CN102453067B - A kind of NAD +the preparation method of analogue and application thereof - Google Patents
A kind of NAD +the preparation method of analogue and application thereof Download PDFInfo
- Publication number
- CN102453067B CN102453067B CN201010524767.6A CN201010524767A CN102453067B CN 102453067 B CN102453067 B CN 102453067B CN 201010524767 A CN201010524767 A CN 201010524767A CN 102453067 B CN102453067 B CN 102453067B
- Authority
- CN
- China
- Prior art keywords
- nad
- enzyme
- malic enzyme
- mutant
- analogue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- IGWHDMPTQKSDTL-WJZMDOFJSA-N CC(C(N1)=O)=CN([C@@H](C2O)O[C@H](COP(O)(O)=O)[C@@H]2O)C1=O Chemical compound CC(C(N1)=O)=CN([C@@H](C2O)O[C@H](COP(O)(O)=O)[C@@H]2O)C1=O IGWHDMPTQKSDTL-WJZMDOFJSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种烟酰胺腺嘌呤二核苷酸(NAD+)类似物的制备方法及其应用,其结构通式如的NAD+类似物,是由烟酰胺单核苷酸与相应的嘧啶核苷酸类似物反应生成,其中R为或R为该类NAD+类似物可以作为脱氢酶的辅酶,也可以促进微生物的生长。本发明得到的NAD+类似物可应用于生物催化、生物分析化学、代谢工程和合成生物学研究中。The invention discloses a preparation method and application of a nicotinamide adenine dinucleotide (NAD + ) analogue, the general structural formula of which is as follows NAD + analogues are produced by reacting nicotinamide mononucleotide with corresponding pyrimidine nucleotide analogues, where R is or R for This type of NAD + analog can be used as a coenzyme of dehydrogenase, and can also promote the growth of microorganisms. The NAD + analogue obtained by the invention can be applied to the research of biocatalysis, bioanalytical chemistry, metabolic engineering and synthetic biology.
Description
技术领域 technical field
本发明涉及具有生物学活性的一类小分子化合物的合成及其应用,具体地说是具有各种取代基的嘧啶环取代腺嘌呤环的烟酰胺腺嘌呤二核苷酸(NAD+)的类似物,以及该化合物可作为脱氢酶的辅因子用于催化氧化还原反应,或作为微生物生长促进剂,促进微生物生长。 The present invention relates to the synthesis and application of a class of small molecule compounds with biological activity, in particular to the analogue of nicotinamide adenine dinucleotide (NAD + ) which has a pyrimidine ring replacing an adenine ring with various substituents. substance, and the compound can be used as a cofactor of dehydrogenase to catalyze redox reactions, or as a microorganism growth promoter to promote the growth of microorganisms.
背景技术 Background technique
烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)以及它相应的还原态(NADH),就是通常所说的辅酶I,是生物体不可缺少的小分子化合物,参与生命体中的氧化还原代谢及其它一系列重要生物化学过程,其结构式如下: Nicotinamide adenine dinucleotide (nicotinamide adenine dinucleotide, NAD + ) and its corresponding reduced state (NADH), commonly known as coenzyme I, are indispensable small molecular compounds in living organisms, and participate in the oxidation of living organisms Reductive metabolism and a series of other important biochemical processes, its structural formula is as follows:
NAD+的化学结构 Chemical structure of NAD +
NAD+的化学结构比较复杂,性质不够稳定,价格昂贵。从NAD+的化学结构可看出该分子是由烟酰胺单核苷酸(NMN)片段和腺苷一磷酸(AMP)片段通过焦磷酸键连接而成。NMN部分是其化学功能的主要承担者,参与氧化还原反应和电子传递,而AMP部分则与功能蛋白质的相关结构域作用而锚定辅酶,对酶专一性识别辅酶和生化反应的选择性有重要影响(J.Benach et al.J.Biol.Chem.2003,278,19176-19182)。 The chemical structure of NAD + is relatively complex, its properties are not stable enough, and it is expensive. From the chemical structure of NAD + , it can be seen that the molecule is formed by linking nicotinamide mononucleotide (NMN) fragments and adenosine monophosphate (AMP) fragments through pyrophosphate bonds. The NMN part is the main bearer of its chemical function, participating in redox reactions and electron transfer, while the AMP part interacts with the relevant domains of functional proteins to anchor the coenzyme, which has an important effect on the selectivity of the enzyme specific recognition of the coenzyme and biochemical reactions. Important impact (J. Benach et al. J. Biol. Chem. 2003, 278, 19176-19182).
在细胞内,NAD+主要起传递氢和电子的作用,许多重要氧化还原酶都依赖于NAD+作为其辅因子。除了氧化还原功能外,在非氧化还原生命过程中,NAD+同样起到非常重要的作用。NAD+在细胞繁殖、生长、分化、凋亡等生命活动中都是不可缺少的小分子化合物(W.H.Ying.Antioxidants&Redox Signaling 2008,10,179-206)。NAD+也可以作为组蛋白去乙酰化酶(sirtuins)的底物,在酶催化下,将组蛋白上的乙酰基移去,使组蛋白能够顺利完成DNA复制、转录和修复等重要功能(H.N.Lin et al.Org.Biomol.Chem.2007,5,2541-2554)。 In cells, NAD + mainly plays the role of transferring hydrogen and electrons, and many important redox enzymes depend on NAD + as their cofactor. In addition to the redox function, NAD + also plays a very important role in the non-redox life process. NAD + is an indispensable small molecule compound in life activities such as cell reproduction, growth, differentiation, and apoptosis (WHYing. Antioxidants & Redox Signaling 2008, 10, 179-206). NAD + can also be used as the substrate of histone deacetylase (sirtuins), under the catalysis of the enzyme, the acetyl group on the histone is removed, so that the histone can successfully complete important functions such as DNA replication, transcription and repair (HNLin et al. Org. Biomol. Chem. 2007, 5, 2541-2554).
基于NAD+的结构,人们对其进行化学改造,合成了很多类似物。最近一些工作涉及化学改造腺苷一磷酸(AMP)部分(C.J.W.Mort et al.Bioorg.Med.Chem.2004,12,475-487)、核糖环部分(G.C.Zhou et al.J.Am.Chem.Soc.2004,126,5690-5698)、烟酰胺部分(N.E.Batoux et al.Tetrahedron 2004,60,6609-6617)以及焦磷酸部分(L.Chen et al.Bioorg.Med.Chem.Lett.2007,17,3152-3155)。H.C.Lo曾经采用甲醇为AMP部分的替代物与烟酰胺单核苷酸在DCC/DMAP下,合成了NAD+类似物,并用上述类似物作为马肝脱氢酶(HLADH)的辅因子还原酮为手性醇(H.C.Lo et al.Angew.Chem.Int.Ed.2002,41,478-481),但辅因子结构过于简单,与酶的结合不够紧密,催化效率很低。上述工作都是建立在对NAD+原有结构进行化学修饰基础上,难以克服其化学性质上不稳定性,化学合成、分离困难等缺点,所得NAD+类似物大多不能被脱氢酶选择性识别。 Based on the structure of NAD + , people have chemically modified it and synthesized many analogues. Some recent work involves chemical modification of adenosine monophosphate (AMP) moiety (CJWMort et al. Bioorg. Med. Chem. 2004, 12, 475-487), ribose ring moiety (GCZhou et al. J. Am. Chem. Soc. 2004,126,5690-5698), nicotinamide moiety (NEBatoux et al.Tetrahedron 2004,60,6609-6617) and pyrophosphate moiety (L.Chen et al.Bioorg.Med.Chem.Lett.2007,17,3152 -3155). HCLo once used methanol as a substitute for AMP and nicotinamide mononucleotide under DCC/DMAP to synthesize NAD + analogues, and used the above analogues as cofactors of horse liver dehydrogenase (HLADH) Sexual alcohol (HCLo et al.Angew.Chem.Int.Ed.2002, 41, 478-481), but the structure of the cofactor is too simple, the combination with the enzyme is not tight enough, and the catalytic efficiency is very low. The above work is based on the chemical modification of the original structure of NAD + , which is difficult to overcome its chemical instability, chemical synthesis, and separation difficulties. Most of the obtained NAD + analogs cannot be selectively recognized by dehydrogenases. .
申请人的前期工作[赵宗保,刘武军,吴思国,侯淑华,一种NAD+类似物及其合成和应用,申请号:200810010285.1]所合成的NAD+类似物可以促进微生物如大肠杆菌和酿酒酵母生长;其还原型也可作为脱氢酶辅因子用于催化氧化还原反应,但这些类似物生物活性相对较低。 The applicant's previous work [Zhao Zongbao, Liu Wujun, Wu Siguo, Hou Shuhua, a NAD + analog and its synthesis and application, application number: 200810010285.1] The synthesized NAD + analog can promote the growth of microorganisms such as Escherichia coli and Saccharomyces cerevisiae; Its reduced form can also be used as a dehydrogenase cofactor to catalyze redox reactions, but these analogs have relatively low biological activity.
总之,现有文献报道的NAD+类似物主要是作为生物催化剂的抑制剂,极少数可用于生物催化或仿生催化反应,但不能特异性地被生物催化剂识别。因此,需要理性设计具有其他结构特征的NAD+类似物,使它们更有效地被酶识别,表现出生物催化功能。具有这些生物学特性的NAD+类似物,可在生物分析化学、生物催化、代谢工程或合成生物学等领域发挥重要作用。 In conclusion, the NAD + analogues reported in the existing literature are mainly used as inhibitors of biocatalysts, and very few can be used in biocatalytic or biomimetic catalytic reactions, but cannot be specifically recognized by biocatalysts. Therefore, there is a need to rationally design NAD + analogs with other structural features to allow them to be more efficiently recognized by enzymes and exhibit biocatalytic functions. NAD + analogues with these biological properties can play an important role in the fields of bioanalytical chemistry, biocatalysis, metabolic engineering or synthetic biology.
发明内容 Contents of the invention
本发明是在总结文献中关于NAD化学改造成果及相关生物活性的基础上,对NAD+结构进行了剖析,保留了烟酰胺单核苷氧化还原功能区,对腺嘌呤环部分进行改造一以修饰的嘧啶环结构替代,设计结构新颖的NAD+类似物。 The present invention analyzes the structure of NAD + on the basis of summarizing the results of NAD chemical modification and related biological activities in the literature, retains the redox functional region of nicotinamide mononucleoside, and modifies the adenine ring part Substitution of the pyrimidine ring structure to design novel NAD + analogues.
本发明所涉及的NAD+类似物,具有如下结构通式: The NAD + analogs involved in the present invention have the following general structural formula:
结构式中烟酰胺单核苷酸为β-构型;两个核糖单元为D-构型; In the structural formula, the nicotinamide mononucleotide is in the β-configuration; the two ribose units are in the D-configuration;
与核苷酸相连的R单元为 以下称之为A,其中R1为卤素,例 如F,Cl,Br;C1-C5烷基,例如甲基,乙基;C1-C5烷羟基,例如羟甲基。 The R unit attached to the nucleotide is Hereinafter referred to as A, wherein R 1 is halogen, such as F, Cl, Br; C 1 -C 5 alkyl, such as methyl, ethyl; C 1 -C 5 alkylhydroxy, such as hydroxymethyl.
或R为 以下称之为B,其中R2为C1-C5烷基,例如甲基,乙基。 or R for Hereinafter referred to as B, wherein R 2 is C 1 -C 5 alkyl, such as methyl, ethyl.
本发明中NAD+类似物的合成分三步进行,概述如下: The synthesis of NAD + analogs in the present invention is carried out in three steps, summarized as follows:
第一步:参照文献(S.M.Graham et al.Org.Lett.2004,6,233-236)合成烟酰胺单核苷酸; The first step: refer to the literature (S.M.Graham et al.Org.Lett.2004, 6, 233-236) to synthesize nicotinamide mononucleotide;
第二步:参照文献(M.Yoshikaw et al.Tetrahedron Lett.1967,5065-5068)合成核苷单磷酸; The second step: refer to the literature (M.Yoshikaw et al.Tetrahedron Lett.1967, 5065-5068) to synthesize nucleoside monophosphate;
第三步:将第一步得到的烟酰胺单核苷酸和第二步得到的核苷单磷酸进行偶连,得到目标NAD+产物。具体操作过程参照文献(T.V.Abramova etal.Bioorg.Med.Chem.2007,15,6549-6555),文献(L.Q.Chen et al.J.Med.Chem.2007,50,5743-5751)或文献(J.Lee et al.Chem.Commun.1999,729)。 The third step: coupling the nicotinamide mononucleotide obtained in the first step with the nucleoside monophosphate obtained in the second step to obtain the target NAD + product. The specific operation process refers to the literature (TV Abramova et al.Bioorg.Med.Chem.2007,15,6549-6555), the literature (LQChen et al.J.Med.Chem.2007,50,5743-5751) or the literature (J.Lee et al. Chem. Commun. 1999, 729).
文献(T.V.Abramova et al.Bioorg.Med.Chem.2007,15,6549-6555)使用N,M-二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)的混合溶剂,缩合试剂为三苯基膦(Ph3P),1,1-二硫醇双哌啶(PyrS)2或二苯基二硫醚(PhS)2或2,2′-二吡啶基二硫醚(PyS)2和1-甲基咪唑; Literature (TV Abramova et al.Bioorg.Med.Chem.2007,15,6549-6555) uses a mixed solvent of N,M-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), and the condensation reagent is three Phenylphosphine (Ph 3 P), 1,1-dithiol bispiperidine (PyrS) 2 or diphenyl disulfide (PhS) 2 or 2,2′-dipyridyl disulfide (PyS) 2 and 1-methylimidazole;
文献(L.Q.Chen et al.J.Med.Chem.2007,50,5743-5751)使用N,N-二甲基甲酰胺(DMF)为溶剂,N,N-羰基二咪唑(CDI)为缩合试剂; Literature (L.Q.Chen et al.J.Med.Chem.2007,50,5743-5751) uses N,N-dimethylformamide (DMF) as solvent, N,N-carbonyldiimidazole (CDI) as condensation reagent ;
文献(J.Lee et al.Chem.Commun.1999,729)使用甲酰胺为溶剂,N,N′-二环己基碳二亚胺(DCC),吗啉为缩合试剂,MnCl2,MgSO4为催化剂。 Literature (J.Lee et al.Chem.Commun.1999, 729) uses formamide as solvent, N, N'-dicyclohexylcarbodiimide (DCC), morpholine as condensation reagent, MnCl 2 , MgSO 4 as catalyst.
本发明中所用的脱氢酶是大肠杆菌K12苹果酸酶(UniProt codeP26616)。本发明所用到的突变脱氢酶是利用 单位点突变试剂盒或文献(J.X.Wang,et al.J.Microbiol.Methods 2007,71,225-230)在大肠杆菌K12苹果酸酶上引入氨基酸突变得到突变型苹果酸酶(L301R和L301R/Q392C)。本发明所用的苹果酸酶都是按文献(J.X.Wang,et al.Protein Expr.Purif.2007,53,97-103)方法表达纯化。 The dehydrogenase used in the present invention is E. coli K12 malic enzyme (UniProt code P26616). The mutant dehydrogenase used in the present invention is to utilize Single point mutation kit or literature (JXWang, et al.J.Microbiol.Methods 2007, 71, 225-230) introduced amino acid mutations into Escherichia coli K12 malic enzyme to obtain mutant malic enzyme (L301R and L301R/Q392C) . The malic enzyme used in the present invention is expressed and purified according to the literature (JXWang, et al. Protein Expr. Purif. 2007, 53, 97-103).
本发明中所用的脱氢酶还有乳酸脱氢酶来自Lactobacillus helveticus(UniProt code P30901)。本发明所用到的突变乳酸脱氢酶是利用 单位点突变试剂盒在乳酸脱氢酶上引入氨基酸突变得到突变型乳酸脱氢酶(V152R)。本发明所用的乳酸脱氢酶都是按文献(J.X.Wang,et al.Protein Expr.Purif.2007,53,97-103)方法表达纯化。 The dehydrogenase used in the present invention is also lactate dehydrogenase from Lactobacillus helveticus (UniProt code P30901). The mutant lactate dehydrogenase used in the present invention is to utilize The single point mutation kit introduces amino acid mutations into lactate dehydrogenase to obtain mutant lactate dehydrogenase (V152R). The lactate dehydrogenase used in the present invention is expressed and purified according to the literature (JXWang, et al. Protein Expr. Purif. 2007, 53, 97-103).
本发明中所用的微生物是大肠杆菌DH5α(北京鼎国生物技术公司)。 The microorganism used in the present invention is Escherichia coli DH5α (Beijing Dingguo Biotechnology Company).
本发明中所用的脱氢酶还有乙醇脱氢酶,来自Saccharomyces cerevisiae (CAS NO.9031-72-5)购买于Sigma Aldrich。 The dehydrogenase used in the present invention also has alcohol dehydrogenase, from Saccharomyces cerevisiae (CAS NO.9031-72-5) purchased from Sigma Aldrich.
表-1给出本发明实施例的NAD+类似物。 Table-1 presents the NAD + analogues of the examples of the present invention.
表-1.NAD+类似物编号及其对应的化学结构 Table-1. NAD + Analogue Numbers and Their Corresponding Chemical Structures
具体实施方式 Detailed ways
以下实施例有助于了解本专利,但不局限于本发明的内容。 The following examples help to understand this patent, but are not limited to the content of the present invention.
实施例中所用的原料分别参照文献(S.M.Graham et al.Org.Lett.2004,6,233-236.)合成烟酰胺单核苷酸铵盐;参照文献(M.Yoshikaw et al.Tetrahedron Lett.1967,5065-5068)合成核苷单磷酸;参照文献(T.V.Abramova et al.Bioorg.Med.Chem.2007,15,6549-6555.),文献(L.Q.Chenet al.J.Med.Chem.2007,50,5743-5751)或文献(J.Lee et al.Chem.Commun.1999,729)合成最终产物。 The raw materials used in the examples are respectively referred to the literature (S.M.Graham et al.Org.Lett.2004, 6, 233-236.) to synthesize nicotinamide mononucleotide ammonium salt; refer to the literature (M.Yoshikaw et al.Tetrahedron Lett. 1967, 5065-5068) to synthesize nucleoside monophosphate; refer to literature (T.V.Abramov et al.Bioorg.Med.Chem.2007, 15, 6549-6555.), literature (L.Q.Chen et al.J.Med.Chem.2007, 50,5743-5751) or literature (J.Lee et al.Chem.Commun.1999,729) to synthesize the final product.
实施例1 Example 1
将0.3mmol NMN 溶解于2mL DMSO和2mL DMF混合溶剂中,依次加入1.5mM Ph3P,1.5mM(PyS)2,6mM甲基咪唑26℃ 反应18min,加入2mL DMF溶解的1mM核苷单磷酸 26℃反应40min。加入20mL丙酮终止反应,有大量沉淀生成,离心收集沉淀,用5mL丙酮洗涤沉淀三次。水溶后过甲酸型阴离子交换树脂分离纯化,得目标产物BC-10,产率35%。 0.3mmol NMN Dissolve in 2mL DMSO and 2mL DMF mixed solvent, add 1.5mM Ph 3 P, 1.5mM (PyS) 2 , 6mM methylimidazole in sequence, react at 26°C for 18min, add 1mM nucleoside monophosphate dissolved in 2mL DMF React at 26°C for 40 minutes. Add 20 mL of acetone to stop the reaction, a large amount of precipitates are formed, the precipitates are collected by centrifugation, and the precipitates are washed three times with 5 mL of acetone. After water-soluble, performic acid-type anion exchange resin was separated and purified to obtain the target product BC-10 with a yield of 35%.
1H NMR(D2O,400MHz):δ9.17(s,1H),9.02(d,J=6.1Hz,1H),8.72(d,J=7.9Hz,1H),8.05(m,1H),7.70(d,J=6.4Hz,1H),5.94(d,J=5.5Hz,1H),5.55(d,J=3.8Hz,1H),4.33(brs,1H),4.28(pseudo t,J=5.1Hz,1H),4.19(pseudo t,J=4.6Hz,1H),4.15-4.12(m,1H),4.03-3.93(m,5H),3.91-3.89(m,1H).13C NMR(D2O,100MHz):δ165.2,158.0,157.8,155.3,145.9,142.4,139.8,138.5,136.0,133.7,128.6,125.5,125.2,99.8,89.5,86.6,82.3,77.4,74.0,70.3,69.0,64.8,64.7.19F NMR(D2O,376MHz):δ-164.9.31P NMR(D2O,162MHz):δ-11.1,-11.2.HRMS:calcd for C20H26FN5O15P2(M+H)+658.0963,found 658.0961. 1 H NMR (D 2 O, 400MHz): δ9.17(s, 1H), 9.02(d, J=6.1Hz, 1H), 8.72(d, J=7.9Hz, 1H), 8.05(m, 1H) , 7.70(d, J=6.4Hz, 1H), 5.94(d, J=5.5Hz, 1H), 5.55(d, J=3.8Hz, 1H), 4.33(brs, 1H), 4.28(pseudo t, J =5.1Hz, 1H), 4.19(pseudo t, J=4.6Hz, 1H), 4.15-4.12(m, 1H), 4.03-3.93(m, 5H), 3.91-3.89(m, 1H). 13 C NMR (D 2 O, 100MHz): δ165.2, 158.0, 157.8, 155.3, 145.9, 142.4, 139.8, 138.5, 136.0, 133.7, 128.6, 125.5, 125.2, 99.8, 89.5, 86.6, 82.3, 77.4, 74.0, 70.3, 69.0, 64.8, 64.7. 19 F NMR (D 2 O, 376MHz): δ-164.9. 31 P NMR (D 2 O, 162 MHz): δ-11.1, -11.2. HRMS: calcd for C 20 H 26 FN 5 O 15 P 2 (M+H) + 658.0963, found 658.0961.
该化合物为白色固体,易吸潮而变粘稠,且颜色变深。 The compound is a white solid that easily absorbs moisture and becomes viscous and dark in color.
苹果酸酶活性测定:将野生型苹果酸酶,突变型苹果酸酶(L301R)和突变型苹果酸酶(L301R/Q392C)分别配制成1mg·mL-1的溶液。配制0.2mL反应混合物(50mM HEPES pH 7.2,3mM L-malate,5mM MnCl2,0.2mM的NAD+或BC-10),活性分析时快速加入1μL酶液,混匀后置于紫外分光光度计中,在25℃下连续监测340nm吸收值,1min内可获得理想活性数据。酶活力单位定义为:在25℃条件下每分钟催化产生1μmol还原型NAD+或BC-10所需的酶量。 Determination of malic enzyme activity: Wild-type malic enzyme, mutant malic enzyme (L301R) and mutant malic enzyme (L301R/Q392C) were prepared into 1 mg·mL -1 solutions respectively. Prepare 0.2mL reaction mixture (50mM HEPES pH 7.2, 3mM L-malate, 5mM MnCl 2 , 0.2mM NAD + or BC-10), quickly add 1μL enzyme solution during activity analysis, mix well and place in a UV spectrophotometer , Continuously monitor the 340nm absorption value at 25°C, and the ideal activity data can be obtained within 1min. The enzyme activity unit is defined as: the amount of enzyme required to catalyze the production of 1 μmol reduced NAD + or BC-10 per minute at 25°C.
实验发现,野生型苹果酸酶对BC-10和NAD+的酶反应速度分别是0.31U·mg-1和22.5U·mg-1,突变型苹果酸酶(L301R)对BC-10和NAD+的酶反应速度分别是11.2U·mg-1和0.25U·mg-1,突变型苹果酸酶(L301R/Q392C)对BC-10和NAD+的酶反应速度分别是13.6U·mg-1和0.17U·mg-1。 It was found that the enzyme reaction speed of wild-type malic enzyme to BC-10 and NAD + was 0.31U·mg -1 and 22.5U·mg -1 respectively, and the mutant malic enzyme (L301R) to BC-10 and NAD + The enzyme reaction rates of the mutant malic enzyme (L301R/Q392C) to BC-10 and NAD + were 13.6U·mg -1 and 0.25U ·mg -1 respectively. 0.17 U·mg -1 .
说明,1)突变型苹果酸酶(L301R)和突变型苹果酸酶(L301R/Q392C)不能有效利用NAD+作为辅酶,而BC-10作为突变苹果酸酶(L301R)和突变型苹果酸酶(L301R/Q392C)的辅酶活性很好。因此,类似物BC-10对于 前述突变型苹果酸酶的活性具有NAD+无法替代的作用;2)野生型苹果酸酶不能有效利用BC-10作为辅酶。因此,类似物BC-10作为辅酶与脱氢酶相互识别具有一定的特异性。 Instructions, 1) mutant malic enzyme (L301R) and mutant malic enzyme (L301R/Q392C) can not effectively use NAD + as a coenzyme, while BC-10 as mutant malic enzyme (L301R) and mutant malic enzyme ( L301R/Q392C) coenzyme activity is very good. Therefore, the analog BC-10 has an irreplaceable effect of NAD + on the activity of the aforementioned mutant malic enzyme; 2) the wild-type malic enzyme cannot effectively utilize BC-10 as a coenzyme. Therefore, the analogue BC-10, as a coenzyme, has certain specificity in mutual recognition with dehydrogenase.
实施例2 Example 2
同实施例1方法;与实施例1不同之处在于,所用的核苷酸为 反应温度为26℃,反应时间为45min,目标产物BC-20的产率为32%。 With embodiment 1 method; Difference with embodiment 1 is that the nucleotide used is The reaction temperature is 26° C., the reaction time is 45 min, and the yield of the target product BC-20 is 32%.
1H NMR(D2O,400MHz):δ9.33(s,1H),9.17(d,J=6.2Hz,1H),8.86(d,J=7.2Hz,1H),8.19(pseudo t,J=6.3Hz,1H),7.95(s,1H),6.05(d,J=5.2Hz,1H),5.72(d,J=3.3Hz,1H),4.52-4.44(m,2H),4.36-4.28(m,2H),4.18-4.04(m,6H).13C NMR(D2O,100MHz):δ165.2,161.9,155.8,145.8,142.4,139.8,138.9,133.7,128.5,102.1,99.8,89.7,86.6,82.3,77.4,73.8,70.3,68.8,64.7,64.6.31P NMR(D2O,162MHz):δ-11.9.HRMS:calcd forC20H26ClN5O15P2(M+H)+674.0667,found 674.0672. 1 H NMR (D 2 O, 400MHz): δ9.33(s, 1H), 9.17(d, J=6.2Hz, 1H), 8.86(d, J=7.2Hz, 1H), 8.19(pseudo t, J =6.3Hz, 1H), 7.95(s, 1H), 6.05(d, J=5.2Hz, 1H), 5.72(d, J=3.3Hz, 1H), 4.52-4.44(m, 2H), 4.36-4.28 (m, 2H), 4.18-4.04 (m, 6H). 13 C NMR (D 2 O, 100MHz): δ165.2, 161.9, 155.8, 145.8, 142.4, 139.8, 138.9, 133.7, 128.5, 102.1, 99.8, 89.7, 86.6, 82.3, 77.4, 73.8, 70.3, 68.8, 64.7, 64.6. 31 P NMR (D 2 O, 162 MHz): δ-11.9. HRMS: calcd for C 20 H 26 ClN 5 O 15 P 2 (M+H ) + 674.0667, found 674.0672.
该化合物为白色固体,易吸潮而变粘稠,且颜色变深。 The compound is a white solid that easily absorbs moisture and becomes viscous and dark in color.
苹果酸酶活性测定:方法同实施例1,与实施例1不同之处在于,野生型苹果酸酶对BC-20的酶反应速度是0.52U·mg-1,突变型苹果酸酶(L301R)对BC-20的酶反应速度分别是13.7U·mg-1,突变型苹果酸酶(L301R/Q392C)对BC-20的酶反应速度是15.4U·mg-1。说明BC-20可以选择性地被突变的苹果酸酶(L301R)和苹果酸酶(L301R/Q392C)利用,而几乎不被野生型苹果酸酶利用;同时,野生型苹果酸酶不利用BC-20,而只选择性利用NAD+。 Determination of malic enzyme activity: the method is the same as in Example 1, except that the enzyme reaction rate of wild-type malic enzyme to BC-20 is 0.52U mg -1 , and that of mutant malic enzyme (L301R) The enzyme reaction rate to BC-20 is 13.7U·mg -1 , and the enzyme reaction rate of mutant malic enzyme (L301R/Q392C) to BC-20 is 15.4U·mg -1 . It shows that BC-20 can be selectively utilized by mutant malic enzyme (L301R) and malic enzyme (L301R/Q392C), but is hardly utilized by wild-type malic enzyme; meanwhile, wild-type malic enzyme does not utilize BC- 20, while only selectively utilizing NAD + .
实施例3 Example 3
同实施例1方法;与实施例1不同之处在于,所用的核苷酸为 反应温度为28℃,反应时间为30min,目标产物BC-30 的产率为32%。 With embodiment 1 method; Difference with embodiment 1 is that the nucleotide used is The reaction temperature was 28° C., the reaction time was 30 min, and the yield of the target product BC-30 was 32%.
1H NMR(D2O,400MHz):δ9.32(s,1H),9.16(d,J=6.2Hz,1H),8.85(d,J=8.0Hz,1H),8.17(pseudo t,J=6.4Hz,1H),7.97(s,1H),6.04(d,J=5.4Hz,1H),5.69(d,J=3.3Hz,1H),4.47(brs,1H),4.43(pseudo t,J=5.1Hz,1H),4.35(pseudo t,J=4.7Hz,1H),4.31-4.28(m,1H),4.19-4.03(m,6H).13C NMR(D2O,100MHz):δ165.5,162.7,156.2,146.0,142.6,141.9,139.9,133.9,128.7,99.9,89.8,89.2,86.9,82.4,77.5,74.0,70.5,68.9,64.8,64.7.31P NMR(D2O,162MHz):δ-11.2.HRMS:calcd for C20H26BrN5O15P2(M+H)+718.0162,found 718.0147. 1 H NMR (D 2 O, 400MHz): δ9.32(s, 1H), 9.16(d, J=6.2Hz, 1H), 8.85(d, J=8.0Hz, 1H), 8.17(pseudo t, J =6.4Hz, 1H), 7.97(s, 1H), 6.04(d, J=5.4Hz, 1H), 5.69(d, J=3.3Hz, 1H), 4.47(brs, 1H), 4.43(pseudo t, J=5.1Hz, 1H), 4.35(pseudo t, J=4.7Hz, 1H), 4.31-4.28(m, 1H), 4.19-4.03(m, 6H). 13 C NMR (D 2 O, 100MHz): δ165.5 , 162.7 , 156.2, 146.0, 142.6, 141.9, 139.9, 133.9, 128.7, 99.9, 89.8, 89.2, 86.9, 82.4, 77.5, 74.0, 70.5, 68.9, 64.8, 64.7. 162MHz): δ-11.2. HRMS: calcd for C 20 H 26 BrN 5 O 15 P 2 (M+H) + 718.0162, found 718.0147.
该化合物为淡黄色固体,易吸潮而变粘稠,且颜色变深。 The compound is light yellow solid, easy to absorb moisture and become viscous, and the color becomes darker.
苹果酸酶活性测定:方法同实施例1,与实施例1不同之处在于,野生型苹果酸酶对BC-30的酶反应速度是0.64U·mg-1,突变型苹果酸酶(L301R/Q392C)对BC-30的酶反应速度是19.5U·mg-1。说明BC-30可以选择性地被突变型苹果酸酶(L301R/Q392C)利用,而几乎不被野生型苹果酸酶利用;同时,野生型苹果酸酶不利用BC-30,而只选择性利用NAD+。 Determination of malic enzyme activity: the method is the same as in Example 1, and the difference from Example 1 is that the enzyme reaction rate of wild-type malic enzyme to BC-30 is 0.64U mg -1 , and mutant malic enzyme (L301R/ The enzyme reaction rate of Q392C) to BC-30 is 19.5U·mg -1 . It shows that BC-30 can be selectively utilized by the mutant malic enzyme (L301R/Q392C), but almost not utilized by the wild-type malic enzyme; at the same time, the wild-type malic enzyme does not utilize BC-30, but only selectively utilizes NAD + .
实施例4 Example 4
同实施例1方法;与实施例1不同之处在于,所用的核苷酸为 反应温度为26℃,反应时间为38min,目标产物BC-40的产率为30%。 With embodiment 1 method; Difference with embodiment 1 is that the nucleotide used is The reaction temperature is 26° C., the reaction time is 38 min, and the yield of the target product BC-40 is 30%.
1H NMR(D2O,400MHz):δ9.33(s,1H),9.16(d,J=6.1Hz,1H),8.85(d,J=8.0Hz,1H),8.19(pseudo t,J=7.0Hz,1H),7.60(s,1H),6.06(d,J=5.4Hz,1H),5.79(d,J=4.3Hz,1H),4.68(brs,1H),4.48-4.06(m,9H),1.87(s,3H).13C NMR(D2O,100MHz):δ165.6,165.3,157.2,145.8,142.4,139.8,138.3,133.7,128.6,104.7,99.8,89.0,86.7,82.3,77.4,73.7,70.3,69.2,64.8,64.7,12.3.31P NMR(D2O,162MHz):δ-11.9.HRMS:calcd for C21H29N5O15P2 (M+H)+652.1057,found 652.1072. 1 H NMR (D 2 O, 400MHz): δ9.33(s, 1H), 9.16(d, J=6.1Hz, 1H), 8.85(d, J=8.0Hz, 1H), 8.19(pseudo t, J =7.0Hz, 1H), 7.60(s, 1H), 6.06(d, J=5.4Hz, 1H), 5.79(d, J=4.3Hz, 1H), 4.68(brs, 1H), 4.48-4.06(m , 9H), 1.87(s, 3H). 13 C NMR (D 2 O, 100MHz): δ165.6, 165.3, 157.2, 145.8, 142.4, 139.8, 138.3, 133.7, 128.6, 104.7, 99.8, 89.0, 86.7, 82.3, 77.4, 73.7, 70.3, 69.2, 64.8, 64.7, 12.3. 31 P NMR (D 2 O, 162MHz): δ-11.9. HRMS: calcd for C 21 H 29 N 5 O 15 P 2 (M+H) +652.1057 , found 652.1072.
该化合物为白色固体,易吸潮。 The compound is white solid, easy to absorb moisture.
苹果酸酶活性测定:方法同实施例1,与实施例1不同之处在于,野生型苹果酸酶对BC-40的酶反应速度是0.15U·mg-1,突变型苹果酸酶(L301R/Q392C)对BC-40的酶反应速度是11.3U·mg-1。说明BC-40可以选择性地被突变型苹果酸酶(L301R/Q392C)利用,而几乎不被野生型苹果酸酶利用;同时,野生型苹果酸酶不利用BC-40,而只选择性利用NAD+。 Determination of malic enzyme activity: the method is the same as in Example 1, and the difference from Example 1 is that the enzyme reaction rate of wild-type malic enzyme to BC-40 is 0.15U mg -1 , and mutant malic enzyme (L301R/ The enzyme reaction rate of Q392C) to BC-40 is 11.3U·mg -1 . It shows that BC-40 can be selectively utilized by the mutant malic enzyme (L301R/Q392C), but almost not utilized by the wild-type malic enzyme; at the same time, the wild-type malic enzyme does not utilize BC-40, but only selectively utilizes NAD + .
实施例5 Example 5
同实施例1方法;与实施例1不同之处在于,所用的核苷酸为 反应温度为26℃,反应时间为40min,目标产物BC-50的产率为30%。 With embodiment 1 method; Difference with embodiment 1 is that the nucleotide used is The reaction temperature is 26° C., the reaction time is 40 min, and the yield of the target product BC-50 is 30%.
或采用将0.3mmol NMN 溶解于2mL DMSO溶剂中,加入1.5mM CDI 26℃反应20min,加入2mL DMF溶解的1mM核苷单磷酸 26℃反应8d。加入20mL丙酮终止反应,有大量沉淀生成,离心收集沉淀,用5mL丙酮洗涤沉淀三次。水溶后过甲酸型阴离子交换树脂分离纯化,得目标产物BC-50,产率24%。 Or use 0.3mmol NMN Dissolve in 2mL DMSO solvent, add 1.5mM CDI, react at 26°C for 20min, add 1mM nucleoside monophosphate dissolved in 2mL DMF Reaction at 26°C for 8d. Add 20 mL of acetone to stop the reaction, a large amount of precipitates are formed, the precipitates are collected by centrifugation, and the precipitates are washed three times with 5 mL of acetone. After water-soluble, performic acid-type anion-exchange resin was separated and purified to obtain the target product BC-50 with a yield of 24%.
或采用将0.2mmol核苷单磷酸 1mM吗啉溶解于5mL水中,滴加入溶于5mL正丁醇中的2mM DCC,50℃反应5h,蒸干溶剂,用5mL正丁醇洗涤沉淀三次,得白色固体,油泵抽干彻底除去水分,加入5mL甲酰胺溶解的1mM NMN 0.2mM MnCl2,0.2mMMgSO4,30℃反应16h。蒸干溶剂,水溶后过甲酸型阴离子交换树脂分离纯化,得目标产物BC-50,产率56%。 Or use 0.2mmol nucleoside monophosphate Dissolve 1mM morpholine in 5mL water, add dropwise 2mM DCC dissolved in 5mL n-butanol, react at 50°C for 5h, evaporate the solvent to dryness, wash the precipitate with 5mL n-butanol three times to obtain a white solid, and pump it dry to remove water completely. Add 5 mL of formamide dissolved 1 mM NMN 0.2mM MnCl 2 , 0.2mM MgSO 4 , react at 30°C for 16h. The solvent was evaporated to dryness, dissolved in water, separated and purified by performic acid-type anion exchange resin, and the target product BC-50 was obtained with a yield of 56%.
1H NMR(D2O,400MHz):δ9.34(s,1H),9.18(d,J=6.1Hz,1H),8.86(d,J=8.1Hz,1H),8.20(pseudo t,J=6.8Hz,1H),7.58(s,1H),6.07(d,J=5.4Hz,1H),5.80(d,J=4.5Hz,1H),4.48-4.45(m,2H),4.37-4.35(m,1H),4.29-4.23(m,3H),4.16-4.12(m,3H),4.05-4.03(m,1H),1.79(s,3H).13C NMR(D2O,100MHz):δ166.3,165.6,151.7,146.1,142.6,139.9,137.1,133.9,128.7,111.7,99.9,88.2,87.0,83.0,77.5,73.4,70.6,69.7,65.0,64.9,11.6.31P NMR(D2O,162MHz):δ-11.3.HRMS:calcd for C21H28N4O16P2(M+H)+655.1054,found 655.1035. 1 H NMR (D 2 O, 400MHz): δ9.34(s, 1H), 9.18(d, J=6.1Hz, 1H), 8.86(d, J=8.1Hz, 1H), 8.20(pseudo t, J =6.8Hz, 1H), 7.58(s, 1H), 6.07(d, J=5.4Hz, 1H), 5.80(d, J=4.5Hz, 1H), 4.48-4.45(m, 2H), 4.37-4.35 (m, 1H), 4.29-4.23(m, 3H), 4.16-4.12(m, 3H), 4.05-4.03(m, 1H), 1.79(s, 3H). 13 C NMR (D 2 O, 100MHz) : δ166.3, 165.6, 151.7, 146.1, 142.6, 139.9, 137.1, 133.9, 128.7, 111.7, 99.9, 88.2, 87.0, 83.0, 77.5, 73.4, 70.6, 69.7, 65.0, 64.9, 11.6. 31 P NMR (D 2 O, 162MHz): δ-11.3. HRMS: calcd for C 21 H 28 N 4 O 16 P 2 (M+H) + 655.1054, found 655.1035.
该化合物为白色固体,易吸潮。 The compound is white solid, easy to absorb moisture.
苹果酸酶活性测定:方法同实施例1,与实施例1不同之处在于,野生型苹果酸酶对BC-50的酶反应速度是0.63U·mg-1,突变型苹果酸酶(L301R/Q392C)对BC-50的酶反应速度是2.5U·mg-1。说明BC-50可以选择性地被突变型苹果酸酶(L301R/Q392C)利用,而几乎不被野生型苹果酸酶利用;同时,野生型苹果酸酶不利用BC-50,而只选择性利用NAD+。 Determination of malic enzyme activity: the method is the same as in Example 1, and the difference from Example 1 is that the enzyme reaction rate of wild-type malic enzyme to BC-50 is 0.63U·mg -1 , and mutant malic enzyme (L301R/ The enzyme reaction rate of Q392C) to BC-50 is 2.5U·mg -1 . It shows that BC-50 can be selectively utilized by the mutant malic enzyme (L301R/Q392C), but almost not utilized by the wild-type malic enzyme; at the same time, the wild-type malic enzyme does not utilize BC-50, but only selectively utilizes NAD + .
促进大肠杆菌生长实验:将LB培养基(蛋白胨10g·L-1,酵母粉5g·L-1,氯化钠10g·L-1,pH 7.2)10mL中加入BC-50至终浓度为100μM,以1∶100接种大肠杆菌DH5α(北京鼎国生物技术公司)种子液(OD600=2),在37℃,200rpm条件下培养;与对照组(加等量NAD+)相比,培养4h后添加BC-50的大肠杆菌的OD600值比对照组高0.5。说明该BC-50对大肠杆菌DH5α生长具有明显的促进作用。 Escherichia coli growth promotion experiment: BC-50 was added to 10 mL of LB medium (peptone 10 g·L -1 , yeast powder 5 g·L -1 , sodium chloride 10 g·L -1 , pH 7.2) to a final concentration of 100 μM, Escherichia coli DH5α (Beijing Dingguo Biotechnology Company) seed solution (OD 600 = 2) was inoculated at a ratio of 1:100, and cultured at 37°C and 200 rpm; The OD 600 value of E. coli added with BC-50 was 0.5 higher than that of the control group. It shows that the BC-50 can obviously promote the growth of Escherichia coli DH5α.
实施例6 Example 6
乳酸脱氢酶活性测定:将野生型乳酸脱氢酶和突变型乳酸脱氢酶(V152R)配制成0.1mg·mL-1的溶液。配制0.2mL反应混合物(50mMHEPES pH 7.2,200mM D-乳酸钠,1mM的NAD+或NAD+类似物),活性分析时快速加入1μL酶液,混匀后置于紫外分光光度计中,在25℃下1min内连续监测340nm吸收值的变化。酶活力单位定义为:在25℃条件下每分钟催化产生1μmol NADH或还原型NAD+类似物所需的酶量。 Determination of lactate dehydrogenase activity: wild-type lactate dehydrogenase and mutant lactate dehydrogenase (V152R) were prepared into a solution of 0.1 mg·mL -1 . Prepare 0.2mL reaction mixture (50mM HEPES pH 7.2, 200mM D-sodium lactate, 1mM NAD + or NAD + analogue), quickly add 1μL enzyme solution during activity analysis, mix well and place in a UV spectrophotometer, at 25°C Continuously monitor the change of 340nm absorption value within 1min. The enzyme activity unit is defined as: the amount of enzyme required to catalyze the production of 1 μmol NADH or reduced NAD + analogs per minute at 25°C.
结果如表-2: The results are shown in Table-2:
表-2乳酸脱氢酶活性测定结果 Table-2 Lactate dehydrogenase activity assay results
上述结果说明,1)类似物BC-10、BC-20、BC-30和BC-40作为突变型乳酸脱氢酶(V152R)的辅酶。突变型乳酸脱氢酶(V152R)利用这些辅酶的活性和野生型乳酸脱氢酶利用NAD+作为辅酶的活性相当。但是,NAD+和类似物BC-50作为突变型乳酸脱氢酶(V152R)的辅酶时,酶反应活性较低。因此,BC-10、BC-20、BC-30和BC-40对于突变型乳酸脱氢酶(V152R)的活性具有NAD+无法替代的作用。2)野生型乳酸脱氢酶不能有效利用类似物BC-10、BC-20、BC-30、BC-40和BC-50作为辅酶。因此,这些类似物作为辅酶与脱氢酶相互识别具有一定特异性。 The above results indicated that 1) the analogues BC-10, BC-20, BC-30 and BC-40 act as coenzymes of mutant lactate dehydrogenase (V152R). The activity of the mutant lactate dehydrogenase (V152R) using these coenzymes was comparable to that of the wild-type lactate dehydrogenase using NAD + as a coenzyme. However, NAD + and the analogue BC-50 were less enzymatically active as coenzymes for mutant lactate dehydrogenase (V152R). Therefore, BC-10, BC-20, BC-30 and BC-40 have NAD + irreplaceable effects on the activity of mutant lactate dehydrogenase (V152R). 2) The wild-type lactate dehydrogenase cannot effectively use analogues BC-10, BC-20, BC-30, BC-40 and BC-50 as coenzymes. Therefore, these analogs have a certain specificity in mutual recognition as coenzymes and dehydrogenases.
实施例7 Example 7
乙醇脱氢酶利用还原型NAD+类似物的活性测定:将NAD+类似物配成10mM溶液,用等体积10mM NaBH4水溶液处理,得到类似物的还原态,备用;将乙醇脱氢酶配制成1.0mg·mL-1的溶液。配制0.2mL反应混合物(50mM HEPES pH 7.2,5mM乙醛,5mM MnCl2,0.5mM的还原型NAD+类似物或NADH),活性分析时快速加入1μL酶液,混匀后置于紫外分光光度计中,在25℃下1min内连续监测340nm吸收值的变化。酶活力单位定义为:在25℃条件下每分钟催化产生1μmol NAD+或NAD+类似物所需的酶量。 Activity determination of alcohol dehydrogenase using reduced NAD + analogues: make NAD + analogues into a 10mM solution, treat with an equal volume of 10mM NaBH 4 aqueous solution to obtain the reduced state of the analogues, and set aside; prepare alcohol dehydrogenase 1.0 mg·mL -1 solution. Prepare 0.2mL reaction mixture (50mM HEPES pH 7.2, 5mM acetaldehyde, 5mM MnCl 2 , 0.5mM reduced NAD + analog or NADH), quickly add 1μL enzyme solution during activity analysis, mix well and place in a UV spectrophotometer In the process, the change of the 340nm absorption value was continuously monitored within 1min at 25°C. The enzyme activity unit is defined as: the amount of enzyme required to catalyze the production of 1 μmol NAD + or NAD + analogs per minute at 25 °C.
结果如表-3: The results are shown in Table-3:
表-3乙醇脱氢酶利用还原型NAD+类似物的活性 Table-3 Activities of Alcohol Dehydrogenase Utilizing Reduced NAD + Analogues
上述结果说明,NAD+类似物BC-10、BC-20、BC-30、BC-40和BC-50 所对应的还原型可以作为乙醇脱氢酶的辅酶,催化还原乙醛生产工具乙醇。其中,乙醇脱氢酶利用类似物BC-50的还原型作为辅酶,活性达到利用NADH作为辅酶时活性的10%以上。 The above results indicated that the reduced forms of NAD + analogues BC-10, BC-20, BC-30, BC-40 and BC-50 can act as coenzymes of alcohol dehydrogenase to catalyze the reduction of acetaldehyde production tool ethanol. Wherein, the alcohol dehydrogenase uses the reduced form of the analogue BC-50 as a coenzyme, and its activity reaches more than 10% of the activity when using NADH as a coenzyme.
通过以上实施例可以看出: Can find out by above embodiment:
1)本发明建立了一类结构新颖的NAD+类似物的化学合成方法,该方法简单有效,可用于合成其它结构相似的NAD+类似物的制备; 1) The present invention establishes a chemical synthesis method for a class of novel NAD + analogues, which is simple and effective, and can be used for the preparation of other NAD + analogues with similar structures;
2)本发明所制备NAD+类似物可作为脱氢酶的辅酶用于催化氧化还原反应; 2) The NAD + analog prepared by the present invention can be used as a coenzyme of dehydrogenase to catalyze redox reactions;
3)本发明所制备NAD+类似物可作为脱氢酶或突变型脱氢酶的特异性辅酶,其用于催化反应的效果优于以NAD+作为辅酶的情况,可应用在生物催化和生物分析化学中; 3) The NAD + analog prepared by the present invention can be used as a specific coenzyme for dehydrogenase or mutant dehydrogenase, and its effect for catalytic reactions is better than that of using NAD + as a coenzyme, and can be applied in biocatalysis and biological in analytical chemistry;
4)基于本发明的突变型脱氢酶/NAD+类似物高活性组合,是独立于自然界原有氧化还原催化体系的人工新体系,将可能作为特有的工具应用在生物分析化学、代谢工程和合成生物学研究中,具有重要价值; 4) The highly active combination of mutant dehydrogenase/NAD + analogs based on the present invention is an artificial new system independent of the original redox catalytic system in nature, and may be used as a unique tool in bioanalytical chemistry, metabolic engineering and It is of great value in synthetic biology research;
5)本发明所制备NAD+类似物可作为微生物生长调节剂,改变微生物生长行为,应用在生物化学工程研究或生产中。 5) The NAD + analogs prepared in the present invention can be used as microbial growth regulators to change the growth behavior of microorganisms and be applied in biochemical engineering research or production.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010524767.6A CN102453067B (en) | 2010-10-29 | 2010-10-29 | A kind of NAD +the preparation method of analogue and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010524767.6A CN102453067B (en) | 2010-10-29 | 2010-10-29 | A kind of NAD +the preparation method of analogue and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102453067A CN102453067A (en) | 2012-05-16 |
CN102453067B true CN102453067B (en) | 2015-08-05 |
Family
ID=46036788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010524767.6A Active CN102453067B (en) | 2010-10-29 | 2010-10-29 | A kind of NAD +the preparation method of analogue and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102453067B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103463119B (en) * | 2013-08-19 | 2015-10-28 | 渤海大学 | Sir2 inhibitor |
CN104946706B (en) * | 2014-03-26 | 2019-07-05 | 中国科学院大连化学物理研究所 | A kind of restoring method of NAD analog |
CN105168236A (en) * | 2015-10-16 | 2015-12-23 | 上海市胸科医院 | Application of nicotinamide adenine dinucleotide in preparation of drug for preventing and treating heart ischemic injuries |
KR20210118357A (en) * | 2018-05-15 | 2021-09-30 | 점프스타트 퍼틸리티 피티와이 엘티디 | Nicotinic acid mononucleotide and nicotinamide mononucleotide amino acid salts as antioxidants |
EP3829715A1 (en) * | 2018-08-01 | 2021-06-09 | Jumpstart Fertility Pty Ltd | Quaternary ammonium salts of nicotinic acid and nicotinamide mononucloetides and ribosides as anti-aging agents |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998033936A1 (en) * | 1997-02-04 | 1998-08-06 | Specialty Assays, Inc. | The use of nadph and nadh analogs in the measurement of enzyme activities and metabolites |
US5866434A (en) * | 1994-12-08 | 1999-02-02 | Meso Scale Technology | Graphitic nanotubes in luminescence assays |
CN101233144A (en) * | 2005-07-28 | 2008-07-30 | 霍夫曼-拉罗奇有限公司 | Stable NAD/NADH Derivatives |
-
2010
- 2010-10-29 CN CN201010524767.6A patent/CN102453067B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5866434A (en) * | 1994-12-08 | 1999-02-02 | Meso Scale Technology | Graphitic nanotubes in luminescence assays |
WO1998033936A1 (en) * | 1997-02-04 | 1998-08-06 | Specialty Assays, Inc. | The use of nadph and nadh analogs in the measurement of enzyme activities and metabolites |
CN101233144A (en) * | 2005-07-28 | 2008-07-30 | 霍夫曼-拉罗奇有限公司 | Stable NAD/NADH Derivatives |
Non-Patent Citations (4)
Title |
---|
Biomimetic NAD+ Models for Tandem Cofactor Regeneration, Horse Liver Alcohol Dehydrogenase Recognition of 1,4-NADH Derivatives, and Chiral Synthesis;H. Christine Lo,等;《Angew. Chem. Int. Ed.》;20021231;第41卷(第3期);第478-481页 * |
Coenzymatic properties of low molecular-weight and macromolecular N6-derivatives of NAD + and NADP + with dehydrogenases of interest for organic synthesis;Gianluca Ottolina,等;《Enzyme Microb. Technol.》;19900831;第12卷;第596-602页 * |
Jörg HENDLE,等.Structure/activity relationship of adenine-modified NAD derivatives with respect to porcine heart lactate dehydrogenase isozyme H4 simulated with molecular mechanics.《Eur. J. Biochem.》.1993,第213卷第947-956页. * |
Synthesis of Isosteric Analogues of Nicotinamide Adenine Dinucleotide Containing C-Nucleotide of Nicotinamide or Picolinamide;Krzysztof W. Pankiewicz,等;《J. Med. Chem》;19931231;第36卷(第13期);第1855-1859页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102453067A (en) | 2012-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nunn et al. | Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius | |
CN102453067B (en) | A kind of NAD +the preparation method of analogue and application thereof | |
CN101497638B (en) | A kind of NAD+ analogue and its synthesis and application | |
CN112996511B (en) | Enzymatic Synthesis of 4'-Ethynyl Nucleoside Analogs | |
CN105102626B (en) | The method of glucose isomerization | |
Ji et al. | Synthesis of NAD analogs to develop bioorthogonal redox system | |
WO2011110056A1 (en) | Method for microbial production of cyclic adenosine 3', 5'-monophosphate | |
Sun et al. | Efficient biosynthesis of high-value succinic acid and 5-hydroxyleucine using a multienzyme cascade and whole-cell catalysis | |
CN111926002B (en) | Mutants of TrpE and their application in L-tryptophan-producing genetically engineered bacteria | |
PT90747B (en) | PREPARATION FOR THE PREPARATION OF R- OR S-2-HYDROXY-4-PHENYLBUTYRIC ACID | |
CN108410831B (en) | Ketoacid reductase, genes, engineered bacteria and their application in the synthesis of chiral aromatic 2-hydroxy acids | |
CN107119084A (en) | A kind of method that utilization transaminase and ethylene synthetase produce L glufosinate-ammoniums | |
CN115637262A (en) | Method for efficiently preparing nicotinamide mononucleotide and fusion protein | |
Liang et al. | Chemoenzymatic synthesis of (1R, 3R)-3-hydroxycyclopentanemethanol: An intermediate of carbocyclic-ddA | |
CN118048338A (en) | SAM analogs, SAM-dependent methyltransferase mutants and their applications | |
CN118222468A (en) | Method for constructing genetically engineered strain for stable genetic biosynthesis of inositol and its application | |
CN111471736A (en) | Method for preparing C1, 2-dehydrogenation steroid compound | |
CN115895993B (en) | A method for promoting the synthesis of cytosine triphosphate | |
CN112608960A (en) | Preparation method of uridine diphosphate glucuronic acid | |
CN109836377A (en) | A kind of nicotinamide adenine dinucleotide analog and its synthetic method and application | |
EP4484566A1 (en) | Atp production from electricity with a new-to-nature electrobiological module | |
CN115948482B (en) | Construction method and application of 2, 4-dihydroxybutyric acid biosynthesis pathway | |
Bachosz et al. | A novel strategy for the application of levulinic acid with simultaneous NAD+ regeneration and membrane separation of products | |
RU2816846C2 (en) | Enzymatic synthesis of 4'-ethynyl nucleoside analogues | |
CN119913221A (en) | A method for synthesizing ethyl 2-N-benzylamino-4-phenylbutyrate by enzymatic method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |