[go: up one dir, main page]

CN102432180A - Preparation method of bioactive glass ceramic material for bone defect repair - Google Patents

Preparation method of bioactive glass ceramic material for bone defect repair Download PDF

Info

Publication number
CN102432180A
CN102432180A CN2011102987353A CN201110298735A CN102432180A CN 102432180 A CN102432180 A CN 102432180A CN 2011102987353 A CN2011102987353 A CN 2011102987353A CN 201110298735 A CN201110298735 A CN 201110298735A CN 102432180 A CN102432180 A CN 102432180A
Authority
CN
China
Prior art keywords
preparation
bio
cao
sio
vitric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102987353A
Other languages
Chinese (zh)
Inventor
陈晓峰
李正茂
赵娜如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN2011102987353A priority Critical patent/CN102432180A/en
Publication of CN102432180A publication Critical patent/CN102432180A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种用于骨缺损修复的生物活性玻璃陶瓷材料的制备方法,步骤如下:将生物玻璃粉体过筛,加入聚丙烯酸胺溶液,球磨混匀,得到生物玻璃浆料,通过离心注浆的方式将浆料灌注进高分子反模中,固化,干燥,在程序控温下于900~1000℃煅烧除去高分子反模,制得用于骨缺损修复的生物活性玻璃陶瓷材料。本发明制备的生物活性玻璃陶瓷材料形状可根据临床需要决定,具有良好的力学强度、生物相容性和可降解性,抗压强度高,抗溃散性能好,活性好,降解时间可以调控。本发明的制备方法工艺简单,成本低。The present invention discloses a method for preparing a bioactive glass ceramic material for repairing bone defects, and the steps are as follows: screening bioglass powder, adding polyacrylamide solution, ball milling and mixing to obtain bioglass slurry, pouring the slurry into a polymer reverse mold by centrifugal grouting, curing, drying, calcining at 900-1000°C under program temperature control to remove the polymer reverse mold, and preparing the bioactive glass ceramic material for repairing bone defects. The shape of the bioactive glass ceramic material prepared by the present invention can be determined according to clinical needs, has good mechanical strength, biocompatibility and degradability, high compressive strength, good anti-collapse performance, good activity, and the degradation time can be regulated. The preparation method of the present invention has a simple process and low cost.

Description

用于骨缺损修复的生物活性玻璃陶瓷材料的制备方法Preparation method of bioactive glass-ceramic material for bone defect repair

技术领域 technical field

本发明属于生物活性材料领域,涉及骨组织修复、填充及组织工程修复材料,具体涉及用于骨缺损修复的生物活性玻璃陶瓷材料的制备方法。 The invention belongs to the field of bioactive materials, and relates to bone tissue repair, filling and tissue engineering repair materials, in particular to a preparation method of bioactive glass-ceramic materials used for bone defect repair.

背景技术 Background technique

骨骼的病损是临床的常见病和多发病。通过研制骨修复及骨替代材料,可以帮助患者修复缺损或缺失的骨组织,更好地恢复人体组织功能。在骨组织工程中,理想的修复材料应符合以下条件:良好的生物相容性、生物降解性、可塑性,具有三维多孔且互通的孔隙结构和一定的机械强度。在骨缺损修复研究领域上,迫切需要具有和人骨力学强度相匹配、细胞相容性良好和促进新生骨组织生长的支架材料。 Skeletal lesion is a clinical common disease and frequently-occurring disease. Through the development of bone repair and bone substitute materials, it can help patients repair defective or missing bone tissue and better restore the function of human tissue. In bone tissue engineering, an ideal repair material should meet the following conditions: good biocompatibility, biodegradability, plasticity, three-dimensional porous and interconnected pore structure and certain mechanical strength. In the field of bone defect repair research, there is an urgent need for scaffold materials that match the mechanical strength of human bone, have good cell compatibility, and promote the growth of new bone tissue.

生物活性材料是用于对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的材料。生物活性材料的典型代表有磷酸钙骨水泥、磷灰石和生物玻璃等。这些生物活性材料在骨组织修复和骨组织工程的临床应用材料时,由于组成、结构和强度上都不尽相同,与人骨相比仍然具有较大的差异,导致其生物相容性、可降解性能不够理想,从而直接影响骨组织的修复效果。如磷酸钙骨水泥材料在注入体内时会发生固化过程,产生大量的热量而破坏其周围的组织。磷灰石在临床上以块状、颗粒形式被广泛的用作硬组织修复和替换,然而,由于块状陶瓷的脆性,颗粒容易游走、移位等缺点,很难塑形,限制了其在临床上的应用。 Bioactive materials are materials used for diagnosing, treating, repairing or replacing diseased tissues and organs of living organisms or improving their functions. Typical representatives of bioactive materials include calcium phosphate cement, apatite, and bioglass. When these bioactive materials are used in the clinical application of bone tissue repair and bone tissue engineering, due to their different composition, structure and strength, they still have large differences compared with human bone, resulting in their biocompatibility, degradability The performance is not ideal, which directly affects the repair effect of bone tissue. For example, the calcium phosphate bone cement material will solidify when it is injected into the body, which will generate a lot of heat and destroy its surrounding tissues. Apatite is widely used clinically in the form of blocks and granules for hard tissue repair and replacement. However, due to the brittleness of block ceramics, the particles are easy to move and shift, and it is difficult to shape, which limits its use. In clinical application.

生物玻璃具有良好的生物活性和生物相容性,可以用作人体组织修复和再生材料,由Na2O-CaO-SiO2-P2O5四元组分的熔融生物玻璃,还有以CaO-SiO2-P2O5为组分的溶胶-凝胶生物玻璃,都已在临床上取得了良好的骨修复效果,可以通过改变各组分的含量以调节其生物活性、降解性以及机械性能,满足不同的临床要求,并通过激活成骨细胞的一些基因,促进成骨细胞的分化和增殖。但是传统的生物玻璃支架一般具有脆性大,力学强度不高等缺点。 Bioglass has good bioactivity and biocompatibility, and can be used as a material for human tissue repair and regeneration. The fused bioglass composed of Na 2 O-CaO-SiO 2 -P 2 O 5 quaternary components, and CaO The sol-gel bioglass with -SiO 2 -P 2 O 5 components has achieved good clinical bone repair effects, and its biological activity, degradability and mechanical properties can be adjusted by changing the content of each component. performance, meet different clinical requirements, and promote the differentiation and proliferation of osteoblasts by activating some genes of osteoblasts. However, traditional bioglass scaffolds generally have the disadvantages of high brittleness and low mechanical strength.

发明内容 Contents of the invention

本发明的目的在于针对目前骨缺损修复材料及其制备技术方面的不足,提供用于骨缺损修复的生物活性玻璃陶瓷材料的制备方法。本发明制备的骨缺损修复材料的形状和孔隙尺寸可以根据根据临床需要进行调节,形状包括多孔圆柱体、多孔立方体及不规则块体。 The object of the present invention is to provide a method for preparing a bioactive glass-ceramic material for bone defect repair in view of the shortcomings of current bone defect repair materials and their preparation techniques. The shape and pore size of the bone defect repair material prepared in the present invention can be adjusted according to clinical needs, and the shapes include porous cylinders, porous cubes and irregular blocks.

为了达到上述目的,本发明采用了如下技术方案。 In order to achieve the above object, the present invention adopts the following technical solutions.

用于骨缺损修复的生物活性玻璃陶瓷材料的制备方法,包括如下步骤: A method for preparing a bioactive glass-ceramic material for bone defect repair, comprising the following steps:

(1)将生物玻璃粉体过200目筛,加入聚丙烯酸胺溶液,球磨混匀,得到生物玻璃浆料; (1) Pass the biological glass powder through a 200-mesh sieve, add polyacrylamide solution, and ball mill to mix to obtain biological glass slurry;

(2)将步骤(1)得到的生物玻璃浆料逐滴加入高分子反模中,将高分子反模在离心机中进行离心注浆,于70~75℃水浴中固化1~2h后,50~70℃干燥48~72h,得到固体材料; (2) Add the bioglass slurry obtained in step (1) dropwise to the polymer counter-mold, perform centrifugal grouting on the polymer counter-mold in a centrifuge, and solidify in a water bath at 70-75°C for 1-2 hours. Dry at 50~70℃ for 48~72h to obtain solid material;

(3)将步骤(2)得到的固体材料在程序控温下于900~1000℃煅烧除去高分子反模,制得用于骨缺损修复的生物活性玻璃陶瓷材料。 (3) Calcining the solid material obtained in step (2) at 900-1000° C. under programmed temperature control to remove the polymer anti-mold to prepare a bioactive glass-ceramic material for bone defect repair.

本发明所述生物玻璃粉体为Na2O-CaO-SiO2-P2O5生物玻璃粉体和/或CaO-SiO2-P2O5生物玻璃粉体。 The biological glass powder in the present invention is Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder and/or CaO-SiO 2 -P 2 O 5 biological glass powder.

本发明所述Na2O-CaO-SiO2-P2O5生物玻璃粉体的物质组成质量百分比为:氧化钙20~25%,五氧化二磷5~7%,氧化钠20~25%,二氧化硅43~49%;所述CaO-SiO2-P2O生物玻璃粉体的物质组成质量百分比为:氧化钙14~33%,五氧化二磷0~9%,二氧化硅58~80%。 The material composition mass percentage of the Na2O -CaO-SiO2 -P2O5 biological glass powder of the present invention is: calcium oxide 20-25%, phosphorus pentoxide 5-7%, sodium oxide 20-25% , silicon dioxide 43~49%; the material composition mass percentage of the CaO-SiO 2 -P 2 O biological glass powder is: calcium oxide 14~33%, phosphorus pentoxide 0~9%, silicon dioxide 58% ~80%.

本发明所述生物玻璃浆料中生物玻璃粉体的体积分数为50~60%。 The volume fraction of the biological glass powder in the biological glass slurry of the present invention is 50-60%.

本发明所述高分子反模的孔隙尺寸为500~1000微米,几何形状为立方体、长方体或圆柱体。 The pore size of the polymer counter-mold in the present invention is 500-1000 microns, and the geometric shape is cube, cuboid or cylinder.

本发明所述程序控温的过程包括以下三个阶段: The process of programmed temperature control of the present invention comprises following three stages:

(1)升温阶段:以2~3℃/min的速率将固体材料的温度升至900~1000℃; (1) Heating stage: raise the temperature of the solid material to 900~1000℃ at a rate of 2~3℃/min;

(2)保温阶段:将固体材料的温度在900~1000℃保持1~2h; (2) Heat preservation stage: keep the temperature of the solid material at 900~1000℃ for 1~2h;

(3)降温阶段:自然降温至10~30℃。 (3) Cooling stage: natural cooling to 10~30°C.

本发明所述聚丙烯酸胺溶液中聚丙烯酸胺的体积分数为4~8%。 The volume fraction of polyacrylamine in the polyacrylamine solution of the present invention is 4-8%.

本发明所述离心注浆的转速为800~1200r/min。 The rotational speed of the centrifugal grouting in the present invention is 800~1200r/min.

本发明所述高分子反模为光敏树脂反模或聚合物反模;所述光敏树脂反模采用光固化成型技术,以光敏树脂为原料制备;所述聚合物反模采用三维打印技术,以聚合物为原料制备。 The polymer counter-mold of the present invention is a photosensitive resin counter-mold or a polymer counter-mold; the photosensitive resin counter-mold adopts photocuring molding technology and is prepared with photosensitive resin as a raw material; the polymer counter-mold adopts three-dimensional printing technology to Polymers are prepared as raw materials.

本发明所述光敏树脂为不饱和聚酯树脂,包括聚内消旋乳酸或聚己内酯;所述聚合物为聚乳酸-羟基乙酸共聚物或丙烯腈-丁二烯-苯乙烯共聚物(简称:ABS树脂)。 The photosensitive resin of the present invention is an unsaturated polyester resin, including polymesolactic acid or polycaprolactone; the polymer is polylactic acid-glycolic acid copolymer or acrylonitrile-butadiene-styrene copolymer ( Abbreviation: ABS resin).

本发明所述Na2O-CaO-SiO2-P2O5生物玻璃粉体的制备过程参考了Lefebvre L等[Lefebvre L., Chevalier J., Gremillard L. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materiala, 2007, 55(10), 3305~3313]的文献,具体包括以下步骤:将分析纯的碳酸钠、碳酸钙、磷酸三钙和二氧化硅按比例称量并充分混合均匀后,放入铂金坩埚内于1400℃熔融120min;然后将熔融玻璃液倒入去离子水中水淬,得到非晶相生物活性玻璃;将水滤除后于60℃干燥24h,以480rpm的速度球磨3h,过200目筛,即得Na2O-CaO-SiO2-P2O5生物玻璃粉体。 The preparation process of Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder described in the present invention refers to Lefebvre L et al [Lefebvre L., Chevalier J., Gremillard L. Structural transformations of bioactive glass 45S5 with thermal treatments . Acta Materiala, 2007, 55 (10), 3305 ~ 3313] literature, specifically comprises the following steps: after weighing and fully mixing the analytically pure sodium carbonate, calcium carbonate, tricalcium phosphate and silicon dioxide in proportion, Put it into a platinum crucible and melt it at 1400°C for 120min; then pour the molten glass into deionized water and water quench to obtain an amorphous phase bioactive glass; filter the water and dry at 60°C for 24h, then ball mill at 480rpm for 3h, Pass through a 200-mesh sieve to obtain Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder.

本发明所述CaO-SiO2-P2O5生物玻璃粉体的制备过程参考了Zhong J.等[Zhong J., Greenspan D.C. Processing and properties of sol-gel bioactive glasses. J Biomed Mater Res., 2000,53(6):694~701]和Chen X.等[Chen X., Meng Y., Li Y., et al. Investigation on bio-mineralization of melt and sol-gel derived bioactive glasses. Applied Surface Science, 2008,.255(2): 562~564]的文献报道,具体包括以下步骤:在烧杯中加入去离子水、2mol/L的盐酸催化剂和正硅酸乙脂,在室温条件下搅拌水解30min后,加入磷酸三乙脂继续搅拌30min,再加入四水硝酸钙,充分搅拌均匀后获得透明均一稳定的溶胶;溶胶在室温下静止陈化一定时间,使水解-缩聚反应充分进行,形成湿凝胶;湿凝胶置于140℃干燥2天,使溶剂蒸发后得到干凝胶;将干凝胶于650℃热处理固化工艺获得颗粒状溶胶-凝胶生物活性玻璃;以480rpm的速度球磨3h,过200目筛,即得CaO-SiO2-P2O5生物玻璃粉体。 The preparation process of CaO-SiO 2 -P 2 O 5 biological glass powder described in the present invention refers to Zhong J. et al [Zhong J., Greenspan DC Processing and properties of sol-gel bioactive glasses. J Biomed Mater Res., 2000 ,53(6):694~701] and Chen X. et al. [Chen X., Meng Y., Li Y., et al. Investigation on bio-mineralization of melt and sol-gel derived bioactive glasses. Applied Surface Science, 2008,.255(2): 562~564], specifically comprising the following steps: adding deionized water, 2mol/L hydrochloric acid catalyst and ethyl orthosilicate in a beaker, stirring and hydrolyzing at room temperature for 30min, Add triethyl phosphate and continue to stir for 30 minutes, then add calcium nitrate tetrahydrate, and stir well to obtain a transparent, uniform and stable sol; the sol is statically aged at room temperature for a certain period of time, so that the hydrolysis-polycondensation reaction can fully proceed and form a wet gel; The wet gel was dried at 140°C for 2 days to obtain the dry gel after evaporating the solvent; the dry gel was heat-treated and solidified at 650°C to obtain granular sol-gel bioactive glass; ball milled at 480rpm for 3h, passed 200 Mesh sieve to obtain CaO-SiO 2 -P 2 O 5 biological glass powder.

本发明制备的生物活性玻璃陶瓷材料形状可根据临床需要决定,其内部孔隙为500~1000μm,孔隙率为45~65%。 The shape of the bioactive glass-ceramic material prepared by the present invention can be determined according to clinical needs, the internal pores are 500-1000 μm, and the porosity is 45-65%.

本发明与现有技术相比,具有如下优点和显著效果: Compared with the prior art, the present invention has the following advantages and remarkable effects:

(1)本发明制备的生物玻璃陶瓷骨修复材料具有多种形状选择,可适应不同部位和形状的骨缺损填充;材料化学组分可调,从而使材料的理化性能及工艺性能可在一定范围调整;制备工艺简单易行,工艺参数易于控制以及产量大等优点; (1) The bioglass-ceramic bone repair material prepared by the present invention has a variety of shape options, which can be adapted to fill bone defects in different parts and shapes; the chemical composition of the material can be adjusted, so that the physical and chemical properties and process performance of the material can be within a certain range Adjustment; the preparation process is simple and easy, the process parameters are easy to control, and the output is large;

(2)本发明制备的生物玻璃陶瓷骨修复材料的外形和内部孔隙结构有利于新生骨组织的长入和骨缺损的修复。 (2) The shape and internal pore structure of the bioglass-ceramic bone repair material prepared by the present invention are conducive to the ingrowth of new bone tissue and the repair of bone defects.

(3)本发明制备的生物玻璃陶瓷骨缺损修复材料具有良好的力学强度、生物相容性以及一定的生物降解性能。 (3) The bioglass-ceramic bone defect repair material prepared by the present invention has good mechanical strength, biocompatibility and certain biodegradability.

附图说明 Description of drawings

图1为本发明实施例1制备的生物活性玻璃陶瓷材料的显微CT照片。 Fig. 1 is a micro-CT photo of the bioactive glass-ceramic material prepared in Example 1 of the present invention.

图2为本发明实施例1制备的生物活性玻璃陶瓷材料表面的扫描电镜(简称:SEM)照片。 FIG. 2 is a scanning electron microscope (abbreviation: SEM) photograph of the surface of the bioactive glass-ceramic material prepared in Example 1 of the present invention.

具体实施方式 Detailed ways

下面结合实施例对本发明做进一步详细的描述,但本发明要求保护的范围并不限于此。 The present invention will be further described in detail below in conjunction with the examples, but the protection scope of the present invention is not limited thereto.

实施例1Example 1

采用Na2O-CaO-SiO2-P2O5生物玻璃粉体。 Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder is used.

(1)将58.63g碳酸钠52.33g碳酸钙、18.36g磷酸三钙和63.00g二氧化硅充分混合均匀后,放入铂金坩埚内于1400℃熔融120min,然后将熔融玻璃液倒入去离子水中水淬,得到非晶相生物活性玻璃,将水滤除后在电热鼓风干燥箱中于60℃干燥24h,以480rpm的速度在行星球磨机中球磨3h,过200目筛,即得Na2O-CaO-SiO2-P2O5生物玻璃粉体,各物质组成为:24.5%氧化钙,6g五氧化二磷,24.5%氧化钠,45%二氧化硅; (1) After fully mixing 58.63g sodium carbonate, 52.33g calcium carbonate, 18.36g tricalcium phosphate and 63.00g silicon dioxide, put them into a platinum crucible and melt at 1400°C for 120min, then pour the molten glass into deionized water Quenching with water to obtain amorphous phase bioactive glass. After filtering out the water, dry in an electric blast drying oven at 60°C for 24 hours, ball mill in a planetary ball mill at a speed of 480rpm for 3 hours, and pass through a 200-mesh sieve to obtain Na 2 O -CaO-SiO 2 -P 2 O 5 biological glass powder, each material is composed of: 24.5% calcium oxide, 6g phosphorus pentoxide, 24.5% sodium oxide, 45% silicon dioxide;

(2)将100g Na2O-CaO-SiO2-P2O5生物玻璃粉体加入100mL体积分数为6%的聚丙烯酸胺溶液中,球磨3小时混匀,得到体积分数为50%的生物玻璃浆料; (2) Add 100g Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder into 100mL polyacrylic acid amine solution with a volume fraction of 6%, and mix it by ball milling for 3 hours to obtain a biological glass powder with a volume fraction of 50%. glass paste;

(3)将步骤(1)得到的生物玻璃浆料逐滴加入不饱和聚酯树脂反模中,将高分子反模在湘仪L550型离心机中以800r/min进行离心注浆,置于70℃水浴中固化2h,放置于干燥箱中于50℃干燥72h,得到固体材料; (3) Add the bioglass slurry obtained in step (1) dropwise into the unsaturated polyester resin counter-mold, and perform centrifugal grouting on the polymer counter-mold in a Xiangyi L550 centrifuge at 800r/min, and place Cured in a water bath at 70°C for 2 hours, placed in a drying oven at 50°C for 72 hours to obtain a solid material;

(4)将固体材料放入氧化锆匣钵中,以2℃/min的速率将固体材料的温度升至900℃后保持2h;自然降温至10℃,制得用于骨缺损修复的生物活性玻璃陶瓷材料。 (4) Put the solid material into a zirconia sagger, raise the temperature of the solid material to 900 °C at a rate of 2 °C/min and keep it for 2 hours; naturally cool down to 10 °C to obtain the biological activity for bone defect repair Glass-ceramic material.

实施例2Example 2

采用Na2O-CaO-SiO2-P2O5生物玻璃粉体和CaO-SiO2-P2O5生物玻璃粉体的混合物,其中Na2O-CaO-P2O5-SiO2生物玻璃粉体的质量分数为99%,CaO-P2O5-SiO2生物玻璃粉体的质量分数为1%。 A mixture of Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder and CaO-SiO 2 -P 2 O 5 biological glass powder is used, wherein Na 2 O-CaO-P 2 O 5 -SiO 2 biological The mass fraction of the glass powder is 99%, and the mass fraction of the CaO-P 2 O 5 -SiO 2 biological glass powder is 1%.

(1)将59.82g碳酸钠、53.40 g碳酸钙、15.30g磷酸三钙和63.00 g二氧化硅充分混合均匀后,放入铂金坩埚内于1400℃熔融120min,然后将熔融玻璃液倒入去离子水中水淬,得到非晶相生物活性玻璃,将水滤除后在电热鼓风干燥箱中于60℃干燥24h,以480rpm的速度在行星球磨机中球磨3h,过200目筛,即得Na2O-CaO-SiO2-P2O5生物玻璃粉体,各物质组成为:25%氧化钙,5g五氧化二磷,25%氧化钠,45%二氧化硅; (1) Mix 59.82g of sodium carbonate, 53.40g of calcium carbonate, 15.30g of tricalcium phosphate and 63.00g of silicon dioxide, put them into a platinum crucible and melt at 1400°C for 120min, then pour the molten glass into deionized Quenching in water to obtain amorphous bioactive glass. After filtering the water, dry it in an electric blast drying oven at 60°C for 24 hours, ball mill it in a planetary ball mill at a speed of 480rpm for 3 hours, and pass through a 200-mesh sieve to obtain Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder, each material composition is: 25% calcium oxide, 5g phosphorus pentoxide, 25% sodium oxide, 45% silicon dioxide;

(2)在烧杯中加入18.72mL去离子水、3.12mL 2mol/L的盐酸催化剂和25.56mL正硅酸乙脂,在室温条件下搅拌水解30min后,加入2.61mL磷酸三乙脂继续搅拌30min,再加入16.24g四水硝酸钙,充分搅拌均匀后获得透明均一稳定的溶胶;溶胶在室温下静置陈化48h,使水解-缩聚反应充分进行,形成湿凝胶;湿凝胶置于140℃干燥2天,使溶剂蒸发后得到干凝胶;将干凝胶于650℃热处理固化工艺获得颗粒状溶胶-凝胶生物活性玻璃;以480rpm的速度球磨3h,过200目筛,即得CaO-SiO2-P2O5生物玻璃粉体,各物质组成为:33%氧化钙、9%五氧化二磷和58%二氧化硅; (2) Add 18.72mL of deionized water, 3.12mL of 2mol/L hydrochloric acid catalyst and 25.56mL of ethyl orthosilicate to the beaker, stir and hydrolyze for 30min at room temperature, then add 2.61mL of triethyl phosphate and continue to stir for 30min. Then add 16.24g of calcium nitrate tetrahydrate and stir well to obtain a transparent, uniform and stable sol; let the sol stand and age at room temperature for 48 hours, so that the hydrolysis-polycondensation reaction can fully proceed and form a wet gel; the wet gel is placed at 140°C Dry for 2 days to evaporate the solvent to obtain xerogel; heat-treat the xerogel at 650°C to obtain granular sol-gel bioactive glass; ball mill at 480rpm for 3 hours, and pass through a 200-mesh sieve to obtain CaO- SiO 2 -P 2 O 5 biological glass powder, the material composition is: 33% calcium oxide, 9% phosphorus pentoxide and 58% silicon dioxide;

(3)将99g Na2O-CaO-SiO2-P2O5生物玻璃粉体和1g CaO-SiO2-P2O5生物玻璃粉体混合,加入100mL体积分数为6%的聚丙烯酸胺溶液中,球磨3小时混匀,得到体积分数为50%的生物玻璃浆料; (3) Mix 99g Na 2 O-CaO-SiO 2 -P 2 O 5 bioglass powder and 1g CaO-SiO 2 -P 2 O 5 bioglass powder, add 100mL polyacrylamide with a volume fraction of 6% solution, ball milled for 3 hours and mixed to obtain a bioglass slurry with a volume fraction of 50%;

(4)将步骤(1)得到的生物玻璃浆料逐滴加入ABS树脂反模中,将反模在湘仪L550型离心机中以1000r/min进行离心注浆,置于75℃水浴中固化1h后,放置于干燥箱中于70℃干燥48h,得到固体材料; (4) Add the bioglass slurry obtained in step (1) dropwise to the ABS resin counter-mold, perform centrifugal grouting on the counter-mold in a Xiangyi L550 centrifuge at 1000r/min, and place it in a 75°C water bath for curing After 1 hour, place in a drying oven at 70°C and dry for 48 hours to obtain a solid material;

(5)将固体材料放入氧化锆匣钵中,以3℃/min的速率将固体材料的温度升至1000℃后保持1h;自然降温至30℃,制得用于骨缺损修复的生物活性玻璃陶瓷材料。 (5) Put the solid material into a zirconia sagger, raise the temperature of the solid material to 1000 °C at a rate of 3 °C/min and keep it for 1 hour; naturally cool down to 30 °C to obtain the biological activity for bone defect repair Glass-ceramic material.

实施例3Example 3

采用Na2O-CaO-SiO2-P2O5生物玻璃粉体和CaO-SiO2-P2O5生物玻璃粉体的混合物,其中Na2O-CaO-P2O5-SiO2生物玻璃粉体的质量分数为50%,CaO-P2O5-SiO2生物玻璃粉体的质量分数为50%。 A mixture of Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder and CaO-SiO 2 -P 2 O 5 biological glass powder is used, wherein Na 2 O-CaO-P 2 O 5 -SiO 2 biological The mass fraction of the glass powder is 50%, and the mass fraction of the CaO-P 2 O 5 -SiO 2 biological glass powder is 50%.

(1))将39.32g碳酸钠、35.09g碳酸钙、13.11g磷酸三钙和48.00g二氧化硅充分混合均匀后,放入铂金坩埚内于1400℃熔融120min,然后将熔融玻璃液倒入去离子水中水淬,得到非晶相生物活性玻璃,将水滤除后在电热鼓风干燥箱中于60℃干燥24h,以480rpm的速度在行星球磨机中球磨3h,过200目筛,即得Na2O-CaO-SiO2-P2O5生物玻璃粉体,各物质组成为:23%氧化钙、6%五氧化二磷、23%氧化钠和48%二氧化硅; (1)) After fully mixing 39.32g sodium carbonate, 35.09g calcium carbonate, 13.11g tricalcium phosphate and 48.00g silicon dioxide, put them into a platinum crucible and melt at 1400°C for 120min, then pour the molten glass into Quenching in ionized water to obtain amorphous phase bioactive glass. After filtering the water, dry it in an electric blast drying oven at 60°C for 24 hours, ball mill it in a planetary ball mill at a speed of 480rpm for 3 hours, and pass through a 200-mesh sieve to obtain Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder, each material composition is: 23% calcium oxide, 6% phosphorus pentoxide, 23% sodium oxide and 48% silicon dioxide;

(2)在烧杯中加入93.6mL去离子水、15.57mL 2mol/L的盐酸催化剂和127.80mL正硅酸乙脂,在室温条件下搅拌水解30min后,加入13.03mL磷酸三乙脂继续搅拌30min,再加入81.21g四水硝酸钙,充分搅拌均匀后获得透明均一稳定的溶胶;溶胶在室温下静置陈化48h,使水解-缩聚反应充分进行,形成湿凝胶;湿凝胶置于140℃干燥2天,使溶剂蒸发后得到干凝胶;将干凝胶于650℃热处理固化工艺获得颗粒状溶胶-凝胶生物活性玻璃;以480rpm的速度球磨3h,过200目筛,即得CaO-SiO2-P2O5生物玻璃粉体,各物质组成为:14%氧化钙、9%五氧化二磷和77%二氧化硅; (2) Add 93.6mL deionized water, 15.57mL 2mol/L hydrochloric acid catalyst and 127.80mL tetraethyl orthosilicate to the beaker, stir and hydrolyze for 30min at room temperature, then add 13.03mL triethyl phosphate and continue stirring for 30min, Then add 81.21g of calcium nitrate tetrahydrate and stir well to obtain a transparent, uniform and stable sol; let the sol stand and age at room temperature for 48 hours to fully carry out the hydrolysis-polycondensation reaction and form a wet gel; store the wet gel at 140°C Dry for 2 days to evaporate the solvent to obtain xerogel; heat-treat the xerogel at 650°C to obtain granular sol-gel bioactive glass; ball mill at 480rpm for 3 hours, and pass through a 200-mesh sieve to obtain CaO- SiO 2 -P 2 O 5 biological glass powder, the composition of each material is: 14% calcium oxide, 9% phosphorus pentoxide and 77% silicon dioxide;

(3)将50gNa2O-CaO-SiO2-P2O5生物玻璃粉体和50gCaO-SiO2-P2O5生物玻璃粉体混合,加入82mL体积分数为6%的聚丙烯酸胺溶液中,球磨3小时混匀,得到体积分数为55%的生物玻璃浆料; (3) Mix 50g of Na 2 O-CaO-SiO 2 -P 2 O 5 bioglass powder and 50g of CaO-SiO 2 -P 2 O 5 bioglass powder, and add to 82mL polyacrylamine solution with a volume fraction of 6%. , ball milled for 3 hours and mixed to obtain a bioglass slurry with a volume fraction of 55%;

(4)将步骤(1)得到的生物玻璃浆料逐滴加入聚乳酸-羟基乙酸共聚物反模中,将反模在湘仪L550型离心机中以1200r/min进行离心注浆,置于72℃水浴中固化1.5h后,放置于干燥箱中于60℃干燥60h,得到固体材料; (4) Add the bioglass slurry obtained in step (1) dropwise into the counter mold of polylactic acid-glycolic acid copolymer, and perform centrifugal grouting on the counter mold in Xiangyi L550 centrifuge at 1200r/min, and place in After curing in a water bath at 72°C for 1.5h, place it in a drying oven and dry at 60°C for 60h to obtain a solid material;

(5)将固体材料放入氧化锆匣钵中,以2℃/min的速率将固体材料的温度升至950℃后保持1.5h;自然降温至20℃,制得用于骨缺损修复的生物活性玻璃陶瓷材料。 (5) Put the solid material into a zirconia saggar, raise the temperature of the solid material to 950 °C at a rate of 2 °C/min and keep it for 1.5 h; naturally cool down to 20 °C to obtain a biological material for bone defect repair. Active glass-ceramic material.

实施例4Example 4

采用Na2O-CaO-SiO2-P2O5生物玻璃粉体和CaO-SiO2生物玻璃粉体的混合物,其中Na2O-CaO-P2O5-SiO2生物玻璃粉体的质量分数为1%,CaO-SiO2生物玻璃粉体的质量分数为99%。 A mixture of Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder and CaO-SiO 2 biological glass powder is used, wherein the mass of Na 2 O-CaO-P 2 O 5 -SiO 2 biological glass powder The fraction is 1%, and the mass fraction of CaO- SiO2 bioglass powder is 99%.

(1)将37.61g碳酸钠、33.57g碳酸钙、15.30g磷酸三钙和49.00 g二氧化硅充分混合均匀后,放入铂金坩埚内于1400℃熔融120min,然后将熔融玻璃液倒入去离子水中水淬,得到非晶相生物活性玻璃,将水滤除后在电热鼓风干燥箱中于60℃干燥24h,以480rpm的速度在行星球磨机中球磨3h,过200目筛,即得Na2O-CaO-SiO2-P2O5生物玻璃粉体,各物质组成为:22%氧化钙、7%五氧化二磷、22%氧化钠和49%二氧化硅; (1) After fully mixing 37.61g sodium carbonate, 33.57g calcium carbonate, 15.30g tricalcium phosphate and 49.00 g silicon dioxide, put them into a platinum crucible and melt at 1400°C for 120min, then pour the molten glass into deionized Quenching in water to obtain amorphous bioactive glass. After filtering the water, dry it in an electric blast drying oven at 60°C for 24 hours, ball mill it in a planetary ball mill at a speed of 480rpm for 3 hours, and pass through a 200-mesh sieve to obtain Na 2 O-CaO-SiO 2 -P 2 O 5 biological glass powder, the composition of each material is: 22% calcium oxide, 7% phosphorus pentoxide, 22% sodium oxide and 49% silicon dioxide;

(2)在烧杯中加入249.6mL去离子水、38.40mL 2mol/L的盐酸催化剂和400.00mL正硅酸乙脂,在室温条件下搅拌水解30min后,再加入103.76g四水硝酸钙,充分搅拌均匀后获得透明均一稳定的溶胶;溶胶在室温下静置陈化48h,使水解-缩聚反应充分进行,形成湿凝胶;湿凝胶置于140℃干燥2天,使溶剂蒸发后得到干凝胶;将干凝胶于650℃热处理固化工艺获得颗粒状溶胶-凝胶生物活性玻璃;以480rpm的速度球磨3h,过200目筛,即得CaO-SiO2生物玻璃粉体,各物质组成为:20%氧化钙和80%二氧化硅; (2) Add 249.6mL deionized water, 38.40mL 2mol/L hydrochloric acid catalyst and 400.00mL tetraethyl orthosilicate to the beaker, stir and hydrolyze for 30min at room temperature, then add 103.76g calcium nitrate tetrahydrate, stir well After uniformity, a transparent, uniform and stable sol was obtained; the sol was aged at room temperature for 48 hours, so that the hydrolysis-polycondensation reaction fully proceeded, and a wet gel was formed; the wet gel was dried at 140°C for 2 days, and the dry coagulation was obtained after the solvent evaporated. Glue; the dry gel is heat-treated and solidified at 650°C to obtain granular sol-gel bioactive glass; ball milled at a speed of 480 rpm for 3 hours, and passed through a 200-mesh sieve to obtain CaO-SiO 2 bio-glass powder. : 20% calcium oxide and 80% silicon dioxide;

(3)将1gNa2O-CaO-SiO2-P2O5生物玻璃粉体和99gCaO-SiO2生物玻璃粉体混合,加入67mL体积分数为6%的聚丙烯酸胺溶液中,球磨3小时混匀,得到体积分数为60%的生物玻璃浆料; (3) Mix 1gNa 2 O-CaO-SiO 2 -P 2 O 5 bioglass powder and 99gCaO-SiO 2 bioglass powder, add to 67mL polyacrylamide solution with a volume fraction of 6%, and ball mill for 3 hours to mix. Uniformly, obtain the bioglass slurry that volume fraction is 60%;

(4)将步骤(1)得到的生物玻璃浆料逐滴加入不饱和聚酯树脂高分子反模中,将反模在湘仪L550型离心机中以1000r/min进行离心注浆,置于72℃水浴中固化1.5h后,放置于干燥箱中于60℃干燥60h,得到固体材料; (4) Add the bioglass slurry obtained in step (1) dropwise into the unsaturated polyester resin polymer counter-form, and perform centrifugal grouting on the counter-form in a Xiangyi L550 centrifuge at 1000r/min, and place After curing in a water bath at 72°C for 1.5h, place it in a drying oven and dry at 60°C for 60h to obtain a solid material;

(5)将固体材料放入氧化锆匣钵中,以2℃/min的速率将固体材料的温度升至950℃后保持1.5h;自然降温至20℃,制得用于骨缺损修复的生物活性玻璃陶瓷材料。 (5) Put the solid material into a zirconia saggar, raise the temperature of the solid material to 950 °C at a rate of 2 °C/min and keep it for 1.5 h; naturally cool down to 20 °C to obtain a biological material for bone defect repair. Active glass-ceramic material.

图1为本发明实施例1制备的生物活性玻璃陶瓷骨修复材料的显微CT照片,可以看出,本发明的骨修复材料具有堆垛式孔道结构,这样的微结构有利于组织的长入和营养物质的传输与代谢。 Figure 1 is a micro-CT photo of the bioactive glass-ceramic bone repair material prepared in Example 1 of the present invention. It can be seen that the bone repair material of the present invention has a stacked channel structure, and such a microstructure is conducive to the growth of tissues and nutrient transport and metabolism.

图2为本发明实施例1制备的生物活性玻璃陶瓷骨修复材料表面的SEM照片,可以看到材料出现部分结晶,这使得材料具有更好的力学性能。 Fig. 2 is an SEM photograph of the surface of the bioactive glass-ceramic bone repair material prepared in Example 1 of the present invention. It can be seen that the material is partially crystallized, which makes the material have better mechanical properties.

Claims (10)

1. be used for the preparation method of the biological activated glass ceramic material of bone defect repair, it is characterized in that, comprise the steps:
(1) the bio-vitric powder is sieved, add the ROHM amine aqueous solution, milling mixing obtains the bio-vitric slurry;
(2) the bio-vitric slurry that step (1) is obtained dropwise adds in the polymer reverse, and the polymer reverse is carried out centrifugal grouting in whizzer, in 70 ~ 75 ℃ of water-baths, solidify 1 ~ 2h after, 50 ~ 70 ℃ of drying 48 ~ 72h obtain solid material;
(3) solid material that step (2) is obtained is removed the polymer reverse in 900 ~ 1000 ℃ of calcinings under temperature programmed control, make the biological activated glass ceramic material that is used for the bone defect repair.
2. preparation method according to claim 1 is characterized in that, said bio-vitric powder is Na 2O-CaO-SiO 2-P 2O 5Bio-vitric powder and/or CaO-SiO 2-P 2O 5The bio-vitric powder.
3. preparation method according to claim 2 is characterized in that, said Na 2O-CaO-SiO 2-P 2O 5The material of bio-vitric powder is formed mass percent: quicklime 20 ~ 25%, Vanadium Pentoxide in FLAKES 5 ~ 7%, sodium oxide 20 ~ 25%, silicon-dioxide 43 ~ 49%; Said CaO-SiO 2-P 2The material of O bio-vitric powder is formed mass percent: quicklime 14 ~ 33%, Vanadium Pentoxide in FLAKES 0 ~ 9%, silicon-dioxide 58 ~ 80%.
4. preparation method according to claim 3 is characterized in that, the volume(tric)fraction of bio-vitric powder is 50 ~ 60% in the said bio-vitric slurry.
5. preparation method according to claim 4 is characterized in that, the pore dimension of said polymer reverse is 500 ~ 1000 microns, and geometrical shape is cubes, rectangular parallelepiped or right cylinder.
6. according to the described preparation method of one of claim 1 ~ 5, it is characterized in that the process of said temperature programmed control comprises following three phases:
(1) temperature rise period: the temperature of solid material is risen to 900 ~ 1000 ℃ with the speed of 2 ~ 3 ℃/min;
(2) holding stage: the temperature of solid material is kept 1 ~ 2h at 900 ~ 1000 ℃;
(3) temperature-fall period: be cooled to 10 ~ 30 ℃ naturally.
7. preparation method according to claim 6 is characterized in that, the volume(tric)fraction of poly amic acid is 4 ~ 8% in the said ROHM amine aqueous solution.
8. preparation method according to claim 7 is characterized in that, the rotating speed of said centrifugal grouting is 800 ~ 1200r/min.
9. preparation method according to claim 8 is characterized in that, said polymer reverse is photosensitive resin reverse or polymkeric substance reverse.
10. preparation method according to claim 9 is characterized in that said photosensitive resin is a unsaturated polyester resin, comprises gathering meso lactic acid or polycaprolactone; Said polymkeric substance is polylactic acid-glycolic guanidine-acetic acid multipolymer or acrylonitrile-butadiene-styrene copolymer.
CN2011102987353A 2011-09-28 2011-09-28 Preparation method of bioactive glass ceramic material for bone defect repair Pending CN102432180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102987353A CN102432180A (en) 2011-09-28 2011-09-28 Preparation method of bioactive glass ceramic material for bone defect repair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102987353A CN102432180A (en) 2011-09-28 2011-09-28 Preparation method of bioactive glass ceramic material for bone defect repair

Publications (1)

Publication Number Publication Date
CN102432180A true CN102432180A (en) 2012-05-02

Family

ID=45980579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102987353A Pending CN102432180A (en) 2011-09-28 2011-09-28 Preparation method of bioactive glass ceramic material for bone defect repair

Country Status (1)

Country Link
CN (1) CN102432180A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102772830A (en) * 2012-07-23 2012-11-14 中国人民解放军第四军医大学 Absorbable composite biomaterial and preparation method thereof
CN103342453A (en) * 2013-07-09 2013-10-09 扬州大学 Method for preparing monodisperse mesoporous bioactive glass microspheres through template method
CN104743886A (en) * 2015-03-31 2015-07-01 苏州维泰生物技术有限公司 Bioactive glass ceramic and preparation method thereof
CN105084764A (en) * 2015-09-01 2015-11-25 广西南宁智翠科技咨询有限公司 Glass ceramic for preparing dental restorations and preparation method of glass ceramic
CN109594195A (en) * 2019-01-25 2019-04-09 蓝怡科技集团股份有限公司 A kind of cotton shape fibrous framework and its preparation method and application
CN110063740A (en) * 2019-04-25 2019-07-30 泰山医学院 Phantom material, preparation method and application suitable for the detection of CT standard value

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050053A (en) * 2006-04-07 2007-10-10 同济大学 Method for preparing engineering material of bone tissue and application
CN102058902A (en) * 2010-12-23 2011-05-18 西安交通大学 Method for preparing mesh-shaped bionic bone porous stent material
CN102188749A (en) * 2010-03-10 2011-09-21 中国科学院上海硅酸盐研究所 3D porous bracket with mesoporous biological glass coating and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050053A (en) * 2006-04-07 2007-10-10 同济大学 Method for preparing engineering material of bone tissue and application
CN102188749A (en) * 2010-03-10 2011-09-21 中国科学院上海硅酸盐研究所 3D porous bracket with mesoporous biological glass coating and preparation method thereof
CN102058902A (en) * 2010-12-23 2011-05-18 西安交通大学 Method for preparing mesh-shaped bionic bone porous stent material

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《硅酸盐学报》 20101231 赵娜如等 原位凝固成型法制备可控孔隙结构的多孔beta-磷酸三钙陶瓷 2314-2318 1-8 第38卷, 第12期 *
《硅酸盐通报》 20060615 涂杰等 熔融法生物玻璃与溶胶-凝胶法生物玻璃的矿化特性研究 12-15 3-10 第25卷, 第2期 *
涂杰等: "熔融法生物玻璃与溶胶-凝胶法生物玻璃的矿化特性研究", 《硅酸盐通报》 *
赵娜如等: "原位凝固成型法制备可控孔隙结构的多孔β-磷酸三钙陶瓷", 《硅酸盐学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102772830A (en) * 2012-07-23 2012-11-14 中国人民解放军第四军医大学 Absorbable composite biomaterial and preparation method thereof
CN102772830B (en) * 2012-07-23 2014-08-06 中国人民解放军第四军医大学 Absorbable composite biomaterial and preparation method thereof
CN103342453A (en) * 2013-07-09 2013-10-09 扬州大学 Method for preparing monodisperse mesoporous bioactive glass microspheres through template method
CN103342453B (en) * 2013-07-09 2015-12-02 扬州大学 The method of the monodisperse mesoporous bioactivity glass microballoon of template synthesis
CN104743886A (en) * 2015-03-31 2015-07-01 苏州维泰生物技术有限公司 Bioactive glass ceramic and preparation method thereof
CN105084764A (en) * 2015-09-01 2015-11-25 广西南宁智翠科技咨询有限公司 Glass ceramic for preparing dental restorations and preparation method of glass ceramic
CN109594195A (en) * 2019-01-25 2019-04-09 蓝怡科技集团股份有限公司 A kind of cotton shape fibrous framework and its preparation method and application
CN109594195B (en) * 2019-01-25 2021-11-05 蓝怡科技集团股份有限公司 Cotton-shaped fiber scaffold and preparation method and application thereof
CN110063740A (en) * 2019-04-25 2019-07-30 泰山医学院 Phantom material, preparation method and application suitable for the detection of CT standard value
CN110063740B (en) * 2019-04-25 2020-07-07 泰山医学院 Phantom material suitable for CT standard value detection, preparation method and application
WO2020215853A1 (en) * 2019-04-25 2020-10-29 山东第一医科大学(山东省医学科学院) Phantom material suitable for ct standard value detection, preparation method and application

Similar Documents

Publication Publication Date Title
Liu et al. Effects of pore size on the mechanical and biological properties of stereolithographic 3D printed HAp bioceramic scaffold
CN102432180A (en) Preparation method of bioactive glass ceramic material for bone defect repair
CN104288830B (en) A kind of micro-nano bar-shaped bioactivity glass and preparation method and application
CN103585677B (en) A kind of HA micronano whisker reinforced calcium phosphate ceramic material and its preparation method and application
CN102058902B (en) Method for preparing mesh-shaped bionic bone porous stent material
CN101716369B (en) Preparation method for calcium polyphosphate-tricalcium phosphate bone bracket
CN110101904B (en) A degradable regenerative medicine material for promoting tissue in situ regeneration and preparation method thereof
CN114452439B (en) Hydroxyapatite/whitlockite bioactive ceramic scaffold consisting of bionic natural bone minerals and preparation method thereof
CN105439110A (en) Sr and Mg doped amorphous apatite material and crystalline apatite material
CN103585672A (en) Preparation method of bioglass fiber reinforced hydroxyapatite porous composite material
CN101401965B (en) Synthesis of composite bone restoration bioactive material
CN108863332A (en) A kind of three-dimensional porous calcium silicates bone bracket and preparation method thereof with micro-nano structure surface
CN106390190A (en) Process for manufacturing alpha-tricalcium phosphate-alpha-calcium sulfate hemihydrates bone cement porous bracket through squashing method
Raz et al. Sol-gel based fabrication and properties of Mg-Zn doped bioactive glass/gelatin composite scaffold for bone tissue engineering
CN107519536A (en) A kind of controllableization preparation method and application of polylactic acid/hydroxy apatite complex microsphere surface porosity
CN103656756B (en) Nano-hydroxyapatite/silk fibroin composite membrane material and preparation method thereof
CN103979945B (en) A kind of preparation method of bioactive wollastonite ceramics
CN110613863B (en) A kind of porous scaffold based on silicon-doped hydroxyapatite promoting vascularization and its preparation method and application
TW201427728A (en) Method for producing a porous calcium polyphosphate structure
CN115025284A (en) Graphene oxide improved barium titanate/poly (lactic acid-glycolic acid) biological scaffold and preparation method thereof
CN103055345B (en) Calcium sulfate spherical particle alveolar bone repair material and its preparation method and application
CN105343930A (en) Method for preparing degradable artificial bone material from natural magniferous calcite
CN109534681A (en) A kind of preparation method of lithium bisilicate compound bio glass ceramics
CN1923752A (en) Composite organism ceramic material composed of apatite-wollastonite/beta-tricalcium phosphate
CN113979729B (en) Lithium-silicon compound enhanced bioactive ceramic material and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120502