置。On a part of the thrust surface 213 of the thrust bearing 210 , an oil groove 214 having the same function as the oil groove 127 in Embodiment 1 is provided along the radial direction of the through hole 211 . In Embodiment 2, the oil groove 214 is provided at a position closest to the compression chamber 116 on the thrust surface 213 , that is, along the direction 116A from the center C211 .

从密闭容器101的下部被给油机构114汲起然后通过给油槽114A的润滑油,通过油槽214到达形成于推力面213和凸缘部112的下表面112B的推力滑动部,主要润滑推力滑动部。The lubricating oil sucked up from the lower part of the airtight container 101 by the oil supply mechanism 114 and passed through the oil supply groove 114A passes through the oil groove 214 to the thrust sliding part formed on the thrust surface 213 and the lower surface 112B of the flange part 112, mainly lubricating the thrust sliding part. .

下面,说明实施方式2中的密闭式压缩机1002的动作。与实施方式1中的密闭式压缩机1001同样,对电动元件105通电,转子104旋转,压缩元件106随之工作。结果是,制冷剂气体从冷却系统被吸入压缩室116内,被压缩后再次向冷却系统喷出。Next, the operation of the hermetic compressor 1002 in Embodiment 2 will be described. As in the hermetic compressor 1001 in Embodiment 1, when the electric element 105 is energized, the rotor 104 rotates, and the compression element 106 operates accordingly. As a result, the refrigerant gas is sucked into the compression chamber 116 from the cooling system, compressed, and discharged toward the cooling system again.

在实施方式2中的密闭式压缩机1002中,随着轴110的旋转,在主轴承117的推力轴承210的推力面213上,因图6所示的转子104和轴110的自重而产生的垂直方向111C上的负载F3全面地作用在其上面。同时,作为因活塞118的压缩作用而产生的反作用负载F1的垂直方向111C上的分力的负载F2局部作用在推力面213的部分213B上。In the hermetic compressor 1002 according to Embodiment 2, along with the rotation of the shaft 110, on the thrust surface 213 of the thrust bearing 210 of the main bearing 117, due to the self-weight of the rotor 104 and the shaft 110 shown in FIG. 6 The load F3 in the vertical direction 111C acts fully thereon. At the same time, a load F2 that is a component force in the vertical direction 111C of the reaction load F1 generated by the compressive action of the piston 118 locally acts on the portion 213B of the thrust face 213 .

在设置于轴110上的凸缘部112的下表面112B和推力轴承210的推力面213的直接滑动中,根据作为凸缘部112的下表面112B和推力面213所接触的部分的面积的接触面积的大小,负载F2对滑动损失以及面压产生影响。在与方向轴1001B平行的方向116A、116B上,与中心C211相比而远离压缩室116的推力面213的部分213B是局部承受负载F2的区域。与实施方式1中的密闭式压缩机1001同样,在密闭式压缩机1002中,也使部分213B的面积即推力宽度215比与中心C211相比而靠近压缩室116的部分213A的面积即推力宽度215大。这样,能够抑制因局部作用在推力面213上的负载F2所引起的面压增加。In the direct sliding between the lower surface 112B of the flange portion 112 provided on the shaft 110 and the thrust surface 213 of the thrust bearing 210 , according to the contact as the area of the portion where the lower surface 112B of the flange portion 112 and the thrust surface 213 contact The size of the area and the load F2 affect the sliding loss and surface pressure. In the directions 116A, 116B parallel to the direction axis 1001B, a portion 213B of the thrust surface 213 of the compression chamber 116 farther from the center C211 is a region where the load F2 is locally received. Similar to the hermetic compressor 1001 in Embodiment 1, in the hermetic compressor 1002, the area of the portion 213B, that is, the thrust width 215 is set to be smaller than the area of the portion 213A, that is, the thrust width, that is closer to the compression chamber 116 than the center C211. 215 large. In this way, it is possible to suppress an increase in the face pressure due to the load F2 locally acting on the thrust face 213 .

结果是,与实施方式1同样,能够减少凸缘部112的下表面112B和推力轴承210的推力面213所形成的推力滑动部的滑动损失。防止局部承受负载F2的部分213B的面压增加,这样就能减少推力面213的偏磨耗,提高密闭式压缩机1002的效率和可靠性。As a result, similar to the first embodiment, the sliding loss of the thrust sliding portion formed by the lower surface 112B of the flange portion 112 and the thrust surface 213 of the thrust bearing 210 can be reduced. Preventing the surface pressure of the part 213B partially bearing the load F2 from increasing can reduce the partial wear of the thrust surface 213 and improve the efficiency and reliability of the hermetic compressor 1002 .

利用设置于推力轴承210的推力面213上的油槽214,能够增加从油槽214供给推力面213的给油量,更多的润滑油102润滑推力面213的滑动部。在推力面213中,将其设置于推力宽度215的更小的部分213A中,能够确保增大面压大幅作用在其上面的部分213B的滑动面积,且能够防止面压增加。结果是,能够改善推力轴承210的推力面213的滑动部的润滑状态,进一步提高密闭式压缩机1002的可靠性。With the oil groove 214 provided on the thrust surface 213 of the thrust bearing 210 , the amount of oil supplied from the oil groove 214 to the thrust surface 213 can be increased, and more lubricating oil 102 lubricates the sliding portion of the thrust surface 213 . In the thrust surface 213, disposing it in the smaller portion 213A of the thrust width 215 can securely increase the sliding area of the portion 213B on which the face pressure largely acts, and can prevent the face pressure from increasing. As a result, the lubrication state of the sliding portion of the thrust surface 213 of the thrust bearing 210 can be improved, and the reliability of the hermetic compressor 1002 can be further improved.

通过实施氮化处理、利用CrN、TiN等陶瓷的陶瓷涂层处理,推力面213变成摩擦少、强度高的表面,能够进一步减少凸缘部112的下表面112B与推力面213的滑动所产生的滑动阻力。因此,能够进一步减少凸缘部112的下面112B和推力面213构成的推力滑动部的滑动损失,提高效率,通过增强推力面213的表面硬度,能够提高推力滑动部的耐磨性。By performing nitriding treatment and ceramic coating treatment using ceramics such as CrN and TiN, the thrust surface 213 becomes a surface with less friction and high strength, and the occurrence of sliding between the lower surface 112B of the flange portion 112 and the thrust surface 213 can be further reduced. of sliding resistance. Therefore, the sliding loss of the thrust sliding portion formed by the lower surface 112B of the flange portion 112 and the thrust surface 213 can be further reduced to improve efficiency, and the wear resistance of the thrust sliding portion can be improved by increasing the surface hardness of the thrust surface 213 .

根据推力面213的摩擦少、硬度强的加工,能够进一步缩小作用在推力轴承210中的整个推力面213的滑动上的面积,实现低摩擦。By processing the thrust surface 213 with less friction and high hardness, the area acting on the sliding of the entire thrust surface 213 in the thrust bearing 210 can be further reduced to achieve low friction.

推力轴承210是与主轴承117(向心轴承117R)分体的另一个部件,所以,能够与主轴承117分开加工。因此,能够容易地实施对推力面213所实施的氮化处理和陶瓷涂层处理,按照使推力面213沿着方向116B朝着方向111C倾斜的方式,能够容易地对其进行加工。The thrust bearing 210 is another component separate from the main bearing 117 (radial bearing 117R), and therefore can be processed separately from the main bearing 117 . Therefore, the nitriding treatment and the ceramic coating treatment performed on the thrust surface 213 can be easily performed, and the thrust surface 213 can be easily processed so that the thrust surface 213 is inclined in the direction 111C along the direction 116B.

结果是,能够以低价格且容易地调整和设定陶瓷涂层处理的程度,并且能够容易地加工推力面213的倾斜,所以,能够使推力轴承210也适应压缩能力各异的压缩机。As a result, the degree of ceramic coating treatment can be easily adjusted and set at low cost, and the inclination of thrust surface 213 can be easily processed, so thrust bearing 210 can also be adapted to compressors with different compression capacities.

在实施方式2中,在压缩元件106设置于电动元件105的下部的密闭式压缩机中,也能够应用推力面213的构造,并且能够得到同样的效果。In Embodiment 2, the structure of the thrust surface 213 can also be applied to the hermetic compressor in which the compression element 106 is provided below the electric element 105, and the same effect can be obtained.

对于实施方式1、2中的密闭式压缩机1001、1002,因减少了推力滑动部的滑动损失,得到高的可靠性,因此,能够适用于空调和冷冻冷藏装置等冷冻设备。The hermetic compressors 1001 and 1002 in Embodiments 1 and 2 can be applied to refrigerating equipment such as air conditioners and refrigerating apparatuses because the sliding loss of the thrust sliding portion is reduced and high reliability is obtained.

本发明并非局限于实施方式1、2。The present invention is not limited to Embodiments 1 and 2.

Claims (10)

1.一种密闭式压缩机,其特征在于,包括:1. A hermetic compressor, characterized in that, comprising: 密闭容器;sealed container; 具有定子和转子且设置于所述密闭容器内的电动元件;和an electric element having a stator and a rotor and disposed within said airtight container; and 被所述电动元件驱动且设置于所述密闭容器内的压缩元件,a compression element driven by the electric element and arranged in the airtight container, 所述压缩元件具有:The compression element has: 轴,其具有:沿着中心轴延伸的主轴部、从所述主轴部突出的凸缘部、和与所述凸缘部连接的偏心轴部,且所述转子固定于该轴;a shaft having a main shaft portion extending along a central axis, a flange portion protruding from the main shaft portion, and an eccentric shaft portion connected to the flange portion, and the rotor is fixed to the shaft; 气缸体,其具有位于从所述主轴部的所述中心轴的与所述中心轴成直角的第1方向上的压缩室;a cylinder block having a compression chamber located in a first direction from the central axis of the main shaft portion at a right angle to the central axis; 活塞,其在所述压缩室内,在所述第1方向和与所述第1方向相反的第2方向上往复运动;a piston reciprocating in the compression chamber in the first direction and in a second direction opposite to the first direction; 将所述活塞与所述偏心轴部连结的连结机构;和a coupling mechanism coupling the piston to the eccentric shaft portion; and 主轴承,其形成有对所述轴的所述主轴部进行轴支承的轴孔,且具有包围所述轴孔的、所述轴的所述凸缘部进行抵接滑动的推力面,a main bearing having a shaft hole for supporting the main shaft portion of the shaft and having a thrust surface surrounding the shaft hole on which the flange portion of the shaft comes into contact and slides, 所述推力面包括:在与所述第1方向平行的方向上,与所述中心轴相比远离所述压缩室的第1部分;和与所述中心轴相比靠近所述压缩室的第2部分,The thrust surface includes: a first portion farther from the compression chamber than the central axis in a direction parallel to the first direction; and a first portion closer to the compression chamber than the central axis. 2 parts, 所述推力面的所述第1部分的面积比所述第2部分的面积大。The area of the first portion of the thrust surface is larger than the area of the second portion. 2.如权利要求1所述的密闭式压缩机,其特征在于:2. The hermetic compressor according to claim 1, characterized in that: 所述推力面支承:因所述转子和所述轴的自重而产生的垂直方向的负载、和伴随所述活塞的压缩作用而产生的反作用负载的垂直方向的分力。The thrust surface supports a vertical load due to the weight of the rotor and the shaft, and a vertical component force of a reaction load due to the compression action of the piston. 3.如权利要求1所述的密闭式压缩机,其特征在于:3. The hermetic compressor according to claim 1, characterized in that: 构成为在所述密闭容器内贮存润滑油,configured to store lubricating oil in said airtight container, 在所述推力面设有与所述轴孔连通,由此使所述润滑油通过的油槽。An oil groove that communicates with the shaft hole through which the lubricating oil passes is provided on the thrust surface. 4.如权利要求3所述的密闭式压缩机,其特征在于:4. The hermetic compressor according to claim 3, characterized in that: 所述油槽设置于所述推力面的所述第2部分。The oil groove is provided on the second portion of the thrust surface. 5.如权利要求4所述的密闭式压缩机,其特征在于:5. The hermetic compressor according to claim 4, characterized in that: 所述油槽从所述中心轴沿着在所述第1方向延伸的直线延伸。The oil groove extends from the central axis along a straight line extending in the first direction. 6.如权利要求1所述的密闭式压缩机,其特征在于:6. The hermetic compressor according to claim 1, characterized in that: 所述轴的所述主轴部从所述凸缘部向与所述第1方向成直角的第3方向延伸,the main shaft portion of the shaft extends from the flange portion in a third direction at right angles to the first direction, 所述推力面沿着所述第2方向且向着所述第3方向倾斜。The thrust surface is inclined toward the third direction along the second direction. 7.如权利要求1所述的密闭式压缩机,其特征在于:7. The hermetic compressor according to claim 1, characterized in that: 在所述推力面实施氮化处理和陶瓷涂层处理。Nitriding treatment and ceramic coating treatment are carried out on the thrust face. 8.如权利要求1所述的密闭式压缩机,其特征在于:8. The hermetic compressor according to claim 1, characterized in that: 所述主轴承具有:The main bearing has: 形成有所述轴孔的向心轴承;和a radial bearing formed with said shaft hole; and 具有所述推力面且与所述向心轴承分开设置的推力轴承。A thrust bearing having the thrust surface and being provided separately from the radial bearing. 9.如权利要求1所述的密闭式压缩机,其特征在于:9. The hermetic compressor according to claim 1, characterized in that: 所述轴的所述主轴部从所述凸缘部向与所述第1方向成直角的第3方向延伸,the main shaft portion of the shaft extends from the flange portion in a third direction at right angles to the first direction, 所述电动元件的所述转子的磁中心相对于所述定子的磁中心在所述第3方向上偏移。A magnetic center of the rotor of the motor element is offset in the third direction from a magnetic center of the stator. 10.如权利要求9所述的密闭式压缩机,其特征在于:10. The hermetic compressor according to claim 9, characterized in that: 所述转子的所述磁中心与所述定子的所述磁中心相比位于下方。The magnetic center of the rotor is located below the magnetic center of the stator.
CN2011103218620A 2010-10-21 2011-10-21 Hermetic compressor Pending CN102454578A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-236163 2010-10-21
JP2010236163A JP2012087711A (en) 2010-10-21 2010-10-21 Hermetic compressor

Publications (1)

Publication Number Publication Date
CN102454578A true CN102454578A (en) 2012-05-16

Family

ID=45973177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103218620A Pending CN102454578A (en) 2010-10-21 2011-10-21 Hermetic compressor

Country Status (3)

Country Link
US (1) US20120100021A1 (en)
JP (1) JP2012087711A (en)
CN (1) CN102454578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115427685A (en) * 2020-04-27 2022-12-02 东芝开利株式会社 Compressor and refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795875B (en) * 2015-03-25 2019-11-05 松下电器制冷装置新加坡 Hermetic type compressor and refrigerating plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2005578A (en) * 1932-08-06 1935-06-18 Walter J Sugden Compressing machine
CN1135594A (en) * 1994-11-29 1996-11-13 三洋电机株式会社 Refrigerating apparatus and lubricating oil composition
JP2000120540A (en) * 1998-10-12 2000-04-25 Matsushita Refrig Co Ltd Reciprocating motion type compressor
CN1521397A (en) * 2003-02-12 2004-08-18 松下电器产业株式会社 electric compressor
CN1880764A (en) * 2005-06-16 2006-12-20 三星光州电子株式会社 Hermetic compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2005578A (en) * 1932-08-06 1935-06-18 Walter J Sugden Compressing machine
CN1135594A (en) * 1994-11-29 1996-11-13 三洋电机株式会社 Refrigerating apparatus and lubricating oil composition
JP2000120540A (en) * 1998-10-12 2000-04-25 Matsushita Refrig Co Ltd Reciprocating motion type compressor
CN1521397A (en) * 2003-02-12 2004-08-18 松下电器产业株式会社 electric compressor
CN1880764A (en) * 2005-06-16 2006-12-20 三星光州电子株式会社 Hermetic compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115427685A (en) * 2020-04-27 2022-12-02 东芝开利株式会社 Compressor and refrigeration cycle device
CN115427685B (en) * 2020-04-27 2024-03-29 东芝开利株式会社 Compressor and refrigeration cycle device

Also Published As

Publication number Publication date
US20120100021A1 (en) 2012-04-26
JP2012087711A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
WO2013047064A1 (en) Compressor
JP2017150425A (en) Two-cylinder type sealed compressor
JP2006125364A (en) Reciprocating compressor
CN102454578A (en) Hermetic compressor
JP5612628B2 (en) Hermetic compressor
JP2010275981A (en) Hermetic compressor
JP2009085125A (en) Hermetic compressor
US10480508B2 (en) Scroll compressor
JP4950138B2 (en) Reciprocating hermetic compressor and manufacturing method thereof
JP2009215894A (en) Hermetic compressor
JP5945683B2 (en) Hermetic compressor and refrigeration apparatus provided with the same
KR101698086B1 (en) Hermetic compressor
JP2006161712A (en) Compressor
KR102747101B1 (en) Cylinder block and reciprocation compressor including the same
JP2012145053A (en) Hermetic compressor
KR100540226B1 (en) Frame of hermetic compressor
JP2020148109A (en) Compressor and apparatus with compressor
JP2013170556A (en) Hermetic compressor and refrigerator using the same
JP2013050075A (en) Hermetic compressor
JP2013133758A (en) Hermetic compressor
JP2005264740A (en) Hermetic compressor
JP2007040137A (en) Reciprocating compressor
JP2012167629A (en) Hermetic type compressor
KR20230064104A (en) Reciprocating compressor
JP2017031812A (en) Hermetic type compressor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120516