CN102426458A - Ground control system applicable to rotor-wing unmanned aerial vehicle - Google Patents
Ground control system applicable to rotor-wing unmanned aerial vehicle Download PDFInfo
- Publication number
- CN102426458A CN102426458A CN201110385218XA CN201110385218A CN102426458A CN 102426458 A CN102426458 A CN 102426458A CN 201110385218X A CN201110385218X A CN 201110385218XA CN 201110385218 A CN201110385218 A CN 201110385218A CN 102426458 A CN102426458 A CN 102426458A
- Authority
- CN
- China
- Prior art keywords
- steering gear
- rotor
- angular velocity
- signal
- control system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开了一种适用于旋翼无人机的地面控制系统,该地面控制系统包括PC机(4)、实时姿态控制器(2)、SPI通讯采集器(3)和驱动器(1)。驱动器(1)一方面接收实时姿态控制器(2)输出的运动指令Din,另一方面依据所述运动指令Din分别输出电机控制信号D2驱动电机(12)运动、第A路舵机信号DA驱动A舵机(13)运动、第B路舵机信号DB驱动B舵机(14)运动、第C路舵机信号DC驱动C舵机(15)运动、第D路舵机信号DD驱动D舵机(16)运动;SPI通讯采集器(3)一方面采集旋翼无人机上惯性测量单元(11)测量得到的参数信息D1,另一方面输出旋翼无人机的三个自由度的线加速度信号α和角速度信号ω给实时姿态控制器(2);PC机(4)通过TCP/IP协议与实时姿态控制器(2)进行通信,为操控者提供了友好的人机界面。
The invention discloses a ground control system suitable for a rotor drone. The ground control system comprises a PC (4), a real-time attitude controller (2), an SPI communication collector (3) and a driver (1). On the one hand, the driver (1) receives the motion command Din output by the real-time attitude controller (2), and on the other hand, according to the motion command Din, respectively outputs the motor control signal D2 to drive the motor (12) to move, and the A-th servo signal DA to drive A steering gear (13) moves, B steering gear signal DB drives B steering gear (14) moves, C steering gear signal DC drives C steering gear (15) moves, D steering gear signal DD drives D rudder The machine (16) moves; the SPI communication collector (3) collects the parameter information D1 measured by the inertial measurement unit (11) on the rotor UAV on the one hand, and outputs the linear acceleration signals of the three degrees of freedom of the rotor UAV on the other hand α and angular velocity signal ω are sent to the real-time attitude controller (2); the PC (4) communicates with the real-time attitude controller (2) through the TCP/IP protocol, providing a friendly man-machine interface for the operator.
Description
技术领域 technical field
本发明涉及一种适用于旋翼无人机的地面控制系统,该地面控制系统通过有线方式与旋翼无人机上的执行机构和传感器实现连接。The invention relates to a ground control system suitable for a rotary-wing unmanned aerial vehicle. The ground control system is connected with an actuator and a sensor on the rotary-wing unmanned aerial vehicle in a wired manner.
背景技术 Background technique
旋翼无人机具有使用灵活、成本低、零伤亡等特点,在现代军事和民用两方面都得到了广泛的应用。旋翼无人机具有垂直起降和悬停特殊功能,但较之固定翼无人机其稳定性和抗风性较弱,自主控制更为复杂。当前对旋翼无人机的地面控制方式主要分三种:手动遥控方式、自主/半自主控制方式和超视距遥控与自主控制相结合的方式。Rotor UAV has the characteristics of flexible use, low cost, and zero casualties, and has been widely used in both modern military and civilian applications. Rotary-wing UAVs have special functions of vertical take-off and landing and hovering, but compared with fixed-wing UAVs, their stability and wind resistance are weaker, and autonomous control is more complicated. At present, there are three main ground control methods for rotor UAVs: manual remote control, autonomous/semi-autonomous control, and a combination of over-the-horizon remote control and autonomous control.
自主/半自主型用于旋翼无人机视距外(远距)在地面飞行控制人员的监控下进行作业飞行,此情况下要求旋翼无人机具有一定的姿态自主控制能力,对旋翼无人机控制系统要求高、难度大。The autonomous/semi-autonomous type is used for rotor UAVs operating outside the line of sight (long distance) under the supervision of ground flight controllers. The machine control system is demanding and difficult.
为旋翼无人机设计地面控制系统的一般方法是:首先基于牛顿力学模型建立小型旋翼无人机的动力学模型,然后基于此模型设计旋翼无人机飞行姿态控制器,最后在基于某种飞行状态引入相应的控制算法。然而,由于旋翼无人机自身的结构特性,比如体积小,自耦合性高,非线性强等,使小型旋翼无人机的动力学模型很难确定,从而导致旋翼无人机的控制参数的不确定性。The general method for designing a ground control system for a rotor UAV is as follows: first, establish a dynamic model of a small rotor UAV based on the Newtonian mechanics model, then design a flight attitude controller for the rotor UAV based on this model, and finally based on a certain flight The state is introduced into the corresponding control algorithm. However, due to the structural characteristics of the rotor UAV itself, such as small size, high self-coupling, strong nonlinearity, etc., it is difficult to determine the dynamic model of the small rotor UAV, which leads to the control parameters of the rotor UAV. Uncertainty.
发明内容 Contents of the invention
本发明的目的是提供一种用于非常规布局的微型旋翼无人机的地面控制系统,该地面控制系统通过有线的方式实现对旋翼无人机的供电、姿态数据的采集、控制信号和反馈信号的传输。本发明设计的地面控制系统省去了建立小型旋翼无人机动力学模型的复杂步骤,在不建立无人机模型的情况下,通过实时姿态控制器实现数据接收、姿态解算、滤波、PID控制,并能够在线调试并获得较为理想的PID控制参数,成功使旋翼无人机实现了悬停任务。The purpose of the present invention is to provide a ground control system for a miniature rotor drone with an unconventional layout. The ground control system realizes power supply to the rotor drone, collection of attitude data, control signals and feedback by means of wires transmission of signals. The ground control system designed by the present invention saves the complicated steps of establishing the dynamic model of the small rotor UAV, and realizes data reception, attitude calculation, filtering, and PID control through the real-time attitude controller without establishing the UAV model , and can be debugged online and obtain ideal PID control parameters, successfully enabling the rotor UAV to achieve the hovering task.
本发明的地面控制系统第一方面接收旋翼无人机中的IMU(惯性测量单元)输出的三轴加速度信息αX、αY、αZ和角速度信息ωX、ωY、ωZ;第二方面通过实时姿态控制器2对微型旋翼无人机中的电机12进行动力控制;第三方面通过实时姿态控制器2对微型旋翼无人机中的多个舵机(A舵机13、B舵机14、C舵机15、D舵机16)进行控制,从而实现在不建立无人机模型的情况下,成功使旋翼无人机实现了悬停任务。A舵机13与C舵机15协作实现微型旋翼无人机的俯仰运动;B舵机14与D舵机16协作实现微型旋翼无人机的滚转运动;A舵机13、B舵机14、C舵机15与D舵机16协作实现微型旋翼无人机的偏航运动。The first aspect of the ground control system of the present invention receives the three-axis acceleration information α X , α Y , α Z and the angular velocity information ω X , ω Y , ω Z output by the IMU (inertial measurement unit) in the rotor drone; the second On the one hand, carry out power control to the
本发明用于微型旋翼无人机的地面控制系统的优点在于:The present invention is used for the advantage of the ground control system of miniature rotor unmanned aerial vehicle:
①电源激励和接收控制信号通过有线的方式进行交互,避免了无线传输的不可靠性。① The power supply excitation and receiving control signals are interacted through wired methods, which avoids the unreliability of wireless transmission.
②PC机与控制芯片和处理器芯片的组合,能够低成本实现一个非常规布局的微型旋翼无人机的地面控制系统。②The combination of PC, control chip and processor chip can realize a ground control system of a micro-rotor UAV with an unconventional layout at low cost.
③通过巴特沃兹滤波器消除高频振动,减小了由于电机转动引起的强烈抖动对控制系统的干扰③ Eliminate high-frequency vibration through the Butterworth filter, reducing the interference of the strong vibration caused by the motor rotation on the control system
④在线调试PID控制器的控制参数,缩短了调试周期,提高了调试效率。④ On-line debugging of the control parameters of the PID controller shortens the debugging cycle and improves the debugging efficiency.
附图说明 Description of drawings
图1是适用于旋翼无人机的本发明地面控制系统的信号控制示意图。Fig. 1 is a schematic diagram of the signal control of the ground control system of the present invention applicable to the rotor UAV.
图2是本发明实时姿态控制器部分的结构框图。Fig. 2 is a structural block diagram of the real-time attitude controller part of the present invention.
图2A是本发明实时姿态控制器中PID控制器的信号流程图。Fig. 2A is a signal flow chart of the PID controller in the real-time attitude controller of the present invention.
图3是本发明地面控制系统中PC机的界面示意图。Fig. 3 is a schematic diagram of the interface of the PC in the ground control system of the present invention.
具体实施方式 Detailed ways
下面将结合附图对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
参见图1所示,本发明的一种适用于旋翼无人机的地面控制系统,该地面控制系统包括PC机4、实时姿态控制器2、SPI通讯采集器3和驱动器1。驱动器1一方面接收实时姿态控制器2输出的运动指令Din,另一方面依据所述运动指令Din分别输出电机控制信号D2驱动电机12运动、第A路舵机信号DA驱动A舵机13运动、第B路舵机信号DB驱动B舵机14运动、第C路舵机信号DC驱动C舵机15运动、第D路舵机信号DD驱动D舵机16运动;SPI通讯采集器3一方面采集旋翼无人机上惯性测量单元(IMU)11测量得到的参数信息D1,另一方面输出旋翼无人机的三个自由度(三个轴)的线加速度信号α(αX、αY、αZ)和角速度信号ω(ωX、ωY、ωZ)给实时姿态控制器2;PC机4通过TCP/IP协议与实时姿态控制器2进行通信,为操控者提供了友好的人机界面。Referring to FIG. 1 , a ground control system applicable to a rotor UAV of the present invention includes a
本发明地面控制系统采用有线方式分别与旋翼无人机上的IMU(惯性测量单元)、电机12、A舵机13、B舵机14、C舵机15和D舵机16连接。为旋翼无人机的供电也采用有线的方式。地面控制系统与旋翼无人机的有线方式连接,能够避免无线传输的不可靠性,提高了地面控制系统的可靠性、稳定性。The ground control system of the present invention is respectively connected with the IMU (inertial measurement unit),
在本发明中,地面控制系统第一方面接收旋翼无人机中的IMU(惯性测量单元)输出的三轴加速度信息αX、αY、αZ和角速度信息ωX、ωY、xZ;第二方面通过实时姿态控制器2对微型旋翼无人机中的电机12进行动力控制;第三方面通过实时姿态控制器2对微型旋翼无人机中的多个舵机(A舵机13、B舵机14、C舵机15、D舵机16)进行控制,从而实现在不建立无人机模型的情况下,成功使旋翼无人机实现了悬停任务。αX表示惯性测量单元输出的X轴加速度信息,αY表示惯性测量单元输出的Y轴加速度信息,αZ表示惯性测量单元输出的Z轴加速度信息,ωX表示惯性测量单元输出的X轴角速度信息,ωY表示惯性测量单元输出的Y轴角速度信息,ωZ表示惯性测量单元输出的Z轴角速度信息。In the present invention, the first aspect of the ground control system receives the three-axis acceleration information α X , α Y , α Z and the angular velocity information ω X , ω Y , x Z output by the IMU (inertial measurement unit) in the rotor drone; The second aspect carries out power control to the
在本发明中,地面控制系统通过对电机12、A舵机13、B舵机14、C舵机15、D舵机16的控制,使得微型旋翼无人机实现的姿态包括有俯仰运动、滚转运动和偏航运动,即A舵机13与C舵机15协作实现微型旋翼无人机的俯仰运动;B舵机14与D舵机16协作实现微型旋翼无人机的滚转运动;A舵机13、B舵机14、C舵机15与D舵机16协作实现微型旋翼无人机的偏航运动。In the present invention, the ground control system makes the attitude realized by the micro-rotor UAV include pitching motion, rolling motion, etc. Turning motion and yaw motion, that is, A
本发明设计的地面控制系统除PC机4以外面,实时控制器2选用Freescale的型号为MPC8270实时控制芯片。对旋翼无人机的信息采集和驱动是在一片FPGA处理器中实现的,FPGA处理器选用Xilinx的XC5VLX50T芯片。The ground control system designed by the present invention is except the
下面将详细说明本发明地面控制系统中各个模块实现的功能:The functions realized by each module in the ground control system of the present invention will be described in detail below:
(一)PC机(1) PC
在本发明中,PC机4通过TCP/IP协议与实时姿态控制器2进行通信,为操控者提供了友好的人机界面(参见图3所示)。操控者通过所述人机界面调整旋翼无人机的控制参数、以及实时显示旋翼无人机飞行的姿态等。In the present invention, the PC 4 communicates with the real-
图3中的界面说明:滚转姿态(Td)分别表示PID姿态环滚转角部分的PID控制参数;俯仰姿态(Kp)、俯仰姿态(Ti)、俯仰姿态(Td)分别表示PID姿态环俯仰角部分的PID控制参数;滚转速度(Kp)、滚转速度(Ti)、滚转速度(Td)分别表示姿态速度环滚转角速度部分的PID控制参数;俯仰速度(Kp)、俯仰速度(Ti)、俯仰速度(Td)分别表示姿态速度环俯仰角速度的PID控制参数;偏航_姿态速度(Kp)、偏航_姿态速度(Ti)、偏航_姿态速度(Td)分别表示姿态速度环的偏航角速度的PID控制参数。Output(X)表示俯仰环路PID控制模块输出的控制量,Output(Y)表示滚转环路PID控制模块输出的控制量、Output(Z)表示偏航环路PID控制模块输出的控制量。δp(X)表示控制A舵机、C舵机(滚转角)偏转的PWM波占空比;δq(Y)表示控制B舵机、D舵机(俯仰角)偏转的PWM波占空比;δr(Z)控制A舵机、B舵机、C舵机、D舵机(偏航角)偏转的PWM波占空比。表示Gravity+Drag(gf)表示驱动无人机电机的PWM波占空比。Boolean表示手动操作和自动操作的切换。点击Stop按键,程序停止。Interface description in Figure 3: roll attitude (Td) respectively represents the PID control parameters of the roll angle part of the PID attitude loop; pitch attitude (Kp), pitch attitude (Ti), and pitch attitude (Td) respectively represent the pitch angle of the PID attitude loop Part of the PID control parameters; roll velocity (Kp), roll velocity (Ti), and roll velocity (Td) represent the PID control parameters of the roll angular velocity part of the attitude velocity loop respectively; pitch velocity (Kp), pitch velocity (Ti ), pitch velocity (Td) represent the PID control parameters of the pitch rate of the attitude velocity loop; yaw_attitude velocity (Kp), yaw_attitude velocity (Ti), yaw_attitude velocity (Td) respectively represent the The PID control parameters of the yaw rate. Output(X) represents the control quantity output by the pitch loop PID control module, Output(Y) represents the control quantity output by the roll loop PID control module, and Output(Z) represents the control quantity output by the yaw loop PID control module. δp(X) represents the duty cycle of the PWM wave controlling the deflection of the steering gear A and C (roll angle); δq(Y) represents the duty cycle of the PWM wave controlling the deflection of the steering gear B and D (pitch angle); δr(Z) controls the duty cycle of the PWM wave deflected by A steering gear, B steering gear, C steering gear, and D steering gear (yaw angle). Indicates that Gravity+Drag(gf) indicates the duty cycle of the PWM wave driving the UAV motor. Boolean represents the switching between manual operation and automatic operation. Click the Stop button to stop the program.
PC机是一种能够按照事先存储的程序,自动、高速地进行大量数值计算和各种信息处理的现代化智能电子设备。最低配置为CPU 2GHz,内存2GB,硬盘20GB;安装操作系统为windows 2000/2003/XP;安装Labview 2010软件。A PC is a modern intelligent electronic device that can automatically and quickly perform a large number of numerical calculations and various information processing according to pre-stored programs. The minimum configuration is CPU 2GHz, memory 2GB, hard disk 20GB; the installation operating system is windows 2000/2003/XP; and Labview 2010 software is installed.
(二)实时姿态控制器(2) Real-time attitude controller
参见图2所示,实时姿态控制器2根据实现的功能划分为标定模块21、巴特沃兹滤波模块22、姿态解算模块25、PID控制器23和数据采集引擎模块24。Referring to FIG. 2 , the real-
(1)标定模块21(1)
在本发明中,标定模块21通过采集、重组、整定FPGA端的数据信息,将旋翼无人机上的IMU采集到的信息转化为可读的,可处理的加速度信息和角速度信息。In the present invention, the
由于从旋翼无人机中IMU(惯性测量单元)11中采集到的信息是以数据包D1的形势读出来的,数据包D1中包含有加速度信息和角速度信息。Since the information collected from the IMU (inertial measurement unit) 11 in the rotor drone is read out in the form of a data packet D1, the data packet D1 contains acceleration information and angular velocity information.
在本发明中,IMU的X轴、Y轴和Z轴输出的加速度信息分别记为αX、αY、αZ;IMU的X轴、Y轴和Z轴输出的角速度信息分别记为ωX、ωY、ωZ。IMU产生的初始加速度信息和角速度信息是以14位二进制补码的形式表示的,所以标定模块首先要将二进制补码的数据转化为十进制,然后在乘以标定系数,得到实际的加速度信息和角速度信息。例如:如果加速度计的输出为00 0000 0000 0001,那么转化为十进制为1,则加速度为1×2.522mg(标定系数)=0.002522g,如果加速度计的输出为11 11111111 1111,那么转化为十进制为-1,则加速度为(-1)×2.522mg=0.002522g;如果陀螺仪的输出为00 0000 0000 0001,那么转化为十进制为1,则陀螺仪的输出为1×0.07306°/s=0.07306°/s,如果陀螺仪的输出为11 1111 1111 1111,那么转化为十进制为-1,则陀螺仪的输出为(-1)×0.07306°/s(标定系数)=-0.07306°/s。In the present invention, the acceleration information output by the X-axis, Y-axis and Z-axis of the IMU is respectively denoted as α X , α Y , α Z ; the angular velocity information output by the X-axis, Y-axis and Z-axis of the IMU is respectively denoted as ω X , ω Y , ω Z . The initial acceleration information and angular velocity information generated by the IMU are expressed in the form of 14-bit two’s complement, so the calibration module first converts the two’s complement data into decimal, and then multiplies the calibration coefficient to obtain the actual acceleration information and angular velocity information. For example: if the output of the accelerometer is 00 0000 0000 0001, then converted to decimal is 1, then the acceleration is 1×2.522mg (calibration coefficient) = 0.002522g, if the output of the accelerometer is 11 11111111 1111, then converted to decimal is -1, the acceleration is (-1)×2.522mg=0.002522g; if the output of the gyroscope is 00 0000 0000 0001, then converted to decimal is 1, then the output of the gyroscope is 1×0.07306°/s=0.07306° /s, if the output of the gyroscope is 11 1111 1111 1111, then converted to decimal is -1, then the output of the gyroscope is (-1)×0.07306°/s (calibration coefficient)=-0.07306°/s.
(2)巴特沃兹滤波模块22(2) Butterworth
在本发明中,巴特沃兹滤波模块22通过Labview信号处理开发包内的巴特沃兹滤波器,将采集到的数据的毛刺和高频抖动滤掉。In the present invention, the
在本发明中,由于旋翼无人机中电机12转动时会产生剧烈的震颤,造成数据的噪声很大,所以需要加入一个滤波器,来消除高频噪声。Labview软件开发包中有现成的巴特沃兹滤波器,只需将采集标定后的加速度和角速度信息通过此滤波器,通过设置高截止频率便可消除不必要的高频噪声。In the present invention, since the
(3)姿态解算模块25(3)
在本发明中,姿态解算模块25根据IMU产生的加速度信息和角速度信息解算出无人机的滚转角θ,俯仰角φ,滚转速度ωX,俯仰角速度ωY,偏航角速度ωZ。In the present invention, the
本发明地面控制系统设计的前提是所有的状态量以足够高的频率被准确的读取,成为所述地面控制系统的反馈信号。利用IMU的加速度计给出旋翼无人机以机体坐标系下某个轴上的比力为f=a-g,a表示实际加速度,g表示X轴上的重力加速度;对悬停状态下的旋翼无人机可以假如在机体坐标系X轴方向上没有扰动,旋翼无人机基本处于平衡状态,则X轴上的实际加速度ax的值可以忽略:则有同理可得
(4)PID控制模块23(4)
参见图2A所示,在本发明中,PID控制模块23根据解算的旋翼无人机的滚转角θ,俯仰角φ,滚转角速度ωX,俯仰角速度ωY,偏航角速度ωZ,输出舵机的控制信息以控制无人机的悬停。Referring to shown in Fig. 2A, in the present invention,
对于单旋翼+气动面结构的微型旋翼无人机,由于其属于非常规布局的新型飞行器,国内外的针对这种新的被控对象,在科研的初期阶段往往采用实用有效地PID。因此,同样为了设计一个简单直观、方便调试的控制器,本发明选择了基于误差的PID控制器。PID是一种线性控制器,根据给定值与实际输出值的偏差error(t)构成偏差控制,其控制规律为:
旋翼式飞行器的速度主要由姿态的变化而造成,故设计了一个经典回路控制系统,内环为姿态角速率控制回路,外环为姿态角控制回路。The speed of the rotorcraft is mainly caused by the change of attitude, so a classic loop control system is designed, the inner loop is the attitude angle rate control loop, and the outer loop is the attitude angle control loop.
在信息采集时,IMU测量旋翼无人机在机体坐标系下的角速度和加速度,产生控制系统反馈信号;控制器2接受来自IMU的反馈信号并计算处理得到相应的舵机、电机控制量;多个舵机与一个电机的驱动器1给出的控制量的输出用来稳定旋翼无人机的飞行姿态。When collecting information, the IMU measures the angular velocity and acceleration of the rotor UAV in the body coordinate system, and generates a control system feedback signal; the
图2A中,φc表示设定俯仰角(悬停状态下,φc=0);θc表示设定设定滚转角(悬停状态下,θc=0);δr表示设定偏航角速度(悬停状态下,δr=0);δp表示设定滚转角速度;δq表示设定俯仰角速度。In Fig. 2A, φ c represents the set pitch angle (in the hovering state, φ c =0); θ c represents the set roll angle (in the hovering state, θ c =0); δ r represents the set deflection angle Pitch angular velocity (in the hovering state, δ r =0); δ p represents the set roll angular velocity; δ q represents the set pitch angular velocity.
(5)数据采集引擎模块24(5) Data
数据采集引擎模块24通过先入先出队列FIFO将采集的IMU的所有传感器读取出来。The data
在本发明中,实时控制器2选用Freescale的型号为MPC8270实时控制芯片。In the present invention, the real-
(三)SPI通讯采集器(3) SPI communication collector
在本发明中,SPI通讯采集器3通过SPI接口与旋翼无人机上的惯性测量单元(IMU)进行数据和命令交互,用于采集IMU感应的旋翼无人机上三个自由度的线加速度信号和角速度信号。In the present invention, the
SPI接口的读写操作:ADIS16350(IMU)使用的SPI接口为4线制:片选线(CS),时钟线(SCLK),数据输入线(DIN),数据输出线(DOUT)。片选线用来使能SPI接口以使其正常通讯,当为高时,输出信号线不受时钟线和数据输入线的影响而始终为高阻态。传输完一个完整的数据帧需要16个时钟周期。由于SPI接口是一种全双工模式,所以在一帧数据传送的过程中既可以接收又可以发送。这样可以再本帧数据中既可以设置下一帧数据的读操作,又可以同时接收上一帧读操作所读的寄存器。Read and write operations of the SPI interface: The SPI interface used by ADIS16350 (IMU) is a 4-wire system: chip select line (CS), clock line (SCLK), data input line (DIN), and data output line (DOUT). The chip select line is used to enable the SPI interface to enable normal communication. When it is high, the output signal line is always in a high-impedance state without being affected by the clock line and the data input line. It takes 16 clock cycles to transmit a complete data frame. Since the SPI interface is a full-duplex mode, it can both receive and send during a frame of data transmission. In this way, the read operation of the next frame of data can be set in the current frame of data, and the register read by the previous frame of read operation can be received at the same time.
读寄存器内容时16位的数据格式如下:第一位为0(用于与写寄存器区分),第二位为0,第三到九位为目标寄存器地址,最后八位对本帧数据没有影响,由于每个寄存器的16位由两个独立的8位组成,而每个8位的地址又并不相同,这样在读取寄存器的内容时,第三到九位目标寄存器的地址可以是高8位地址,也可以是低8位地址,两种操作的效果是完全一样的。在本帧数据传输完成后的下帧数据里可以获得本次所要读取目标寄存器的16位内容。这样,每次读操作完成后,要到下次数据帧操作时才能获得本次想要内容,所以,一个单独的读过程需要两个数据帧,但如果是连续读操作,则只需要一个额外的数据帧。例如读取n个数据,则只需要n+1次读操作即可。The 16-bit data format when reading the register content is as follows: the first bit is 0 (used to distinguish from the write register), the second bit is 0, the third to ninth bits are the address of the target register, and the last eight bits have no effect on the data of this frame. Since the 16 bits of each register are composed of two independent 8 bits, and the address of each 8 bits is different, so when reading the contents of the register, the address of the third to ninth target register can be high 8 The bit address can also be the lower 8-bit address, and the effects of the two operations are exactly the same. The 16-bit content of the target register to be read this time can be obtained in the next frame data after the data transmission of this frame is completed. In this way, after each read operation is completed, the desired content cannot be obtained until the next data frame operation. Therefore, a single read process requires two data frames, but if it is a continuous read operation, only one additional frame is required. data frame. For example, to read n pieces of data, only n+1 read operations are required.
访问数据输出寄存器:ADIS16350(IMU)输出寄存器列表如下:Access data output registers: ADIS16350 (IMU) output register list is as follows:
在本发明中,SPI通讯采集器3的程序首先采用Labview 2010编程得到,然后经过编译器的转化为数据流文件烧写在FPGA芯片中。In the present invention, the program of the
(四)驱动器1(4) Driver 1
在本发明中,驱动器1采用软件编程的方式,在FPGA芯片上实现任意占空比PWM波的产生,进而驱动微型旋翼无人机一个电机和四个舵机的偏转。In the present invention, the driver 1 uses software programming to realize the generation of PWM waves with arbitrary duty ratios on the FPGA chip, and then drives the deflection of one motor and four steering gears of the micro-rotor drone.
在本发明中,SPI通讯采集器3和驱动器1选用在同一FPGA芯片中采用Labview 2010编程得到。FPGA芯片选用Xilinx的XC5VLX50T芯片。In the present invention, the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110385218 CN102426458B (en) | 2011-11-28 | 2011-11-28 | Ground control system applicable to rotor-wing unmanned aerial vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110385218 CN102426458B (en) | 2011-11-28 | 2011-11-28 | Ground control system applicable to rotor-wing unmanned aerial vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102426458A true CN102426458A (en) | 2012-04-25 |
CN102426458B CN102426458B (en) | 2013-06-05 |
Family
ID=45960457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110385218 Expired - Fee Related CN102426458B (en) | 2011-11-28 | 2011-11-28 | Ground control system applicable to rotor-wing unmanned aerial vehicle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102426458B (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103308272A (en) * | 2013-05-30 | 2013-09-18 | 中国科学院长春光学精密机械与物理研究所 | Non-planar dynamic testing device for aerodynamic performances of dual rotors |
CN103324203A (en) * | 2013-06-08 | 2013-09-25 | 西北工业大学 | Unmanned airplane avionics system based on intelligent mobile phone |
CN103581323A (en) * | 2013-11-11 | 2014-02-12 | 惠州Tcl移动通信有限公司 | Method and system for controlling aircraft through postures of mobile phone |
CN103645739A (en) * | 2013-12-03 | 2014-03-19 | 新誉集团有限公司 | Modularized airborne flight control software of miniature unmanned helicopter |
CN104155988A (en) * | 2014-08-12 | 2014-11-19 | 北京航天自动控制研究所 | Multichannel attitude controller of aircraft |
CN104699110A (en) * | 2015-02-05 | 2015-06-10 | 大连理工大学 | Programmable aircraft control engine IP core |
CN104902142A (en) * | 2015-05-29 | 2015-09-09 | 华中科技大学 | Method for electronic image stabilization of video on mobile terminal |
CN105119683A (en) * | 2015-08-18 | 2015-12-02 | 昆明理工大学 | Unmanned plane communication interference countermeasure method based on real-time embedded control system |
CN105472672A (en) * | 2015-11-16 | 2016-04-06 | 苏州佳世达电通有限公司 | Wireless communication control system, wireless communication control method and mobile device |
CN105549497A (en) * | 2016-02-26 | 2016-05-04 | 暨南大学 | PC-control-supporting multi-rotor-wing unmanned-aerial-vehicle control system |
CN106155076A (en) * | 2016-08-23 | 2016-11-23 | 华南理工大学 | A kind of stabilized flight control method of many rotor unmanned aircrafts |
CN106162056A (en) * | 2015-04-02 | 2016-11-23 | 宿迁学院 | Model airplane machine monitoring system based on Labview |
CN106527461A (en) * | 2016-11-29 | 2017-03-22 | 合肥赛为智能有限公司 | Flight control system based on dual-core processor |
CN106526237A (en) * | 2016-10-28 | 2017-03-22 | 易瓦特科技股份公司 | Calibration method and apparatus |
CN107272717A (en) * | 2017-06-06 | 2017-10-20 | 袁兵 | The four axle unmanned aerial vehicle (UAV) control methods based on moving average filter |
CN107765182A (en) * | 2017-12-07 | 2018-03-06 | 智灵飞(北京)科技有限公司 | A kind of ground unmanned plane motor electricity commissioning test system and method based on LABVIEW |
CN108885452A (en) * | 2016-03-25 | 2018-11-23 | 高通股份有限公司 | multi-axis controller |
CN109597422A (en) * | 2018-12-19 | 2019-04-09 | 中国农业大学 | Unmanned tandem helicopter attitude control system and method |
CN110609568A (en) * | 2019-09-24 | 2019-12-24 | 广东名阳信息科技有限公司 | Strong self-coupling PI cooperative control method for large unmanned aerial vehicle UAV |
WO2021078166A1 (en) * | 2019-10-21 | 2021-04-29 | 深圳市道通智能航空技术有限公司 | Method and apparatus for controlling flight attitudes, unmanned aerial vehicle and storage medium |
CN115016542A (en) * | 2022-07-28 | 2022-09-06 | 重庆理工大学 | Unmanned aerial vehicle control system based on high-speed bus architecture |
CN115027672A (en) * | 2022-05-18 | 2022-09-09 | 大连大学 | An aerial screen display system based on UAV array |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3662337B1 (en) * | 2017-08-04 | 2022-04-27 | Ideaforge Technology Pvt. Ltd. | Split control system configuration for uav autopilot architecture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1356529A (en) * | 2001-12-21 | 2002-07-03 | 北京航空航天大学 | Ground manipulating and monitor deivce for coaxial dual-rotor robot helicopter |
CN101916115A (en) * | 2010-07-27 | 2010-12-15 | 东北大学 | A control device and method for a miniature coaxial dual-rotor aircraft |
CN102180270A (en) * | 2011-03-10 | 2011-09-14 | 北京航空航天大学 | Microminiature rotorcraft experiment platform and application thereof |
-
2011
- 2011-11-28 CN CN 201110385218 patent/CN102426458B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1356529A (en) * | 2001-12-21 | 2002-07-03 | 北京航空航天大学 | Ground manipulating and monitor deivce for coaxial dual-rotor robot helicopter |
CN101916115A (en) * | 2010-07-27 | 2010-12-15 | 东北大学 | A control device and method for a miniature coaxial dual-rotor aircraft |
CN102180270A (en) * | 2011-03-10 | 2011-09-14 | 北京航空航天大学 | Microminiature rotorcraft experiment platform and application thereof |
Non-Patent Citations (3)
Title |
---|
A. MANCINI ET AL: "A Framework for Simulation and Testing of UAVs in Cooperative Scenarios", 《JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS》, vol. 54, 31 December 2009 (2009-12-31), pages 307 - 329 * |
WANG ZHEN: "Flight control system design for a small size unmanned helicopter", 《2011 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCE, ELECTRIC ENGINEERING AND COMPUTER》, 22 August 2011 (2011-08-22), pages 543 - 546 * |
杨伟临: "基于AVR和FPGA的SOC-FPSLIC的无人机下级控制系统", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, no. 02, 29 February 2008 (2008-02-29) * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103308272A (en) * | 2013-05-30 | 2013-09-18 | 中国科学院长春光学精密机械与物理研究所 | Non-planar dynamic testing device for aerodynamic performances of dual rotors |
CN103308272B (en) * | 2013-05-30 | 2015-12-02 | 中国科学院长春光学精密机械与物理研究所 | A kind of non-planar DCB Specimen aeroperformance dynamic checkout unit |
CN103324203A (en) * | 2013-06-08 | 2013-09-25 | 西北工业大学 | Unmanned airplane avionics system based on intelligent mobile phone |
CN103581323A (en) * | 2013-11-11 | 2014-02-12 | 惠州Tcl移动通信有限公司 | Method and system for controlling aircraft through postures of mobile phone |
CN103645739B (en) * | 2013-12-03 | 2016-08-17 | 新誉集团有限公司 | The modularity onboard flight of a kind of small-sized depopulated helicopter controls device |
CN103645739A (en) * | 2013-12-03 | 2014-03-19 | 新誉集团有限公司 | Modularized airborne flight control software of miniature unmanned helicopter |
CN104155988A (en) * | 2014-08-12 | 2014-11-19 | 北京航天自动控制研究所 | Multichannel attitude controller of aircraft |
CN104155988B (en) * | 2014-08-12 | 2015-05-20 | 北京航天自动控制研究所 | Multichannel attitude controller of aircraft |
CN104699110A (en) * | 2015-02-05 | 2015-06-10 | 大连理工大学 | Programmable aircraft control engine IP core |
CN106162056A (en) * | 2015-04-02 | 2016-11-23 | 宿迁学院 | Model airplane machine monitoring system based on Labview |
CN104902142A (en) * | 2015-05-29 | 2015-09-09 | 华中科技大学 | Method for electronic image stabilization of video on mobile terminal |
CN104902142B (en) * | 2015-05-29 | 2018-08-21 | 华中科技大学 | A kind of electronic image stabilization method of mobile terminal video |
CN105119683A (en) * | 2015-08-18 | 2015-12-02 | 昆明理工大学 | Unmanned plane communication interference countermeasure method based on real-time embedded control system |
CN105119683B (en) * | 2015-08-18 | 2018-03-06 | 昆明理工大学 | A kind of UAV Communication interference countercheck based on real-time embedded control system |
CN105472672A (en) * | 2015-11-16 | 2016-04-06 | 苏州佳世达电通有限公司 | Wireless communication control system, wireless communication control method and mobile device |
CN105472672B (en) * | 2015-11-16 | 2018-12-11 | 苏州佳世达电通有限公司 | Wireless communication control system, wireless communication control method and mobile device |
CN105549497A (en) * | 2016-02-26 | 2016-05-04 | 暨南大学 | PC-control-supporting multi-rotor-wing unmanned-aerial-vehicle control system |
CN108885452A (en) * | 2016-03-25 | 2018-11-23 | 高通股份有限公司 | multi-axis controller |
CN108885452B (en) * | 2016-03-25 | 2021-07-20 | 高通股份有限公司 | Multi-axis controller |
CN106155076A (en) * | 2016-08-23 | 2016-11-23 | 华南理工大学 | A kind of stabilized flight control method of many rotor unmanned aircrafts |
CN106155076B (en) * | 2016-08-23 | 2019-04-09 | 华南理工大学 | A stable flight control method for a multi-rotor unmanned aerial vehicle |
CN106526237A (en) * | 2016-10-28 | 2017-03-22 | 易瓦特科技股份公司 | Calibration method and apparatus |
CN106527461A (en) * | 2016-11-29 | 2017-03-22 | 合肥赛为智能有限公司 | Flight control system based on dual-core processor |
CN107272717A (en) * | 2017-06-06 | 2017-10-20 | 袁兵 | The four axle unmanned aerial vehicle (UAV) control methods based on moving average filter |
CN107765182A (en) * | 2017-12-07 | 2018-03-06 | 智灵飞(北京)科技有限公司 | A kind of ground unmanned plane motor electricity commissioning test system and method based on LABVIEW |
CN109597422A (en) * | 2018-12-19 | 2019-04-09 | 中国农业大学 | Unmanned tandem helicopter attitude control system and method |
CN110609568A (en) * | 2019-09-24 | 2019-12-24 | 广东名阳信息科技有限公司 | Strong self-coupling PI cooperative control method for large unmanned aerial vehicle UAV |
CN110609568B (en) * | 2019-09-24 | 2021-01-05 | 广东名阳信息科技有限公司 | Strong self-coupling PI cooperative control method for large unmanned aerial vehicle UAV |
WO2021078166A1 (en) * | 2019-10-21 | 2021-04-29 | 深圳市道通智能航空技术有限公司 | Method and apparatus for controlling flight attitudes, unmanned aerial vehicle and storage medium |
CN115027672A (en) * | 2022-05-18 | 2022-09-09 | 大连大学 | An aerial screen display system based on UAV array |
CN115016542A (en) * | 2022-07-28 | 2022-09-06 | 重庆理工大学 | Unmanned aerial vehicle control system based on high-speed bus architecture |
Also Published As
Publication number | Publication date |
---|---|
CN102426458B (en) | 2013-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102426458A (en) | Ground control system applicable to rotor-wing unmanned aerial vehicle | |
CN104914874B (en) | A kind of pose control system for unmanned plane and method based on adaptive Mutually fusion | |
CN105353762B (en) | The control method of six rotor wing unmanned aerial vehicles based on double remaining attitude transducers | |
CN111596571A (en) | Composite UAV semi-physical simulation system | |
CN103365295B (en) | Based on the autonomous hover control system of four rotor unmanned aircrafts and the method for DSP | |
CN204229233U (en) | A kind of many rotor wing unmanned aerial vehicles automatic flight control system | |
CN107368091A (en) | A kind of stabilized flight control method of more rotor unmanned aircrafts based on finite time neurodynamics | |
CN101561681B (en) | Anti-jamming real-time data sampling system of unmanned aerial vehicle | |
CN103611324A (en) | Unmanned helicopter flight control system and control method thereof | |
CN105404308A (en) | Flight control unit for parafoil type unmanned plane | |
CN104460685A (en) | Control system for four-rotor aircraft and control method of control system | |
CN102814047A (en) | Autonomous return system and control method of dual-rotor remote-controlled model helicopter | |
CN102968123A (en) | Automatic pilot of unmanned aerial vehicle | |
CN103217981A (en) | Four-rotor aircraft speed control method based on integral variable structure control | |
CN106904272A (en) | A kind of swingable flapping wing robot flight control assemblies of empennage and method | |
CN102331778B (en) | Handheld device and method for controlling unmanned vehicle by utilizing same | |
CN108706099A (en) | One kind is verted three axis composite wing unmanned planes and its control method | |
CN112327668A (en) | Modeling and semi-physical simulation method and system for medium and large unmanned aerial vehicle | |
CN204331470U (en) | Over the horizon aircraft inspection tour system | |
CN107121940A (en) | A kind of parafoil four-degree-of-freedom semi-physical emulation platform | |
CN202939490U (en) | Autopilot for unmanned aerial vehicles | |
CN205068169U (en) | Six rotor unmanned aerial vehicle based on two remaining attitude sensor | |
CN105974935B (en) | A kind of quadrotor agricultural remote control aircraft and its control method | |
Haocong et al. | Design of stm32-based quadrotor UAV control system | |
CN104503426A (en) | Parafoil control law test commissioning platform and commissioning method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130605 Termination date: 20181128 |