CN102430547A - Deep ultraviolet optical film processing device - Google Patents
Deep ultraviolet optical film processing device Download PDFInfo
- Publication number
- CN102430547A CN102430547A CN2011103468664A CN201110346866A CN102430547A CN 102430547 A CN102430547 A CN 102430547A CN 2011103468664 A CN2011103468664 A CN 2011103468664A CN 201110346866 A CN201110346866 A CN 201110346866A CN 102430547 A CN102430547 A CN 102430547A
- Authority
- CN
- China
- Prior art keywords
- deep ultraviolet
- switch
- cavity
- lamp
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Cleaning In General (AREA)
Abstract
Description
技术领域 technical field
本发明涉及深紫外光学技术应用领域,特别涉及一种深紫外光学薄膜处理装置。The invention relates to the application field of deep ultraviolet optical technology, in particular to a deep ultraviolet optical thin film processing device.
背景技术 Background technique
近年来,以ArF准分子激光和200nm以下波长自由电子激光为代表的深紫外光学应用得到了日益的重视,并获得了长足的发展。尤其是ArF准分子193nm激光,其在包括材料精细微加工、深紫外光刻、材料处理、激光打标等在内的激光工业应用,准分子激光医疗,以及科学研究等诸多领域都获得了十分广泛重要的应用,深紫外光学相关技术的研究具有重大社会经济价值。深紫外激光光学系统与应用的不断发展对深紫外光学薄膜元件性能及长期稳定性要求都提出了新的挑战。深紫外光学薄膜研究面临的根本问题是由于深紫外波段靠近大多数介质材料的禁带,本征吸收、杂质吸收、缺陷吸收等的存在使得只有极其少量的介质材料能够满足深紫外薄膜应用的需要。这些少量材料包括氧化物Al2O3、SiO2,氟化物MgF2、LaF3、AlF3等。薄膜材料选择的局限性进一步带来了对深紫外光学薄膜制备工艺的制约,例如针对氟化物,为了避免深紫外光学薄膜出现化学计量比失配而导致严重吸收,以及高温衬底带来的应力大等问题,通常只能选择热舟蒸发制备工艺,且衬底的温度较低。采用这种较低衬底温度的热舟蒸发制备工艺,可以得到吸收很小的深紫外光学薄膜,但同时也伴随光学薄膜内在结构不够致密、光学薄膜表面较粗糙。因此,这种采用较低衬底温度热舟蒸发工艺所制备的深紫外光学薄膜可以在应用的开始阶段很好地满足应用需要,但是随着应用时间的增加,由于光学薄膜内在结构不够致密和光学薄膜表面较粗糙所必然带来的对应用环境中的污染物质的吸附效应,深紫外光学薄膜的性能将很快衰退。研究表明,这种深紫外光学薄膜性能的衰退集中表现为深紫外光学薄膜内部及表面吸附有机污染物和水汽而导致深紫外光学薄膜的吸收显著增大。对此,研究人员尝试了去除光学薄膜内部及表面吸附的有机污染物和水汽的有效方法,并发现采用UV光辐照深紫外光学薄膜是一种行之有效的方法。In recent years, deep ultraviolet optical applications represented by ArF excimer lasers and free electron lasers with wavelengths below 200nm have received increasing attention and achieved considerable development. In particular, the ArF excimer 193nm laser has achieved great success in many fields including fine microprocessing of materials, deep ultraviolet lithography, material processing, laser marking, etc., excimer laser medical treatment, and scientific research. Widely and important applications, the research on deep ultraviolet optical related technologies has great social and economic value. The continuous development of deep ultraviolet laser optical systems and applications poses new challenges to the performance and long-term stability requirements of deep ultraviolet optical thin film components. The fundamental problem facing the research of deep ultraviolet optical thin films is that because the deep ultraviolet band is close to the forbidden band of most dielectric materials, the existence of intrinsic absorption, impurity absorption, defect absorption, etc. makes only a very small amount of dielectric materials meet the needs of deep ultraviolet thin film applications. . These minor amounts of materials include oxides Al 2 O 3 , SiO 2 , fluorides MgF 2 , LaF 3 , AlF 3 , and the like. The limitation of film material selection further brings constraints on the preparation process of deep ultraviolet optical thin films, such as for fluoride, in order to avoid serious absorption caused by the mismatch of stoichiometric ratio of deep ultraviolet optical thin films, and the stress caused by high temperature substrate For large and other problems, usually only the hot boat evaporation preparation process can be selected, and the temperature of the substrate is low. Using this heat-boat evaporation preparation process with a lower substrate temperature, a deep ultraviolet optical film with little absorption can be obtained, but at the same time, the internal structure of the optical film is not dense enough, and the surface of the optical film is rough. Therefore, the deep ultraviolet optical film prepared by the heat boat evaporation process at a lower substrate temperature can meet the application requirements well in the initial stage of application, but as the application time increases, due to the insufficient internal structure of the optical film and the Due to the adsorption effect on the pollutants in the application environment caused by the rough surface of the optical film, the performance of the deep ultraviolet optical film will soon decline. Studies have shown that the degradation of the performance of this deep ultraviolet optical film is concentrated in the absorption of organic pollutants and water vapor inside and on the surface of the deep ultraviolet optical film, resulting in a significant increase in the absorption of the deep ultraviolet optical film. In this regard, researchers have tried effective methods to remove organic pollutants and water vapor adsorbed inside and on the surface of optical films, and found that irradiating deep ultraviolet optical films with UV light is an effective method.
紫外光清洗的基本原理是有机化合物的光敏氧化作用,其详细的机理为:UV光源发射波长为185nm和254nm的高能量光子,当这些高能量光子作用到被清洗物体表面时,由于大多数碳氢化合物对185nm波长的紫外光具有较强的吸收能力,并在吸收185nm波长的紫外光的能量后分解成离子、游离态原子、受激分子和中子。此外,空气中的氧气分子在吸收了185nm波长的紫外光后也会产生臭氧和原子氧,臭氧对254nm波长的紫外光同样具有强烈的吸收作用,因此,臭氧又进一步分解为原子氧和氧气,上述过程产生的原子氧是极活泼的,具有极强的氧化性,在它作用下,物体表面上的碳和碳氢化合物的分解物可化合成可挥发的气体,如二氧化碳和水蒸气等逸出表面,从而彻底清除了黏附在表面上的碳和有机污染物。The basic principle of ultraviolet light cleaning is the photosensitive oxidation of organic compounds. The detailed mechanism is: UV light source emits high-energy photons with wavelengths of 185nm and 254nm. When these high-energy photons act on the surface of the object to be cleaned, due to most carbon Hydrogen compounds have a strong absorption capacity for ultraviolet light with a wavelength of 185nm, and are decomposed into ions, free atoms, excited molecules and neutrons after absorbing the energy of ultraviolet light with a wavelength of 185nm. In addition, oxygen molecules in the air will also produce ozone and atomic oxygen after absorbing ultraviolet light with a wavelength of 185nm. Ozone also has a strong absorption effect on ultraviolet light with a wavelength of 254nm. Therefore, ozone is further decomposed into atomic oxygen and oxygen. The atomic oxygen produced by the above process is extremely active and has strong oxidizing properties. Under its action, the decomposition products of carbon and hydrocarbons on the surface of the object can be combined into volatile gases, such as carbon dioxide and water vapor. out of the surface, thereby thoroughly removing carbon and organic pollutants adhering to the surface.
与传统的其它物理和化学清洗技术相比,紫外光清洗具有显著的特点,包括:可以较彻底地清除表面的碳和有机污染物;属于非接触清洗方式,不会形成新的污染;工艺简单,速度快,效率高,具有较高的可靠性,表面清洗处理的均匀度很好。上述特点非常适合深紫外光学薄膜表面的清洁与处理。但是,有很多的实验表明,紫外光清洗对于深紫外光学薄膜内部及表面的水汽的处理效果并不是十分理想。因为实验表明,在紫外光清洗前后,深紫外光学薄膜内部及表面的水汽含量基本没有变化。因此,为了将深紫外光学薄膜中的水汽去掉,在紫外光清洗之前或之后,通常还需要对深紫外光学薄膜进行一个低温的退火处理。这种低温退火方式可以将深紫外光学薄膜中的水汽去掉,然而这种低温退火速度较慢,通常需要较长的时间,因此,在这个过程中很可能会出现新的污染吸附问题,且效率较低。Compared with other traditional physical and chemical cleaning technologies, UV cleaning has remarkable features, including: it can remove carbon and organic pollutants on the surface more thoroughly; it is a non-contact cleaning method and will not form new pollution; the process is simple , high speed, high efficiency, high reliability, and the uniformity of surface cleaning treatment is very good. The above characteristics are very suitable for the cleaning and treatment of the surface of deep ultraviolet optical film. However, many experiments have shown that the effect of ultraviolet light cleaning on the treatment of water vapor inside and on the surface of deep ultraviolet optical films is not very satisfactory. Because experiments have shown that the water vapor content inside and on the surface of the deep ultraviolet optical film basically does not change before and after ultraviolet light cleaning. Therefore, in order to remove the water vapor in the deep ultraviolet optical film, before or after ultraviolet light cleaning, it is usually necessary to perform a low-temperature annealing treatment on the deep ultraviolet optical film. This low-temperature annealing method can remove the water vapor in the deep ultraviolet optical film. However, this low-temperature annealing speed is slow and usually takes a long time. Therefore, new pollution adsorption problems are likely to appear in this process, and the efficiency lower.
现有紫外光清洗装置,其基本的结构如图1所示,这也是目前最常见的紫外光清洗装置结构。目前已知的紫外光清洗装置主要包括紫外光灯23、变压器11、电容12、灯罩腔体、排气、及保护电路等几个部分。其中,紫外光灯23是最主要的部分,一般采用高压Hg灯或卤素灯,需要根据具体的应用需要选择合适的光谱、功率、结构形状等参数。The basic structure of an existing ultraviolet light cleaning device is shown in FIG. 1 , which is also the most common structure of an ultraviolet light cleaning device at present. The currently known ultraviolet light cleaning device mainly includes several parts such as
发明内容 Contents of the invention
为了解决现有技术的紫外光清洗对于深紫外光学薄膜内部及表面的水汽的处理效果不理想和在这个过程中很可能会出现新的污染吸附问题,且效率较低的问题,本发明一种深紫外光学薄膜处理装置将解决现有技术存在的问题。In order to solve the unsatisfactory effect of ultraviolet cleaning in the prior art on the water vapor inside and on the surface of the deep ultraviolet optical film and the problem that new pollution adsorption may occur during this process, and the problem of low efficiency, a method of the present invention The deep ultraviolet optical thin film processing device will solve the problems existing in the prior art.
一种深紫外光学薄膜处理装置,该装置包括:控制模块和处理腔;所述控制模块对处理腔的工作状态进行设定和控制,处理腔对薄膜进行处理;所述控制模块包括:变压器、电容、数字电路板、第一开关、第二开关和第三开关;所述处理腔包括:腔体、红外线灯、紫外光灯、样品台、低温热电偶探头和隔离挡板;所述变压器一端与电容和紫外光灯串联,紫外光灯固定在腔体上端,变压器另一端与电源串联,由第一开关控制;所述数字电路板与样品台、低温热电偶探头和电源连接,由第二开关控制,低温热电偶探头放置于样品台下,并与样品接触,所述样品台固定在腔体中间;所述红外线灯固定在腔体下端,数字电路板与红外线灯连接,由第三开关控制,隔离挡板两端与腔体左右两侧连接。A deep ultraviolet optical film processing device, the device includes: a control module and a processing chamber; the control module sets and controls the working state of the processing chamber, and the processing chamber processes the film; the control module includes: a transformer, capacitor, digital circuit board, first switch, second switch and third switch; the processing chamber includes: cavity, infrared lamp, ultraviolet lamp, sample stage, low-temperature thermocouple probe and isolation baffle; one end of the transformer It is connected in series with the capacitor and the ultraviolet lamp, the ultraviolet lamp is fixed on the upper end of the cavity, and the other end of the transformer is connected in series with the power supply, which is controlled by the first switch; Switch control, the low-temperature thermocouple probe is placed under the sample stage and in contact with the sample, the sample stage is fixed in the middle of the cavity; the infrared lamp is fixed at the lower end of the cavity, the digital circuit board is connected to the infrared lamp, and the third switch Control, the two ends of the isolation baffle are connected with the left and right sides of the cavity.
本发明有益效果是:该装置同时具有紫外灯清洗功能和红外线灯加热功能,可以快速高效去除深紫外光学薄膜内部与表面吸附的有机污染物和水汽成分,克服了以往单独或分别采用紫外光清洗技术和低温退火技术时存在的二次污染和低效率的问题。The beneficial effects of the present invention are: the device has both the cleaning function of the ultraviolet lamp and the heating function of the infrared lamp, can quickly and efficiently remove the organic pollutants and water vapor components adsorbed on the inside and surface of the deep ultraviolet optical film, and overcomes the previous single or separate cleaning by ultraviolet light The problems of secondary pollution and low efficiency in technology and low temperature annealing technology.
附图说明 Description of drawings
图1现在技术紫外光清洗装置结构示意图。Fig. 1 is a schematic diagram of the structure of the current technology ultraviolet light cleaning device.
图2本发明一种深紫外光学薄膜后处理装置的结构示意图。Fig. 2 is a schematic structural diagram of a deep ultraviolet optical film post-processing device according to the present invention.
如图:11、变压器,12、电容,13、数字电路板,14、第一开关,15、第二开工,16、第三开关,21、处理腔,22、红外线灯,23、紫外光灯,24、样品台,25、低温热电偶探头,26、隔离挡板。As shown in the figure: 11, transformer, 12, capacitor, 13, digital circuit board, 14, first switch, 15, second start-up, 16, third switch, 21, processing chamber, 22, infrared lamp, 23, ultraviolet lamp , 24, sample stage, 25, low temperature thermocouple probe, 26, isolation baffle.
具体实施方式 Detailed ways
由图2所示,一种深紫外光学薄膜处理装置,该装置包括:控制模块1和处理腔2;所述控制模块1对处理腔2的工作状态进行设定和控制,处理腔2对薄膜进行处理;所述控制模块1包括:变压器11、电容12、数字电路板13、第一开关14、第二开关15和第三开关16;所述处理腔2包括:腔体21、红外线灯22、紫外光灯23、样品台24、低温热电偶探头25和隔离挡板26;所述变压器11一端与电容12和紫外光灯23串联,紫外光灯23固定在腔体上端,变压器11另一端与电源串联,由第一开关14控制;所述数字电路板13与样品台24、低温热电偶探头25和电源连接,由第二开关15控制,低温热电偶探头25放置于样品台24下,并与样品接触,所述样品台24固定在腔体中间;所述红外线灯22固定在腔体下端,数字电路板13与红外线灯22连接,由第三开关16控制,隔离挡板26两端与腔体左右两侧连接。As shown in Figure 2, a deep ultraviolet optical thin film processing device, the device includes: a control module 1 and a processing chamber 2; the control module 1 sets and controls the working state of the processing chamber 2, and the processing chamber 2 controls the film Processing; the control module 1 includes: a
本发明装置具有分别进行紫外光清洗和红外线加热两种功能,可以通过功能按钮进行选择切换。在紫外光清洗时,可以设定紫外光灯23的输出功率和辐照时间。在红外线加热时,也可以设定红外线灯22的输出功率,并通过一套温控电路对样品加热的温度进行控制,实现恒温加热。The device of the invention has two functions of ultraviolet light cleaning and infrared heating respectively, which can be selected and switched by function buttons. During ultraviolet cleaning, the output power and irradiation time of the
控制模块中包含紫外光灯23所需的变压器11、电容12和红外线灯22所需的低温热电偶探头25及数字电路板13等。其中变压器11采用漏磁变压器,其初级绕组选择220V输入,次级绕组输出220v~3000V之间可调谐;采用双电容12连接结构;通过变化变压范围和电容12参数,实现对紫外光灯23输出功率的调谐。紫外光灯电路和红外线灯电路均配置绝缘电阻和安全保护开关。采用数字电路板13对处理装置的工作状态进行设定和控制。The control module includes the
腔体21的外壳采用不锈钢板或抛光Al板制成,可以有效反射紫外光和红外线,腔体的尺寸约为50cm*50cm*40cm长*宽*高,上端可以自由开关。The shell of the
红外线灯22采用内部绕有电热丝的乳白石英管。这种乳白石英管红外加热器没有涂层,没有污染,没有有害辐射,化学稳定性好,耐高温,形状多样,长久使用不变形,热稳定性好,可选择加热温度。红外线灯22的电压为220V,外径30mm,长400mm,功率为300-6000W之间。其红外辐射光谱在2-5μm之间的发射效率大于0.85。The
紫外光灯23采用排管双波长高压Hg灯,排管采用高透石英管,管外径为30mm,长度为300mm,宽度为200mm,功率为150W。发射光谱包含185nm和254nm双紫外波长,且红外辐射低。The
样品台24采用微晶玻璃制成,在红外线加热时,位于腔体下端的红外线可以透过微晶玻璃辐射到样品中。在微晶玻璃板中心底部开一个小孔,放置一个低温热电偶探头25,低温热电偶探头25刚好从下面接触样品底部,从而可以准确探测样品的温度,实现红外加热恒温实验中样品温度的实时监控。利用温控系统,可以使样品的温度恒温控制在100-200度之间。The
隔离挡板26采用抛光Al合金,其对紫外和红外均高反射。其位置可以变换,当红外线加热时,隔离挡板26置于样品台24和紫外光灯23之间,用于隔离红外线对紫外光灯23的辐射,当紫外光灯23清洗时,隔离挡板26置于样品台24上,然后样品放在其上,从而隔离紫外光对红外线灯22的辐射。The
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110346866 CN102430547B (en) | 2011-11-07 | 2011-11-07 | Deep ultraviolet optical film processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110346866 CN102430547B (en) | 2011-11-07 | 2011-11-07 | Deep ultraviolet optical film processing device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102430547A true CN102430547A (en) | 2012-05-02 |
CN102430547B CN102430547B (en) | 2013-08-21 |
Family
ID=45979100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110346866 Expired - Fee Related CN102430547B (en) | 2011-11-07 | 2011-11-07 | Deep ultraviolet optical film processing device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102430547B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102644052A (en) * | 2012-05-03 | 2012-08-22 | 中国科学院光电技术研究所 | Vacuum coating machine with ultraviolet irradiation cleaning function |
CN103995336A (en) * | 2013-02-18 | 2014-08-20 | 日立视听媒体股份有限公司 | Adhesive structure of optical component, manufacturing method thereof, and image output device |
CN105448760A (en) * | 2014-08-20 | 2016-03-30 | 中芯国际集成电路制造(上海)有限公司 | Method for improving test stability of wafer |
CN112820813A (en) * | 2021-02-20 | 2021-05-18 | 聚灿光电科技(宿迁)有限公司 | Oven and LED wafer for visible light communication |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002159926A (en) * | 2000-11-27 | 2002-06-04 | Japan Steel Works Ltd:The | Apparatus and method for detecting cleaning state of substrate surface during laser cleaning processing |
US6410883B1 (en) * | 1999-05-26 | 2002-06-25 | Nec Corporation | Cleaning device and method for cleaning resin sealing metal mold |
CN101143364A (en) * | 2007-10-08 | 2008-03-19 | 南开大学 | Ultrasonic detection of narrow pulse width laser decontamination machine and its decontamination method |
CN101219430A (en) * | 2008-01-25 | 2008-07-16 | 清华大学 | Watt-level all-solid-state ultraviolet laser cleaning machine and laser cleaning method |
CN102218415A (en) * | 2011-03-10 | 2011-10-19 | 大连理工大学 | Method and device for vacuum ultraviolet laser cleaning first mirror of tokamak |
-
2011
- 2011-11-07 CN CN 201110346866 patent/CN102430547B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6410883B1 (en) * | 1999-05-26 | 2002-06-25 | Nec Corporation | Cleaning device and method for cleaning resin sealing metal mold |
JP2002159926A (en) * | 2000-11-27 | 2002-06-04 | Japan Steel Works Ltd:The | Apparatus and method for detecting cleaning state of substrate surface during laser cleaning processing |
CN101143364A (en) * | 2007-10-08 | 2008-03-19 | 南开大学 | Ultrasonic detection of narrow pulse width laser decontamination machine and its decontamination method |
CN101219430A (en) * | 2008-01-25 | 2008-07-16 | 清华大学 | Watt-level all-solid-state ultraviolet laser cleaning machine and laser cleaning method |
CN102218415A (en) * | 2011-03-10 | 2011-10-19 | 大连理工大学 | Method and device for vacuum ultraviolet laser cleaning first mirror of tokamak |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102644052A (en) * | 2012-05-03 | 2012-08-22 | 中国科学院光电技术研究所 | Vacuum coating machine with ultraviolet irradiation cleaning function |
CN102644052B (en) * | 2012-05-03 | 2014-02-05 | 中国科学院光电技术研究所 | Vacuum coating machine with ultraviolet irradiation cleaning function |
CN103995336A (en) * | 2013-02-18 | 2014-08-20 | 日立视听媒体股份有限公司 | Adhesive structure of optical component, manufacturing method thereof, and image output device |
CN105448760A (en) * | 2014-08-20 | 2016-03-30 | 中芯国际集成电路制造(上海)有限公司 | Method for improving test stability of wafer |
CN112820813A (en) * | 2021-02-20 | 2021-05-18 | 聚灿光电科技(宿迁)有限公司 | Oven and LED wafer for visible light communication |
Also Published As
Publication number | Publication date |
---|---|
CN102430547B (en) | 2013-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102430547A (en) | Deep ultraviolet optical film processing device | |
JPH01244623A (en) | Manufacture of oxide film | |
KR20150020154A (en) | Reduction method of graphene oxide and graphene oxide reduction apparatus | |
KR102245732B1 (en) | Pre-heat processes for millisecond anneal system | |
JP2005158796A (en) | Processing equipment | |
CN101599414B (en) | Excimer lamp | |
JP2007517650A (en) | Gas treatment method by high frequency discharge | |
CN102644052B (en) | Vacuum coating machine with ultraviolet irradiation cleaning function | |
JP2001023916A (en) | Method for treating material with electromagnetic wave and apparatus | |
CN104282546A (en) | Method for improving homogeneity of polycrystalline silicon layer | |
CN102512002B (en) | Ultraviolet ozone drying cabinet for cleaning and storing vacuum ultraviolet optical elements | |
US20080020549A1 (en) | Method and apparatus for forming an oxide layer on semiconductors | |
JP5072287B2 (en) | Substrate surface treatment method and apparatus | |
Morimoto et al. | Recent progress on UV lamps for industries | |
WO2014201975A1 (en) | Crystalline silicon oxidation processing device for solar cell sheet passivation | |
CN101599413A (en) | Excimer lamp | |
JP2005512324A5 (en) | ||
JP6183692B2 (en) | Heat treatment equipment | |
CN109313284B (en) | Manufacturing method of light extraction structure of ultraviolet lamp | |
JP2008251956A (en) | Forming method of oxide film and its apparatus | |
CN105855243B (en) | The application process and UV optical thin films of UV light handle application apparatus | |
JPH0456309A (en) | Manufacture of etched foil for electrolytic capacitor | |
CN114853000B (en) | Preparation method of composite surface with tunable wettability | |
JP2003007693A (en) | Light processing equipment | |
JPS6129357A (en) | UV treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130821 Termination date: 20151107 |
|
EXPY | Termination of patent right or utility model |