CN102433763B - Functional fiber, manufacturing method and fabric formed via weaving functional fiber - Google Patents
Functional fiber, manufacturing method and fabric formed via weaving functional fiber Download PDFInfo
- Publication number
- CN102433763B CN102433763B CN201110249793.7A CN201110249793A CN102433763B CN 102433763 B CN102433763 B CN 102433763B CN 201110249793 A CN201110249793 A CN 201110249793A CN 102433763 B CN102433763 B CN 102433763B
- Authority
- CN
- China
- Prior art keywords
- functional
- fiber
- spinneret
- hole
- functional fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 229
- 239000004744 fabric Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title abstract description 7
- 238000009941 weaving Methods 0.000 title description 2
- 239000000126 substance Substances 0.000 claims abstract description 72
- 238000011049 filling Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 33
- 230000000844 anti-bacterial effect Effects 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 14
- -1 polypropylene Polymers 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 11
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 230000000840 anti-viral effect Effects 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- 230000001877 deodorizing effect Effects 0.000 claims description 5
- 230000008030 elimination Effects 0.000 claims description 5
- 238000003379 elimination reaction Methods 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 230000002829 reductive effect Effects 0.000 claims description 5
- 229920001169 thermoplastic Polymers 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000002957 persistent organic pollutant Substances 0.000 claims description 4
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 4
- 239000004626 polylactic acid Substances 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 3
- 238000004042 decolorization Methods 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 239000003094 microcapsule Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- ODPYDILFQYARBK-UHFFFAOYSA-N 7-thiabicyclo[4.1.0]hepta-1,3,5-triene Chemical compound C1=CC=C2SC2=C1 ODPYDILFQYARBK-UHFFFAOYSA-N 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 230000005714 functional activity Effects 0.000 abstract description 3
- 238000009987 spinning Methods 0.000 description 33
- 239000002245 particle Substances 0.000 description 30
- 239000003921 oil Substances 0.000 description 25
- 230000006870 function Effects 0.000 description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 19
- 239000011148 porous material Substances 0.000 description 19
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 17
- 239000003242 anti bacterial agent Substances 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 10
- 239000004734 Polyphenylene sulfide Substances 0.000 description 9
- 229920000069 polyphenylene sulfide Polymers 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 239000010721 machine oil Substances 0.000 description 8
- 239000004753 textile Substances 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 5
- 238000002074 melt spinning Methods 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910016978 MnOx Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000002781 deodorant agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 150000002843 nonmetals Chemical class 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 210000004243 sweat Anatomy 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229910052613 tourmaline Inorganic materials 0.000 description 2
- 239000011032 tourmaline Substances 0.000 description 2
- 229940070527 tourmaline Drugs 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 206010057040 Temperature intolerance Diseases 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000002155 anti-virotic effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000008543 heat sensitivity Effects 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000008041 oiling agent Substances 0.000 description 1
- 239000011022 opal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical class [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 230000003863 physical function Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
本发明公开了一种功能性纤维及其制造方法,以及由该功能性纤维编织的织物。该功能性纤维包括纤维本体,进一步包括:通孔,沿轴向设置在纤维本体中并在纤维本体的表面形成开口,开口宽度为D1;以及功能性物质,具有直径D90并填充在通孔中;其中,D1小于直径D90。本发明提供的功能性纤维,因为纤维本体具有的轴向通孔结构,形成了较大的比表面积和孔隙率,能够容纳更多的功能性物质,而且功能性物质“封装”在通孔中,具有更高的功能活性和更好的效果。
The invention discloses a functional fiber, a manufacturing method thereof, and a fabric woven by the functional fiber. The functional fiber includes a fiber body, and further includes: a through hole arranged axially in the fiber body and forming an opening on the surface of the fiber body, the opening width is D1; and a functional substance having a diameter of D90 and filling the through hole middle; wherein, D1 is smaller than the diameter D 90 . The functional fiber provided by the present invention has a larger specific surface area and porosity due to the axial through-hole structure of the fiber body, which can accommodate more functional substances, and the functional substances are "encapsulated" in the through-holes , with higher functional activity and better effect.
Description
技术领域 technical field
本发明涉及纺织科学领域,具体而言,涉及一种功能性纤维及其制造方法,以及由该功能性纤维编织的织物。 The invention relates to the field of textile science, in particular to a functional fiber, a manufacturing method thereof, and a fabric woven by the functional fiber. the
背景技术 Background technique
功能性纤维是指除一般纤维所具有的物理机械性能以外,还具有某种特殊功能的新型纤维。功能性纤维的出现是材料科学革命性的标志,它的发展和进步促进了传统纺织工业向高科技产业的跃升。功能性纤维在物理、化学、医学和生物学等方面具有特殊性能,已广泛应用于多种领域。物理性功能方面,包括电学功能的抗静电性、导电性、电磁波屏蔽性等;在热学功能方面,具有耐高/低温性、隔热性、阻燃性、热敏性、蓄热性等;光学功能有光导性、光折射性、光干涉性、耐光耐候性、偏光性以及光吸收性等;在物理形态功能方面,具有异形截面形状、超微细、多孔和表面微细加工性;在表面物理化学性能方面,具有选择性吸附、分离性能等特性;在化学性功能方面,有光降解性、自清洁、消除异味、净化有机物污染物、催化活性功能等。医学和生物学性能方面,如防护性、抗菌性、抗病毒、生物适应性等;在生物学功能方面,如人工透析性、生物吸收性和生物相容性等。 Functional fiber refers to a new type of fiber that has some special function in addition to the physical and mechanical properties of ordinary fibers. The emergence of functional fibers is a revolutionary symbol of material science, and its development and progress have promoted the leap from traditional textile industry to high-tech industry. Functional fibers have special properties in physics, chemistry, medicine and biology, and have been widely used in many fields. In terms of physical functions, it includes electrical functions such as antistatic, electrical conductivity, and electromagnetic wave shielding; in terms of thermal functions, it has high/low temperature resistance, heat insulation, flame retardancy, heat sensitivity, heat storage, etc.; optical functions It has photoconductivity, light refraction, light interference, light and weather resistance, polarization and light absorption, etc.; in terms of physical form and function, it has special-shaped cross-sectional shape, ultra-fine, porous and surface micro-processing; in terms of physical and chemical properties on the surface On the one hand, it has the characteristics of selective adsorption and separation; on the chemical function, it has the functions of photodegradability, self-cleaning, odor elimination, purification of organic pollutants, and catalytic activity. In terms of medical and biological properties, such as protective, antibacterial, antiviral, biological adaptability, etc.; in terms of biological functions, such as artificial dialysis, bioabsorption, and biocompatibility. the
现有纺制功能性合成纤维的技术有两种:一是成纤过程实现功能化;二是通过后整理实现功能化。 There are two existing technologies for spinning functional synthetic fibers: one is to realize functionalization during fiber formation; the other is to realize functionalization through post-finishing. the
第一种现有技术通常是采用熔融法纺丝法和静电纺丝法。熔融法纺丝法先用螺杆将聚合物切片与功能性物质加热、分散、混合、挤出造粒生成功能性的母粒,然后采用功能性的母粒与聚合物切片混合熔融纺丝生产功能性纤维。 The first prior art usually adopts melt spinning and electrospinning. The melt spinning method first uses a screw to heat, disperse, mix, extrude and granulate the polymer chips and functional substances to form functional masterbatches, and then use the functional masterbatches and polymer chips to mix and melt spinning to produce functional sexual fiber. the
采用功能性物质母粒通过熔融法纺制功能性纤维,大多数比例的功能性物质被包埋在纤维基材中,只有少数比例的功能性物质存在于纤维表面。对于必须与外界环境接触实现特定功能的情况如实现抗菌、抗病毒、净化和催化等功能,显然现有技术生产存在功能性物质利用率低、功能强化提高困难的问题;同时在纺丝工艺中添加功能性物质将降低可纺性。 The functional fiber is spun by the melt method by using the functional material masterbatch, most of the functional material is embedded in the fiber substrate, and only a small proportion of the functional material exists on the fiber surface. For the situation that it must be in contact with the external environment to achieve specific functions, such as antibacterial, antiviral, purification and catalytic functions, it is obvious that the production of existing technologies has the problems of low utilization rate of functional materials and difficulty in improving the function; at the same time, in the spinning process Addition of functional substances will reduce spinnability. the
第二种技术是纤维后整理。中国专利授权公告号100344824“一种织物功能整理助剂及其制备和应用方法”,公开了通过含纳米级天然纤维粉末助剂对纤维织物进行整理的方法,以纳米级天然纤维颗粒作为主要成分的功能试剂制备配方以及一些无机纳米功能材料可以提高织物抗紫外线、红外增强和抗菌等性能。中国公开专利号CN101525836A“一种纳米抗菌负离子整理剂的制备方法”,公开了一种将负离子发生材料同纳米氧化物的前驱体预混,以超声分散技术来制备整理剂悬浮液,得到纳米抗菌负离子整理剂,通过浸轧、烘、焙工艺对天然纤维及合成纤维进行整理,使纤维获得负离子和抗菌性功能。纤维后整理工艺能够适应不同品种的纤维和面料,且受后续加工工艺影响小,工艺简单。但是存在功能性物质在纤维或织物上 负载量受限问题,即纤维或织物上的功能性物质含量少,功能效果不佳;另外如果功能性物质与纤维结合不牢固,将产生纤维功能性失效问题。 The second technique is fiber finishing. China Patent Authorization Announcement No. 100344824 "A Fabric Functional Finishing Auxiliary and Its Preparation and Application Method", which discloses a method for finishing fiber fabrics with nano-scale natural fiber powder additives, with nano-scale natural fiber particles as the main component The formulation of functional reagents and some inorganic nano-functional materials can improve the properties of fabrics such as UV resistance, infrared enhancement and antibacterial properties. Chinese Publication Patent No. CN101525836A "Preparation Method of Nano Antibacterial Negative Ion Finishing Agent", discloses a method of premixing an anion generating material with a precursor of a nano oxide, and using ultrasonic dispersion technology to prepare a finishing agent suspension to obtain a nano antibacterial Negative ion finishing agent, through padding, drying and roasting process to finish the natural fiber and synthetic fiber, so that the fiber can obtain negative ion and antibacterial function. The fiber finishing process can adapt to different types of fibers and fabrics, and is less affected by subsequent processing processes, and the process is simple. However, there is a problem that the loading of functional substances on fibers or fabrics is limited, that is, the content of functional substances on fibers or fabrics is small, and the functional effect is not good; in addition, if the functional substances are not firmly combined with fibers, the functional failure of the fibers will occur. question. the
发明内容 Contents of the invention
本发明旨在提供一种功能性纤维及其制造方法,以解决现有功能性纤维中功能性物质利用率低,添加功能性物质后纤维的可纺性降低的技术问题。 The present invention aims to provide a functional fiber and its manufacturing method, so as to solve the technical problems of low utilization rate of functional substances in existing functional fibers and decrease of spinnability of fibers after adding functional substances. the
为了实现上述目的,本发明提供了一种功能性纤维,包括纤维本体,该功能性纤维进一步包括:通孔,沿纤维本体的轴向设置在纤维本体中,并在纤维本体的表面形成开口,开口宽度为D1;以及直径为D90的功能性物质,该功能性物质填充在通孔中;其中,开口宽度D1小于功能性物质的直径D90。 In order to achieve the above object, the present invention provides a functional fiber, including a fiber body, the functional fiber further includes: a through hole, arranged in the fiber body along the axial direction of the fiber body, and forming an opening on the surface of the fiber body, The opening width is D1; and the functional substance with a diameter D90 is filled in the through hole; wherein the opening width D1 is smaller than the diameter D90 of the functional substance.
进一步地,纤维本体由热塑性聚合物构成,热塑性聚合物选自聚酯、聚丙烯、聚酰胺、聚氨酯、聚乳酸、聚苯硫醚组成的组中的一种或多种。 Further, the fiber body is made of a thermoplastic polymer, and the thermoplastic polymer is one or more selected from the group consisting of polyester, polypropylene, polyamide, polyurethane, polylactic acid, and polyphenylene sulfide. the
进一步地,功能性物质具有分子、微胶囊或粒子状,选自由具有产生负氧离子、抗紫外线辐射、激发远红外线、抗静电、抗菌、抗病毒、除臭、消除甲醛、消除有机污染物、脱色、消除NOx及SOx功能的金属、非金属、无机盐、无机复合盐、金属氧化物、半导体氧化物、复合金属氧化物、复合半导体氧化物、有机物、高分子聚合物组成的组中一种或多种化合物。 Further, the functional substance has the shape of molecules, microcapsules or particles, and is selected from the group with the functions of generating negative oxygen ions, resisting ultraviolet radiation, exciting far infrared rays, antistatic, antibacterial, antiviral, deodorizing, eliminating formaldehyde, eliminating organic pollutants, In the group consisting of metals, non-metals, inorganic salts, inorganic compound salts, metal oxides, semiconductor oxides, compound metal oxides, compound semiconductor oxides, organic substances, and high molecular polymers for decolorization, elimination of NO x and SO x one or more compounds.
进一步地,通孔通过制备容器功能纤维的喷丝板制成,该喷丝板上设置有喷丝孔道,喷丝孔道的喷丝端的端壁上形成有喷丝孔,该喷丝孔由一个或多个喷丝微孔组成,喷丝微孔是由一条或多条喷丝微孔段围成的环形,喷丝微孔段的末端之间至少形成一个用于形成容器功能纤维轴向表面开口的第一缺口。 Further, the through hole is made through a spinneret for preparing the functional fiber of the container, and the spinneret is provided with a spinneret channel, and a spinneret hole is formed on the end wall of the spinneret end of the spinneret channel, and the spinneret hole is formed by a or a plurality of spinneret microholes, the spinneret microholes are rings surrounded by one or more spinneret microhole segments, and at least one axial surface for forming the functional fiber of the container is formed between the ends of the spinneret microhole segments The first notch of the opening. the
进一步地,喷丝微孔为多个,成一行、两行或环形排列,且第一缺口在每个喷丝微孔中的位置设置为朝向由该多个喷丝微孔形成的几何图形的外侧。 Further, there are a plurality of spinneret microholes arranged in one row, two rows or in a ring, and the position of the first notch in each spinneret microhole is set toward the geometric pattern formed by the plurality of spinneret microholes. outside. the
进一步地,纤维本体是长丝纤维或短纤。 Further, the fiber body is a filament fiber or a staple fiber. the
根据本发明的另一个方面,提供了一种制造上述功能性纤维的方法,包括:在功能性纤维的纤维本体上沿轴向设置通孔,通孔在纤维本体的表面形成宽度为D2的开口;将具有直径D90的功能性物质填充到通孔中,直径D90小于开口宽度D2;以及拉伸和/或扭转纤维本体,使得开口宽度由D2缩小为D1,其中,开口宽度D1小于直径D90。 According to another aspect of the present invention, there is provided a method for manufacturing the above-mentioned functional fiber, comprising: setting a through hole in the axial direction on the fiber body of the functional fiber, and the through hole forms an opening with a width D2 on the surface of the fiber body ; filling the through hole with a functional substance having a diameter D90 , the diameter D90 being smaller than the opening width D2; and stretching and/or twisting the fiber body so that the opening width is reduced from D2 to D1, wherein the opening width D1 is smaller than the diameter D90 .
进一步地,宽度D2为0.05~10μm,宽度D1为0.01~5μm。 Further, the width D2 is 0.05-10 μm, and the width D1 is 0.01-5 μm. the
进一步地,采用上油或上助剂工艺将功能性物质填充到通孔中。 Further, the functional substances are filled into the through-holes by oiling or adding additives. the
根据本发明的再一个方面,提供一种织物。该织物由上述任一种功能性纤维编织而成。 According to still another aspect of the present invention, a fabric is provided. The fabric is woven from any one of the above functional fibers. the
采用本发明的技术方案,因为纤维本体具有轴向的通孔结构,所以具有非常大的比表面积和大孔隙率,能够容纳更多功能性物质;功能性物质采用了“封装”形式,具有更高的功能活性和更好的效果;而且这种特殊结构不会影响光、热、电子和反应物等进入纤维孔道内,这将显著强化扩散、流动、传质、能量交换和多物场偶合作用;另外,本发明提供的功能性纤 维具有纤维结构与功能性物质一体化的特性,将进一步地强化了功能效果和处理效率,克服了现有功能性纤维可纺性降低的缺陷,使纤维应用的领域得到进一步拓展。 With the technical solution of the present invention, because the fiber body has an axial through-hole structure, it has a very large specific surface area and large porosity, and can accommodate more functional substances; the functional substances adopt the form of "encapsulation", which has more High functional activity and better effect; and this special structure will not affect the entry of light, heat, electrons and reactants into the fiber pores, which will significantly enhance diffusion, flow, mass transfer, energy exchange and multi-field coupling function; in addition, the functional fiber provided by the present invention has the characteristics of integration of fiber structure and functional material, which will further strengthen the functional effect and processing efficiency, overcome the defect of the existing functional fiber that the spinnability is reduced, and make The field of fiber application has been further expanded. the
附图说明 Description of drawings
说明书附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中: The accompanying drawings in the description are used to provide a further understanding of the present invention and constitute a part of the present invention. The schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations to the present invention. In the attached picture:
图1示出了本发明具体实施方式的功能性纤维局部结构示意图; Fig. 1 shows the schematic diagram of the partial structure of the functional fiber of the specific embodiment of the present invention;
图2示出了本发明具体实施例1的功能性纤维热拉伸和/或扭转前的纤维局部截面图;
Fig. 2 shows the partial cross-sectional view of the fiber before thermal stretching and/or twisting of the functional fiber of
图3示出了本发明具体实施例1的功能性纤维热拉伸和/或扭转后的纤维局部截面图;
Fig. 3 shows the partial cross-sectional view of the fiber after thermal stretching and/or twisting of the functional fiber of
图4示出了本发明实施例1-8中所用的制备容器功能纤维的喷丝板的结构示意图;以及 Fig. 4 shows the structural representation of the spinneret used in the preparation of container functional fiber used in the embodiment of the present invention 1-8; And
图5示出了根据图4的制备容器功能纤维的喷丝板的喷丝孔道的结构示意图; Fig. 5 shows the structural representation of the spinneret channel of the spinneret of the spinneret of preparing container functional fiber according to Fig. 4;
图6示出了根据图4的喷丝微孔的结构及排列方式示意图。 FIG. 6 shows a schematic diagram of the structure and arrangement of the spinneret microholes according to FIG. 4 . the
具体实施方式 Detailed ways
以下结合附图对本发明的实施例进行详细说明,但如下实施例和附图仅是用以理解本发明,而不能限制本发明,本发明可以由权利要求限定和覆盖的多种不同方式实施。 The embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings, but the following embodiments and accompanying drawings are only used to understand the present invention, and cannot limit the present invention. The present invention can be implemented in various ways defined and covered by the claims. the
本发明提供的功能性纤维,包括沿轴向设置在纤维本体,并在纤维本体的表面上形成开口的通孔,该通孔中填充并固定有功能性物质。因为功能性物质的引入及与纤维结构的一体化,使得功能性纤维获得了功能性物质的物理、化学、医学、生物学等功能。 The functional fiber provided by the present invention includes a through-hole arranged axially on the fiber body and opening on the surface of the fiber body, and the through-hole is filled with and fixed with a functional substance. Because of the introduction of functional substances and the integration with the fiber structure, the functional fibers obtain the physical, chemical, medical, biological and other functions of functional substances. the
如图1所示,本发明提供的纤维通孔结构是“笼形”纤维孔结构,不同以往的“中空孔”或“表面孔”,是集合两者特点的新型孔结构,其特点是长径比较大,通孔7沿纤维轴方向贯穿纤维本体3,同时通孔7在纤维本体3的表面具有开口5,开口5的宽度为D1。如图3所示,在通孔7中填充有功能性物质1。该功能性物质的直径为D90,由于开口宽度D1小于直径D90,所以功能性物质1被“封装”在纤维本体3的通孔7中。由于这种封装结构,使得功能性物质1在通孔7的内表面富集并与牢固地结合,具有耐洗和抗冲击性的效果。
As shown in Figure 1, the fiber through hole structure provided by the present invention is a "cage-shaped" fiber hole structure, which is different from the previous "hollow holes" or "surface holes", and is a new type of hole structure that combines the characteristics of both. The diameter is relatively large, and the through
优选地,本发明提供的功能性纤维可设置1~9个通孔7,形成多维通孔结构。通孔7在纤维本体3截面上的分布可以是均匀,也可以是非均匀的,更优选地,所有通孔7的直径相当。在纤维本体上形成的通孔越多,所提供的纤维比表面和空隙率越大,但通孔的数量如果超过9个后,可能会导致纤维强度显著下降,影响后续可纺和可织性能。
Preferably, the functional fiber provided by the present invention can be provided with 1 to 9 through
在本发明提供的具体实施方式中,纤维本体3由热塑性聚合物制成,热塑性聚合物可以选自聚酯、聚丙烯、聚酰胺、聚氨酯、聚乳酸、聚苯硫醚组成的组中的一种或多种。
In the specific embodiment provided by the present invention, the
在本发明提供的具体实施方式中,功能性物质选自具有分子、微胶囊或粒子状,具有产生负氧离子、抗紫外线辐射、激发远红外线、抗静电、抗菌、抗病毒、除臭、消除甲醛、消 除有机污染物、脱色、消除NOx及SOx功能的金属、非金属、无机盐、无机复合盐、金属氧化物、半导体氧化物、复合金属氧化物、复合半导体氧化物、有机物、高分子聚合物组成的组中一种或多种化合物。上述功能性物质可以是抗紫外线的纳米微粒,放射远红外线的陶瓷微粒,含有微量放射性的稀土类矿石或天然矿物质,金属粉末、碳等无机物抗静电剂,硅氧烷类表面活性剂,含有Ag+、Cu2+、Zn2+等的无机抗菌剂,具有催化活性的纳米陶瓷抗菌剂,大比表面吸附剂,具有催化活性的除臭剂,在还原剂如NH3或尿素得存在情况下能够分解NOX和SOX的金属氧化物、复合金属氧化物。优选地是银离子类抗菌剂、纳米氧化锌、纳米三氧化二钛、二氧化钛、含有氧化铝的陶瓷颗粒、电气石、蛋白石、氧化镁纳米氧化物、Co/MnOx催化剂粒子、活性碳等。 In the specific embodiment provided by the present invention, the functional substance is selected from molecules, microcapsules or particles, which have the functions of generating negative oxygen ions, anti-ultraviolet radiation, exciting far-infrared rays, antistatic, antibacterial, antiviral, deodorizing, and eliminating Formaldehyde, elimination of organic pollutants, decolorization, metals, non -metals, inorganic salts, inorganic compound salts, metal oxides, semiconductor oxides, compound metal oxides, compound semiconductor oxides, organic matter, high One or more compounds in the group consisting of molecular polymers. The above-mentioned functional substances can be anti-ultraviolet nanoparticles, ceramic particles that emit far-infrared rays, rare earth ores or natural minerals containing a small amount of radioactivity, inorganic antistatic agents such as metal powder and carbon, siloxane surfactants, Inorganic antibacterial agents containing Ag + , Cu 2+ , Zn 2+ , etc., catalytically active nano-ceramic antibacterial agents, large specific surface adsorbents, catalytically active deodorants, in the presence of reducing agents such as NH3 or urea Metal oxides and composite metal oxides capable of decomposing NOx and SOx . Preferred are silver ion antibacterial agents, nano-zinc oxide, nano-titanium trioxide, titanium dioxide, ceramic particles containing alumina, tourmaline, opal, magnesium oxide nano-oxide, Co/MnO x catalyst particles, activated carbon, etc.
在本发明的具体实施方式中,根据实际需要,纤维可以加工成长丝或短纤。纺丝可以经熔融、挤压和卷绕后,再上油或助剂、拉伸及热定型制得长丝。纺丝也可以经熔融挤压、卷绕或落筒后,再集束、上油或助剂、拉伸、卷曲、热定形及切断制得短纤。 In a specific embodiment of the present invention, the fibers can be processed into long filaments or short fibers according to actual needs. Spinning can be melted, extruded and wound, and then oiled or additives, stretched and heat-set to make filaments. Spinning can also be melt-extruded, wound or doffed, then bundled, oiled or auxiliaries, stretched, crimped, heat-set and cut to obtain short fibers. the
本发明还提供了一种制造功能性纤维的方法,包括: The present invention also provides a method for manufacturing functional fibers, comprising:
第一步:在纤维本体上构建通孔,使得该通孔贯穿整个纤维本体,并且在纤维本体的表面形成开口,开口宽度为D2; The first step: construct a through hole on the fiber body, so that the through hole runs through the entire fiber body, and forms an opening on the surface of the fiber body, and the opening width is D2;
如图2所示,根据本发明的实施例,形成的开口具有宽度D2,并且D2大于功能性物质1的直径D90。具体而言,通过喷丝板型和纺丝工艺的控制,控制通孔的结构、形状、尺寸。优选地,使用如图4所示的喷丝板,如图5所示,该喷丝板上的喷丝孔道20包括上端和下端分别设置有引导漏斗结构的导孔21和设置在导孔21的下端漏斗结构的下方的喷丝孔22。因为导孔21具有引导漏斗结构,使得聚合物熔体进入喷丝板时的阻力较小,而喷丝时的力度较大,从而可以增加纤维的强度,提高纤维的品质。如图6所示,喷丝孔22由一个或多个喷丝微孔221组成,优选地,由1~9个喷丝微孔221组成,这样既保证了容器功能纤维负载功能性物质的能力,又确保了容器功能纤维的可纺性。该喷丝微孔221是由一条或多条喷丝微孔段222围成的环形,喷丝微孔段222的末端之间至少形成一个第一缺口d1。其中,第一缺口d1是指能够使通过本发明的喷丝板生产出的容器功能纤维具有轴向的表面开口的距离,通常,第一缺口d1为0.01~3mm,大于将负载于容器功能纤维中的功能性颗粒的直径,这样生产出来的容器功能纤维便于功能性物质的装入。随后拉伸和/或扭转容器功能纤维,使得通孔在容器功能纤维表面开口缩小,将功能性物质封装在通孔中。喷丝微孔221为多个时,可以成一行、两行或环形排列,且第一缺口d1在每个喷丝微孔221中的位置设置为朝向由该多个喷丝微孔221形成的几何图形的外侧,便于功能性质进入容器功能纤维的内部。相邻的喷丝微孔221邻近边缘之间的距离可以在0.01~1mm之间,便于喷丝板10的加工及防止喷出的纤维丝粘连。喷丝微孔段222的末端之间还可以形成一个或多个第二缺口d2,其中,第二缺口d2是指当聚合物熔体从相邻的喷丝微孔段222喷出后,由于聚合物熔体具有一定的膨胀系数,能够使相邻喷丝微孔段222喷出的聚合物熔体粘连在一起的距离。设置第二缺口d2可以防止聚合物熔体喷出后由于第一缺口d1的存在而导致的纤维不对称变形,进而可以防止纤维轴向的通孔结构尺寸和轴向的表面开口尺寸变差;相邻喷丝微孔221的第二缺口d2可以错开一定的距离,防止形成的容器功能纤维时相邻纤维丝间的粘连。根据形成纤维的聚合物熔体的特性,喷丝微孔221外接圆直径与环形宽度之比可以为2~30∶1,喷丝微孔221外接圆直径与第一缺 口d1的长度之比为0.5~30∶1,第一缺口d1与第二缺口d2的几何中心间最长与最短距离之比为1~30∶1,一方面可以使容器功能纤维拥有较大的容器功能,另一方面保证了容器功能纤维的强度,使其具有可纺性。进一步地,喷丝微孔221的轮廓线可以是圆形、椭圆形或多边形。
As shown in FIG. 2 , according to an embodiment of the present invention, the formed opening has a width D2, and D2 is larger than the diameter D 90 of the
第二步:将直径为D90的功能性物质填充到通孔中; Step 2: filling the through hole with a functional substance with a diameter of D90 ;
本发明提供的具体实施方式,均采用上油或助剂的工艺将功能性物质填充到通孔中。将功能性物质与油剂或其他助剂混合在一起,通过油嘴上油或油轮上油的方式,将功能性物质填充到通孔中。优选地,使用含有1~20wt%功能性物质的油剂和/或助剂进行填充。为了改善功能性物质在油剂中的分散,可以采用表面活性剂对功能性物质颗粒进行预分散,或者在功能性物质和油剂混合的过程中采用超声波辅助分散。可以理解的是,本领域技术人员完全可以根据具体的工艺要求,采用其他的填充工艺,在这里就不再赘述了。 In the specific embodiments provided by the present invention, the oiling or additive process is used to fill the through holes with functional substances. The functional substance is mixed with oil agent or other additives, and the functional substance is filled into the through hole by oiling the nozzle or oiling the tanker. Preferably, oil and/or additives containing 1-20 wt% of functional substances are used for filling. In order to improve the dispersion of functional substances in the oil agent, surfactants can be used to pre-disperse the functional substance particles, or ultrasonic waves can be used to assist dispersion during the mixing of functional substances and oil agents. It can be understood that those skilled in the art can completely adopt other filling processes according to the specific process requirements, which will not be repeated here. the
第三步:拉伸和/或扭转纤维本体,使得通孔在纤维本体表面上的开口宽度由D2缩小为D1,D1小于直径D90,使得功能性物质封装在通孔中。优选地,通孔在纤维本体表面上的开口在纺丝熔融后的宽度D2为0.05~10μm,经过拉伸或扭转后的宽度D1为0.01~5μm,而功能性物质的直径D90为0.02~7μm。 The third step: stretching and/or twisting the fiber body, so that the opening width of the through hole on the surface of the fiber body is reduced from D2 to D1, and D1 is smaller than the diameter D 90 , so that the functional substance is encapsulated in the through hole. Preferably, the opening of the through hole on the surface of the fiber body has a width D2 of 0.05-10 μm after spinning and melting, a width D1 of 0.01-5 μm after stretching or twisting, and a diameter D90 of the functional substance is 0.02-10 μm. 7 μm.
图2示出了本发明提供的功能性纤维在拉伸或扭转之前的横截面图,由于功能性物质1的直径D90小于纺丝熔融后开口5的宽度D2,经过上油或助剂工艺进入孔道7中;图3示出了本发明提供的功能性纤维在拉伸或扭转之后的横截面图,通过牵伸或扭转进行“收口”,使通孔7在纤维表面的开口宽度变为D1,功能性物质颗粒被“封装”在“笼形”纤维通孔7中。
Fig. 2 shows the cross-sectional view of the functional fiber provided by the present invention before stretching or twisting, because the diameter D90 of the
本发明的功能性纤维制备方法具有通用性,适用于采用熔融纺丝的纤维品种;方法简便并能满足熔融纺丝工艺,不需格外增加复杂工序和添置设备。 The functional fiber preparation method of the present invention has versatility and is suitable for fiber varieties that adopt melt spinning; the method is simple and can meet the melt spinning process, and does not require additional complicated procedures and additional equipment. the
本发明还提供了一种由上述功能性纤维编织的织物,例如,采用抗菌功能性物质制成的功能性纤维,可以编织成抗菌面料及其他织物。 The present invention also provides a fabric woven from the above functional fibers, for example, functional fibers made of antibacterial functional substances, which can be woven into antibacterial fabrics and other fabrics. the
实施例1 Example 1
将干燥后的聚酯切片用螺杆加热挤压熔融,螺杆温度:280℃,转速100转/分。熔体送入纺丝箱体各纺丝位,由计量泵精确计量和过滤后,从喷丝板中喷出。喷丝孔的直径为100μm。熔体细流喷出后经冷却气流冷却凝固成丝条。纤维截面有1个孔,孔在纤维表面开口大小为40~60μm,即喷丝板异形孔的进料缺口设置在40~60μm。采用平均粒径为20~30μm的银离子类抗菌剂为功能性物质,经超声波振荡分散后配制含量为10wt%功能性物质的纺丝机油。凝固成形的丝条经给湿上油后,以500米/分左右的速度卷绕在筒管上。待油剂充分浸润到纤维孔内后,卷绕丝在热拉伸机上拉伸倍数4.0条件下,孔在纤维表面开口大小变为10~15μm,得到抗菌功能性长丝。 The dried polyester chips are heated and extruded to be melted with a screw, the temperature of the screw is 280° C., and the rotation speed is 100 rpm. The melt is sent to each spinning position of the spinning box, and is accurately metered and filtered by the metering pump, and then sprayed out from the spinneret. The diameter of the spinneret holes was 100 μm. After the thin stream of melt is sprayed out, it is cooled and solidified into filaments by the cooling air flow. There is one hole in the cross-section of the fiber, and the opening size of the hole on the fiber surface is 40-60 μm, that is, the feeding gap of the special-shaped hole of the spinneret is set at 40-60 μm. The silver ion antibacterial agent with an average particle size of 20-30 μm is used as a functional substance, and the spinning machine oil with a content of 10 wt % of the functional substance is prepared after being dispersed by ultrasonic vibration. After the solidified filaments are wetted and oiled, they are wound on the bobbin at a speed of about 500 m/min. After the oil agent is fully infiltrated into the fiber pores, the coiled yarn is stretched on a hot drawing machine with a draw ratio of 4.0, and the opening size of the pores on the fiber surface becomes 10-15 μm to obtain an antibacterial functional filament. the
含银离子抗菌剂的抗菌功能性PET平纹织物和不含抗菌剂的PET平纹织物,采用GB/T20944.2-2007《纺织品抗菌性能的评价-第2部分:吸收法》。评价结果如表一: The antibacterial functional PET plain weave fabric containing silver ion antibacterial agent and the PET plain weave fabric without antibacterial agent adopt GB/T20944.2-2007 "Evaluation of Antibacterial Properties of Textiles - Part 2: Absorption Method". The evaluation results are shown in Table 1:
表一 Table I
说明与不含抗菌剂的PET平纹织物相比,含银离子抗菌剂的抗菌功能性PET平纹织物具有很好的抗菌效果。 It shows that compared with the PET plain weave fabric without antibacterial agent, the antibacterial functional PET plain weave fabric containing silver ion antibacterial agent has a good antibacterial effect. the
实施例2 Example 2
将干燥后的聚酯切片用螺杆加热挤压熔融,螺杆温度:280℃,转速100转/分。熔体送入纺丝箱体各纺丝位,由计量泵精确计量和过滤后,从喷丝板中喷出。喷丝孔的直径为100μm。熔体细流喷出后经冷却气流冷却凝固成丝条。纤维截面有3个孔,孔在纤维表面开口大小为20~30μm,即喷丝板异形孔的进料缺口设置在20~30μm。采用平均粒径为10~15μm的TiO2抗病毒、除臭功能性物质,经超声波振荡分散后配制含量为10wt%功能性物质的纺丝机油。凝固成形的丝条经过一个机油浴缸后,纤维在机油浴缸内的停留时间为10秒,以100米/分左右的速度卷绕在筒管上。待油剂充分浸润到纤维孔内后,卷绕丝在热拉伸机上拉伸倍数4条件下,孔在纤维表面开口大小变为5~6μm,得到抗病毒功能性长丝。 The dried polyester chips are heated and extruded to be melted with a screw, the temperature of the screw is 280° C., and the rotation speed is 100 rpm. The melt is sent to each spinning position of the spinning box, and is accurately metered and filtered by the metering pump, and then sprayed out from the spinneret. The diameter of the spinneret holes was 100 μm. After the thin stream of melt is sprayed out, it is cooled and solidified into filaments by the cooling air flow. There are 3 holes in the cross-section of the fiber, and the opening size of the holes on the fiber surface is 20-30 μm, that is, the feeding gap of the special-shaped hole of the spinneret is set at 20-30 μm. Using TiO2 anti-virus and deodorizing functional substances with an average particle size of 10-15 μm, the spinning machine oil with a content of 10wt% functional substances is prepared after being dispersed by ultrasonic vibration. After the solidified thread passes through an oil bath, the fiber stays in the oil bath for 10 seconds and is wound on the bobbin at a speed of about 100 m/min. After the oil agent is fully infiltrated into the fiber pores, the coiled yarn is stretched on a hot drawing machine with a draw ratio of 4, and the opening size of the pores on the fiber surface becomes 5-6 μm to obtain an antiviral functional filament.
含TiO2抗菌剂的抗菌功能性PET平纹织物和不含抗菌剂的PET平纹织物,采用GB/T20944.2-2007《纺织品抗菌性能的评价-第2部分:吸收法》。评价结果如表二: The antibacterial functional PET plain weave fabric containing TiO 2 antibacterial agent and the PET plain weave fabric without antibacterial agent adopt GB/T20944.2-2007 "Evaluation of Antibacterial Properties of Textiles - Part 2: Absorption Method". The evaluation results are shown in Table 2:
表二 Table II
说明与不含抗菌剂的PET平纹织物相比,含TiO2抗菌剂的抗菌功能性PET平纹织物具有很好的抗菌效果。 It shows that compared with the PET plain weave fabric without antibacterial agent, the antibacterial functional PET plain weave fabric containing TiO 2 antibacterial agent has a good antibacterial effect.
实施例3 Example 3
将干燥后的聚酯切片用螺杆加热挤压熔融,螺杆温度:280℃,转速100转/分。熔体送入纺丝箱体各纺丝位,由计量泵精确计量和过滤后,从喷丝板中喷出。喷丝孔的直径为150μm。熔体细流喷出后经冷却气流冷却凝固成丝条。纤维截面有2个孔,且孔在纤维表面开口大小为30~50μm,即喷丝板异形孔的进料缺口设置在30~50μm。采用平均粒径为15~20μm的电气石类负离子粉为功能性物质,经表面改性分散后配制含量为12wt%功能性物质的纺丝机油。在纺制长丝时,丝条经给湿上油,纤维油剂含量占纤维质量的10%。油剂充分浸润到纤维孔内后,卷绕丝在热拉伸机上拉伸倍数4.0条件下得到长丝,使孔在纤维表面开口大小变为8~12μm。再经卷曲、热定形、切断等工序得到成品短纤。 The dried polyester chips are heated and extruded to be melted with a screw, the temperature of the screw is 280° C., and the rotation speed is 100 rpm. The melt is sent to each spinning position of the spinning box, and is accurately metered and filtered by the metering pump, and then sprayed out from the spinneret. The diameter of the spinneret holes was 150 μm. After the thin stream of melt is sprayed out, it is cooled and solidified into filaments by the cooling air flow. There are 2 holes in the cross-section of the fiber, and the opening size of the holes on the fiber surface is 30-50 μm, that is, the feeding gap of the special-shaped hole of the spinneret is set at 30-50 μm. The tourmaline negative ion powder with an average particle size of 15-20 μm is used as a functional substance, and the spinning machine oil with a content of 12 wt % of the functional substance is prepared after surface modification and dispersion. When spinning filaments, the filaments are wetted and oiled, and the fiber oil content accounts for 10% of the fiber mass. After the oil agent is fully infiltrated into the fiber pores, the coiled yarn is stretched on a hot drawing machine with a draw ratio of 4.0 to obtain filaments, so that the opening size of the pores on the fiber surface becomes 8-12 μm. After crimping, heat setting, cutting and other processes, the finished staple fiber is obtained. the
1m3封闭箱体内,温度20±2℃、相对湿度60±2.5%下,样品量250mm×250mm,采用机械臂平行摩擦5min激发纺织品产生负离子,采用符合《空气离子测量仪通用规程》的离子测试仪测量,电气石类负离子粉纤维负离子数量为8630/cm3,普通纤维负离子数量为30/cm3。 In a 1m3 closed box, the temperature is 20±2°C, the relative humidity is 60±2.5%, the sample size is 250mm×250mm, the mechanical arm is used to rub parallelly for 5 minutes to stimulate the textile to generate negative ions, and the ion test is adopted in accordance with the "General Regulations for Air Ion Measuring Instruments" According to the measurement of the instrument, the number of negative ions in tourmaline-type negative ion powder fibers is 8630/cm 3 , and the number of negative ions in ordinary fibers is 30/cm 3 .
实施例4 Example 4
将聚丙烯树脂加入螺杆挤出机,在270℃加热熔融,通过计量泵由喷丝头挤出,在空气中冷却成纤。纤维直径为25μm,截面有9个孔,孔在纤维表面开口大小为0.1~0.2μm,即喷丝板异形孔的进料缺口设置在0.1~0.2μm。采用表面改性的平均粒径为0.08~0.1μm的纳米锐钛矿TiO2粒子,经分散后加入纺丝油剂中配制含10wt%功能性物质的纺丝机油。在纺制长丝时,丝条经给湿上油,纤维油剂含量占纤维质量的5%。油剂充分浸润到纤维孔内后,卷绕丝在热拉伸机拉伸作用下,孔在纤维表面开口大小变为0.03~0.05μm,得到功能性长丝。长丝再经卷曲、热定形、切断等工序得到短纤。制备的长丝和短纤,在紫外光照射下具有光催化功能,能分解甲醛、苯系有机物等室内污染物。 The polypropylene resin is fed into the screw extruder, heated and melted at 270°C, extruded from the spinneret through a metering pump, and cooled in the air to form fibers. The diameter of the fiber is 25 μm, and there are 9 holes in the cross section. The opening size of the holes on the surface of the fiber is 0.1-0.2 μm, that is, the feeding gap of the special-shaped hole of the spinneret is set at 0.1-0.2 μm. Surface-modified nano-anatase TiO2 particles with an average particle diameter of 0.08-0.1 μm are dispersed and added to spinning oil to prepare spinning machine oil containing 10 wt % of functional substances. When spinning filaments, the filaments are wetted and oiled, and the fiber oil content accounts for 5% of the fiber mass. After the oil agent is fully infiltrated into the fiber pores, the winding yarn is stretched by a hot drawing machine, and the opening size of the pores on the fiber surface becomes 0.03-0.05 μm to obtain a functional filament. The filaments are then crimped, heat-set, cut and other processes to obtain short fibers. The prepared filament and short fiber have photocatalytic function under ultraviolet light irradiation, and can decompose indoor pollutants such as formaldehyde and benzene series organic matter.
在温度20±2℃、相对湿度60±2.5%下,5m3密封舱,2m2样品量,2支40w日光灯,进行24小时甲醛及VOC分解实验,初始甲醛浓度3.23mg/m3,初始TVOC浓度10.12mg/m3。24小时后,含纳米锐钛矿TiO2粒子的功能织物存在的情况下,甲醛浓度下降至0.76mg/m3,TVOC浓度下降至3.32mg/m3;普通织物存在的情况下,甲醛浓度为2.98mg/m3,TVOC浓度为10.10mg/m3。说明含纳米锐钛矿TiO2粒子的纤维具有很好的分解甲醛及VOC作用。 At a temperature of 20±2°C and a relative humidity of 60±2.5%, in a sealed cabin of 5m 3 , sample size of 2m 2 , and two 40w fluorescent lamps, formaldehyde and VOC decomposition experiments were carried out for 24 hours. The initial formaldehyde concentration was 3.23mg/m 3 and the initial TVOC The concentration is 10.12mg/m 3 . After 24 hours, in the presence of functional fabrics containing nano-anatase TiO 2 particles, the formaldehyde concentration dropped to 0.76mg/m 3 , and the TVOC concentration dropped to 3.32mg/m 3 ; in the presence of ordinary fabrics, the formaldehyde concentration was 2.98mg/m 3 , TVOC concentration is 10.10mg/m 3 . It shows that the fiber containing nano-anatase TiO 2 particles has a good effect on decomposing formaldehyde and VOC.
实施例5 Example 5
将干燥后聚苯硫醚树脂加入螺杆挤出机,在330℃加热熔融,通过计量泵由喷丝头挤出,在空气中冷却成纤。纤维直径为100μm,截面有9个孔,孔在纤维表面开口大小为4~6μm,即喷丝板异形孔的进料缺口设置在4~6μm。采用平均粒径为2~3μm的Co/MnOx催化剂粒子功能性物质,经分散后加入纺丝油剂中配制含1wt%,功能性物质的纺丝机油。在纺制长丝时,丝条经给湿上油,纤维油剂含量占纤维质量的10%。油剂充分浸润到纤维孔内后,卷绕丝在105℃,4倍热拉伸条件下,孔在纤维表面开口大小变为1~1.5μm,得到功能性长丝。长丝再经卷曲、热定形、切断等工序得到短纤。制备的长丝和短纤,在NH3和空气存在下,具有分解烟气中的NOx污染物作用。 Add the dried polyphenylene sulfide resin to the screw extruder, heat and melt at 330°C, extrude from the spinneret through a metering pump, and cool in the air to form fibers. The diameter of the fiber is 100 μm, and there are 9 holes in the cross section. The opening size of the holes on the surface of the fiber is 4-6 μm, that is, the feeding gap of the special-shaped hole of the spinneret is set at 4-6 μm. The Co/MnO x catalyst particle functional substance with an average particle diameter of 2-3 μm is used, and after being dispersed, it is added to the spinning oil agent to prepare the spinning machine oil containing 1 wt % of the functional substance. When spinning filaments, the filaments are wetted and oiled, and the fiber oil content accounts for 10% of the fiber mass. After the oil agent is fully infiltrated into the fiber pores, the winding yarn is stretched at 105°C and 4 times heat, and the opening size of the pores on the fiber surface becomes 1-1.5 μm to obtain functional filaments. The filaments are then crimped, heat-set, cut and other processes to obtain short fibers. The prepared filaments and short fibers have the effect of decomposing NOx pollutants in flue gas in the presence of NH 3 and air.
含有15%重量比Co/MnOx催化剂的PPS功能短纤维,采用针刺法制得克重为400g/m2的无纺布功能织物,厚度为2mm。另采用不含催化剂的PPS短纤维制得PPS无纺布。取称两种无纺布10克,采用相同评价方法评价:无纺布装入2cm的固定床反应器,在100℃温度下,以200ml/min的流速通入气氛,气氛中含有412ppmNO、188ppmNO2、5%O2、600ppmNH3和约95%的N2,测量反应器出口的NO和NO2浓度。含功能性物质的PPS无纺布的反应器出口NO和NO2浓度为50和0ppm。普通PPS无纺布的反应器出口NO和NO2浓度为412和188ppm,说明含Co/MnOx催化剂的PPS功能短纤维能够很好的分解NOx污染物。 Containing the PPS functional staple fiber of 15% by weight Co/MnOx catalyzer, adopting the acupuncture method to make the non-woven functional fabric that the grammage is 400g/m 2 , thickness is 2mm. In addition, PPS non-woven fabrics were prepared by using PPS short fibers without catalyst. Take 10 grams of two kinds of non-woven fabrics, and use the same evaluation method to evaluate: the non-woven fabrics are loaded into a 2cm fixed-bed reactor, and the atmosphere is passed into the atmosphere at a flow rate of 200ml/min at a temperature of 100°C. The atmosphere contains 412ppmNO, 188ppmNO 2 , 5% O 2 , 600 ppm NH 3 and about 95% N 2 , measure the NO and NO 2 concentrations at the reactor outlet. The reactor outlet NO and NO concentrations of PPS nonwovens containing functional substances were 50 and 0 ppm. The NO and NO concentrations at the reactor outlet of ordinary PPS nonwoven fabrics were 412 and 188 ppm, indicating that PPS functional short fibers containing Co/MnOx catalysts can decompose NOx pollutants well.
实施例6 Example 6
将干燥后尼龙6切片加入螺杆挤出机,在260℃加热熔融,通过计量泵由喷丝头挤出,在空气中冷却成纤。纤维直径为90μm,截面有3个孔,孔在纤维表面开口大小为0.4~0.6μm,即喷丝板异形孔的进料缺口设置在0.4~0.6μm。采用平均粒径为0.2~0.3μm的导电活性炭粒子,经分散后加入纺丝油剂中配制含20wt%功能性物质的纺丝机油。在纺制长丝时,丝条经给湿上油,纤维油剂含量占纤维质量的8%。油剂充分浸润到纤维孔内后,卷绕丝在60℃,4倍热 拉条件下,孔在纤维表面开口大小变为0.1~0.15μm,得到功能性长丝。长丝再经卷曲、热定形、切断等工序得到短纤。制备的长丝和短纤具有抗静电功能。 Add the dried nylon 6 chips into the screw extruder, heat and melt at 260°C, extrude from the spinneret through a metering pump, and cool in the air to form fibers. The diameter of the fiber is 90 μm, and there are 3 holes in the cross section. The opening size of the holes on the surface of the fiber is 0.4-0.6 μm, that is, the feeding gap of the special-shaped hole of the spinneret is set at 0.4-0.6 μm. Conductive active carbon particles with an average particle diameter of 0.2-0.3 μm are used, dispersed and then added to spinning oil to prepare spinning machine oil containing 20 wt % of functional substances. When spinning filaments, the filaments are wetted and oiled, and the fiber oil content accounts for 8% of the fiber mass. After the oil agent is fully infiltrated into the fiber pores, the coiled yarn is drawn at 60°C and 4 times hotter, and the opening size of the pores on the fiber surface becomes 0.1-0.15 μm to obtain functional filaments. The filaments are then crimped, heat-set, cut and other processes to obtain short fibers. The prepared filaments and short fibers have antistatic function. the
含导电活性炭粒子的PET纤维和普通纤维制得平纹织物,按照GB/T12703.2-2009《纺织品静电性能的评定第2部分电荷面密度》方法测试静电性能。含导电活性炭粒子的PET纤维导电纤维织物为1.6μc/m2,普通织物大于20μc/m2。 Plain weave fabrics were prepared from PET fibers and ordinary fibers containing conductive activated carbon particles, and the electrostatic properties were tested according to the method of GB/T12703.2-2009 "Evaluation of Electrostatic Properties of Textiles Part 2 Charge Surface Density". The PET fiber conductive fiber fabric containing conductive activated carbon particles is 1.6μc/m 2 , and the ordinary fabric is greater than 20μc/m 2 .
实施例7 Example 7
将干燥后聚氨酯切片加入螺杆挤出机,在210℃加热熔融,通过计量泵由喷丝头挤出,在空气中冷却成纤。纤维直径为100μm,截面有3个孔,孔在纤维表面开口大小为0.4~0.6μm,即喷丝板异形孔的进料缺口设置在0.4~0.6μm。采用平均粒径为0.2~0.3μm的导电活性炭粒子,经分散后加入纺丝油剂中配制含5wt%,功能性物质的纺丝机油。在纺制长丝时,丝条经给湿上油,纤维油剂含量占纤维质量的5%。油剂充分浸润到纤维孔内后,卷绕丝在60℃,4倍热拉条件下,孔在纤维表面开口大小变为0.1~0.15μm,得到功能性长丝。长丝再经卷曲、热定形、切断等工序得到短纤。制备的长丝和短纤具有抗静电功能。 Put the dried polyurethane chips into the screw extruder, heat and melt at 210°C, extrude from the spinneret through the metering pump, and cool in the air to form fibers. The diameter of the fiber is 100 μm, and there are 3 holes in the cross section. The opening size of the holes on the surface of the fiber is 0.4-0.6 μm, that is, the feeding gap of the special-shaped hole of the spinneret is set at 0.4-0.6 μm. Conductive activated carbon particles with an average particle size of 0.2-0.3 μm are used, and after being dispersed, they are added to the spinning oil agent to prepare spinning machine oil containing 5 wt % of functional substances. When spinning filaments, the filaments are wetted and oiled, and the fiber oil content accounts for 5% of the fiber mass. After the oil agent is fully infiltrated into the fiber pores, the winding yarn is heated at 60°C and 4 times hot-drawn, and the opening size of the pores on the fiber surface becomes 0.1-0.15 μm to obtain functional filaments. The filaments are then crimped, heat-set, cut and other processes to obtain short fibers. The prepared filaments and short fibers have antistatic function. the
含导电活性炭粒子的PET纤维和普通纤维制得平纹织物,按照GB/T12703.2-2009《纺织品静电性能的评定第2部分电荷面密度》方法测试静电性能。含导电活性炭粒子的PET纤维导电纤维织物为1.6μc/m2,普通织物大于20μc/m2。 Plain weave fabrics were prepared from PET fibers and ordinary fibers containing conductive activated carbon particles, and the electrostatic properties were tested according to the method of GB/T12703.2-2009 "Evaluation of Electrostatic Properties of Textiles Part 2 Charge Surface Density". The PET fiber conductive fiber fabric containing conductive activated carbon particles is 1.6μc/m 2 , and the ordinary fabric is greater than 20μc/m 2 .
实施例8 Example 8
将干燥后聚乳酸切片加入螺杆挤出机,在200℃加热熔融,通过计量泵由喷丝头挤出,在空气中冷却成纤。纤维直径为80μm,截面有2个孔,孔在纤维表面开口大小为0.4~0.6μm,即喷丝板异形孔的进料缺口设置在0.4~0.6μm。采用平均粒径为0.2~0.3μm的导电活性炭粒子,经分散后加入纺丝油剂中配制含15wt%功能性物质的纺丝机油。在纺制长丝时,丝条经给湿上油,纤维油剂含量占纤维质量的5%。油剂充分浸润到纤维孔内后,卷绕丝在80℃,4倍热拉条件下,孔在纤维表面开口大小变为0.1~0.15μm,得到功能性长丝。长丝再经卷曲、热定形、切断等工序得到短纤。制备的长丝和短纤具有抗静电功能。 Add the dried polylactic acid chips into the screw extruder, heat and melt at 200°C, extrude from the spinneret through a metering pump, and cool in the air to form fibers. The diameter of the fiber is 80 μm, and there are 2 holes in the cross section. The opening size of the holes on the surface of the fiber is 0.4-0.6 μm, that is, the feeding gap of the special-shaped hole of the spinneret is set at 0.4-0.6 μm. Conductive active carbon particles with an average particle size of 0.2-0.3 μm are used, dispersed and then added to spinning oil to prepare spinning machine oil containing 15 wt% functional substances. When spinning filaments, the filaments are wetted and oiled, and the fiber oil content accounts for 5% of the fiber mass. After the oil agent is fully infiltrated into the fiber pores, the wound yarn is heated at 80°C and 4 times hot-drawn, and the opening size of the pores on the fiber surface becomes 0.1-0.15 μm to obtain functional filaments. The filaments are then crimped, heat-set, cut and other processes to obtain short fibers. The prepared filaments and short fibers have antistatic function. the
含导电活性炭粒子的PET纤维和普通纤维制得平纹织物,按照GB/T12703.2-2009《纺织品静电性能的评定第2部分电荷面密度》方法测试静电性能。含导电活性炭粒子的PET纤维导电纤维织物为1.6μc/m2,普通织物大于20μc/m2。 Plain weave fabrics were prepared from PET fibers and ordinary fibers containing conductive activated carbon particles, and the electrostatic properties were tested according to the method of GB/T12703.2-2009 "Evaluation of Electrostatic Properties of Textiles Part 2 Charge Surface Density". The PET fiber conductive fiber fabric containing conductive activated carbon particles is 1.6μc/m 2 , and the ordinary fabric is greater than 20μc/m 2 .
本发明还提供了一种由上述功能性纤维编织的织物,例如以具有消臭和抗菌功能性物质的“笼形”功能纤维为原料纺制的运动袜,由于具有“多维”通孔结构,汗液能快速渗入“多维通孔”中,强化了吸湿排汗功能,体感因细旦、异形截面和表面孔而变得更好。同时“多维通孔”内的消臭、抗菌功能性物质在汗液渗入孔道后迅速作用,分解异物和抑制细菌生长,使产品更具穿着舒适性。 The present invention also provides a fabric woven by the above-mentioned functional fibers, such as sports socks spun from "cage-shaped" functional fibers with deodorant and antibacterial functional substances. Due to the "multi-dimensional" through-hole structure, Sweat can quickly penetrate into the "multi-dimensional through holes", which strengthens the moisture absorption and perspiration function, and the body feeling becomes better due to the fine denier, special-shaped cross-section and surface holes. At the same time, the deodorizing and antibacterial functional substances in the "multi-dimensional through holes" act quickly after sweat penetrates into the pores, decomposing foreign matter and inhibiting the growth of bacteria, making the product more comfortable to wear. the
本发明提供的功能性纤维,第一,具有非常大的比表面积和大孔隙率,能够容纳更多功能性物质;第二,由于功能性物质是采用“封装”形式,不是传统技术的包埋或者通过粘黏及整理剂固定在纤维表面,使得在同样的功能性物质负载量的条件下,具有更高的功能活性和更好的效果。第三,“笼形”特殊结构不会影响光、热、电子和反应物等进入纤维孔道内, 这将显著强化扩散、流动、传质、能量交换和多物场偶合作用;第四,纤维本体结构与功能性物质一体化,进一步地强化了功能效果和处理效率,使纤维应用的领域得到进一步拓展。 The functional fiber provided by the present invention, first, has a very large specific surface area and large porosity, and can accommodate more functional substances; second, because the functional substance is in the form of "encapsulation", it is not embedded Or it can be fixed on the fiber surface by sticking and finishing agent, so that it has higher functional activity and better effect under the same loading capacity of functional substances. Third, the "cage" special structure will not affect the entry of light, heat, electrons, and reactants into the fiber pores, which will significantly enhance diffusion, flow, mass transfer, energy exchange, and multi-field coupling; fourth, the fiber The integration of the body structure and functional substances further strengthens the functional effect and processing efficiency, and further expands the field of fiber application. the
另外,制备该功能性纤维的方法简单、易行,不需要特殊的工艺处理,适于工业上的大规模生产。 In addition, the method for preparing the functional fiber is simple and easy, does not require special process treatment, and is suitable for large-scale industrial production. the
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention. the
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110249793.7A CN102433763B (en) | 2011-08-26 | 2011-08-26 | Functional fiber, manufacturing method and fabric formed via weaving functional fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110249793.7A CN102433763B (en) | 2011-08-26 | 2011-08-26 | Functional fiber, manufacturing method and fabric formed via weaving functional fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102433763A CN102433763A (en) | 2012-05-02 |
CN102433763B true CN102433763B (en) | 2013-10-16 |
Family
ID=45982099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110249793.7A Active CN102433763B (en) | 2011-08-26 | 2011-08-26 | Functional fiber, manufacturing method and fabric formed via weaving functional fiber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102433763B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102776600B (en) * | 2012-07-10 | 2013-12-11 | 东华大学 | Method for preparing efficient far infrared nylon fibers |
CN106835810A (en) * | 2017-03-28 | 2017-06-13 | 广西金桂浆纸业有限公司 | The manufacture craft of high bulk cupstock |
CN106812018A (en) * | 2017-03-28 | 2017-06-09 | 广西金桂浆纸业有限公司 | The manufacture craft of energy-conserving and environment-protective cupstock |
CN106988152A (en) * | 2017-03-28 | 2017-07-28 | 广西金桂浆纸业有限公司 | A kind of manufacture craft of cupstock |
CN106988151A (en) * | 2017-03-28 | 2017-07-28 | 广西金桂浆纸业有限公司 | The manufacture craft of recyclable recycling cupstock |
CN107788599A (en) * | 2017-11-27 | 2018-03-13 | 苏州市叶绣工艺厂 | One kind removes peculiar smell ceremonial dress face fabric |
CN108532308A (en) * | 2018-01-17 | 2018-09-14 | 澳洋集团有限公司 | Antibacterial polyester fibre and preparation method thereof |
CN210540422U (en) | 2018-10-30 | 2020-05-19 | 绿能奈米科技有限公司 | Bedding structure with non-power energy layer |
CN110205820B (en) * | 2019-04-30 | 2020-06-12 | 东华大学 | Functional fiber and preparation method thereof |
CN110485041A (en) * | 2019-09-19 | 2019-11-22 | 界首市远航织带有限公司 | A kind of antibacterial far infrared ribbon preparation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5538735A (en) * | 1993-02-19 | 1996-07-23 | Ahn; Sam S. | Method of making a drug delivery system using hollow fibers |
CN1220322A (en) * | 1997-12-16 | 1999-06-23 | 柳启瑞 | Method for manufacturing microporous hollow fiber by laser processing technology |
CN1511979A (en) * | 2002-12-27 | 2004-07-14 | Technology for preparing core-shell structure function fiber |
-
2011
- 2011-08-26 CN CN201110249793.7A patent/CN102433763B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5538735A (en) * | 1993-02-19 | 1996-07-23 | Ahn; Sam S. | Method of making a drug delivery system using hollow fibers |
CN1220322A (en) * | 1997-12-16 | 1999-06-23 | 柳启瑞 | Method for manufacturing microporous hollow fiber by laser processing technology |
CN1511979A (en) * | 2002-12-27 | 2004-07-14 | Technology for preparing core-shell structure function fiber |
Non-Patent Citations (2)
Title |
---|
PGLA纤维拉伸过程中结晶与取向的变化;李健等;《纺织学报》;20110131;第32卷(第1期);第4页第2.2节 * |
李健等.PGLA纤维拉伸过程中结晶与取向的变化.《纺织学报》.2011,第32卷(第1期),第4页第2.2节. |
Also Published As
Publication number | Publication date |
---|---|
CN102433763A (en) | 2012-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102433763B (en) | Functional fiber, manufacturing method and fabric formed via weaving functional fiber | |
Barhoum et al. | Nanofiber technologies: History and development | |
Joshi et al. | Nanotechnology–a new route to high-performance functional textiles | |
KR100843191B1 (en) | Silver nanoparticle-containing nanofiber filter media and its manufacturing method | |
KR100931407B1 (en) | Antimicrobial mask fabric and its manufacturing method | |
KR100727086B1 (en) | Functional polymer material and preparation method thereof | |
KR101290715B1 (en) | Nanofiber mat with antimicrobial activity and decomposition ability for hazardous compounds and Method of preparing the same and Protective gear containing the same | |
CN106592005A (en) | Nano-composite fiber material and preparation method thereof | |
CN102174719A (en) | Microporous photocatalyst bamboo charcoal polyester modified short fiber and preparation method thereof | |
CN110714236A (en) | Preparation method of moisture-absorbing sweat-releasing antibacterial polyester filament yarn | |
CN112575448A (en) | Preparation method of porous non-woven fabric with antibacterial function | |
Ge et al. | Electrospun polyurethane/loess powder hybrids and their absorption of volatile organic compounds | |
KR20130060609A (en) | Polyester twisted yarn four making method antibacterial and deodorant properties | |
JP2015219170A (en) | Radiation shield material | |
KR101495966B1 (en) | Method for preparing electrically conductive polyamide- polyolefin composite fiber and electrically conductive composite fiber prepared thereby | |
CN106435819A (en) | Novel high-performance composite porous nanometer antibacterial fiber material adopting functionalized graphene and preparation method of novel high-performance composite porous nanometer antibacterial fiber material | |
KR101403638B1 (en) | Method for manufacturing chemical biological and radiological protective clothing sheet | |
KR20090021568A (en) | Manufacturing method of primary antimicrobial composite fiber with excellent antimicrobial and far infrared performance | |
KR20110023366A (en) | Composite fiber and its manufacturing method | |
CN116905106B (en) | Multifunctional fiber and multifunctional fabric | |
CN1772979A (en) | A kind of anti-mosquito false twisted yarn and its manufacturing method | |
CN110409165A (en) | An organic-inorganic composite nanofiber membrane based on electrospinning technology and its preparation method | |
KR100544780B1 (en) | Antimicrobial islands-in-the-sea polyester composite fiber and manufacturing method thereof | |
KR100481358B1 (en) | A multifunctional polyester fiber and its manufacturing process | |
KR100500310B1 (en) | A Process for preparing multi-functional polyester and the Polyester produced by the process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |