[go: up one dir, main page]

CN102426458A - Ground control system applicable to rotor-wing unmanned aerial vehicle - Google Patents

Ground control system applicable to rotor-wing unmanned aerial vehicle Download PDF

Info

Publication number
CN102426458A
CN102426458A CN201110385218XA CN201110385218A CN102426458A CN 102426458 A CN102426458 A CN 102426458A CN 201110385218X A CN201110385218X A CN 201110385218XA CN 201110385218 A CN201110385218 A CN 201110385218A CN 102426458 A CN102426458 A CN 102426458A
Authority
CN
China
Prior art keywords
steering gear
rotor
angular velocity
signal
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110385218XA
Other languages
Chinese (zh)
Other versions
CN102426458B (en
Inventor
富立
张春雷
王玲玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN 201110385218 priority Critical patent/CN102426458B/en
Publication of CN102426458A publication Critical patent/CN102426458A/en
Application granted granted Critical
Publication of CN102426458B publication Critical patent/CN102426458B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种适用于旋翼无人机的地面控制系统,该地面控制系统包括PC机(4)、实时姿态控制器(2)、SPI通讯采集器(3)和驱动器(1)。驱动器(1)一方面接收实时姿态控制器(2)输出的运动指令Din,另一方面依据所述运动指令Din分别输出电机控制信号D2驱动电机(12)运动、第A路舵机信号DA驱动A舵机(13)运动、第B路舵机信号DB驱动B舵机(14)运动、第C路舵机信号DC驱动C舵机(15)运动、第D路舵机信号DD驱动D舵机(16)运动;SPI通讯采集器(3)一方面采集旋翼无人机上惯性测量单元(11)测量得到的参数信息D1,另一方面输出旋翼无人机的三个自由度的线加速度信号α和角速度信号ω给实时姿态控制器(2);PC机(4)通过TCP/IP协议与实时姿态控制器(2)进行通信,为操控者提供了友好的人机界面。

Figure 201110385218

The invention discloses a ground control system suitable for a rotor drone. The ground control system comprises a PC (4), a real-time attitude controller (2), an SPI communication collector (3) and a driver (1). On the one hand, the driver (1) receives the motion command Din output by the real-time attitude controller (2), and on the other hand, according to the motion command Din, respectively outputs the motor control signal D2 to drive the motor (12) to move, and the A-th servo signal DA to drive A steering gear (13) moves, B steering gear signal DB drives B steering gear (14) moves, C steering gear signal DC drives C steering gear (15) moves, D steering gear signal DD drives D rudder The machine (16) moves; the SPI communication collector (3) collects the parameter information D1 measured by the inertial measurement unit (11) on the rotor UAV on the one hand, and outputs the linear acceleration signals of the three degrees of freedom of the rotor UAV on the other hand α and angular velocity signal ω are sent to the real-time attitude controller (2); the PC (4) communicates with the real-time attitude controller (2) through the TCP/IP protocol, providing a friendly man-machine interface for the operator.

Figure 201110385218

Description

一种适用于旋翼无人机的地面控制系统A Ground Control System for Rotary Wing Unmanned Aerial Vehicles

技术领域 technical field

本发明涉及一种适用于旋翼无人机的地面控制系统,该地面控制系统通过有线方式与旋翼无人机上的执行机构和传感器实现连接。The invention relates to a ground control system suitable for a rotary-wing unmanned aerial vehicle. The ground control system is connected with an actuator and a sensor on the rotary-wing unmanned aerial vehicle in a wired manner.

背景技术 Background technique

旋翼无人机具有使用灵活、成本低、零伤亡等特点,在现代军事和民用两方面都得到了广泛的应用。旋翼无人机具有垂直起降和悬停特殊功能,但较之固定翼无人机其稳定性和抗风性较弱,自主控制更为复杂。当前对旋翼无人机的地面控制方式主要分三种:手动遥控方式、自主/半自主控制方式和超视距遥控与自主控制相结合的方式。Rotor UAV has the characteristics of flexible use, low cost, and zero casualties, and has been widely used in both modern military and civilian applications. Rotary-wing UAVs have special functions of vertical take-off and landing and hovering, but compared with fixed-wing UAVs, their stability and wind resistance are weaker, and autonomous control is more complicated. At present, there are three main ground control methods for rotor UAVs: manual remote control, autonomous/semi-autonomous control, and a combination of over-the-horizon remote control and autonomous control.

自主/半自主型用于旋翼无人机视距外(远距)在地面飞行控制人员的监控下进行作业飞行,此情况下要求旋翼无人机具有一定的姿态自主控制能力,对旋翼无人机控制系统要求高、难度大。The autonomous/semi-autonomous type is used for rotor UAVs operating outside the line of sight (long distance) under the supervision of ground flight controllers. The machine control system is demanding and difficult.

为旋翼无人机设计地面控制系统的一般方法是:首先基于牛顿力学模型建立小型旋翼无人机的动力学模型,然后基于此模型设计旋翼无人机飞行姿态控制器,最后在基于某种飞行状态引入相应的控制算法。然而,由于旋翼无人机自身的结构特性,比如体积小,自耦合性高,非线性强等,使小型旋翼无人机的动力学模型很难确定,从而导致旋翼无人机的控制参数的不确定性。The general method for designing a ground control system for a rotor UAV is as follows: first, establish a dynamic model of a small rotor UAV based on the Newtonian mechanics model, then design a flight attitude controller for the rotor UAV based on this model, and finally based on a certain flight The state is introduced into the corresponding control algorithm. However, due to the structural characteristics of the rotor UAV itself, such as small size, high self-coupling, strong nonlinearity, etc., it is difficult to determine the dynamic model of the small rotor UAV, which leads to the control parameters of the rotor UAV. Uncertainty.

发明内容 Contents of the invention

本发明的目的是提供一种用于非常规布局的微型旋翼无人机的地面控制系统,该地面控制系统通过有线的方式实现对旋翼无人机的供电、姿态数据的采集、控制信号和反馈信号的传输。本发明设计的地面控制系统省去了建立小型旋翼无人机动力学模型的复杂步骤,在不建立无人机模型的情况下,通过实时姿态控制器实现数据接收、姿态解算、滤波、PID控制,并能够在线调试并获得较为理想的PID控制参数,成功使旋翼无人机实现了悬停任务。The purpose of the present invention is to provide a ground control system for a miniature rotor drone with an unconventional layout. The ground control system realizes power supply to the rotor drone, collection of attitude data, control signals and feedback by means of wires transmission of signals. The ground control system designed by the present invention saves the complicated steps of establishing the dynamic model of the small rotor UAV, and realizes data reception, attitude calculation, filtering, and PID control through the real-time attitude controller without establishing the UAV model , and can be debugged online and obtain ideal PID control parameters, successfully enabling the rotor UAV to achieve the hovering task.

本发明的地面控制系统第一方面接收旋翼无人机中的IMU(惯性测量单元)输出的三轴加速度信息αX、αY、αZ和角速度信息ωX、ωY、ωZ;第二方面通过实时姿态控制器2对微型旋翼无人机中的电机12进行动力控制;第三方面通过实时姿态控制器2对微型旋翼无人机中的多个舵机(A舵机13、B舵机14、C舵机15、D舵机16)进行控制,从而实现在不建立无人机模型的情况下,成功使旋翼无人机实现了悬停任务。A舵机13与C舵机15协作实现微型旋翼无人机的俯仰运动;B舵机14与D舵机16协作实现微型旋翼无人机的滚转运动;A舵机13、B舵机14、C舵机15与D舵机16协作实现微型旋翼无人机的偏航运动。The first aspect of the ground control system of the present invention receives the three-axis acceleration information α X , α Y , α Z and the angular velocity information ω X , ω Y , ω Z output by the IMU (inertial measurement unit) in the rotor drone; the second On the one hand, carry out power control to the motor 12 in the miniature rotor drone by real-time attitude controller 2; In the third aspect, a plurality of steering gears (A steering gear 13, B steering gear 13, B steering gear) in the miniature rotor drone are controlled by real-time attitude controller 2. Machine 14, C steering gear 15, D steering gear 16) are controlled, thereby realize under the situation of not setting up UAV model, successfully make rotor UAV realize hovering task. A steering gear 13 cooperates with C steering gear 15 to realize the pitching motion of the miniature rotor drone; B steering gear 14 and D steering gear 16 cooperate to realize the rolling motion of the miniature rotor drone; A steering gear 13, B steering gear 14 , C steering gear 15 and D steering gear 16 cooperate to realize the yaw motion of the miniature rotor UAV.

本发明用于微型旋翼无人机的地面控制系统的优点在于:The present invention is used for the advantage of the ground control system of miniature rotor unmanned aerial vehicle:

①电源激励和接收控制信号通过有线的方式进行交互,避免了无线传输的不可靠性。① The power supply excitation and receiving control signals are interacted through wired methods, which avoids the unreliability of wireless transmission.

②PC机与控制芯片和处理器芯片的组合,能够低成本实现一个非常规布局的微型旋翼无人机的地面控制系统。②The combination of PC, control chip and processor chip can realize a ground control system of a micro-rotor UAV with an unconventional layout at low cost.

③通过巴特沃兹滤波器消除高频振动,减小了由于电机转动引起的强烈抖动对控制系统的干扰③ Eliminate high-frequency vibration through the Butterworth filter, reducing the interference of the strong vibration caused by the motor rotation on the control system

④在线调试PID控制器的控制参数,缩短了调试周期,提高了调试效率。④ On-line debugging of the control parameters of the PID controller shortens the debugging cycle and improves the debugging efficiency.

附图说明 Description of drawings

图1是适用于旋翼无人机的本发明地面控制系统的信号控制示意图。Fig. 1 is a schematic diagram of the signal control of the ground control system of the present invention applicable to the rotor UAV.

图2是本发明实时姿态控制器部分的结构框图。Fig. 2 is a structural block diagram of the real-time attitude controller part of the present invention.

图2A是本发明实时姿态控制器中PID控制器的信号流程图。Fig. 2A is a signal flow chart of the PID controller in the real-time attitude controller of the present invention.

图3是本发明地面控制系统中PC机的界面示意图。Fig. 3 is a schematic diagram of the interface of the PC in the ground control system of the present invention.

具体实施方式 Detailed ways

下面将结合附图对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.

参见图1所示,本发明的一种适用于旋翼无人机的地面控制系统,该地面控制系统包括PC机4、实时姿态控制器2、SPI通讯采集器3和驱动器1。驱动器1一方面接收实时姿态控制器2输出的运动指令Din,另一方面依据所述运动指令Din分别输出电机控制信号D2驱动电机12运动、第A路舵机信号DA驱动A舵机13运动、第B路舵机信号DB驱动B舵机14运动、第C路舵机信号DC驱动C舵机15运动、第D路舵机信号DD驱动D舵机16运动;SPI通讯采集器3一方面采集旋翼无人机上惯性测量单元(IMU)11测量得到的参数信息D1,另一方面输出旋翼无人机的三个自由度(三个轴)的线加速度信号α(αX、αY、αZ)和角速度信号ω(ωX、ωY、ωZ)给实时姿态控制器2;PC机4通过TCP/IP协议与实时姿态控制器2进行通信,为操控者提供了友好的人机界面。Referring to FIG. 1 , a ground control system applicable to a rotor UAV of the present invention includes a PC 4 , a real-time attitude controller 2 , an SPI communication collector 3 and a driver 1 . On the one hand, the driver 1 receives the motion command Din output by the real-time attitude controller 2, and on the other hand, according to the motion command Din, respectively outputs the motor control signal D2 to drive the motor 12 to move, the A-th steering gear signal DA to drive the A steering gear 13 to move, The B steering gear signal DB drives the B steering gear 14 to move, the C steering gear signal DC drives the C steering gear 15 to move, and the D steering gear signal DD drives the D steering gear 16 to move; the SPI communication collector 3 collects on the one hand The parameter information D1 measured by the inertial measurement unit (IMU) 11 on the rotor UAV, on the other hand, outputs the linear acceleration signal α(α X , α Y , α Z ) of the three degrees of freedom (three axes) of the rotor UAV. ) and angular velocity signals ω (ω X , ω Y , ω Z ) to the real-time attitude controller 2; the PC 4 communicates with the real-time attitude controller 2 through the TCP/IP protocol, providing a friendly man-machine interface for the operator.

本发明地面控制系统采用有线方式分别与旋翼无人机上的IMU(惯性测量单元)、电机12、A舵机13、B舵机14、C舵机15和D舵机16连接。为旋翼无人机的供电也采用有线的方式。地面控制系统与旋翼无人机的有线方式连接,能够避免无线传输的不可靠性,提高了地面控制系统的可靠性、稳定性。The ground control system of the present invention is respectively connected with the IMU (inertial measurement unit), motor 12, A steering gear 13, B steering gear 14, C steering gear 15 and D steering gear 16 on the rotor UAV in a wired manner. The power supply for the rotor drone is also wired. The wired connection between the ground control system and the rotor UAV can avoid the unreliability of wireless transmission and improve the reliability and stability of the ground control system.

在本发明中,地面控制系统第一方面接收旋翼无人机中的IMU(惯性测量单元)输出的三轴加速度信息αX、αY、αZ和角速度信息ωX、ωY、xZ;第二方面通过实时姿态控制器2对微型旋翼无人机中的电机12进行动力控制;第三方面通过实时姿态控制器2对微型旋翼无人机中的多个舵机(A舵机13、B舵机14、C舵机15、D舵机16)进行控制,从而实现在不建立无人机模型的情况下,成功使旋翼无人机实现了悬停任务。αX表示惯性测量单元输出的X轴加速度信息,αY表示惯性测量单元输出的Y轴加速度信息,αZ表示惯性测量单元输出的Z轴加速度信息,ωX表示惯性测量单元输出的X轴角速度信息,ωY表示惯性测量单元输出的Y轴角速度信息,ωZ表示惯性测量单元输出的Z轴角速度信息。In the present invention, the first aspect of the ground control system receives the three-axis acceleration information α X , α Y , α Z and the angular velocity information ω X , ω Y , x Z output by the IMU (inertial measurement unit) in the rotor drone; The second aspect carries out power control to the motor 12 in the miniature rotor unmanned aerial vehicle by real-time attitude controller 2; In the third aspect, a plurality of steering gears (A steering gear 13, A steering gear 13, B steering gear 14, C steering gear 15, D steering gear 16) are controlled, thereby realize under the situation of not setting up UAV model, successfully make rotor UAV realize hovering task. α X represents the X-axis acceleration information output by the inertial measurement unit, α Y represents the Y-axis acceleration information output by the inertial measurement unit, α Z represents the Z-axis acceleration information output by the inertial measurement unit, and ω X represents the X-axis angular velocity output by the inertial measurement unit information, ω Y represents the Y-axis angular velocity information output by the inertial measurement unit, and ω Z represents the Z-axis angular velocity information output by the inertial measurement unit.

在本发明中,地面控制系统通过对电机12、A舵机13、B舵机14、C舵机15、D舵机16的控制,使得微型旋翼无人机实现的姿态包括有俯仰运动、滚转运动和偏航运动,即A舵机13与C舵机15协作实现微型旋翼无人机的俯仰运动;B舵机14与D舵机16协作实现微型旋翼无人机的滚转运动;A舵机13、B舵机14、C舵机15与D舵机16协作实现微型旋翼无人机的偏航运动。In the present invention, the ground control system makes the attitude realized by the micro-rotor UAV include pitching motion, rolling motion, etc. Turning motion and yaw motion, that is, A steering gear 13 and C steering gear 15 cooperate to realize the pitching motion of the micro-rotor UAV; B steering gear 14 and D steering gear 16 cooperate to realize the rolling motion of the micro-rotor UAV; The steering gear 13, the B steering gear 14, the C steering gear 15 and the D steering gear 16 cooperate to realize the yaw motion of the miniature rotor UAV.

本发明设计的地面控制系统除PC机4以外面,实时控制器2选用Freescale的型号为MPC8270实时控制芯片。对旋翼无人机的信息采集和驱动是在一片FPGA处理器中实现的,FPGA处理器选用Xilinx的XC5VLX50T芯片。The ground control system designed by the present invention is except the PC machine 4, and the real-time controller 2 selects the model of Freescale to be the MPC8270 real-time control chip. The information collection and driving of the rotor UAV is realized in an FPGA processor, and the FPGA processor uses the XC5VLX50T chip of Xilinx.

下面将详细说明本发明地面控制系统中各个模块实现的功能:The functions realized by each module in the ground control system of the present invention will be described in detail below:

(一)PC机(1) PC

在本发明中,PC机4通过TCP/IP协议与实时姿态控制器2进行通信,为操控者提供了友好的人机界面(参见图3所示)。操控者通过所述人机界面调整旋翼无人机的控制参数、以及实时显示旋翼无人机飞行的姿态等。In the present invention, the PC 4 communicates with the real-time attitude controller 2 through the TCP/IP protocol, providing a friendly man-machine interface for the operator (see FIG. 3). The operator adjusts the control parameters of the rotor drone through the man-machine interface, and displays the flying attitude of the rotor drone in real time.

图3中的界面说明:滚转姿态(Td)分别表示PID姿态环滚转角部分的PID控制参数;俯仰姿态(Kp)、俯仰姿态(Ti)、俯仰姿态(Td)分别表示PID姿态环俯仰角部分的PID控制参数;滚转速度(Kp)、滚转速度(Ti)、滚转速度(Td)分别表示姿态速度环滚转角速度部分的PID控制参数;俯仰速度(Kp)、俯仰速度(Ti)、俯仰速度(Td)分别表示姿态速度环俯仰角速度的PID控制参数;偏航_姿态速度(Kp)、偏航_姿态速度(Ti)、偏航_姿态速度(Td)分别表示姿态速度环的偏航角速度的PID控制参数。Output(X)表示俯仰环路PID控制模块输出的控制量,Output(Y)表示滚转环路PID控制模块输出的控制量、Output(Z)表示偏航环路PID控制模块输出的控制量。δp(X)表示控制A舵机、C舵机(滚转角)偏转的PWM波占空比;δq(Y)表示控制B舵机、D舵机(俯仰角)偏转的PWM波占空比;δr(Z)控制A舵机、B舵机、C舵机、D舵机(偏航角)偏转的PWM波占空比。表示Gravity+Drag(gf)表示驱动无人机电机的PWM波占空比。Boolean表示手动操作和自动操作的切换。点击Stop按键,程序停止。Interface description in Figure 3: roll attitude (Td) respectively represents the PID control parameters of the roll angle part of the PID attitude loop; pitch attitude (Kp), pitch attitude (Ti), and pitch attitude (Td) respectively represent the pitch angle of the PID attitude loop Part of the PID control parameters; roll velocity (Kp), roll velocity (Ti), and roll velocity (Td) represent the PID control parameters of the roll angular velocity part of the attitude velocity loop respectively; pitch velocity (Kp), pitch velocity (Ti ), pitch velocity (Td) represent the PID control parameters of the pitch rate of the attitude velocity loop; yaw_attitude velocity (Kp), yaw_attitude velocity (Ti), yaw_attitude velocity (Td) respectively represent the The PID control parameters of the yaw rate. Output(X) represents the control quantity output by the pitch loop PID control module, Output(Y) represents the control quantity output by the roll loop PID control module, and Output(Z) represents the control quantity output by the yaw loop PID control module. δp(X) represents the duty cycle of the PWM wave controlling the deflection of the steering gear A and C (roll angle); δq(Y) represents the duty cycle of the PWM wave controlling the deflection of the steering gear B and D (pitch angle); δr(Z) controls the duty cycle of the PWM wave deflected by A steering gear, B steering gear, C steering gear, and D steering gear (yaw angle). Indicates that Gravity+Drag(gf) indicates the duty cycle of the PWM wave driving the UAV motor. Boolean represents the switching between manual operation and automatic operation. Click the Stop button to stop the program.

PC机是一种能够按照事先存储的程序,自动、高速地进行大量数值计算和各种信息处理的现代化智能电子设备。最低配置为CPU 2GHz,内存2GB,硬盘20GB;安装操作系统为windows 2000/2003/XP;安装Labview 2010软件。A PC is a modern intelligent electronic device that can automatically and quickly perform a large number of numerical calculations and various information processing according to pre-stored programs. The minimum configuration is CPU 2GHz, memory 2GB, hard disk 20GB; the installation operating system is windows 2000/2003/XP; and Labview 2010 software is installed.

(二)实时姿态控制器(2) Real-time attitude controller

参见图2所示,实时姿态控制器2根据实现的功能划分为标定模块21、巴特沃兹滤波模块22、姿态解算模块25、PID控制器23和数据采集引擎模块24。Referring to FIG. 2 , the real-time attitude controller 2 is divided into a calibration module 21 , a Butterworth filter module 22 , an attitude calculation module 25 , a PID controller 23 and a data acquisition engine module 24 according to the realized functions.

(1)标定模块21(1) Calibration module 21

在本发明中,标定模块21通过采集、重组、整定FPGA端的数据信息,将旋翼无人机上的IMU采集到的信息转化为可读的,可处理的加速度信息和角速度信息。In the present invention, the calibration module 21 converts the information collected by the IMU on the rotor drone into readable and processable acceleration information and angular velocity information by collecting, reorganizing, and adjusting the data information at the FPGA end.

由于从旋翼无人机中IMU(惯性测量单元)11中采集到的信息是以数据包D1的形势读出来的,数据包D1中包含有加速度信息和角速度信息。Since the information collected from the IMU (inertial measurement unit) 11 in the rotor drone is read out in the form of a data packet D1, the data packet D1 contains acceleration information and angular velocity information.

在本发明中,IMU的X轴、Y轴和Z轴输出的加速度信息分别记为αX、αY、αZ;IMU的X轴、Y轴和Z轴输出的角速度信息分别记为ωX、ωY、ωZ。IMU产生的初始加速度信息和角速度信息是以14位二进制补码的形式表示的,所以标定模块首先要将二进制补码的数据转化为十进制,然后在乘以标定系数,得到实际的加速度信息和角速度信息。例如:如果加速度计的输出为00 0000 0000 0001,那么转化为十进制为1,则加速度为1×2.522mg(标定系数)=0.002522g,如果加速度计的输出为11 11111111 1111,那么转化为十进制为-1,则加速度为(-1)×2.522mg=0.002522g;如果陀螺仪的输出为00 0000 0000 0001,那么转化为十进制为1,则陀螺仪的输出为1×0.07306°/s=0.07306°/s,如果陀螺仪的输出为11 1111 1111 1111,那么转化为十进制为-1,则陀螺仪的输出为(-1)×0.07306°/s(标定系数)=-0.07306°/s。In the present invention, the acceleration information output by the X-axis, Y-axis and Z-axis of the IMU is respectively denoted as α X , α Y , α Z ; the angular velocity information output by the X-axis, Y-axis and Z-axis of the IMU is respectively denoted as ω X , ω Y , ω Z . The initial acceleration information and angular velocity information generated by the IMU are expressed in the form of 14-bit two’s complement, so the calibration module first converts the two’s complement data into decimal, and then multiplies the calibration coefficient to obtain the actual acceleration information and angular velocity information. For example: if the output of the accelerometer is 00 0000 0000 0001, then converted to decimal is 1, then the acceleration is 1×2.522mg (calibration coefficient) = 0.002522g, if the output of the accelerometer is 11 11111111 1111, then converted to decimal is -1, the acceleration is (-1)×2.522mg=0.002522g; if the output of the gyroscope is 00 0000 0000 0001, then converted to decimal is 1, then the output of the gyroscope is 1×0.07306°/s=0.07306° /s, if the output of the gyroscope is 11 1111 1111 1111, then converted to decimal is -1, then the output of the gyroscope is (-1)×0.07306°/s (calibration coefficient)=-0.07306°/s.

(2)巴特沃兹滤波模块22(2) Butterworth filter module 22

在本发明中,巴特沃兹滤波模块22通过Labview信号处理开发包内的巴特沃兹滤波器,将采集到的数据的毛刺和高频抖动滤掉。In the present invention, the Butterworth filter module 22 filters out the burrs and high-frequency jitter of the collected data through the Butterworth filter in the Labview signal processing development kit.

在本发明中,由于旋翼无人机中电机12转动时会产生剧烈的震颤,造成数据的噪声很大,所以需要加入一个滤波器,来消除高频噪声。Labview软件开发包中有现成的巴特沃兹滤波器,只需将采集标定后的加速度和角速度信息通过此滤波器,通过设置高截止频率便可消除不必要的高频噪声。In the present invention, since the motor 12 in the rotor drone rotates violently, the noise of the data is very large, so a filter needs to be added to eliminate the high-frequency noise. There is a ready-made Butterworth filter in the Labview software development kit. You only need to pass the collected and calibrated acceleration and angular velocity information through this filter, and you can eliminate unnecessary high-frequency noise by setting a high cut-off frequency.

(3)姿态解算模块25(3) Attitude calculation module 25

在本发明中,姿态解算模块25根据IMU产生的加速度信息和角速度信息解算出无人机的滚转角θ,俯仰角φ,滚转速度ωX,俯仰角速度ωY,偏航角速度ωZIn the present invention, the attitude calculation module 25 calculates the roll angle θ, pitch angle φ, roll velocity ω X , pitch angular velocity ω Y , and yaw angular velocity ω Z of the drone according to the acceleration information and angular velocity information generated by the IMU.

本发明地面控制系统设计的前提是所有的状态量以足够高的频率被准确的读取,成为所述地面控制系统的反馈信号。利用IMU的加速度计给出旋翼无人机以机体坐标系下某个轴上的比力为f=a-g,a表示实际加速度,g表示X轴上的重力加速度;对悬停状态下的旋翼无人机可以假如在机体坐标系X轴方向上没有扰动,旋翼无人机基本处于平衡状态,则X轴上的实际加速度ax的值可以忽略:则有

Figure BDA0000113298710000051
同理可得 f y = - g y = - g cos θ sin φ f z = - g z = - g cos θ cos φ ⇒ φ =tan - 1 f y f z . The premise of the design of the ground control system of the present invention is that all state quantities are accurately read with a sufficiently high frequency, and become the feedback signals of the ground control system. The accelerometer of the IMU is used to give the specific force of the rotor UAV on a certain axis in the body coordinate system as f=ag, where a represents the actual acceleration, and g represents the gravitational acceleration on the X axis; If there is no disturbance in the X-axis direction of the body coordinate system, and the rotor UAV is basically in a balanced state, the value of the actual acceleration a x on the X-axis can be ignored: then
Figure BDA0000113298710000051
Empathy f the y = - g the y = - g cos θ sin φ f z = - g z = - g cos θ cos φ ⇒ φ =tan - 1 f the y f z .

(4)PID控制模块23(4) PID control module 23

参见图2A所示,在本发明中,PID控制模块23根据解算的旋翼无人机的滚转角θ,俯仰角φ,滚转角速度ωX,俯仰角速度ωY,偏航角速度ωZ,输出舵机的控制信息以控制无人机的悬停。Referring to shown in Fig. 2A, in the present invention, PID control module 23 according to the roll angle θ of the unmanned rotor aircraft of solution, pitch angle phi, roll angular velocity ω X , pitch angular velocity ω Y , yaw angular velocity ω Z , output The control information of the servo to control the hovering of the drone.

对于单旋翼+气动面结构的微型旋翼无人机,由于其属于非常规布局的新型飞行器,国内外的针对这种新的被控对象,在科研的初期阶段往往采用实用有效地PID。因此,同样为了设计一个简单直观、方便调试的控制器,本发明选择了基于误差的PID控制器。PID是一种线性控制器,根据给定值与实际输出值的偏差error(t)构成偏差控制,其控制规律为: u ( t ) = k p [ error ( t ) + 1 T I ∫ 0 t error ( t ) dt + T D derror ( t ) dt ] , 其中,u(t)表示PID控制模块输出的控制量,kp表示PID控制模块的比例增益,error(t)表示给定值与实际输出值的偏差,TI表示积分时间常数,TD表示微分时间常数,t表示采样时间。For the micro-rotor UAV with a single rotor + aerodynamic surface structure, because it is a new type of aircraft with an unconventional layout, for this new controlled object at home and abroad, practical and effective PID is often used in the initial stage of scientific research. Therefore, also in order to design a controller that is simple, intuitive and convenient for debugging, the present invention selects an error-based PID controller. PID is a linear controller, which constitutes deviation control according to the deviation error(t) between the given value and the actual output value, and its control law is: u ( t ) = k p [ error ( t ) + 1 T I ∫ 0 t error ( t ) dt + T D. error ( t ) dt ] , Among them, u(t) represents the control quantity output by the PID control module, k p represents the proportional gain of the PID control module, error(t) represents the deviation between the given value and the actual output value, T I represents the integral time constant, and T D represents Derivative time constant, t represents the sampling time.

旋翼式飞行器的速度主要由姿态的变化而造成,故设计了一个经典回路控制系统,内环为姿态角速率控制回路,外环为姿态角控制回路。The speed of the rotorcraft is mainly caused by the change of attitude, so a classic loop control system is designed, the inner loop is the attitude angle rate control loop, and the outer loop is the attitude angle control loop.

在信息采集时,IMU测量旋翼无人机在机体坐标系下的角速度和加速度,产生控制系统反馈信号;控制器2接受来自IMU的反馈信号并计算处理得到相应的舵机、电机控制量;多个舵机与一个电机的驱动器1给出的控制量的输出用来稳定旋翼无人机的飞行姿态。When collecting information, the IMU measures the angular velocity and acceleration of the rotor UAV in the body coordinate system, and generates a control system feedback signal; the controller 2 receives the feedback signal from the IMU and calculates and processes the corresponding steering gear and motor control quantities; The output of the control amount given by the driver 1 of a steering gear and a motor is used to stabilize the flight attitude of the rotor drone.

图2A中,φc表示设定俯仰角(悬停状态下,φc=0);θc表示设定设定滚转角(悬停状态下,θc=0);δr表示设定偏航角速度(悬停状态下,δr=0);δp表示设定滚转角速度;δq表示设定俯仰角速度。In Fig. 2A, φ c represents the set pitch angle (in the hovering state, φ c =0); θ c represents the set roll angle (in the hovering state, θ c =0); δ r represents the set deflection angle Pitch angular velocity (in the hovering state, δ r =0); δ p represents the set roll angular velocity; δ q represents the set pitch angular velocity.

(5)数据采集引擎模块24(5) Data acquisition engine module 24

数据采集引擎模块24通过先入先出队列FIFO将采集的IMU的所有传感器读取出来。The data acquisition engine module 24 reads out all the sensors of the IMU collected through the first-in-first-out queue FIFO.

在本发明中,实时控制器2选用Freescale的型号为MPC8270实时控制芯片。In the present invention, the real-time controller 2 selects the model of Freescale as MPC8270 real-time control chip.

(三)SPI通讯采集器(3) SPI communication collector

在本发明中,SPI通讯采集器3通过SPI接口与旋翼无人机上的惯性测量单元(IMU)进行数据和命令交互,用于采集IMU感应的旋翼无人机上三个自由度的线加速度信号和角速度信号。In the present invention, the SPI communication collector 3 performs data and command interaction with the inertial measurement unit (IMU) on the rotor drone through the SPI interface, and is used to collect the linear acceleration signals and the linear acceleration signals of three degrees of freedom on the rotor drone induced by the IMU. angular velocity signal.

SPI接口的读写操作:ADIS16350(IMU)使用的SPI接口为4线制:片选线(CS),时钟线(SCLK),数据输入线(DIN),数据输出线(DOUT)。片选线用来使能SPI接口以使其正常通讯,当为高时,输出信号线不受时钟线和数据输入线的影响而始终为高阻态。传输完一个完整的数据帧需要16个时钟周期。由于SPI接口是一种全双工模式,所以在一帧数据传送的过程中既可以接收又可以发送。这样可以再本帧数据中既可以设置下一帧数据的读操作,又可以同时接收上一帧读操作所读的寄存器。Read and write operations of the SPI interface: The SPI interface used by ADIS16350 (IMU) is a 4-wire system: chip select line (CS), clock line (SCLK), data input line (DIN), and data output line (DOUT). The chip select line is used to enable the SPI interface to enable normal communication. When it is high, the output signal line is always in a high-impedance state without being affected by the clock line and the data input line. It takes 16 clock cycles to transmit a complete data frame. Since the SPI interface is a full-duplex mode, it can both receive and send during a frame of data transmission. In this way, the read operation of the next frame of data can be set in the current frame of data, and the register read by the previous frame of read operation can be received at the same time.

读寄存器内容时16位的数据格式如下:第一位为0(用于与写寄存器区分),第二位为0,第三到九位为目标寄存器地址,最后八位对本帧数据没有影响,由于每个寄存器的16位由两个独立的8位组成,而每个8位的地址又并不相同,这样在读取寄存器的内容时,第三到九位目标寄存器的地址可以是高8位地址,也可以是低8位地址,两种操作的效果是完全一样的。在本帧数据传输完成后的下帧数据里可以获得本次所要读取目标寄存器的16位内容。这样,每次读操作完成后,要到下次数据帧操作时才能获得本次想要内容,所以,一个单独的读过程需要两个数据帧,但如果是连续读操作,则只需要一个额外的数据帧。例如读取n个数据,则只需要n+1次读操作即可。The 16-bit data format when reading the register content is as follows: the first bit is 0 (used to distinguish from the write register), the second bit is 0, the third to ninth bits are the address of the target register, and the last eight bits have no effect on the data of this frame. Since the 16 bits of each register are composed of two independent 8 bits, and the address of each 8 bits is different, so when reading the contents of the register, the address of the third to ninth target register can be high 8 The bit address can also be the lower 8-bit address, and the effects of the two operations are exactly the same. The 16-bit content of the target register to be read this time can be obtained in the next frame data after the data transmission of this frame is completed. In this way, after each read operation is completed, the desired content cannot be obtained until the next data frame operation. Therefore, a single read process requires two data frames, but if it is a continuous read operation, only one additional frame is required. data frame. For example, to read n pieces of data, only n+1 read operations are required.

访问数据输出寄存器:ADIS16350(IMU)输出寄存器列表如下:Access data output registers: ADIS16350 (IMU) output register list is as follows:

Figure BDA0000113298710000071
Figure BDA0000113298710000071

在本发明中,SPI通讯采集器3的程序首先采用Labview 2010编程得到,然后经过编译器的转化为数据流文件烧写在FPGA芯片中。In the present invention, the program of the SPI communication collector 3 first adopts Labview 2010 programming to obtain, and then converts into a data stream file and burns it in the FPGA chip through a compiler.

(四)驱动器1(4) Driver 1

在本发明中,驱动器1采用软件编程的方式,在FPGA芯片上实现任意占空比PWM波的产生,进而驱动微型旋翼无人机一个电机和四个舵机的偏转。In the present invention, the driver 1 uses software programming to realize the generation of PWM waves with arbitrary duty ratios on the FPGA chip, and then drives the deflection of one motor and four steering gears of the micro-rotor drone.

在本发明中,SPI通讯采集器3和驱动器1选用在同一FPGA芯片中采用Labview 2010编程得到。FPGA芯片选用Xilinx的XC5VLX50T芯片。In the present invention, the SPI communication collector 3 and the driver 1 are selected and obtained by using Labview 2010 programming in the same FPGA chip. The FPGA chip uses Xilinx's XC5VLX50T chip.

Claims (4)

1.一种适用于旋翼无人机的地面控制系统,其特征在于:该地面控制系统包括PC机(4)、实时姿态控制器(2)、SPI通讯采集器(3)和驱动器(1);1. A ground control system applicable to rotor drones, characterized in that: the ground control system comprises a PC (4), a real-time attitude controller (2), an SPI communication collector (3) and a driver (1) ; 驱动器(1)一方面接收实时姿态控制器(2)输出的运动指令Din,另一方面依据所述运动指令Din分别输出电机控制信号D2驱动电机(12)运动、第A路舵机信号DA驱动A舵机(13)运动、第B路舵机信号DB驱动B舵机(14)运动、第C路舵机信号DC驱动C舵机(15)运动、第D路舵机信号DD驱动D舵机(16)运动;On the one hand, the driver (1) receives the motion command Din output by the real-time attitude controller (2), and on the other hand, according to the motion command Din, respectively outputs the motor control signal D2 to drive the motor (12) to move, and the A-th servo signal DA to drive A steering gear (13) moves, B steering gear signal DB drives B steering gear (14) moves, C steering gear signal DC drives C steering gear (15) moves, D steering gear signal DD drives D rudder Machine (16) motion; SPI通讯采集器(3)一方面采集旋翼无人机上惯性测量单元(11)测量得到的参数信息D1,另一方面输出旋翼无人机的三个自由度的线加速度信号α和角速度信号ω给实时姿态控制器(2);On the one hand, the SPI communication collector (3) collects the parameter information D1 measured by the inertial measurement unit (11) on the rotor drone, and on the other hand outputs the linear acceleration signal α and angular velocity signal ω of the three degrees of freedom of the rotor drone to Real-time attitude controller (2); PC机(4)通过TCP/IP协议与实时姿态控制器(2)进行通信,为操控者提供了友好的人机界面。The PC (4) communicates with the real-time attitude controller (2) through the TCP/IP protocol, providing a friendly man-machine interface for the operator. 2.根据权利要求1所述的适用于旋翼无人机的地面控制系统,其特征在于:所述实时姿态控制器(2)包括有标定模块(21)、巴特沃兹滤波模块(22)、姿态解算模块(25)、PID控制器(23)和数据采集引擎模块(24);2. the ground control system that is applicable to rotor UAV according to claim 1, is characterized in that: described real-time attitude controller (2) comprises calibration module (21), Butterworth filter module (22), Attitude calculation module (25), PID controller (23) and data acquisition engine module (24); 标定模块(21)通过采集、重组、整定FPGA端的数据信息,将采集到的IMU信息转化为可读的,可处理的加速度信息和角速度信息。The calibration module (21) converts the collected IMU information into readable and processable acceleration information and angular velocity information by collecting, reorganizing, and adjusting the data information at the FPGA end. 巴特沃兹滤波模块(22)通过Labview信号处理开发包内的巴特沃兹滤波器,将采集到的数据的毛刺和高频抖动滤掉。The Butterworth filter module (22) filters out the burrs and high-frequency jitter of the collected data through the Butterworth filter in the Labview signal processing development kit. 姿态解算模块(25)根据IMU产生的加速度信息和角速度信息解算出无人机的滚转角θ,俯仰角φ,滚转速度ωX,俯仰角速度ωY,偏航角速度ωZThe attitude calculation module (25) calculates the roll angle θ of the drone according to the acceleration information and the angular velocity information generated by the IMU, the pitch angle φ, the roll velocity ω X , the pitch angular velocity ω Y , and the yaw angular velocity ω Z . PID控制模块(23)根据解算的旋翼无人机的滚转角θ,俯仰角φ,滚转角速度ωX,俯仰角速度ωY,偏航角速度ωZ,输出舵机的控制信息以控制无人机的悬停。The PID control module (23) outputs the control information of the steering gear to control the unmanned vehicle according to the calculated roll angle θ of the rotor drone, the pitch angle φ, the roll angular velocity ω X , the pitch angular velocity ω Y , and the yaw angular velocity ω Z . machine hovering. 数据采集引擎模块(24)通过先入先出队列FIFO将采集的IMU的所有传感器读取出来。The data acquisition engine module (24) reads out all the sensors of the collected IMU through the first-in-first-out queue FIFO. 3.根据权利要求1所述的适用于旋翼无人机的地面控制系统,其特征在于:所述SPI通讯采集器(3)中SPI接口的读写操作以ADIS16350使用的SPI接口为4线制:片选线(CS),时钟线(SCLK),数据输入线(DIN),数据输出线(DOUT)。3. the ground control system applicable to rotor drones according to claim 1, characterized in that: the read and write operation of the SPI interface in the described SPI communication collector (3) is a 4-wire system with the SPI interface that ADIS16350 uses : Chip select line (CS), clock line (SCLK), data input line (DIN), data output line (DOUT). 4.根据权利要求1所述的适用于旋翼无人机的地面控制系统,其特征在于:所述驱动器(1)采用软件编程的方式,在FPGA芯片上实现任意占空比PWM波的产生,进而驱动微型旋翼无人机一个电机和四个舵机的偏转。4. the ground control system that is applicable to rotor UAV according to claim 1, is characterized in that: described driver (1) adopts the mode of software programming, realizes the generation of arbitrary duty ratio PWM wave on FPGA chip, Then drive the deflection of one motor and four steering gears of the micro-rotor UAV.
CN 201110385218 2011-11-28 2011-11-28 Ground control system applicable to rotor-wing unmanned aerial vehicle Expired - Fee Related CN102426458B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110385218 CN102426458B (en) 2011-11-28 2011-11-28 Ground control system applicable to rotor-wing unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110385218 CN102426458B (en) 2011-11-28 2011-11-28 Ground control system applicable to rotor-wing unmanned aerial vehicle

Publications (2)

Publication Number Publication Date
CN102426458A true CN102426458A (en) 2012-04-25
CN102426458B CN102426458B (en) 2013-06-05

Family

ID=45960457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110385218 Expired - Fee Related CN102426458B (en) 2011-11-28 2011-11-28 Ground control system applicable to rotor-wing unmanned aerial vehicle

Country Status (1)

Country Link
CN (1) CN102426458B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308272A (en) * 2013-05-30 2013-09-18 中国科学院长春光学精密机械与物理研究所 Non-planar dynamic testing device for aerodynamic performances of dual rotors
CN103324203A (en) * 2013-06-08 2013-09-25 西北工业大学 Unmanned airplane avionics system based on intelligent mobile phone
CN103581323A (en) * 2013-11-11 2014-02-12 惠州Tcl移动通信有限公司 Method and system for controlling aircraft through postures of mobile phone
CN103645739A (en) * 2013-12-03 2014-03-19 新誉集团有限公司 Modularized airborne flight control software of miniature unmanned helicopter
CN104155988A (en) * 2014-08-12 2014-11-19 北京航天自动控制研究所 Multichannel attitude controller of aircraft
CN104699110A (en) * 2015-02-05 2015-06-10 大连理工大学 Programmable aircraft control engine IP core
CN104902142A (en) * 2015-05-29 2015-09-09 华中科技大学 Method for electronic image stabilization of video on mobile terminal
CN105119683A (en) * 2015-08-18 2015-12-02 昆明理工大学 Unmanned plane communication interference countermeasure method based on real-time embedded control system
CN105472672A (en) * 2015-11-16 2016-04-06 苏州佳世达电通有限公司 Wireless communication control system, wireless communication control method and mobile device
CN105549497A (en) * 2016-02-26 2016-05-04 暨南大学 PC-control-supporting multi-rotor-wing unmanned-aerial-vehicle control system
CN106155076A (en) * 2016-08-23 2016-11-23 华南理工大学 A kind of stabilized flight control method of many rotor unmanned aircrafts
CN106162056A (en) * 2015-04-02 2016-11-23 宿迁学院 Model airplane machine monitoring system based on Labview
CN106527461A (en) * 2016-11-29 2017-03-22 合肥赛为智能有限公司 Flight control system based on dual-core processor
CN106526237A (en) * 2016-10-28 2017-03-22 易瓦特科技股份公司 Calibration method and apparatus
CN107272717A (en) * 2017-06-06 2017-10-20 袁兵 The four axle unmanned aerial vehicle (UAV) control methods based on moving average filter
CN107765182A (en) * 2017-12-07 2018-03-06 智灵飞(北京)科技有限公司 A kind of ground unmanned plane motor electricity commissioning test system and method based on LABVIEW
CN108885452A (en) * 2016-03-25 2018-11-23 高通股份有限公司 multi-axis controller
CN109597422A (en) * 2018-12-19 2019-04-09 中国农业大学 Unmanned tandem helicopter attitude control system and method
CN110609568A (en) * 2019-09-24 2019-12-24 广东名阳信息科技有限公司 Strong self-coupling PI cooperative control method for large unmanned aerial vehicle UAV
WO2021078166A1 (en) * 2019-10-21 2021-04-29 深圳市道通智能航空技术有限公司 Method and apparatus for controlling flight attitudes, unmanned aerial vehicle and storage medium
CN115016542A (en) * 2022-07-28 2022-09-06 重庆理工大学 Unmanned aerial vehicle control system based on high-speed bus architecture
CN115027672A (en) * 2022-05-18 2022-09-09 大连大学 An aerial screen display system based on UAV array

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3662337B1 (en) * 2017-08-04 2022-04-27 Ideaforge Technology Pvt. Ltd. Split control system configuration for uav autopilot architecture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356529A (en) * 2001-12-21 2002-07-03 北京航空航天大学 Ground manipulating and monitor deivce for coaxial dual-rotor robot helicopter
CN101916115A (en) * 2010-07-27 2010-12-15 东北大学 A control device and method for a miniature coaxial dual-rotor aircraft
CN102180270A (en) * 2011-03-10 2011-09-14 北京航空航天大学 Microminiature rotorcraft experiment platform and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356529A (en) * 2001-12-21 2002-07-03 北京航空航天大学 Ground manipulating and monitor deivce for coaxial dual-rotor robot helicopter
CN101916115A (en) * 2010-07-27 2010-12-15 东北大学 A control device and method for a miniature coaxial dual-rotor aircraft
CN102180270A (en) * 2011-03-10 2011-09-14 北京航空航天大学 Microminiature rotorcraft experiment platform and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. MANCINI ET AL: "A Framework for Simulation and Testing of UAVs in Cooperative Scenarios", 《JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS》, vol. 54, 31 December 2009 (2009-12-31), pages 307 - 329 *
WANG ZHEN: "Flight control system design for a small size unmanned helicopter", 《2011 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCE, ELECTRIC ENGINEERING AND COMPUTER》, 22 August 2011 (2011-08-22), pages 543 - 546 *
杨伟临: "基于AVR和FPGA的SOC-FPSLIC的无人机下级控制系统", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, no. 02, 29 February 2008 (2008-02-29) *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308272A (en) * 2013-05-30 2013-09-18 中国科学院长春光学精密机械与物理研究所 Non-planar dynamic testing device for aerodynamic performances of dual rotors
CN103308272B (en) * 2013-05-30 2015-12-02 中国科学院长春光学精密机械与物理研究所 A kind of non-planar DCB Specimen aeroperformance dynamic checkout unit
CN103324203A (en) * 2013-06-08 2013-09-25 西北工业大学 Unmanned airplane avionics system based on intelligent mobile phone
CN103581323A (en) * 2013-11-11 2014-02-12 惠州Tcl移动通信有限公司 Method and system for controlling aircraft through postures of mobile phone
CN103645739B (en) * 2013-12-03 2016-08-17 新誉集团有限公司 The modularity onboard flight of a kind of small-sized depopulated helicopter controls device
CN103645739A (en) * 2013-12-03 2014-03-19 新誉集团有限公司 Modularized airborne flight control software of miniature unmanned helicopter
CN104155988A (en) * 2014-08-12 2014-11-19 北京航天自动控制研究所 Multichannel attitude controller of aircraft
CN104155988B (en) * 2014-08-12 2015-05-20 北京航天自动控制研究所 Multichannel attitude controller of aircraft
CN104699110A (en) * 2015-02-05 2015-06-10 大连理工大学 Programmable aircraft control engine IP core
CN106162056A (en) * 2015-04-02 2016-11-23 宿迁学院 Model airplane machine monitoring system based on Labview
CN104902142A (en) * 2015-05-29 2015-09-09 华中科技大学 Method for electronic image stabilization of video on mobile terminal
CN104902142B (en) * 2015-05-29 2018-08-21 华中科技大学 A kind of electronic image stabilization method of mobile terminal video
CN105119683A (en) * 2015-08-18 2015-12-02 昆明理工大学 Unmanned plane communication interference countermeasure method based on real-time embedded control system
CN105119683B (en) * 2015-08-18 2018-03-06 昆明理工大学 A kind of UAV Communication interference countercheck based on real-time embedded control system
CN105472672A (en) * 2015-11-16 2016-04-06 苏州佳世达电通有限公司 Wireless communication control system, wireless communication control method and mobile device
CN105472672B (en) * 2015-11-16 2018-12-11 苏州佳世达电通有限公司 Wireless communication control system, wireless communication control method and mobile device
CN105549497A (en) * 2016-02-26 2016-05-04 暨南大学 PC-control-supporting multi-rotor-wing unmanned-aerial-vehicle control system
CN108885452A (en) * 2016-03-25 2018-11-23 高通股份有限公司 multi-axis controller
CN108885452B (en) * 2016-03-25 2021-07-20 高通股份有限公司 Multi-axis controller
CN106155076A (en) * 2016-08-23 2016-11-23 华南理工大学 A kind of stabilized flight control method of many rotor unmanned aircrafts
CN106155076B (en) * 2016-08-23 2019-04-09 华南理工大学 A stable flight control method for a multi-rotor unmanned aerial vehicle
CN106526237A (en) * 2016-10-28 2017-03-22 易瓦特科技股份公司 Calibration method and apparatus
CN106527461A (en) * 2016-11-29 2017-03-22 合肥赛为智能有限公司 Flight control system based on dual-core processor
CN107272717A (en) * 2017-06-06 2017-10-20 袁兵 The four axle unmanned aerial vehicle (UAV) control methods based on moving average filter
CN107765182A (en) * 2017-12-07 2018-03-06 智灵飞(北京)科技有限公司 A kind of ground unmanned plane motor electricity commissioning test system and method based on LABVIEW
CN109597422A (en) * 2018-12-19 2019-04-09 中国农业大学 Unmanned tandem helicopter attitude control system and method
CN110609568A (en) * 2019-09-24 2019-12-24 广东名阳信息科技有限公司 Strong self-coupling PI cooperative control method for large unmanned aerial vehicle UAV
CN110609568B (en) * 2019-09-24 2021-01-05 广东名阳信息科技有限公司 Strong self-coupling PI cooperative control method for large unmanned aerial vehicle UAV
WO2021078166A1 (en) * 2019-10-21 2021-04-29 深圳市道通智能航空技术有限公司 Method and apparatus for controlling flight attitudes, unmanned aerial vehicle and storage medium
CN115027672A (en) * 2022-05-18 2022-09-09 大连大学 An aerial screen display system based on UAV array
CN115016542A (en) * 2022-07-28 2022-09-06 重庆理工大学 Unmanned aerial vehicle control system based on high-speed bus architecture

Also Published As

Publication number Publication date
CN102426458B (en) 2013-06-05

Similar Documents

Publication Publication Date Title
CN102426458A (en) Ground control system applicable to rotor-wing unmanned aerial vehicle
CN104914874B (en) A kind of pose control system for unmanned plane and method based on adaptive Mutually fusion
CN105353762B (en) The control method of six rotor wing unmanned aerial vehicles based on double remaining attitude transducers
CN111596571A (en) Composite UAV semi-physical simulation system
CN103365295B (en) Based on the autonomous hover control system of four rotor unmanned aircrafts and the method for DSP
CN204229233U (en) A kind of many rotor wing unmanned aerial vehicles automatic flight control system
CN107368091A (en) A kind of stabilized flight control method of more rotor unmanned aircrafts based on finite time neurodynamics
CN101561681B (en) Anti-jamming real-time data sampling system of unmanned aerial vehicle
CN103611324A (en) Unmanned helicopter flight control system and control method thereof
CN105404308A (en) Flight control unit for parafoil type unmanned plane
CN104460685A (en) Control system for four-rotor aircraft and control method of control system
CN102814047A (en) Autonomous return system and control method of dual-rotor remote-controlled model helicopter
CN102968123A (en) Automatic pilot of unmanned aerial vehicle
CN103217981A (en) Four-rotor aircraft speed control method based on integral variable structure control
CN106904272A (en) A kind of swingable flapping wing robot flight control assemblies of empennage and method
CN102331778B (en) Handheld device and method for controlling unmanned vehicle by utilizing same
CN108706099A (en) One kind is verted three axis composite wing unmanned planes and its control method
CN112327668A (en) Modeling and semi-physical simulation method and system for medium and large unmanned aerial vehicle
CN204331470U (en) Over the horizon aircraft inspection tour system
CN107121940A (en) A kind of parafoil four-degree-of-freedom semi-physical emulation platform
CN202939490U (en) Autopilot for unmanned aerial vehicles
CN205068169U (en) Six rotor unmanned aerial vehicle based on two remaining attitude sensor
CN105974935B (en) A kind of quadrotor agricultural remote control aircraft and its control method
Haocong et al. Design of stm32-based quadrotor UAV control system
CN104503426A (en) Parafoil control law test commissioning platform and commissioning method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130605

Termination date: 20181128