CN102432860A - A kind of preparation method of hydroxyl-terminated polyethylene glycol-polytetrahydrofuran triblock copolyether - Google Patents
A kind of preparation method of hydroxyl-terminated polyethylene glycol-polytetrahydrofuran triblock copolyether Download PDFInfo
- Publication number
- CN102432860A CN102432860A CN2011102059398A CN201110205939A CN102432860A CN 102432860 A CN102432860 A CN 102432860A CN 2011102059398 A CN2011102059398 A CN 2011102059398A CN 201110205939 A CN201110205939 A CN 201110205939A CN 102432860 A CN102432860 A CN 102432860A
- Authority
- CN
- China
- Prior art keywords
- polytetrahydrofuran
- hydroxyl
- polyethylene glycol
- copolyether
- triblock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000909 polytetrahydrofuran Polymers 0.000 title claims abstract description 68
- -1 polyethylene Polymers 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 14
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 14
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 25
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000002904 solvent Substances 0.000 claims abstract description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910000102 alkali metal hydride Inorganic materials 0.000 claims abstract description 9
- 150000008046 alkali metal hydrides Chemical class 0.000 claims abstract description 9
- 229910052786 argon Inorganic materials 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 230000001681 protective effect Effects 0.000 claims abstract description 7
- 239000012298 atmosphere Substances 0.000 claims abstract description 5
- 150000002009 diols Chemical class 0.000 claims abstract 9
- 238000006243 chemical reaction Methods 0.000 claims description 40
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 32
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 21
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 15
- 238000006116 polymerization reaction Methods 0.000 claims description 10
- 229910000104 sodium hydride Inorganic materials 0.000 claims description 10
- 150000004703 alkoxides Chemical class 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 230000035484 reaction time Effects 0.000 claims description 5
- 239000011734 sodium Chemical group 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical group [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 238000012662 bulk polymerization Methods 0.000 claims description 4
- 238000010528 free radical solution polymerization reaction Methods 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 229910052708 sodium Chemical group 0.000 claims description 4
- 239000012312 sodium hydride Substances 0.000 claims description 4
- 238000012653 anionic ring-opening polymerization Methods 0.000 claims description 3
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910000105 potassium hydride Inorganic materials 0.000 claims description 2
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 claims 2
- 239000004593 Epoxy Substances 0.000 claims 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims 1
- 238000010992 reflux Methods 0.000 claims 1
- 150000001450 anions Chemical group 0.000 abstract description 2
- 230000000977 initiatory effect Effects 0.000 abstract description 2
- 230000000379 polymerizing effect Effects 0.000 abstract 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 abstract 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 229920001400 block copolymer Polymers 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 7
- 238000002356 laser light scattering Methods 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000010612 desalination reaction Methods 0.000 description 5
- 229920000570 polyether Polymers 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 239000003380 propellant Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000012656 cationic ring opening polymerization Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 239000000693 micelle Substances 0.000 description 3
- 239000004449 solid propellant Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 2
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 108010084311 Novozyme 435 Proteins 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000010550 living polymerization reaction Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- GAGSAAHZRBTRGD-UHFFFAOYSA-N oxirane;oxolane Chemical compound C1CO1.C1CCOC1 GAGSAAHZRBTRGD-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
Landscapes
- Polyethers (AREA)
Abstract
Description
技术领域 technical field
本发明属于高分子材料合成领域,涉及一种端羟基聚乙二醇-聚四氢呋喃三嵌段共聚醚的制备方法。The invention belongs to the field of polymer material synthesis and relates to a preparation method of hydroxyl-terminated polyethylene glycol-polytetrahydrofuran triblock copolyether.
背景技术 Background technique
聚四氢呋喃二醇(PTMEG),又称为聚四氢呋喃(PTHF),是一种低温性能优异的聚醚材料,其分子链柔性好、排列紧密,结构中无侧链,密度较其他聚醚密度高并具有较低的玻璃化温度。通常,PTMEG作为嵌段共聚物中的软段组分,赋予材料优异的物理机械性能和低温性能。聚乙二醇(PEG)则是一类无毒、无刺激性的聚醚产品,其具有水溶性,并与许多有机物能良好相容。由于优良的保湿性、润滑性和分散性,聚乙二醇可作为粘接剂、抗静电剂及柔软剂等,在化妆品、化纤、制药、造纸、电镀、塑料、橡胶、油漆、农药、金属及食品加工等行业中均有广泛应用。Polytetrahydrofuran glycol (PTMEG), also known as polytetrahydrofuran (PTHF), is a polyether material with excellent low-temperature performance. Its molecular chains are flexible, tightly arranged, and there are no side chains in the structure. The density is higher than other polyethers. And has a lower glass transition temperature. Usually, PTMEG is used as a soft segment component in block copolymers, endowing materials with excellent physical and mechanical properties and low-temperature performance. Polyethylene glycol (PEG) is a non-toxic, non-irritating polyether product, which is water-soluble and compatible with many organic substances. Due to its excellent moisture retention, lubricity and dispersibility, polyethylene glycol can be used as adhesives, antistatic agents and softeners, etc., in cosmetics, chemical fibers, pharmaceuticals, papermaking, electroplating, plastics, rubber, paints, pesticides, metals, etc. And food processing and other industries are widely used.
PEG-PTHF嵌段共聚醚能在一定程度上保留PEG和PTHF各自的优良性能,相比于传统的聚醚产品具有更加优异的机械性能及更广泛的应用前景。此外,聚四氢呋喃疏水和聚乙二醇亲水的特点使共聚醚具有两亲性,可进行溶液自组装,由于聚乙二醇和聚四氢呋喃均有良好的生物相容性,使得嵌段共聚醚在药物载体和控制释放等领域有着潜在的应用价值。PEG-PTHF block copolyether can retain the excellent properties of PEG and PTHF to a certain extent, and has more excellent mechanical properties and wider application prospects than traditional polyether products. In addition, the hydrophobicity of polytetrahydrofuran and the hydrophilicity of polyethylene glycol make the copolyether amphiphilic and can be self-assembled in solution. Due to the good biocompatibility of polyethylene glycol and polytetrahydrofuran, the block copolyether has good biocompatibility. Drug carrier and controlled release have potential application value.
在固体推进剂设计领域,新一代高性能推进剂所用HTPE粘合剂就是环氧乙烷(EO)和四氢呋喃(THF)经活性聚合技术得到的嵌段共聚物(闫大庆,徐丹丹,师经国.固体推进剂粘合剂HTPE研究及其分子设计思想概述.固体火箭技术.2009,32:644-649.)。这种端羟基聚醚型粘合剂具有玻璃化温度低、柔顺性好以及硝酸酯增塑剂互溶性好等特点,它作为固体推进剂的粘合剂,不仅可使推进剂力学性能和钝感性能得到明显改善,而且由于硝酸酯增塑剂的引入,使推进剂能量也大大提高。端羟基嵌段共聚醚粘合剂的制备是研制HTPE推进剂的关键技术,而关于这方面的研究报道较少。In the field of solid propellant design, the HTPE binder used in a new generation of high-performance propellants is a block copolymer obtained by living polymerization of ethylene oxide (EO) and tetrahydrofuran (THF) (Yan Daqing, Xu Dandan, Shi Jingguo . Solid Propellant Binder HTPE Research and Overview of Molecular Design Ideas. Solid Rocket Technology. 2009, 32: 644-649.). This hydroxyl-terminated polyether adhesive has the characteristics of low glass transition temperature, good flexibility, and good compatibility with nitrate plasticizers. As an adhesive for solid propellants, it can not only improve the mechanical properties of propellants and The sensory performance has been significantly improved, and the energy of the propellant has also been greatly increased due to the introduction of the nitrate plasticizer. The preparation of hydroxyl-terminated block copolyether binder is a key technology in the development of HTPE propellants, but there are few research reports on this aspect.
目前,主要通过端基反应将PEG和PTHF偶联制备出嵌段共聚醚,在该方法中,PTHF、PEG的端羟基和偶联剂分子中-NCO、-COOH等基团反应,实现了聚合物间的键接,制备出嵌段共聚物。Niua等人用novozyme-435脂肪酶催化PTHF和丙二酸二乙酯反应,制备出两端为乙酯基团的PTHF,然后将其和不同分子量的PEG进行酯交换反应制备出PEG-PTHF-PEG嵌段共聚醚。该嵌段共聚醚具有两亲性,在水溶液中能够聚集形成胶束,通过调节分子链上PEG段的大小可以改变其临界胶束浓度(CMC)及胶束尺寸。Gerfried等则以酸作催化剂,制得聚四氢呋喃和聚乙二醇嵌段共聚物。Neumer等以酸性蒙脱土作催化剂,将PTHF与甲醛在环己胺溶液中进行缩合反应,制得PTHF和甲醛的嵌段共聚物。借助该思路,制得PTHF与PEG或聚环氧丁烷等聚合物的嵌段共聚物。该共聚物较原来的两种聚合物有更优异的性质:在相同的温度下,共聚醚的粘度仅为PTMEG的二分之一,制得的聚氨酯较相同相对分子质量的PTMEG所制得的聚氨酯具有更优异的力学性能。At present, block copolyether is prepared by coupling PEG and PTHF mainly through terminal group reaction. In this method, the terminal hydroxyl groups of PTHF and PEG react with -NCO, -COOH and other groups in the coupling agent molecule to realize the polymerization. The bonding between objects is used to prepare block copolymers. Niua et al. used novozyme-435 lipase to catalyze the reaction between PTHF and diethyl malonate to prepare PTHF with ethyl ester groups at both ends, and then transesterified it with PEG of different molecular weights to prepare PEG-PTHF- PEG block copolyether. The block copolyether has amphiphilicity and can aggregate to form micelles in aqueous solution, and its critical micelle concentration (CMC) and micelle size can be changed by adjusting the size of PEG segment on the molecular chain. Gerfried et al. used acid as a catalyst to prepare block copolymers of polytetrahydrofuran and polyethylene glycol. Neumer et al. used acidic montmorillonite as a catalyst to condense PTHF and formaldehyde in cyclohexylamine solution to obtain a block copolymer of PTHF and formaldehyde. With this idea, block copolymers of PTHF and polymers such as PEG or polybutylene oxide can be prepared. The copolymer has more excellent properties than the original two polymers: at the same temperature, the viscosity of the copolyether is only one-half of that of PTMEG, and the obtained polyurethane is better than that of PTMEG with the same relative molecular mass. Polyurethane has better mechanical properties.
文献(Barcock Richard A,Hobson Rachel J.Photographic emulsion.[P].USP 5773207,1998.)介绍了另一种合成PTHF和PEG嵌段共聚物的方法。首先将其中一种聚合物与甲基磺酰氯反应,制得端甲基磺酰基的聚合物,然后与另外一种聚合物反应,最终制得ABA或BAB型的嵌段聚合物。Literature (Barcock Richard A, Hobson Rachel J. Photographic emulsion. [P]. USP 5773207, 1998.) introduces another method for synthesizing PTHF and PEG block copolymers. First, one of the polymers is reacted with methylsulfonyl chloride to obtain a methylsulfonyl-terminated polymer, and then reacted with another polymer to finally obtain an ABA or BAB type block polymer.
采用端基反应法,在偶联剂的作用下能简便、低廉地制备端羟基PEG-PTHF嵌段共聚醚,但采用此法制备的嵌段共聚醚的分子量分布较宽,结构难以控制,难以满足高性能材料制备的需求。Using the terminal group reaction method, the hydroxyl-terminated PEG-PTHF block copolyether can be prepared simply and cheaply under the action of the coupling agent, but the molecular weight distribution of the block copolyether prepared by this method is wide, and the structure is difficult to control. Meet the needs of high-performance material preparation.
此外,用大分子PEG去终止THF的阳离子开环聚合也能制备出PEG-PTHF嵌段共聚醚。1999年,Inge C.De Witte等人分别采用聚乙二醇单甲醚mPEG750、mPEG2000、mPEG5000去终止三氟甲磺酸酐引发的THF的阳离子开环聚合,成功制备出窄分子量的PEG-PTHF-PEG三嵌段共聚醚。随后,Catherine Pomel等人重复上述方法,制备出PEO-PTHF-PEO三嵌段共聚醚并将其应用到肌肉组织基因传输的研究中。In addition, PEG-PTHF block copolyether can also be prepared by using macromolecular PEG to terminate the cationic ring-opening polymerization of THF. In 1999, Inge C. De Witte and others used polyethylene glycol monomethyl ether mPEG750, mPEG2000, mPEG5000 to terminate the cationic ring-opening polymerization of THF initiated by trifluoromethanesulfonic anhydride, and successfully prepared narrow molecular weight PEG-PTHF- PEG tri-block copolyether. Subsequently, Catherine Pomel et al. repeated the above method to prepare PEO-PTHF-PEO triblock copolyether and applied it to the study of gene transmission in muscle tissue.
采用Tf2O体系的PEG终止法制备四氢呋喃-环氧乙烷嵌段共聚醚是一种高效的制备方法,反应迅速并且制备的共聚物结构明确,分布窄,但是制备过程中需要严格的等计量加料,并且制得的共聚醚分子两端均无羟基,应用价值有限。The preparation of tetrahydrofuran-ethylene oxide block copolyether by the PEG termination method of Tf 2 O system is an efficient preparation method. The reaction is rapid and the prepared copolymer has a clear structure and narrow distribution. However, strict isometry is required in the preparation process. Adding materials, and the obtained copolyether molecules have no hydroxyl groups at both ends, and the application value is limited.
近期,罗运军等人(汪存东,罗运军,汪存东等.端羟基PTHF-PEO-PTHF嵌段共聚醚的合成与表征.固体火箭技术.2011,34:202-206.)以大分子PEG为引发剂(起始剂),三氟化硼乙醚络合物为催化剂,在少量环氧丙烷助开环的条件下,THF发生阳离子开环聚合,在聚乙二醇的两端接上了PTHF链段,从而制备出端羟基PTHF-PEO-PTHF三嵌段共聚醚。但是,该方法中引发剂不能完全参与引发反应,造成产物中存在大量的PEG均聚醚和两嵌段共聚醚,需要进行复杂的分离提纯工序。Recently, Luo Yunjun et al. (Wang Cundong, Luo Yunjun, Wang Cundong et al. Synthesis and characterization of hydroxyl-terminated PTHF-PEO-PTHF block copolyether. Solid Rocket Technology. 2011, 34: 202-206.) used macromolecular PEG as the initiator ( Initiator), boron trifluoride ether complex as a catalyst, under the condition of a small amount of propylene oxide ring-opening aid, THF undergoes cationic ring-opening polymerization, and PTHF chain segments are connected to both ends of polyethylene glycol, Thus, a hydroxyl-terminated PTHF-PEO-PTHF tri-block copolyether was prepared. However, in this method, the initiator cannot fully participate in the initiation reaction, resulting in a large amount of PEG homopolyether and diblock copolyether in the product, requiring complicated separation and purification procedures.
发明内容 Contents of the invention
为了克服现有技术结构难以控制、应用价值有限或分离提纯复杂的不足,本发明提供一种端羟基聚乙二醇-聚四氢呋喃三嵌段共聚醚的制备方法,方法稳定、可控,制备的端羟基三嵌段共聚醚纯度高、结构确定、分子量分布窄。In order to overcome the disadvantages of the prior art that the structure is difficult to control, the application value is limited, or the separation and purification are complicated, the present invention provides a method for preparing hydroxyl-terminated polyethylene glycol-polytetrahydrofuran triblock copolyether. The method is stable and controllable. The hydroxyl-terminated triblock copolyether has high purity, definite structure and narrow molecular weight distribution.
本发明解决其技术问题所采用的技术方案包括以下步骤:The technical solution adopted by the present invention to solve its technical problems comprises the following steps:
第一步,在反应釜内将干燥过的PTMEG溶解在一定量的溶剂中,将适量碱金属氢化物加入到反应釜中,PTMEG和碱金属氢化物加入量的摩尔比为1∶2~1∶4,抽真空至0.01~0.1MPa后在室温至150℃的温度下反应,反应时间1小时以上。也可抽真空后往釜内充入氮气或氩气形成保护气氛再进行反应,控制保护气充入量使釜内压力在0.01~6MPa,然后在室温至150℃反应1小时以上,最后PTMEG的端羟基反应生成为PTMEG醇盐,PTMEG醇盐具有以下结构:In the first step, the dried PTMEG is dissolved in a certain amount of solvent in the reactor, and an appropriate amount of alkali metal hydride is added to the reactor, and the molar ratio of PTMEG and alkali metal hydride addition is 1:2-1 : 4, after vacuuming to 0.01-0.1MPa, react at room temperature to 150°C, and the reaction time is more than 1 hour. It is also possible to fill the kettle with nitrogen or argon to form a protective atmosphere after vacuuming, and then carry out the reaction. Control the amount of protective gas to keep the pressure in the kettle at 0.01-6MPa, and then react at room temperature to 150°C for more than 1 hour, and finally PTMEG The terminal hydroxyl group reacts to generate PTMEG alkoxide, and PTMEG alkoxide has the following structure:
其中,M为钾(K)或钠(Na),n=9~100,O代表氧元素。 Wherein, M is potassium (K) or sodium (Na), n=9-100, and O represents oxygen element.
以上方法所用PTMEG分子量Mn为650~6000g/mol,优选分子量分布(Mw/Mn)小于1.30的窄分布PTMEG。The molecular weight Mn of the PTMEG used in the above method is 650-6000 g/mol, preferably a narrow distribution PTMEG with a molecular weight distribution (Mw/Mn) less than 1.30.
以上方法所用的碱金属氢化物为氢化钠(NaH)或氢化钾(KH)。The alkali metal hydride used in the above method is sodium hydride (NaH) or potassium hydride (KH).
以上方法所用的溶剂为四氢呋喃(THF)或甲苯(Toluene)。The solvent used in the above method is tetrahydrofuran (THF) or toluene (Toluene).
以上方法所用的溶剂与钠、氢化钙或氢化钠回流后蒸馏除水,溶剂和PTMEG加入量的质量比优选为1∶1~2∶1。The solvent used in the above method is refluxed with sodium, calcium hydride or sodium hydride to remove water, and the mass ratio of the solvent to the amount of PTMEG added is preferably 1:1 to 2:1.
以上方法中,PTMEG和碱金属氢化物加入量的摩尔比优选为1∶2.1~1∶2.4。In the above method, the molar ratio of the added amount of PTMEG and the alkali metal hydride is preferably 1:2.1˜1:2.4.
以上方法的反应温度优选为50~70℃。The reaction temperature of the above method is preferably 50-70°C.
以上方法的反应时间优选为4小时。The reaction time of the above method is preferably 4 hours.
第二步,将PTMEG醇盐置于在高压釜内,加入环氧乙烷,环氧乙烷和PTMEG醇盐加入量摩尔比为2∶1~200∶1,引发环氧乙烷进行阴离子开环聚合,以氮气或氩气为保护气氛,控制保护气的充入量使釜内压力为0.2~6MPa,聚合反应温度为室温至150℃,高温有利于反应速率的提高,低温有利于降低产品的色度、提高产品质量,聚合1~120小时后,终止反应,制备出端羟基PEG-PTHF-PEG的ABA型嵌段共聚醚,其结构如下:In the second step, PTMEG alkoxide is placed in the autoclave, and ethylene oxide is added, and the molar ratio of ethylene oxide and PTMEG alkoxide is 2: 1 to 200: 1, which triggers ethylene oxide to carry out anion opening. Ring polymerization, using nitrogen or argon as the protective atmosphere, controlling the filling amount of protective gas so that the pressure in the kettle is 0.2-6MPa, and the polymerization reaction temperature is from room temperature to 150°C. High temperature is beneficial to increase the reaction rate, and low temperature is beneficial to reduce the product chroma, improve product quality, after polymerization for 1 to 120 hours, terminate the reaction, and prepare an ABA-type block copolyether of hydroxyl-terminated PEG-PTHF-PEG, whose structure is as follows:
其中n、m、m′为整数,n=9~100,m+m′=2~200,O表示氧,H表示氢。 Where n, m, and m' are integers, n=9-100, m+m'=2-200, O represents oxygen, and H represents hydrogen.
以上方法中,环氧乙烷的阴离子开环聚合反应为溶液聚合或本体聚合。溶液聚合时,所用溶剂为四氢呋喃、甲苯碱性条件下稳定的溶剂,加入量和PTMEG醇盐加入量的摩尔比为1∶10~10∶1,优选为1∶1。对于小批量样品的制备,可选用本体聚合,即不加入任何溶剂。In the above method, the anionic ring-opening polymerization of ethylene oxide is solution polymerization or bulk polymerization. During solution polymerization, the solvent used is a stable solvent under tetrahydrofuran and toluene under alkaline conditions, and the molar ratio of the amount added to the amount of PTMEG alkoxide added is 1:10 to 10:1, preferably 1:1. For the preparation of small batches of samples, bulk polymerization can be used, that is, without adding any solvent.
以上方法中,聚合温度优选为70~110℃。In the above method, the polymerization temperature is preferably 70 to 110°C.
对于环氧乙烷高转化率的方案,反应釜内压强下降至不变即可停止聚合反应。当制备的目标嵌段共聚醚分子量小于10000时,在聚合温度高于70℃的情况下反应时间8小时环氧乙烷的转化率即可达到90%以上。For the scheme of high conversion rate of ethylene oxide, the polymerization reaction can be stopped when the pressure in the reactor drops to the same level. When the molecular weight of the prepared target block copolyether is less than 10000, the conversion rate of ethylene oxide can reach more than 90% when the polymerization temperature is higher than 70° C. and the reaction time is 8 hours.
本发明的有益效果是:The beneficial effects of the present invention are:
1、本发明采用高活性的金属氢化物和PTMEG反应制备大分子醇盐,反应迅速、高效,PTMEG的端羟基几乎全部反应生成醇盐。1. The present invention adopts highly active metal hydrides and PTMEG to react to prepare macromolecular alkoxides. The reaction is rapid and efficient, and almost all terminal hydroxyl groups of PTMEG react to form alkoxides.
2、本发明提供的方法,通过选择不同分子量的聚PTMEG、调节投料比可以对嵌段共聚物的分子量和嵌段比灵活设计,进而可以制备出满足不同场合使用需求的一大类嵌段共聚醚产品。2. The method provided by the present invention can flexibly design the molecular weight and block ratio of the block copolymer by selecting polyPTMEG with different molecular weights and adjusting the feed ratio, and then can prepare a large class of block copolymers that meet the needs of different occasions. ether products.
3、本发明提供的方法中,两步反应可以在同一个反应釜先后完成,实验过程中保证了反应工艺的连续高效及体系的密闭性,使得制备的嵌段共聚醚产品纯度高、色度低、分子量分布窄。3. In the method provided by the present invention, the two-step reaction can be completed successively in the same reactor, and the continuous high efficiency of the reaction process and the airtightness of the system are guaranteed in the experimental process, so that the prepared block copolyether product has high purity and high chromaticity. Low, narrow molecular weight distribution.
下面结合实施例对本发明进一步说明。Below in conjunction with embodiment the present invention is further described.
具体实施方式 Detailed ways
实施例1Example 1
在300mL高压反应釜中加入50mL干燥的THF和40.97gPTMEG-2000(Mn=2092,Mw=2815,Mw/Mn=1.35)及1.11g NaH,室温下对高压釜抽真空至0.01MPa后密闭反应釜,温度设定在60℃,200转/分钟搅拌反应3小时。Add 50mL of dry THF, 40.97g of PTMEG-2000 (Mn=2092, Mw=2815, Mw/Mn=1.35) and 1.11g of NaH into a 300mL autoclave, vacuum the autoclave to 0.01MPa at room temperature, and then seal the autoclave , the temperature was set at 60° C., and the reaction was stirred at 200 rpm for 3 hours.
冷却反应釜至温度25℃以下,再次抽真空至0.01MPa后停止。在温度低于5℃的环境中将48g环氧乙烷加入加料罐,然后借助高压N2将环氧乙烷充入高压釜,同时控制N2充入量使釜内压力在25℃时为2MPa。将高压釜温度升高至80℃,200转/分钟搅拌反应8小时。Cool the reaction kettle to a temperature below 25°C, and then vacuum again to 0.01MPa to stop. Add 48g ethylene oxide to the feed tank in an environment where the temperature is lower than 5°C, then by means of high-pressure N ethylene oxide is charged into the autoclave, while controlling the amount of N charged so that the pressure in the still is at 25°C 2MPa. The temperature of the autoclave was raised to 80° C., and the reaction was stirred at 200 rpm for 8 hours.
卸掉高压釜内压力,取出釜内物料,用50mL无水乙醇溶解稀释后加入磷酸终止反应,搅拌0.5h后静置过夜,过滤除盐后将滤液蒸干得到白色至淡黄色嵌段共聚醚产品(凝胶渗透色谱-激光光散射联用仪进行表征:Mn=3642,Mw=4163,Mw/Mn=1.14)。Remove the pressure in the autoclave, take out the materials in the autoclave, dissolve and dilute with 50mL of absolute ethanol, add phosphoric acid to terminate the reaction, stir for 0.5h and let stand overnight, filter to remove salt and evaporate the filtrate to obtain white to light yellow block copolyether The product (characterized by gel permeation chromatography-laser light scattering: Mn=3642, Mw=4163, Mw/Mn=1.14).
实施例2Example 2
在300mL高压反应釜中加入25mL干燥的四氢呋喃和25.2gPTMEG-4000(Mn=4021,Mw=5037,Mw/Mn=1.23)及0.37g NaH,室温下对高压釜抽真空至0.01MPa后密闭反应釜,温度设定在65℃,200转/分钟搅拌反应2小时。Add 25mL of dry tetrahydrofuran, 25.2g of PTMEG-4000 (Mn=4021, Mw=5037, Mw/Mn=1.23) and 0.37g of NaH into a 300mL autoclave, and vacuumize the autoclave to 0.01MPa at room temperature, then seal the autoclave , the temperature was set at 65° C., and the reaction was stirred at 200 rpm for 2 hours.
冷却反应釜至温度25℃以下,再次抽真空至0.01MPa后停止。在温度低于5℃的环境中将27.2g环氧乙烷加入加料罐,然后借助高压N2将环氧乙烷充入高压釜,同时控制N2充入量使釜内压力在25℃时为2MPa。将高压釜升温至75℃,200转/分钟搅拌反应6小时。Cool the reaction kettle to a temperature below 25°C, and then vacuum again to 0.01MPa to stop. Add 27.2g of ethylene oxide to the feeding tank in an environment with a temperature lower than 5°C, then fill the ethylene oxide into the autoclave with high-pressure N 2 , and control the amount of N 2 charged so that the pressure in the autoclave is at 25°C is 2MPa. The temperature of the autoclave was raised to 75° C., and the reaction was stirred at 200 rpm for 6 hours.
卸掉高压釜内压力,取出釜内物料,用50mL无水乙醇溶解稀释后加入磷酸终止反应,搅拌0.5h后静置过夜,过滤除盐后将滤液蒸干得到白色至淡黄色嵌段共聚醚产品(凝胶渗透色谱-激光光散射联用仪进行表征,Mn=7006,Mw=7763,Mw/Mn=1.11)。Remove the pressure in the autoclave, take out the materials in the autoclave, dissolve and dilute with 50mL of absolute ethanol, add phosphoric acid to terminate the reaction, stir for 0.5h and let stand overnight, filter to remove salt and evaporate the filtrate to obtain white to light yellow block copolyether The product (characterized by gel permeation chromatography-laser light scattering, Mn=7006, Mw=7763, Mw/Mn=1.11).
实施例3Example 3
在300mL高压反应釜中加入50mL干燥的THF和40.97g PTMEG-2000(购自Sigma-alderich公司)及1.72g KH,室温下对高压釜抽真空至0.01MPa后立即密封反应釜,温度设定在60℃,200转/分钟搅拌反应1小时。Add 50mL dry THF and 40.97g PTMEG-2000 (purchased from Sigma-alderich company) and 1.72g KH in the 300mL autoclave, seal the autoclave immediately after vacuumizing the autoclave to 0.01MPa at room temperature, and set the temperature at 60 ° C, 200 rpm stirring reaction for 1 hour.
冷却反应釜至温度25℃以下,再次抽真空至0.01MPa。在温度低于5℃的环境中将48g环氧乙烷加入加料罐,然后借助高压N2将环氧乙烷充入高压釜,同时控制N2充入量使釜内压力在25℃时为0.2MPa。将高压釜温度升高至90℃,200转/分钟搅拌反应8小时。Cool the reactor to a temperature below 25°C, and then evacuate to 0.01MPa again. Add 48g ethylene oxide to the feed tank in an environment where the temperature is lower than 5°C, then by means of high-pressure N ethylene oxide is charged into the autoclave, while controlling the amount of N charged so that the pressure in the still is at 25°C 0.2MPa. The temperature of the autoclave was raised to 90° C., and the reaction was stirred at 200 rpm for 8 hours.
卸掉高压釜内压力,取出釜内物料,用50mL无水乙醇溶解稀释后加入磷酸终止反应,搅拌0.5h后静置过夜,过滤除盐后将滤液蒸干得到嵌段共聚醚产品(凝胶渗透色谱-激光光散射联用仪进行表征,Mn=3752,Mw=4199,Mw/Mn=1.12)。Remove the pressure in the autoclave, take out the materials in the autoclave, dissolve and dilute with 50mL of absolute ethanol, add phosphoric acid to terminate the reaction, stir for 0.5h and let it stand overnight, filter the desalination and evaporate the filtrate to dryness to obtain the block copolyether product (gel Characterized by permeation chromatography-laser light scattering, Mn=3752, Mw=4199, Mw/Mn=1.12).
实施例4Example 4
在300mL高压反应釜中加入20mL干燥的THF和11.65g PTMEG-2000(购自Sigma-alderich公司)及NaH 0.35g,室温下对高压釜抽真空至0.01MPa后立即密封反应釜,然后往釜内通入氦气,控制氦气通入量使釜内压力为0.05Mpa,温度设定在70℃,200转/分钟搅拌反应4小时。Add 20mL of dry THF and 11.65g of PTMEG-2000 (purchased from Sigma-alderich company) and NaH 0.35g in a 300mL autoclave, seal the autoclave immediately after vacuumizing the autoclave to 0.01MPa at room temperature, and then inject Feed helium, control the amount of helium feed so that the pressure in the kettle is 0.05Mpa, the temperature is set at 70°C, and the reaction is stirred at 200 rpm for 4 hours.
冷却反应釜至温度25℃以下,再次抽真空至0.01Mpa后继续抽真空1小时,然后在抽真空条件下慢速升温,在45~60分钟内将温度升至75℃,此时釜内THF已经除尽。在温度低于5℃的环境中将9.9g环氧乙烷加入加料罐,然后借助高压氦气将环氧乙烷充入高压釜,同时控制氦气充入量使釜内压力在25℃时为3MPa。将高压釜温度升高至80℃,200转/分钟搅拌反应1小时。Cool the reaction kettle to a temperature below 25°C, vacuum again to 0.01Mpa and continue vacuuming for 1 hour, then slowly raise the temperature under vacuum conditions, and raise the temperature to 75°C within 45 to 60 minutes. At this time, the THF in the kettle has been eliminated. Add 9.9g of ethylene oxide to the feeding tank in an environment with a temperature lower than 5°C, then fill the ethylene oxide into the autoclave with high-pressure helium, and control the amount of helium charged so that the pressure in the autoclave is at 25°C is 3MPa. The temperature of the autoclave was raised to 80° C., and the reaction was stirred at 200 rpm for 1 hour.
卸掉高压釜内压力,取出釜内物料,用50mL无水乙醇溶解稀释后加入磷酸终止反应,搅拌0.5h后静置过夜,过滤除盐后将滤液蒸干得到嵌段共聚醚产品(凝胶渗透色谱-激光光散射联用仪进行表征,Mn=3156,Mw=3600,Mw/Mn=1.14)。Remove the pressure in the autoclave, take out the materials in the autoclave, dissolve and dilute with 50mL of absolute ethanol, add phosphoric acid to terminate the reaction, stir for 0.5h and let it stand overnight, filter the desalination and evaporate the filtrate to dryness to obtain the block copolyether product (gel Characterized by permeation chromatography-laser light scattering, Mn=3156, Mw=3600, Mw/Mn=1.14).
实施例5Example 5
在300mL高压反应釜中加入20mL干燥的甲苯和9.98g PTMEG-2000(购自Sigma-alderich公司)及0.28g NaH,室温下对高压釜抽真空至0.01MPa后立即密封反应釜,温度设定在50℃,200转/分钟搅拌反应4小时。Add 20mL dry toluene and 9.98g PTMEG-2000 (purchased from Sigma-alderich company) and 0.28g NaH in the 300mL autoclave, seal the autoclave immediately after vacuumizing the autoclave to 0.01MPa at room temperature, and set the temperature at 50°C, 200 rpm stirring reaction for 4 hours.
冷却反应釜至温度25℃以下,再次抽真空至0.01MPa。在温度低于5℃的环境中将11.9g环氧乙烷加入加料罐,然后借助高压N2将环氧乙烷充入高压釜,同时控制N2充入量使釜内压力在25℃时为2.5MPa。将高压釜温度升高至110℃,200转/分钟搅拌反应12小时。Cool the reactor to a temperature below 25°C, and then evacuate to 0.01MPa again. Add 11.9g of ethylene oxide to the feeding tank in an environment with a temperature lower than 5°C, then fill the ethylene oxide into the autoclave with high-pressure N 2 , and control the amount of N 2 charged so that the pressure in the autoclave is at 25°C is 2.5MPa. The temperature of the autoclave was raised to 110° C., and the reaction was stirred at 200 rpm for 12 hours.
卸掉高压釜内压力,取出釜内物料,用50mL无水乙醇溶解稀释后加入磷酸终止反应,搅拌0.5h后静置过夜,过滤除盐后将滤液蒸干得到嵌段共聚醚产品(凝胶渗透色谱-激光光散射联用仪进行表征,Mn=3612,Mw=3821,Mw/Mn=1.06)。Remove the pressure in the autoclave, take out the materials in the autoclave, dissolve and dilute with 50mL of absolute ethanol, add phosphoric acid to terminate the reaction, stir for 0.5h and let it stand overnight, filter the desalination and evaporate the filtrate to dryness to obtain the block copolyether product (gel Characterized by permeation chromatography-laser light scattering, Mn=3612, Mw=3821, Mw/Mn=1.06).
实施例6Example 6
在300mL高压反应釜中加入15mL干燥的THF和9.65g PTMEG-650(购自Sigma-alderich公司)及1.43g KH,室温下对高压釜抽真空至0.01MPa后立即密封反应釜,200转/分钟搅拌反应12小时。Add 15mL dry THF and 9.65g PTMEG-650 (purchased from Sigma-alderich company) and 1.43g KH in a 300mL autoclave, and seal the autoclave immediately after vacuumizing the autoclave to 0.01MPa at room temperature, 200 rpm The reaction was stirred for 12 hours.
冷却反应釜至温度25℃以下,再次抽真空至0.01MPa。在温度低于5℃的环境中将70g环氧乙烷加入加料罐,然后借助高压N2将环氧乙烷充入高压釜,同时控制N2充入量使釜内压力在25℃时为6MPa。关闭反应釜的加热和冷却系统,室温下200转/分钟搅拌反应120小时。Cool the reactor to a temperature below 25°C, and then evacuate to 0.01MPa again. 70g of ethylene oxide is added to the feed tank in an environment where the temperature is lower than 5°C, then ethylene oxide is charged into the autoclave by means of high-pressure N , while controlling the amount of N charged so that the pressure in the still is at 25°C 6MPa. Turn off the heating and cooling system of the reactor, and stir and react at room temperature for 120 hours at 200 rpm.
卸掉高压釜内压力,取出釜内物料,用50mL无水乙醇溶解稀释后加入磷酸终止反应,搅拌0.5h后静置过夜,过滤除盐后将滤液蒸干得到嵌段共聚醚产品(凝胶渗透色谱-激光光散射联用仪进行表征,Mn=5089,Mw=6521,Mw/Mn=1.28)。Remove the pressure in the autoclave, take out the materials in the autoclave, dissolve and dilute with 50mL of absolute ethanol, add phosphoric acid to terminate the reaction, stir for 0.5h and let it stand overnight, filter the desalination and evaporate the filtrate to dryness to obtain the block copolyether product (gel Characterized by permeation chromatography-laser light scattering, Mn=5089, Mw=6521, Mw/Mn=1.28).
实施例7Example 7
在300mL高压反应釜中加入40mL干燥的甲苯和20.6g PTMEG-6000(Mn=6027,Mw=6944,Mw/Mn=1.15)及0.19g NaH,室温下对高压釜抽真空至0.01MPa后立即密封反应釜,升温至150℃,200转/分钟搅拌反应3小时。Add 40mL dry toluene, 20.6g PTMEG-6000 (Mn=6027, Mw=6944, Mw/Mn=1.15) and 0.19g NaH into a 300mL autoclave, vacuum the autoclave to 0.01MPa at room temperature and seal it immediately Reactor, heated up to 150°C, stirred and reacted at 200 rpm for 3 hours.
冷却反应釜至温度25℃以下,再次抽真空至0.01MPa。在温度低于5℃的环境中将7.6g环氧乙烷加入加料罐,然后借助高压N2将环氧乙烷充入高压釜,同时控制N2充入量使釜内压力在25℃时为2MPa。升温至150℃,室温下200转/分钟搅拌反应6小时。Cool the reactor to a temperature below 25°C, and then evacuate to 0.01MPa again. Add 7.6g of ethylene oxide into the feeding tank in an environment with a temperature lower than 5°C, then fill the ethylene oxide into the autoclave with high-pressure N 2 , and control the amount of N 2 charged so that the pressure in the autoclave is at 25°C is 2MPa. The temperature was raised to 150° C., and the mixture was stirred and reacted at room temperature at 200 rpm for 6 hours.
卸掉高压釜内压力,取出釜内物料,用50mL无水乙醇溶解稀释后加入磷酸终止反应,搅拌0.5h后静置过夜,过滤除盐后将滤液蒸干得到嵌段共聚醚产品(凝胶渗透色谱-激光光散射联用仪进行表征,Mn=7889,Mw=8621,Mw/Mn=1.09)。Remove the pressure in the autoclave, take out the materials in the autoclave, dissolve and dilute with 50mL of absolute ethanol, add phosphoric acid to terminate the reaction, stir for 0.5h and let it stand overnight, filter the desalination and evaporate the filtrate to dryness to obtain the block copolyether product (gel Characterized by permeation chromatography-laser light scattering, Mn=7889, Mw=8621, Mw/Mn=1.09).
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102059398A CN102432860A (en) | 2011-07-21 | 2011-07-21 | A kind of preparation method of hydroxyl-terminated polyethylene glycol-polytetrahydrofuran triblock copolyether |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102059398A CN102432860A (en) | 2011-07-21 | 2011-07-21 | A kind of preparation method of hydroxyl-terminated polyethylene glycol-polytetrahydrofuran triblock copolyether |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102432860A true CN102432860A (en) | 2012-05-02 |
Family
ID=45981230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011102059398A Pending CN102432860A (en) | 2011-07-21 | 2011-07-21 | A kind of preparation method of hydroxyl-terminated polyethylene glycol-polytetrahydrofuran triblock copolyether |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102432860A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103204988A (en) * | 2012-12-17 | 2013-07-17 | 湖北航天化学技术研究所 | Method for synthesizing block HTPE copolymer |
CN103214667A (en) * | 2013-03-14 | 2013-07-24 | 杭州三隆新材料有限公司 | Polymerization method of polytetrahydrofuran single alcohol and diol mixture |
CN105504264A (en) * | 2014-09-25 | 2016-04-20 | 中国石油化工股份有限公司 | Preparation method of polyethylene glycol with terminal group containing furan ring |
CN106905524A (en) * | 2015-12-23 | 2017-06-30 | 大连理工常熟研究院有限公司 | A kind of preparation method of both-end alkenyl PPOX |
CN111072946A (en) * | 2019-11-29 | 2020-04-28 | 黎明化工研究设计院有限责任公司 | Method for preparing hydroxyl-terminated cyclohexene oxide-ethylene oxide-tetrahydrofuran terpolymer ether by using bulk method |
CN111925514A (en) * | 2020-07-02 | 2020-11-13 | 西华大学 | A method for continuous production of high molecular weight polyether using microchannel reactor |
CN113512190A (en) * | 2021-04-13 | 2021-10-19 | 武汉大学 | Hydroxyl-terminated fluorine-containing triblock copolyether and preparation method thereof |
CN114686014A (en) * | 2022-05-16 | 2022-07-01 | 秦惠丽 | Modified asphalt with good high-temperature cohesiveness and preparation method thereof |
CN115109247A (en) * | 2022-08-02 | 2022-09-27 | 南京理工大学 | Tetrahydrofuran-glycol copolyether containing methyl side chain and synthesis method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4451618A (en) * | 1982-09-29 | 1984-05-29 | The B. F. Goodrich Company | Block copolymers and process for their preparation |
US4608422A (en) * | 1984-03-20 | 1986-08-26 | Basf Aktiengesellschaft | Preparation of hydroxyl-containing polymers |
JPH06287296A (en) * | 1993-03-31 | 1994-10-11 | Hodogaya Chem Co Ltd | Method for producing polyoxyalkylene glycol block copolymer |
US5463020A (en) * | 1993-07-26 | 1995-10-31 | Basf Aktiengesellschaft | Preparation of polytetrahydrofuran or tetrahydrofuran/alkylene oxide copolymers |
JP2003206351A (en) * | 2001-06-11 | 2003-07-22 | Mitsubishi Chemicals Corp | Preparation method of copolymer of cyclic ether and polytetramethylene ether glycols |
-
2011
- 2011-07-21 CN CN2011102059398A patent/CN102432860A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4451618A (en) * | 1982-09-29 | 1984-05-29 | The B. F. Goodrich Company | Block copolymers and process for their preparation |
US4608422A (en) * | 1984-03-20 | 1986-08-26 | Basf Aktiengesellschaft | Preparation of hydroxyl-containing polymers |
JPH06287296A (en) * | 1993-03-31 | 1994-10-11 | Hodogaya Chem Co Ltd | Method for producing polyoxyalkylene glycol block copolymer |
US5463020A (en) * | 1993-07-26 | 1995-10-31 | Basf Aktiengesellschaft | Preparation of polytetrahydrofuran or tetrahydrofuran/alkylene oxide copolymers |
JP2003206351A (en) * | 2001-06-11 | 2003-07-22 | Mitsubishi Chemicals Corp | Preparation method of copolymer of cyclic ether and polytetramethylene ether glycols |
Non-Patent Citations (3)
Title |
---|
刘艳春: "新型环氧环己烷一四氢吠喃共 聚醚的合成与应用", 《精细石油化工》 * |
周志勇: "窄分子量分布端轻基环氧乙烷一四氢吠喃共聚醚的合成及表征", 《中国胶粘剂》 * |
汪存东: "端羟基PTHF-PEO-PTHF嵌段共聚醚的合成与表征", 《固体火箭技术》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103204988A (en) * | 2012-12-17 | 2013-07-17 | 湖北航天化学技术研究所 | Method for synthesizing block HTPE copolymer |
CN103204988B (en) * | 2012-12-17 | 2015-09-02 | 湖北航天化学技术研究所 | The method of synthesis block HTPE copolymer |
CN103214667A (en) * | 2013-03-14 | 2013-07-24 | 杭州三隆新材料有限公司 | Polymerization method of polytetrahydrofuran single alcohol and diol mixture |
CN103214667B (en) * | 2013-03-14 | 2015-07-08 | 杭州三隆新材料有限公司 | Polymerization method of polytetrahydrofuran single alcohol and diol mixture |
CN105504264A (en) * | 2014-09-25 | 2016-04-20 | 中国石油化工股份有限公司 | Preparation method of polyethylene glycol with terminal group containing furan ring |
CN106905524B (en) * | 2015-12-23 | 2019-10-29 | 大连理工常熟研究院有限公司 | A kind of preparation method of both-end alkenyl polypropylene oxide |
CN106905524A (en) * | 2015-12-23 | 2017-06-30 | 大连理工常熟研究院有限公司 | A kind of preparation method of both-end alkenyl PPOX |
CN111072946A (en) * | 2019-11-29 | 2020-04-28 | 黎明化工研究设计院有限责任公司 | Method for preparing hydroxyl-terminated cyclohexene oxide-ethylene oxide-tetrahydrofuran terpolymer ether by using bulk method |
CN111072946B (en) * | 2019-11-29 | 2023-04-14 | 黎明化工研究设计院有限责任公司 | Method for preparing hydroxyl-terminated cyclohexene oxide-ethylene oxide-tetrahydrofuran terpolymer ether by using bulk method |
CN111925514A (en) * | 2020-07-02 | 2020-11-13 | 西华大学 | A method for continuous production of high molecular weight polyether using microchannel reactor |
CN113512190A (en) * | 2021-04-13 | 2021-10-19 | 武汉大学 | Hydroxyl-terminated fluorine-containing triblock copolyether and preparation method thereof |
CN114686014A (en) * | 2022-05-16 | 2022-07-01 | 秦惠丽 | Modified asphalt with good high-temperature cohesiveness and preparation method thereof |
CN115109247A (en) * | 2022-08-02 | 2022-09-27 | 南京理工大学 | Tetrahydrofuran-glycol copolyether containing methyl side chain and synthesis method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102432860A (en) | A kind of preparation method of hydroxyl-terminated polyethylene glycol-polytetrahydrofuran triblock copolyether | |
CN103881398B (en) | A kind of method that PTMC improves polyvinyl alcohol film resistance to water with PPDO | |
CN102181060B (en) | Polyvinyl alcohol-polypeptide-polyethylene glycol graft copolymer and preparation method thereof | |
CN109517158A (en) | A method of causing system without metal catalytic based on three components and prepares polyethers | |
JP2016523302A (en) | Polyethylene glycol monomethyl ether-polylactic acid block copolymer and preparation method thereof | |
CN105153414A (en) | Permanent-flame-retardant nylon 6 material and preparation method therefor | |
CN103865088B (en) | A kind of polycaprolactone and Polyethylene Glycol improve the poly-hydrophilic method of peptide film | |
CN111019126B (en) | A kind of polyester amide and preparation method thereof | |
CN105330830A (en) | Terminal alkenyl nonsaturated polyether and purpose thereof | |
CN110437426A (en) | A kind of scopiform copolymer and preparation method thereof | |
Wurm et al. | Hyperbranched–linear–hyperbranched ABA‐type block copolymers based on poly (ethylene oxide) and polyglycerol | |
CN105778113A (en) | Method for preparing polyvinyl alcohol-polycaprolactone-poly trimethylene carbonate double-grafted copolymer micelle | |
CN103936973B (en) | A kind of polyfunctional group polyethylene oxide-b-aliphatic poly ester block copolymer and preparation method thereof and application | |
CN103289074B (en) | A kind of preparation method based on oxetane derivative synthesizing bionic mussel adhesive | |
CN104371082A (en) | Polylactic acid compound preparation method | |
Dimitrov et al. | Triblock and Radial Star‐Block Copolymers Comprised of Poly (ethoxyethyl glycidyl ether), Polyglycidol, Poly (propylene oxide) and Polystyrene Obtained by Anionic Polymerization Initiated by Cs Initiators | |
CN104987499B (en) | Water-soluble maleopimaric acid hyperbranched polyester and preparation method therefor | |
CN108530642B (en) | Biodegradable triblock hetero-arm star-shaped amphiphilic polymer material and preparation method thereof | |
CN109776775A (en) | A kind of polyethylene glycol-b-polycaprolactone amphiphilic block copolymer with narrow molecular weight distribution and its preparation method and application | |
CN104744426A (en) | Structure, synthesis and use of 2-ethyle-2-allyloxymethyl-1,3-propylene carbonate | |
CN104629020B (en) | A kind of synthetic method of macromonomer | |
CN102174136A (en) | Circular polymer and preparation method thereof | |
CN112029084B (en) | Simple and controllable method for synthesizing alpha-mercapto-omega-hydroxyl polyether by taking thiocarboxylic acid as initiator | |
CN106117410A (en) | Can the preparation method of end-vinyl liquid fluoroelastomer of room temperature fast-curing | |
CN101337994B (en) | Starch acetate/polydioxanone graft copolymer and its preparation method and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120502 |