CN102422144B - Automatic analysis device - Google Patents
Automatic analysis device Download PDFInfo
- Publication number
- CN102422144B CN102422144B CN201080020647.0A CN201080020647A CN102422144B CN 102422144 B CN102422144 B CN 102422144B CN 201080020647 A CN201080020647 A CN 201080020647A CN 102422144 B CN102422144 B CN 102422144B
- Authority
- CN
- China
- Prior art keywords
- time
- concentration
- parameter
- absorbance
- approximate expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00594—Quality control, including calibration or testing of components of the analyser
- G01N35/00613—Quality control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N2035/0097—Control arrangements for automatic analysers monitoring reactions as a function of time
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
在要缩短生化测定的测定时间时,为了对每个项目变更测光时间,或者对每个样本变更测定时间,需要反应完成的指标,但迄今为止还没有判断反应完成的方法。在试样中所含的测定对象物质的测定中,使用随着时间推移而变化的测量值来计算近似式的参数,根据该参数的收敛程度来判断反应的收敛程度,并使用判断为反应收敛的时间点的参数来计算反应完成时间点的测定值。
In order to shorten the measurement time of biochemical measurement, an indicator of the completion of the reaction is required in order to change the photometry time for each item or change the measurement time for each sample, but there is no method for judging the completion of the reaction until now. In the measurement of the measurement target substance contained in the sample, the parameters of the approximate formula are calculated using the measured values that change over time, and the degree of convergence of the reaction is judged based on the degree of convergence of the parameters, and the degree of convergence of the reaction is judged using The parameters of the time point are used to calculate the measured value of the reaction completion time point.
Description
技术领域 technical field
本发明属于关于血液、尿等生物体试样进行针对多个项目的定性、定量分析的自动分析装置的技术领域,特别涉及具备随着时间的推移,监测生物体试样中所含的多种成分对作为目标的测定对象物质测定影响的程度并进行测定的功能的自动分析装置。The present invention belongs to the technical field of automatic analysis devices for qualitative and quantitative analysis of multiple items on biological samples such as blood and urine, and particularly relates to a device capable of monitoring various biological samples contained in biological samples over time. An automatic analyzer with the function of measuring the degree of influence of components on the target substance to be measured and performing the measurement.
背景技术 Background technique
临床检查用的自动分析装置通过分注一定量的试样和试剂,进行搅拌使其反应。通过在一定时间内测定反应液的吸光度,基于测定结果求出测定对象成分的浓度。An automatic analyzer for clinical examination dispenses a certain amount of sample and reagent, stirs it, and reacts it. By measuring the absorbance of the reaction solution for a certain period of time, the concentration of the component to be measured is obtained based on the measurement result.
作为表示装置的处理能力的指标,使用每1小时的测试数,因而自从自动分析装置被开发以来,除了测定结果的精度提高以外,装置的处理速度的提高也逐渐被许多自动分析装置厂商开发。为了提高装置的处理能力,增加可使用的反应池的数量(装置的大型化),或者使样本、试剂的探头的分注速度(探头移动的高速化)高速化,或者谋求样本架的输送线的高速化和效率化、PC等的数据处理能力的高速化等。其结果是,从采血到测定结果的报告的时间被大幅缩短。成为这些高通量(high-throughput)化的目前的自动分析装置的测定的处理速度的限速的因素之一是测定时的样本和试剂的反应时间,它依赖于试剂的反应性。生化分析装置的反应时间通常是每一项目大概10分钟反应。根据项目的不同,试样与试剂的反应完成时间是不同的,临床检查的测定法根据分析方法的不同可以分成终点法、速率法两种。The number of tests per hour is used as an indicator of the processing capacity of the device. Since the automatic analyzer was developed, in addition to the improvement in the accuracy of the measurement results, the improvement in the processing speed of the device has been gradually developed by many manufacturers of automatic analyzers. In order to improve the processing capacity of the device, increase the number of reaction cells that can be used (enlarge the size of the device), or increase the dispensing speed of the sample and reagent probe (speed up the probe movement), or improve the transport line of the sample rack High-speed and efficient, high-speed data processing capabilities of PCs, etc. As a result, the time from blood collection to reporting of measurement results is significantly shortened. One of the limiting factors for the measurement processing speed of these current high-throughput automatic analyzers is the reaction time between the sample and the reagent at the time of measurement, which depends on the reactivity of the reagent. The reaction time of the biochemical analysis device is usually about 10 minutes for each item. Depending on the project, the completion time of the reaction between the sample and the reagent is different, and the measurement method of clinical examination can be divided into two types: the endpoint method and the rate method according to the analysis method.
终点法中,吸光度的变化随时间而减少,最终渐近至恒定值(最终吸光度)。由渐近的吸光度的值求出试样中的测定对象成分的浓度。在终点法中,既有T-CHO(总胆固醇)、Glu(葡萄糖)等在较早阶段达到最终吸光度的项目,也有像CRE(肌酸酐)、TP(总蛋白)、免疫比浊法的CRP(C反应性蛋白)、IgA(免疫球蛋白A)、IgG(免疫球蛋白G)、IgM(免疫球蛋白M)等那样缓慢进行反应,变成最终的稳定状态,达到最终吸光度要花费时间的反应。In the endpoint method, the change in absorbance decreases with time and eventually asymptotically reaches a constant value (final absorbance). The concentration of the component to be measured in the sample is obtained from the asymptotic absorbance value. In the endpoint method, there are items that reach the final absorbance at an earlier stage, such as T-CHO (total cholesterol) and Glu (glucose), as well as CRP such as CRE (creatinine), TP (total protein), and immunoturbidimetric method. (C-reactive protein), IgA (immunoglobulin A), IgG (immunoglobulin G), IgM (immunoglobulin M), etc. react slowly, become the final stable state, and take time to reach the final absorbance reaction.
速率法是通常从样本与试剂的反应开始测定反应的进行速度的检查方法。速率法的吸光度变化的速度大致恒定,反应过程为直线。速率法中,酶法等由于一直持续反应直至底物或辅酶被消耗完,因此除了样本浓度超过允许范围程度的较高情况以外,吸光度持续上升或下降,不会达到恒定。因此,不是从酶自身的浓度,而是从该直线的吸光度变化的速度来算出项目的活性值。但是,在用于速度计算的测定时间以内反应停止、吸光度急剧变化的情况下,如果利用该点的吸光度,则不能正确测定项目的浓度,因此不使用该测光点的吸光度而计算反应速度。专利文献1中,有时采用了去掉稀释再检查等工夫的计算方法等。The rate method is an inspection method for usually measuring the progress rate of a reaction starting from the reaction between a sample and a reagent. In the rate method, the speed of absorbance change is roughly constant, and the reaction process is a straight line. In the rate method, enzymatic method, etc., the reaction continues until the substrate or coenzyme is consumed, so the absorbance will continue to rise or fall, and will not reach a constant value, except for high cases where the sample concentration exceeds the allowable range. Therefore, the activity value of the item is calculated not from the concentration of the enzyme itself but from the rate of change of the absorbance of this straight line. However, if the reaction stops and the absorbance changes rapidly within the measurement time used for velocity calculation, the concentration of the item cannot be accurately measured if the absorbance at that point is used, so the reaction velocity is calculated without using the absorbance at this photometry point. In Patent Document 1, a calculation method that eliminates the effort of dilution and re-inspection, etc. may be employed.
在无法获得充分长的反应时间的情况下,作为得到良好测定结果的方法,例如在专利文献2中,公开了使用所测定的时间和吸光度的数据,通过最小二乘法,利用y=A+(B-A)/exp(Kt)对吸光度和时间的关系进行近似的方法。其中,A是最终吸光度,B是反应初期吸光度,K是反应速度常数,t是测定时间。本方法中,基于求出的A、B、K来求出测定对象物质的浓度。When a sufficiently long reaction time cannot be obtained, as a method of obtaining a good measurement result, for example,
现有技术文献prior art literature
专利文献patent documents
专利文献1:日本特开平1-59041号公报Patent Document 1: Japanese Patent Application Laid-Open No. 1-59041
专利文献2:日本特开平6-194313号公报Patent Document 2: Japanese Patent Application Laid-Open No. 6-194313
发明内容 Contents of the invention
发明要解决的课题The problem to be solved by the invention
在医院的临床检查领域,要求尽可能迅速地报告患者样本的测定结果。特别是在夜间急救医疗、事故现场、诊疗现场等需要紧急处理的场所,需要尽可能迅速地得到结果。最近,也有进行一般患者的诊察前检查,即在诊察前进行患者样本的测定,在诊察时基于检查结果进行诊察、治疗的医院。由于在初次诊察时已知检查结果,因此也可以减轻患者为了询问结果而再次拜访医院这样的负担。当然,对于患者方、诊疗方而言,也希望从采血到检查结果的报告的时间是短时间。在临床检查中,分析从采血到检查结果报告的时间时,分成以下三类:1)从采血到离心分离的放置时间;2)将样本置于分析装置中后直至测定完成的时间;3)此外的样本输送、离心分离、患者信息的登记、结果的报告处理等的时间。3)的样本输送、数据处理通过样本输送系统、检查室整体的系统化等而得以大幅减少时间。1)的放置时间也通过高速凝固型的采血管开发和普及而得以缩短时间。另一方面,就2)的自动分析装置的测定时的反应时间而言,在这30年间,反应时间10分钟并未改变。目前的生化自动分析装置等的、紧急样本插入常规进行的一般样本之间而优先进行测定这样的系统被编入。但是,样本与试剂的反应的测定时间与一般样本没有不同,即放置样本后直至出结果最少也需要大约10分钟左右的固定时间,因此即使装置侧的样本输送系统的处理时间、探头的分注速度被高速化,也需要为了进一步进行测定的迅速化而缩短反应时间。但是,如果仅仅缩短测定时间,则由反应不完全的时间点的吸光度来测定浓度、活性值就得不到正确结果。In the field of clinical examination in hospitals, it is required to report the measurement results of patient samples as quickly as possible. Especially in emergency medical treatment at night, accident scene, diagnosis and treatment scene and other places that need emergency treatment, it is necessary to get the result as quickly as possible. Recently, there are also hospitals that conduct pre-examination examinations for general patients, that is, measure patient samples before examinations, and conduct examinations and treatments based on the examination results during examinations. Since the test results are known at the time of the initial consultation, the burden of patients having to visit the hospital again to inquire about the results can also be reduced. Of course, the time from blood collection to report of test results is also desired to be short for the patient and the diagnosis and treatment side. In clinical examination, when analyzing the time from blood collection to test result report, it is divided into the following three categories: 1) The storage time from blood collection to centrifugation; 2) The time from placing the sample in the analysis device until the completion of the measurement; 3) In addition, time for sample delivery, centrifugation, registration of patient information, reporting of results, etc. 3) The sample delivery and data processing time can be greatly reduced by the sample delivery system and the systemization of the entire examination room. The storage time of 1) has also been shortened by the development and popularization of high-speed coagulation type blood collection tubes. On the other hand, regarding the reaction time in the measurement of the automatic analyzer of 2), the reaction time of 10 minutes has not changed during these 30 years. In current automatic biochemical analyzers, etc., a system is incorporated in which emergency samples are inserted between routinely performed general samples and measurements are performed preferentially. However, the measurement time of the reaction between the sample and the reagent is the same as that of a general sample, that is, it takes a fixed time of about 10 minutes at least until the result is obtained after placing the sample. As the speed is increased, it is also necessary to shorten the reaction time in order to further speed up the measurement. However, if the measurement time is only shortened, accurate results cannot be obtained by measuring the concentration and activity value from the absorbance at the point in time when the reaction is incomplete.
用于进行生物体试样的成分测定的试剂使用酶反应、抗原抗体反应、螯合反应、电极法等。在测定试样中的K(钾)、Na(钠)等离子的电极法中,直至测定完成,时间很短,约1分钟。Mg(镁)、Fe(铁)等无机物测定中所使用的螯合反应也是试样与试剂的反应时间为1分钟以下,直至完成的时间短。另一方面,由于酶反应的反应时间依赖于酶与底物的反应速度,因此受到底物浓度、温度、pH等的影响,时间长的情况下需要2分钟以上的反应时间。就抗原抗体反应而言,抗原与抗体的反应常数小,即使抗体添加后经过5分钟以上,通常反应也不会完成。也就是说,酶反应、抗原抗体反应的反应时间由酶本身的反应速度常数决定。这样,样本与试剂的反应时间根据项目不同或者根据样本浓度不同而不同,实际上也存在反应时间连10分钟也不需要的项目。但是,为了对每个项目变更测光时间,或者对每个样本变更测定时间,需要反应完成的指标。反应过程数据虽然可以作为该指标,但迄今为止还没有判断反应完成的方法。As reagents for component measurement of biological samples, enzyme reactions, antigen-antibody reactions, chelation reactions, electrode methods, and the like are used. In the electrode method for measuring K (potassium) and Na (sodium) ions in the sample, the time until the measurement is completed is as short as about 1 minute. In the chelation reaction used in the measurement of inorganic substances such as Mg (magnesium) and Fe (iron), the reaction time between the sample and the reagent is less than 1 minute, and the time until completion is short. On the other hand, since the reaction time of the enzyme reaction depends on the reaction speed of the enzyme and the substrate, it is affected by the concentration of the substrate, temperature, pH, etc., and when the time is long, the reaction time of 2 minutes or more is required. As for the antigen-antibody reaction, the reaction constant between the antigen and the antibody is small, and the reaction is usually not completed even if more than 5 minutes have elapsed after the addition of the antibody. That is to say, the reaction time of enzyme reaction and antigen-antibody reaction is determined by the reaction rate constant of the enzyme itself. In this way, the reaction time between the sample and the reagent varies depending on the item or the concentration of the sample, and there are actually items that do not require a reaction time of even 10 minutes. However, in order to change the photometry time for each item or change the measurement time for each sample, an index reflecting completion is required. Although the reaction process data can be used as the indicator, there is no method for judging the completion of the reaction so far.
专利文献1中有在无法获得充分长的反应时间的情况下,也能够高精度地求出测定对象物质的浓度的记载。即使使用该文献记载的方法,在考虑测定数据所含的误差的情况下,反应时间越长,最终得到的测定对象物质的浓度的误差越小。但是,存在不清楚具体设定多少反应时间好这样的问题。另外,根据测定对象物质的种类、所使用的试剂不同,最佳的反应时间也不同,从而存在难以得知最佳的反应时间这样的问题。Patent Document 1 describes that the concentration of a measurement target substance can be obtained with high accuracy even when a sufficiently long reaction time cannot be obtained. Even if the method described in this document is used, taking into account the error contained in the measurement data, the longer the reaction time is, the smaller the error of the finally obtained concentration of the measurement target substance is. However, there is a problem that it is unclear how much response time should be specifically set. In addition, the optimum reaction time differs depending on the type of the substance to be measured and the reagent used, making it difficult to know the optimum reaction time.
解决课题的方法Solution to the problem
用于解决上述课题的本发明的构成如下所述。The structure of this invention for solving the said subject is as follows.
一种自动分析装置,具备:存储机构,存储与每个测定项目或每个样本对应的、测定值的时间变化的近似式;参数最佳化机构,在每个规定时间的实测值的测定时,将所述近似式的参数最佳化;和判定机构,判定由所述参数最佳化机构进行了最佳化的参数的变化是否在预先规定的范围内。An automatic analysis device, comprising: a storage mechanism for storing an approximate expression of the time change of the measured value corresponding to each measurement item or each sample; a parameter optimization mechanism for measuring the measured value at each predetermined time , optimizing the parameters of the approximation formula; and judging means, judging whether the variation of the parameter optimized by the parameter optimizing means is within a predetermined range.
存储机构是指用于存储信息的机构,只要是半导体存储器、硬盘存储装置、Floppy(注册商标)盘存储装置、光磁存储装置等能够存储信息的机构,则可以为任何机构。通常多数设置于控制用电脑的机箱内部,但也可以是独立的机构。参数最佳化机构是指使用最小二乘法这样的参数拟合算法,按照最符合实际数据的方式决定具有多个参数的近似式的各个参数的机构。通常由编入到控制用电脑或专用电脑等中的软件以及使该软件工作的硬件构成。不限于此,只要是能够进行参数拟合而决定参数的机构,则可以是任何形态的机构。The storage mechanism refers to a mechanism for storing information, and may be any mechanism as long as it can store information, such as a semiconductor memory, a hard disk storage device, a Floppy (registered trademark) disk storage device, or a magneto-optical storage device. Most of them are usually installed inside the chassis of the control computer, but they can also be an independent mechanism. The parameter optimization mechanism refers to a mechanism that uses a parameter fitting algorithm such as the least square method to determine each parameter of an approximate expression having a plurality of parameters in a manner that best fits actual data. Usually, it consists of software incorporated into a control computer or a dedicated computer, etc., and hardware for operating the software. It is not limited to this, and any mechanism may be used as long as it can perform parameter fitting to determine parameters.
判定机构是指用于捕捉由参数最佳化机构算出的参数渐近至恒定值的形式作为参数变化(变动),通过与上限值、下限值进行比较、或将变动量的绝对值与阈值进行比较来判断该变化是否纳入规定范围,或者通过多变量解析例如马氏田口、神经网络等方法,判定由参数最佳化机构决定的参数是否进入规定范围的机构。通常由编入到控制用电脑或专用电脑等中的软件以及使该软件工作的硬件构成。不限于此,只要是能够判断参数变化的程度的机构,则可以是任何形态的机构。The judging mechanism is used to capture the form of the parameter calculated by the parameter optimization mechanism asymptotically to a constant value as a parameter change (variation), by comparing with the upper limit value, the lower limit value, or comparing the absolute value of the change amount with Thresholds are compared to determine whether the change is within the specified range, or through multivariate analysis such as Marsh Taguchi, neural network, etc., to determine whether the parameters determined by the parameter optimization mechanism are within the specified range. Usually, it consists of software incorporated into a control computer or a dedicated computer, etc., and hardware for operating the software. The present invention is not limited thereto, and any mechanism may be used as long as the degree of parameter change can be judged.
以下说明本发明的优选实施方式。Preferred embodiments of the present invention are described below.
本发明中,着眼于自动分析装置中的试样与试剂从反应开始到完成的足迹即反应过程数据,在测定中逐次得到测定对象物质的吸光度等测定数据,求出反应过程的近似式。通过使用所得的近似式的参数的值来计算某一定时间的测定对象物质的浓度,从而预测试样中所含的测定对象物质的浓度。In the present invention, focusing on the footprints of the sample and reagent in the automatic analyzer from the beginning to the end of the reaction, that is, the reaction process data, the measurement data such as the absorbance of the substance to be measured is obtained successively during the measurement, and an approximate expression of the reaction process is obtained. The concentration of the measurement target substance contained in the sample is predicted by calculating the concentration of the measurement target substance for a certain period of time using the obtained parameter values of the approximation formula.
通过在试样中所含的测定对象物质的测定中,使用随着时间推移而变化的测量值来计算近似式,并由所得的近似式算出一定时间的测定对象物质的浓度,从而解决上述课题。在图3中,横轴110表示时间的推移,纵轴120表示吸光度。另外,虚线130表示添加第2试剂的时刻,符号140表示实际测得的吸光度,曲线150表示由近似式求出的吸光度的时间变化。这样一来,即使未等到实际的反应时间10分钟,也可以在近似使用的点的测光时间内得到测量值。通过这样进行利用,无需观测直至反应完成的时间的吸光度,可以在反应完成前算出测定值。Solve the above-mentioned problems by calculating an approximate expression using measured values that change over time in the measurement of the object of measurement contained in the sample, and calculating the concentration of the object of measurement for a certain period of time from the obtained approximate expression . In FIG. 3 , the
另外,由于具有由近似式记载的测定数据和逐次存储的时序数据进行比较的装置,因此能够得知最佳的反应时间。In addition, since there is a device for comparing the measurement data described by the approximate formula with the sequentially stored time-series data, it is possible to know the optimal response time.
另外,通过由近似式算出反映随着时间推移而变化的测量值的状态的参数的值,逐次存储算出的参数的值,在已存储的前述参数的值和新存储的参数的值稳定的时间点算出某一定时间的测定对象物质的浓度,从而能够在最佳的反应时间算出浓度。In addition, by calculating the value of the parameter reflecting the state of the measured value that changes with the passage of time from the approximate formula, and storing the calculated parameter value sequentially, the value of the previously stored parameter and the value of the newly stored parameter are stable. By point-calculating the concentration of the measurement target substance for a certain period of time, the concentration can be calculated at the optimum reaction time.
另外,通过由近似式算出反映随着时间推移而变化的测量值的状态的参数的值,由前述参数的值算出测定对象物质的浓度,存储所算出的测定对象物质的浓度,在已存储的测定对象物质的浓度和新存储的测定对象物质的浓度稳定的时间点输出测定对象物质的浓度,从而能够在最佳的反应时间输出浓度。In addition, by calculating the value of the parameter reflecting the state of the measured value that changes with time from the approximate formula, the concentration of the measurement object substance is calculated from the value of the above-mentioned parameter, and the calculated concentration of the measurement object substance is stored. By outputting the concentration of the measurement target substance at the time point when the concentration of the measurement target substance and the newly stored concentration of the measurement target substance stabilize, the concentration can be output at an optimal response time.
另外,通过由近似式算出反映随着时间推移而变化的测量值的状态的参数的值,由前述参数的值预测测定对象物质的测量值,在与实际得到的测量值的偏离小的时间点算出测定对象物质的浓度,从而能够在最佳的反应时间算出浓度。In addition, by calculating the value of the parameter reflecting the state of the measured value changing with the passage of time from the approximate formula, the measured value of the substance to be measured is predicted from the value of the parameter, and at a time point where the deviation from the actually obtained measured value is small By calculating the concentration of the substance to be measured, the concentration can be calculated at an optimal reaction time.
另外,存储多种包含反映随时间推移而变化的测量值的状态的一个以上参数的算式,根据作为测量对象的测定对象物质或者所使用的试剂的种类,从前述多种算式中选择一种算式。关于使用哪个算式,可以通过事前的验证实验,根据试剂的种类、每个项目来预先决定最佳的算式,或者使用多种算式分别计算,采用与随着时间推移而得到的反应过程数据的残差(由实际测定所得的吸光度与通过近似式算出的吸光度之差)减小的近似式作为最终的浓度值预测的近似式。通过算出近似式,能够与以往相比高精度地对吸光度的时间变化进行近似,能够更加容易地设定最佳的反应时间。In addition, a plurality of formulas including one or more parameters reflecting the state of measured values that change over time are stored, and one of the aforementioned formulas is selected according to the measurement target substance to be measured or the type of reagent to be used. . As for which formula to use, the optimal formula can be determined in advance according to the type of reagent and each item through a pre-verification experiment, or multiple formulas can be used for separate calculations, and residuals from reaction process data obtained over time can be used. The approximate expression in which the difference (the difference between the absorbance obtained by the actual measurement and the absorbance calculated by the approximate expression) decreases is used as the approximate expression for predicting the final concentration value. By calculating the approximation formula, it is possible to approximate the temporal change of absorbance more accurately than before, and it is possible to more easily set an optimum reaction time.
发明效果Invention effect
如果能够利用本发明从而高精度地捕捉反应过程,则即使反应时间不为现状的10分钟也能够进行测定。因此,能够得到紧急样本的迅速的测定结果。另外,不仅是紧急样本,对于一般样本也能够缩短以前的测定时间,本发明的自动分析装置使用总反应时间的多点中的反应刚开始后的几点来算出反应。由反应后的吸光度算出浓度。由于无需观察所有反应时间,因此能够大幅缩短样本的测定时间,从而能够期待提高自动分析装置的生化测定的效率。If the present invention can capture the reaction process with high precision, measurement can be performed even if the reaction time is not the current 10 minutes. Therefore, prompt measurement results of urgent samples can be obtained. In addition, not only emergency samples but also ordinary samples can shorten the previous measurement time, and the automatic analyzer of the present invention calculates the reaction using the points immediately after the reaction starts among the multiple points of the total reaction time. The concentration was calculated from the absorbance after the reaction. Since there is no need to observe all the reaction times, the measurement time of the sample can be significantly shortened, and it is expected to improve the efficiency of the biochemical measurement of the automatic analyzer.
另外,反应最初的算出值与在最终的反应完成时算出的值之间存在偏离时,能够作为反应异常而发生数据警报,数据的可靠性也提高。In addition, when there is a deviation between the value calculated at the beginning of the reaction and the value calculated at the end of the final reaction, a data alarm can be generated as a reaction abnormality, and the reliability of the data is also improved.
附图说明 Description of drawings
图1是表示适用本发明后的自动分析装置的构成的概略的图。FIG. 1 is a diagram showing a schematic configuration of an automatic analyzer to which the present invention is applied.
图2是表示第1实施例的处理流程的图。FIG. 2 is a diagram showing a processing flow of the first embodiment.
图3是表示利用终点法进行的测定中的吸光度的时间变化的图。Fig. 3 is a graph showing the temporal change of absorbance in measurement by an endpoint method.
图4是表示利用速率法进行的测定中的吸光度的时间变化的图。Fig. 4 is a graph showing the temporal change of absorbance in measurement by a rate method.
图5是表示算出的参数值的变化的图。FIG. 5 is a graph showing changes in calculated parameter values.
图6是表示算出的参数值的方差的变化的图。FIG. 6 is a graph showing changes in variances of calculated parameter values.
图7是表示算出的浓度值的误差的分布的图。FIG. 7 is a graph showing the distribution of errors in calculated concentration values.
图8是表示测定TG时的反应过程数据的图。Fig. 8 is a graph showing reaction process data when TG is measured.
图9是表示第2实施例的处理流程的图。Fig. 9 is a diagram showing the processing flow of the second embodiment.
图10是表示第3实施例的处理流程的图。Fig. 10 is a diagram showing the processing flow of the third embodiment.
图11是表示记载了针对检查项目和所使用的试剂的组合的最佳近似式和反应时间的表格的例子的图。FIG. 11 is a diagram showing an example of a table in which optimal approximation expressions and reaction times for combinations of test items and reagents to be used are described.
图12是表示利用终点法进行的测定中的吸光度的时间变化和由近似式求出的吸光度变化的图。Fig. 12 is a graph showing the time change of absorbance and the change of absorbance obtained from an approximation formula in the measurement by the endpoint method.
图13是表示利用终点法进行的测定中的吸光度的时间变化和由近似式求出的吸光度变化的图。Fig. 13 is a graph showing the time change of absorbance in measurement by the endpoint method and the change of absorbance obtained from an approximation formula.
图14是表示利用终点法进行的测定中的吸光度的时间变化和由近似式求出的吸光度变化的图。Fig. 14 is a graph showing the time change of absorbance in measurement by the endpoint method and the change of absorbance obtained from an approximation formula.
图15是表示第5实施例的处理流程的图。Fig. 15 is a diagram showing the processing flow of the fifth embodiment.
具体实施方式 Detailed ways
以下,使用附图对本发明的实施方式进行说明。Embodiments of the present invention will be described below using the drawings.
实施例Example
实施例1Example 1
图2是表示适用本发明后的生化自动分析装置的构成的概略的图。1是样品盘,2是试剂盘,3是反应盘,4是反应槽,5是采样机构,6是移液机构,7是搅拌机构,8是测光机构,9是洗涤机构,10是显示部,11是输入部,12是存储部,13是控制部,14是压电元件驱动器,15是搅拌机构控制器,16是试样容器,17、19是圆形盘,18是试剂瓶,20是冷藏库,21是反应容器,22是反应容器支持物,23是驱动机构,24、27是探头,25、28是支承轴,26、29是臂,31是固定部,32是电极,33是喷嘴,34是上下驱动机构。存储部中存储有分析参数、各试剂瓶的可分析次数、最大可分析次数、校准结果、分析结果等。试样的分析如下所述,依次实施采样、试剂分注、搅拌、测光、反应容器的洗涤、浓度换算等数据处理。Fig. 2 is a diagram showing a schematic configuration of a biochemical automatic analyzer to which the present invention is applied. 1 is the sample tray, 2 is the reagent tray, 3 is the reaction tray, 4 is the reaction tank, 5 is the sampling mechanism, 6 is the pipetting mechanism, 7 is the stirring mechanism, 8 is the photometry mechanism, 9 is the washing mechanism, 10 is the
样品盘1由控制部13经由显示部10控制。在样品盘1上,多个试样容器16排列设置在圆周上,按照被分析的试样的顺序移动至采样探头24之下。试样容器16中的样本通过与样本采样机构5连接的试样用泵,以规定量分注到反应容器21中。The sample disk 1 is controlled by the
分注有试样的反应容器21在反应槽4中移动至第1试剂添加位置。在移动后的反应容器16中,利用与试剂分注探头6连接的试剂用泵(未作图示),添加规定量的从试剂容器18吸取的试剂。第一试剂添加后的反应容器21移动至搅拌机构7的位置,进行最初的搅拌。上述的试剂的添加-搅拌针对第一~第四试剂进行。The
内容物被搅拌后的反应容器21从光源发出的光束中通过,此时的吸光度通过多波长光度计的测光机构8检测。检测到的前述吸光度信号进入控制部13,转换为样本的浓度。The
浓度转换后的数据存储在存储部12中,在显示部中显示。测光完成后的前述反应容器21移动至洗涤机构9的位置进行洗涤,供给下一分析。The data after density conversion is stored in the
接着,参照图1来说明在控制部13中转换为样本的浓度的处理的详情。图1是表示控制部13内的涉及浓度换算部分的处理步骤的图。首先,在对某一样本开始某一检查项目的测定的同时,在步骤S5中,从表示吸光度的时间变化的多个近似式中选择与检查项目对应的近似式。Next, the details of the process of converting to the concentration of the sample in the
如背景技术中所述,大致有终点法、速率法2种测定方法,在这2种方法中,吸光度的变化差异较大。将终点法和速率法的代表性的吸光度的时间变化的例子示于图3、图4。图3、图4中,横轴110均表示时间,纵轴120均表示吸光度。另外,该反应是2试剂反应,在第2试剂添加后,用于对测定对象物质进行测定的吸光度变化开始。图3、图4中,虚线130表示第2试剂添加的时刻。另外,符号140表示测得的吸光度,曲线150表示由近似式求出的吸光度的时间变化。As described in the background art, there are roughly two measurement methods: the endpoint method and the rate method, and the change in absorbance is largely different in these two methods. Examples of representative time changes in absorbance by the endpoint method and the rate method are shown in FIGS. 3 and 4 . In FIG. 3 and FIG. 4 , the
就终点法而言,如图3所示,随着反应的进展,吸光度渐近至恒定值。另一方面,在速率法中,如图4所示,吸光度大体上以直线变化。因此,在这2种方法中需要使用不同的近似式。另外,即使是相同的终点法、速率法,根据项目不同也会显示出略微不同的时间变化,因此要准备多个式子,选择与项目对应的最佳的近似式。In terms of the endpoint method, as shown in Figure 3, the absorbance asymptotically reaches a constant value as the reaction progresses. On the other hand, in the rate method, as shown in Fig. 4, the absorbance changes substantially in a straight line. Therefore, different approximations need to be used in these two methods. In addition, even with the same endpoint method and rate method, time changes are slightly different depending on the item, so it is necessary to prepare multiple expressions and select the best approximate expression corresponding to the item.
作为例如终点法所使用的式子,可以准备下述式并选择。其中,x是吸光度,t是时间,a0、a1、a2、b0、b1、c、d、e、r、s、k1、k2是参数。For example, the following formula can be prepared and selected as the formula used in the endpoint method. Among them, x is absorbance, t is time, a0, a1, a2, b0, b1, c, d, e, r, s, k1, k2 are parameters.
x=a0+a1*exp(-k1*t) ...(数1)x=a0+a1*exp(-k1*t) ...(Number 1)
x=a0+a1*exp(-k1*t)+a2*exp(-k2*t) ...(数2)x=a0+a1*exp(-k1*t)+a2*exp(-k2*t) ...(Number 2)
x=c+(1/(b0+b1*t)) ...(数3)x=c+(1/(b0+b1*t)) ...(Number 3)
x=d+(e/(exp(r*t)+s)) ...(数4)x=d+(e/(exp(r*t)+s)) ...(Number 4)
如果将(数1)、(数2)进一步一般化,则成为下式。其中,将n设为自然数、将∑{}设为表示使{}内的式子的i从1变化至n并相加而得的和的符号。也可以将n设为多个自然数,使用(数5)。(Numerical 1) and (Numerical 2) are further generalized to the following formula. Here, n is a natural number, and Σ{} is a symbol representing a sum obtained by changing i in the expression in {} from 1 to n and adding them. It is also possible to set n to a plurality of natural numbers and use (numeral 5).
x=a0+∑{ai*exp(-ki*t)} ...(数5)x=a0+∑{ai*exp(-ki*t)} ... (Number 5)
速率法中可以利用下述形式的式子。x是吸光度,t是时间,a、b是参数。h(t,ψ)是包含多个参数ψ、t为无限大且渐近至0的函数。An expression of the following form can be used in the rate method. x is absorbance, t is time, and a, b are parameters. h(t, ψ) is a function containing multiple parameters ψ, t is infinite and asymptotically to zero.
x=a*t+b+h(t,ψ) ...(数6)x = A*T+B+H (T, ψ) ... (Number 6)
速率法由于随着时间的变化而吸光度以直线变化,因此吸光度x在理想状态下成为t的一次式x=a*t+b,但在实际反应中,反应初期的反应速度是不恒定的,反应过程存在曲线变化的情况(时滞,lag time)。上式的h(t,ψ)是用于高精度地近似反应初期的曲线部分的项。作为将h(t,ψ)具体化后的式子,例如可以使用下述式。其中,x是吸光度,t是时间,a、b、c1、d、e、k1、ci、ki、u、v、w、p、q、r是参数。另外,将n设为任意的自然数、将∑{}设为表示使{}内的式子的i从1变化至n并相加而得的和的符号。In the rate method, the absorbance changes linearly with the change of time, so the absorbance x becomes the linear formula x=a*t+b of t in an ideal state, but in the actual reaction, the reaction speed at the initial stage of the reaction is not constant, There is a curve change in the reaction process (lag time). h(t, ψ) in the above formula is a term for accurately approximating the curve portion at the initial stage of the reaction. As a formula that embodies h(t, ψ), for example, the following formula can be used. Among them, x is absorbance, t is time, a, b, c1, d, e, k1, ci, ki, u, v, w, p, q, r are parameters. In addition, n is an arbitrary natural number, and Σ{} is a symbol representing a sum obtained by changing i in the expression in {} from 1 to n and adding them.
x=a*t+b+c1*exp(-k1*t)...(数7)x=a*t+b+c1*exp(-k1*t)...(Number 7)
x=a*t+b+∑{ci*exp(-ki*t)} ...(数8)x = a*t+b+∑ {ci*exp (-ki*t)} ... (Number 8)
x=a*t+b+e/(t+d) ...(数9)x=a*t+b+e/(t+d) ...(Number 9)
x=a*t+b+w/{exp(u*t)+v} ...(数10)x = a*t+b+w/{exp (u*t)+v} ... (number 10)
x=a*t+b+p*log{1+q*exp(r*t)} ...(数11)x = a*t+b+p*log {1+q*exp (r*t)} ... (Number 11)
(数6)~(数11)是用于对吸光度在反应初期相对时间以曲线变化后,成为直线变化这样的吸光度变化进行近似的式子。但是,也存在因检查项目而在反应的末期再次成为曲线变化的情况。这种情况下,可以使用高次多项式等用于一般的曲线近似的式子。将这种一般的曲线的式子在以下以(数12)所示的形式表现。其中,t表示时间,x表示吸光度,φ表示多个参数。(Expression 6) to (Expression 11) are expressions for approximating the absorbance change in a linear change after the absorbance changes in a curve with respect to time at the initial stage of the reaction. However, depending on the inspection items, the curve may change again at the end of the reaction. In this case, an expression used for general curve approximation, such as a high-order polynomial, can be used. The expression of such a general curve is expressed in the form shown in (Expression 12) below. Among them, t represents time, x represents absorbance, and φ represents multiple parameters.
x=g(t,φ) ...(数12)x=g(t, φ) ... (Number 12)
吸光度随着时间的推移被多次测定,但在步骤S10中,从测光机构8输入一次测定的吸光度数据。使用在伴随着试剂与样本的反应的色调变化时吸光度变化大的波长(主波长)的光和吸光度几乎不变化的波长(副波长)的光的2种波长光的测定方式中,输入主波长光的吸光度与副波长光的吸光度之差作为吸光度数据。The absorbance is measured a plurality of times over time, but in step S10 , the absorbance data measured once is input from the
如图3、图4所示,在使用2种以上的多种试剂的反应中,在添加引起主要的吸光度变化的试剂(通常为最终试剂)后,开始吸光度的大变化。因此,在步骤S15中,判定是否已经添加引起主要的吸光度变化的试剂,在还未添加的情况下将处理返回至步骤S10,输入下一吸光度数据。在已添加的情况下将处理移至S20,存储输入的吸光度数据。As shown in FIGS. 3 and 4 , in reactions using two or more reagents, a large change in absorbance begins after the addition of the reagent (usually the final reagent) that causes the main absorbance change. Therefore, in step S15, it is determined whether or not the reagent causing a major change in absorbance has been added, and if not added, the process returns to step S10, and the next absorbance data is input. If it has been added, the process moves to S20, and the input absorbance data is stored.
在步骤S25中,判定是否存储了为了按照使记载吸光度的时间变化的算式与实际的吸光度的时间变化尽可能减小的方式算出算式中的参数的值时所需要的吸光度数据数。通常,为了算出算式中的参数值,需要与参数相同数目以上的数据数。在步骤S25中判定为未存储需要的数据数的情况下,将处理返回至步骤S10,输入下一吸光度数据。在存储了需要的数据数的情况下,将处理移至步骤S30。In step S25, it is determined whether or not the number of absorbance data required for calculating the value of the parameter in the formula to minimize the time change of absorbance and the actual time change of absorbance is stored is stored. Usually, in order to calculate the parameter value in the formula, the number of data equal to or greater than the number of parameters is required. When it is determined in step S25 that the required number of data is not stored, the process returns to step S10 and the next absorbance data is input. When the required number of data is stored, the process proceeds to step S30.
在步骤S30中,按照使记载吸光度的时间变化的算式与实际的吸光度的时间变化尽可能减小的方式算出算式中的参数值,在步骤S31中存储算出的参数值。具体而言,在步骤S30中,按照使测定并存储的吸光度数据和利用(数1)~(数12)算出的与测量吸光度的时间点相同时间点的吸光度的平方误差尽量减小的方式,确定算式中的参数值。对于参数值的算出,可以使用现有的最小二乘计算方法,但作为能够应对各种形式的算式的方法,例如利用最速下降法来算出平方误差成为最小的参数值。In step S30, the parameter value in the formula is calculated so that the formula describing the time change of absorbance and the actual time change of absorbance are as small as possible, and the calculated parameter value is stored in step S31. Specifically, in step S30, in such a manner that the square error between the measured and stored absorbance data and the absorbance at the same time point as the time point at which the absorbance was measured is calculated using (1) to (12), as small as possible, Determine the parameter values in the formula. For the calculation of parameter values, the conventional least square calculation method can be used, but as a method that can handle various forms of calculation expressions, for example, the steepest descent method is used to calculate the parameter value with the smallest square error.
在步骤S40中,判定是否存储了用于进行浓度算出的足够次数的参数。在以后的计算中,由参数进行浓度值的算出,但通常在观测到的数据数少时,算出的浓度值所含的误差增多。因此,在本实施例中,为了防止输出含有较多误差的浓度值,要确定用于浓度算出所需要的参数的最少算出次数,在步骤S40中,检查是否进行了该次数以上的参数的算出。如果未进行需要的次数的参数的算出,则将处理返回至S10,输入下一吸光度数据。在已算出需要次数以上的参数时,将处理移至步骤S45。In step S40, it is determined whether or not parameters are stored enough times for density calculation. In subsequent calculations, the concentration value is calculated from the parameters, but generally, when the number of observed data is small, errors included in the calculated concentration value increase. Therefore, in this embodiment, in order to prevent the output of concentration values containing many errors, it is necessary to determine the minimum number of calculations for the parameters required for concentration calculation. In step S40, it is checked whether the calculation of parameters more than this number of times has been performed. . If the calculation of parameters for the necessary number of times has not been performed, the process returns to S10 and the next absorbance data is input. When the parameters more than the required number of times have been calculated, the process proceeds to step S45.
在步骤S45中,计算已算出的参数的时间变动的大小。本发明从反应开始后重复进行测定吸光度,求出算式的参数这样的处理。求出算式的参数的计算是按照尽可能与观测到的吸光度一致的方式推断算式的参数的处理,但在反应初期、吸光度数据数还较少时,由于数据所含的误差,推断的参数所含的误差也增大。随着时间推移、吸光度数据增加,吸光度数据所含的随机误差相抵消,推断的参数的误差也减小。因此,反应初期由于吸光度所含的误差的影响,每一次推断的参数的值也变动,但随着数据数增加,参数的变化减小,收敛于最佳的值。由实际的吸光度数据求出观测吸光度的各时间点的参数值,将绘图后的例子示于图5。横轴210表示时间,纵轴220表示参数的值。符号240表示在各时刻计算出的参数的值。In step S45, the magnitude of the temporal variation of the calculated parameter is calculated. In the present invention, the process of measuring the absorbance and obtaining the parameters of the formula is repeated after the start of the reaction. The calculation to obtain the parameters of the formula is a process of estimating the parameters of the formula so as to match the observed absorbance as much as possible. However, in the early stage of the reaction, when the number of absorbance data is small, due to the error contained in the data, the estimated parameters may not be accurate. The included error also increases. As the absorbance data increases over time, the random errors contained in the absorbance data cancel out and the errors in the inferred parameters decrease. Therefore, in the initial stage of the reaction, the value of the estimated parameter also fluctuates every time due to the influence of the error contained in the absorbance, but as the number of data increases, the variation of the parameter decreases and converges to the optimal value. The parameter value at each time point of the observed absorbance was obtained from the actual absorbance data, and an example after plotting is shown in FIG. 5 . The horizontal axis 210 represents time, and the vertical axis 220 represents the value of the parameter. Reference numeral 240 represents the value of the parameter calculated at each time.
在步骤S45中使参数的时间变动数值化。作为使参数的变化数值化的方法,可以利用各种方法,例如可以利用与前一次计算出的参数的值之差、之前数次的参数的方差或数次的参数的最大值与最小值之差等。作为参数的时间变动,在某一时间点,由该时间点求出直至4次前的合计5次的参数值的方差,将绘图后的例子示于图6。横轴110表示时间的推移,纵轴320表示参数值的方差。符号340表示在各时刻计算出的方差的值。In step S45, the time variation of the parameter is digitized. As a method of quantifying the change of the parameter, various methods can be used. For example, the difference from the value of the parameter calculated last time, the variance of the parameter several times before, or the difference between the maximum value and the minimum value of the parameter several times can be used. Poor wait. As the time variation of the parameter, at a certain point in time, the variance of the parameter values of five times up to the fourth time in total was obtained from the time point, and an example after plotting is shown in FIG. 6 . The
在步骤S50中,将步骤S40中求出的参数的时间变动与预先规定的阈值进行比较。这里,参数变化在预先规定的阈值以下时,判定为已积累用于计算测定对象物质的浓度的足够量的吸光度数据,因此将处理移至步骤S65,算出浓度。参数变化大于预先规定的阈值时,认为还未积累用于算出浓度值的足够的吸光度数据,因此将处理移至步骤S55,进一步检查是否有下一数据。用于比较参数变动的阈值根据装置的目的预先设定,以得到需要的测定精度。但是,根据检查的目的,使用者可以进行变更。另外,还可以对每个检查项目设定不同的值。例如在图6所示的例子中,将阈值设定为50时,虚线330表示阈值。这种情况下,在时间为35时参数变动低于阈值,因此判断在该时间点积累了用于算出浓度值的足够的吸光度。In step S50, the time variation of the parameter obtained in step S40 is compared with a predetermined threshold value. Here, when the parameter change is equal to or less than a predetermined threshold, it is determined that sufficient absorbance data for calculating the concentration of the substance to be measured has been accumulated, and therefore the processing proceeds to step S65 to calculate the concentration. If the parameter change is greater than the predetermined threshold value, it is considered that sufficient absorbance data for calculating the concentration value has not been accumulated, so the process moves to step S55 to further check whether there is next data. The threshold for comparing parameter fluctuations is set in advance according to the purpose of the device so as to obtain the required measurement accuracy. However, the user can change it according to the purpose of inspection. In addition, it is also possible to set different values for each inspection item. For example, in the example shown in FIG. 6 , when the threshold is set to 50, a
参数有多个时,对全部参数的变动设定阈值,全部参数的变动低于阈值时将处理移至S65。但是,就该判定条件而言,考虑到各种例子,多个参数中选择的若干参数变动低于阈值时,也可以将处理移至步骤S65。When there are a plurality of parameters, a threshold value is set for the variation of all parameters, and when the variation of all parameters is lower than the threshold value, the process proceeds to S65. However, regarding this determination condition, various examples may be taken into consideration, and when the variation of some selected parameters among a plurality of parameters is lower than the threshold value, the process may be shifted to step S65.
在步骤S55中判断为有下一数据的情况下,将处理返回至步骤S10,输入下一吸光度数据。如果没有下一吸光度数据,则判断为即使经过规定的反应时间,也得不到足够精度的参数,因此在步骤S60中记录为异常的数据。When it is determined in step S55 that there is next data, the process returns to step S10 and the next absorbance data is input. If there is no next absorbance data, it is judged that parameters with sufficient accuracy cannot be obtained even after a predetermined reaction time elapses, and thus abnormal data is recorded in step S60.
在步骤S65中,使用在步骤S30中算出的参数来算出测定对象物质的浓度。终点法的情况下,为了算出浓度,将经过足够的时间、吸光度不变化的时间点的吸光度换算成浓度。在本发明中,将在步骤S30中算出的参数值代入在步骤S5中选择出的近似式,将使时间变化至无限大时的算式的值作为经过足够时间后的吸光度。具体而言,(数1)、(数2)、(数5)中的a0、(数3)中的c、(数4)中的d成为所求的吸光度。根据本发明,即使吸光度本身变化,如果参数为恒定值,也可以算出浓度,因此可以进行比以往的反应时间短的高精度的测定。作为用于将由上述参数求出的吸光度换算成测定对象物质的浓度的方法,可以使用例如使用标准曲线的以往的方法。In step S65, the concentration of the measurement target substance is calculated using the parameters calculated in step S30. In the case of the endpoint method, in order to calculate the concentration, the absorbance at the time point at which the absorbance does not change after a sufficient time has elapsed is converted into the concentration. In the present invention, the parameter values calculated in step S30 are substituted into the approximate formula selected in step S5, and the value of the formula when the time is changed to infinity is used as the absorbance after a sufficient time has elapsed. Specifically, a0 in (Expression 1), (Expression 2), and (Expression 5), c in (Expression 3), and d in (Expression 4) are the absorbance to be obtained. According to the present invention, even if the absorbance itself changes, the concentration can be calculated if the parameter is a constant value, so it is possible to perform high-precision measurement with shorter reaction time than conventional ones. As a method for converting the absorbance obtained from the above parameters into the concentration of the substance to be measured, for example, a conventional method using a calibration curve can be used.
速率法的情况下,将在步骤S30中算出的参数值代入在步骤S5中选择出的近似式,计算直线部分的斜率,将所得的斜率换算成测定对象物质的浓度值。具体而言,(数6)~(数11)中,参数值a的值相当于直线部分的斜率。在(数12)这样的一般曲线的式子中,将斜率变化最少的部分看作直线。即,求出时间的二次微分g″(t,φ),将g″(t,φ)的绝对值变为最小的时间点ta看作直线部分。将ta的时间一次微分g′(ta、φ)设为直线的斜率。在速率法中,根据条件,反应初期的曲线部分的长度、形状不同,以往难以判定直线部分,难以决定用于判定直线部分的最佳反应时间,但根据本发明,能够容易地决定速率法的直线部分的斜率,反应时间也可以最佳化。作为将直线部分的斜率换算成测定对象物质的浓度的方法,可以利用例如使用了标准曲线的以往的方法。In the case of the rate method, the parameter value calculated in step S30 is substituted into the approximation formula selected in step S5, the slope of the straight line is calculated, and the obtained slope is converted into the concentration value of the measurement object substance. Specifically, in (Expression 6) to (Expression 11), the value of the parameter value a corresponds to the slope of the straight line portion. In the formula of a general curve such as (Expression 12), the portion where the slope changes the least is regarded as a straight line. That is, the quadratic differential of time g"(t, φ) is obtained, and the time point ta at which the absolute value of g"(t, φ) becomes the minimum is regarded as the linear portion. Let the first time differential g'(ta, φ) of ta be the slope of the straight line. In the rate method, depending on the conditions, the length and shape of the curve portion at the initial stage of the reaction are different. In the past, it was difficult to determine the straight line portion, and it was difficult to determine the optimum reaction time for judging the straight line portion. However, according to the present invention, the curve of the rate method can be easily determined. The slope of the straight line, the reaction time can also be optimized. As a method of converting the slope of the straight line into the concentration of the measurement target substance, for example, a conventional method using a calibration curve can be used.
在步骤S70中,算出相对于所得的浓度值的误差。如步骤S45的说明所述,在反应初期、吸光度数据数还较少时,由于数据所含的误差,推断的参数所含的误差也增大。随着时间推移、吸光度数据增加,吸光度数据所含的随机误差相抵消,推断的参数的误差也减小。因此,吸光度数据少时,最终换算得到的浓度值所含的误差大,数据数越多,误差越小。In step S70, an error with respect to the obtained density value is calculated. As described in the description of step S45, when the number of absorbance data is small at the initial stage of the reaction, errors contained in the estimated parameters also increase due to errors contained in the data. As the absorbance data increases over time, the random errors contained in the absorbance data cancel out and the errors in the inferred parameters decrease. Therefore, when there are few absorbance data, the error contained in the final converted concentration value is large, and the larger the number of data, the smaller the error.
相对于使用全部吸光度数据的情况下算出的浓度值,中间时间点的浓度值的误差的分布例如如图7所示。图7是示意地表示对浓度已知的精度管理物质进行20次测定并研究在各时刻算出的浓度值的误差的结果的图。图7中,横轴110表示时间的推移,纵轴420表示误差。符号440表示各时刻的误差的分布的平均值,线段460表示各时刻的误差的标准偏差。随着时刻的推移,误差的平均值、误差的标准偏差均减小。The distribution of errors in the concentration values at intermediate time points relative to the concentration values calculated using all the absorbance data is shown, for example, in FIG. 7 . FIG. 7 is a diagram schematically showing the results of measuring 20 times a quality control substance whose concentration is known and examining the error in the concentration value calculated at each time point. In FIG. 7, the
预先使用多个数据研究在各时间点算出的浓度值的误差分布,存储时间点与误差分布的关系作为表格。例如在表格中存储各时间点的误差的平均值和标准偏差。在步骤S70中,由存储的时间点与误差的关系的表格求出算出浓度值的时间点的误差。例如通过显示误差的平均值、方差值等,使用者可以得知测定结果的误差范围。另外,通过显示在表格内积累的各时间点的误差分布,成为设定在步骤S40中使用的最低限度的参数算出次数、在步骤S50中使用的参数变动的阈值等时的参考信息。The error distribution of the concentration value calculated at each time point is studied in advance using a plurality of data, and the relationship between the time point and the error distribution is stored as a table. For example, the average value and standard deviation of errors at each time point are stored in a table. In step S70, the error at the point in time at which the concentration value was calculated is calculated from the stored table of the relationship between the point in time and the error. For example, by displaying the average value and variance value of the error, the user can know the error range of the measurement result. In addition, by displaying the error distribution at each time point accumulated in the table, it becomes reference information when setting the minimum number of parameter calculations used in step S40, the threshold value of parameter variation used in step S50, and the like.
在上述的第1实施例中,在反应时间中多次由吸光度数据求出算式中所含的参数,利用参数的时间变动的大小,判定是否经过了用于算出浓度所需要的时间。因此,即使在不清楚具体设定多少反应时间好的情况下,也可以自动决定反应时间。另外,即使根据测定对象物质的种类、所使用的试剂,最佳的反应时间不同,也可以自动决定反应时间。In the above-mentioned first embodiment, the parameters included in the formula are obtained from the absorbance data multiple times during the reaction time, and the time variation of the parameters is used to determine whether the time required for calculating the concentration has elapsed. Therefore, even when it is unclear how much response time should be set specifically, the response time can be automatically determined. In addition, even if the optimum reaction time differs depending on the type of the substance to be measured and the reagent used, the reaction time can be determined automatically.
另外,为了与所使用的时序数据数,即反应时间对应地推断误差,装置使用者可以定量得知设定多少左右的反应时间会得到多少左右的误差。也可以根据项目或目的来设定最佳的反应时间。In addition, in order to estimate the error corresponding to the number of time-series data used, that is, the response time, the device user can quantitatively know how much the response time is set and how much error will be obtained. It is also possible to set the optimal reaction time according to the project or purpose.
以TG(中性脂肪)的项目为例来表示具体的迅速测定的浓度算出方法。A specific method of calculating the concentration of the rapid measurement is shown by taking the item of TG (neutral fat) as an example.
TG的测定法使用2试剂法的终点法。该反应过程如图8所示,第2试剂添加后,吸光度上升,如果进行一定时间反应,则显示出成为大致恒定的吸光度这样的形式。在该反应过程中可以高精度地进行近似的式子优选在事先研究或测定校准器时进行选择、设定,但可以使用(数1)~(数5)的多个式子来分别各自平行地进行计算,在浓度算出的判定部分从其残差(由近似式求出的吸光度的值与通过实际测定得到的吸光度的值之差)的大小来判断使用哪个近似式来进行浓度计算。As for the measurement method of TG, the endpoint method of the 2-reagent method was used. The reaction process is shown in FIG. 8. After the addition of the second reagent, the absorbance increases, and when the reaction proceeds for a certain period of time, the absorbance becomes substantially constant. The formula that can be approximated with high precision in this reaction process is preferably selected and set when studying or measuring the calibrator in advance, but it is possible to use a plurality of formulas (Expression 1) to (Expression 5) to parallelize each other. In the determination part of the concentration calculation, it is judged which approximate formula to use for concentration calculation based on the magnitude of the residual (the difference between the absorbance value calculated by the approximate formula and the absorbance value obtained by actual measurement).
在实施例1中,使用试剂R时的TG的迅速计算中所利用的近似式预先设定为(数1)。在具有图2所示的装置构成的自动分析装置中,试样与试剂被添加至图2的21所示的反应容器内并进行搅拌,然后开始测定对象物质被生成的工序的反应,将吸光度开始上升的最初的测光点设为P1时,例如在该分析装置中,随着时间的推移,吸光度在P1~P18处得到(图8)。由于近似式的计算至少需要2点以上的吸光度的值,因此浓度算出所需要的测光点从测定P2的时间点开始计算。In Example 1, the approximation formula used for the rapid calculation of TG when the reagent R is used is set in advance to (Expression 1). In the automatic analyzer having the device configuration shown in FIG. 2, the sample and the reagent are added to the reaction vessel shown by 21 in FIG. When P1 is the first photometric point at which the rise starts, for example, in this analyzer, absorbance is obtained at P1 to P18 over time ( FIG. 8 ). Since the calculation of the approximate formula requires at least two or more absorbance values, the photometry points required for the concentration calculation are calculated from the time point when P2 is measured.
由P1、P2的点进行近似计算,由P1~P3的点进行近似计算,由P2~P4、P1~P5...每当测定吸光度时进行近似式的计算。Approximate calculations are performed from the points of P1 and P2, approximate calculations are performed from the points of P1 to P3, and calculations of approximate formulas are performed from P2 to P4, P1 to P5... every time the absorbance is measured.
近似计算算出的参数,例如由近似式算出的最终吸光度的值A(a0)的值如图5所示,随着测光点增加,近似精度提高,值逐渐稳定。也可以利用A以外的参数k、任意时间t的吸光度x(t)作为判定的数值。另外,作为评价参数值的稳定性的判断标准,例如,如图6所示,求出算出的参数5次(P2~P6)的值的方差。如果参数稳定,则其方差的值也减小,但如果例如对方差的值设定阈值,且为阈值以下,则判断为参数稳定,利用该时间点的近似式和参数值来预测算出测定值。这里,如图6所示,方差的值为10以下时,判断为参数稳定,由测光点P1~P15(测光点35)的近似式来算出浓度。The parameters calculated by approximate calculation, such as the value of the final absorbance value A(a0) calculated by the approximate formula, are shown in FIG. 5 . As the photometering points increase, the approximation accuracy improves and the value gradually stabilizes. The parameter k other than A and the absorbance x(t) at an arbitrary time t may also be used as the value for determination. In addition, as a criterion for evaluating the stability of the parameter value, for example, as shown in FIG. 6 , the variance of the value of the calculated parameter quintuple (P2 to P6) is obtained. If the parameter is stable, the value of its variance also decreases, but if, for example, a threshold value is set for the value of the variance and the value is below the threshold value, the parameter is judged to be stable, and the measured value is predicted and calculated using the approximate expression and parameter value at that point in time. . Here, as shown in FIG. 6 , when the value of the variance is 10 or less, it is determined that the parameters are stable, and the density is calculated from the approximate expression of the photometric points P1 to P15 (photometric point 35 ).
自动分析装置所使用的浓度计算方法通常从以下的式子求出。The concentration calculation method used by the automatic analyzer is generally obtained from the following formula.
Cx={k×(样本的吸光度-标准液1的吸光度)}×装置常数 ...(数13)Cx={k×(absorbance of sample-absorbance of standard solution 1)}×device constant ...(Number 13)
式中的k是k因子,从校准的结果可以得到。求出的测定对象物质的浓度Cx可以从任意时间或反应达到平衡状态的时间点的吸光度a0求出。或者也可以从近似式计算通常的测定完成时间时间点的吸光度Ct,并作为预测值Cm输出。The k in the formula is the k factor, which can be obtained from the calibration results. The concentration Cx of the measurement target substance to be obtained can be obtained from the absorbance a0 at an arbitrary time or at a point in time when the reaction reaches an equilibrium state. Alternatively, the absorbance Ct at the usual measurement completion time point may be calculated from an approximate formula and output as the predicted value Cm.
实施例2Example 2
本发明的第2实施例的生化自动分析装置也与第1实施例相同,构成的概略如图2所示。由于控制部13以外的操作与第1实施例相同,因此省略详细说明。The biochemical automatic analyzer of the second embodiment of the present invention is also the same as that of the first embodiment, and its configuration is schematically shown in FIG. 2 . Since operations other than the
参照图9说明第2实施例的、将控制部的吸光度转换为样本的浓度的处理的详情。另外,附上与图1相同符号的处理由于与图1的用相同符号表示的处理相同,因此以下省略详细说明。Details of the process of converting the absorbance of the control unit into the concentration of the sample in the second embodiment will be described with reference to FIG. 9 . In addition, since the processing denoted by the same code|symbol as FIG. 1 is the same as the process denoted by the same code|symbol in FIG. 1, detailed description is abbreviate|omitted below.
从处理的开始起,步骤S5、步骤S10、步骤S15、步骤S20、步骤S30、直至步骤S35的处理是与图1所示的第1实施例相同的处理。在步骤S35中,计算出参数之后,在本实施例中,通过步骤S65,使用计算出的参数算出测定对象物质的浓度值。由参数算出浓度值的处理的详情与第1实施例所述的步骤S65的处理相同。在步骤S100中存储算出的浓度值。From the start of the process, the processes of step S5, step S10, step S15, step S20, step S30, and step S35 are the same as those of the first embodiment shown in FIG. 1 . After the parameters are calculated in step S35, in this embodiment, the concentration value of the measurement target substance is calculated using the calculated parameters in step S65. The details of the processing of calculating the density value from the parameters are the same as the processing of step S65 described in the first embodiment. The calculated density value is stored in step S100.
在步骤S110中,判定是否计算并存储了为了将算出的浓度值作为最终的测定结果的足够次数的浓度值。如第1实施例的步骤S40的说明所述,如果通常观测到的数据数少,则算出的浓度值所含的误差增多。因此,在本实施例中,为了防止输出包含较多误差的浓度值,确定用于算出成为最终测定结果的浓度所需要的最少算出次数,在步骤S110中检查是否进行了该次数以上的浓度值的算出。如果未进行需要次数的浓度值的算出,则将处理返回至步骤S10,输入下一吸光度数据。已算出了需要次数以上的浓度值时,将处理移至步骤S120。In step S110, it is determined whether or not enough concentration values have been calculated and stored for the calculated concentration value to be the final measurement result. As described in the description of step S40 in the first embodiment, if the number of observed data is usually small, the error included in the calculated concentration value increases. Therefore, in this embodiment, in order to prevent the output of the concentration value containing many errors, the minimum number of calculations required to calculate the concentration that will become the final measurement result is determined, and it is checked in step S110 whether the concentration value has been calculated more than the number of times. calculated. If the calculation of the required number of concentration values has not been performed, the process returns to step S10, and the next absorbance data is input. When the density value equal to or greater than the required count has been calculated, the process proceeds to step S120.
在步骤S115中,计算算出的浓度值的时间变动的大小。本发明从反应开始后重复进行测定吸光度、求出算式的参数、算出浓度值这样的处理。求出算式的参数的计算是按照与观测到的吸光度尽可能一致的方式推断算式的参数的处理,但在反应初期、吸光度数据数还较少时,由于数据所含的误差,推断的参数所含的误差也增大,该结果算出的浓度值所含的误差也增大。随着时间推移、吸光度数据增加,吸光度数据所含的随机误差相抵消,推断的参数的误差也减小,算出的浓度值所含的误差也减小。因此,反应初期由于吸光度所含的误差的影响,每一次算出的浓度值也变动,随着数据数增加,浓度值的变动减小,收敛于最佳的值。关于浓度值,也显示出与图5所示的参数值同样的时间变动。In step S115, the magnitude of the temporal variation of the calculated density value is calculated. In the present invention, the process of measuring the absorbance, obtaining the parameters of the formula, and calculating the concentration value is repeated after the start of the reaction. The calculation to obtain the parameters of the formula is to estimate the parameters of the formula so that the parameters of the formula are as close as possible to the observed absorbance. However, in the early stage of the reaction, when the number of absorbance data is small, due to the error contained in the data, the estimated parameters may not be accurate. The error included also increases, and the error included in the concentration value calculated from the result also increases. As time goes by and the absorbance data increases, the random error contained in the absorbance data cancels out, the error of the inferred parameters also decreases, and the error contained in the calculated concentration value also decreases. Therefore, at the initial stage of the reaction, due to the influence of the error contained in the absorbance, the concentration value calculated every time also fluctuates. As the number of data increases, the fluctuation of the concentration value decreases and converges to the optimal value. Concerning the concentration value, the same time variation as the parameter value shown in FIG. 5 is shown.
在步骤S115中,使上述浓度值的时间变动的大小数值化。作为使浓度值的时间变动数值化的方法,可以利用各种方法,例如可以利用与前一次的浓度值之差、多次的浓度值的方差或多次的浓度值的最大值与最小值之差等。作为浓度值的时间变动,在某一时间点,由该时间点求出直至4次前的合计5次的浓度值的方差时,显示出与图6所示的参数变动同样的变化。In step S115, the magnitude of the time variation of the above-mentioned concentration value is converted into a numerical value. Various methods can be used to quantify the time variation of the concentration value. For example, the difference from the previous concentration value, the variance of multiple density values, or the difference between the maximum value and the minimum value of multiple density values can be used. Poor wait. As the time variation of the concentration value, at a certain point in time, when the variance of the concentration value of five times up to four times in total is obtained from the time point, the same change as the parameter variation shown in FIG. 6 is shown.
在步骤S120中,将步骤S115中求出的浓度值的时间变动与预先规定的阈值进行比较。这里,浓度值的时间变动在预先规定的阈值以下时,判定为已积累用于计算测定对象物质的浓度的足够量的吸光度数据,因此将处理移至步骤S70,算出误差。浓度值的时间变动大于预先规定的阈值时,认为还未积累用于算出浓度值的足够的吸光度数据,因此将处理移至步骤S55,进一步检查是否有下一数据。用于比较浓度值变动的阈值预先根据装置的目的进行设定,以得到需要的测定精度。但是,根据检查的目的,使用者可以进行变更。另外,还可以对每个检查项目设定不同的值。In step S120, the time variation of the concentration value obtained in step S115 is compared with a predetermined threshold value. Here, when the temporal variation of the concentration value is equal to or less than a predetermined threshold, it is determined that sufficient absorbance data for calculating the concentration of the measurement target substance has been accumulated, and therefore the processing proceeds to step S70 to calculate an error. If the time variation of the concentration value is greater than the predetermined threshold value, it is considered that sufficient absorbance data for calculating the concentration value has not been accumulated, so the process moves to step S55 to further check whether there is the next data. The threshold value for comparing fluctuations in concentration values is set in advance according to the purpose of the device so that the required measurement accuracy can be obtained. However, the user can change it according to the purpose of inspection. In addition, it is also possible to set different values for each inspection item.
步骤S55、S60、S70的处理由于与第1实施例的相同符号的处理相同,因此省略说明。The processing of steps S55, S60, and S70 is the same as the processing of the same symbols in the first embodiment, and thus description thereof will be omitted.
在上述第2实施例中,在反应时间中多次由吸光度数据求出算式中所含的参数,算出浓度值,利用浓度值的时间变动的大小,判定是否经过了用于算出浓度所需要的时间。因此,在不清楚具体设定多少测定时间好的情况下,也可以自动决定反应时间。另外,即使根据测定对象物质的种类、所使用的试剂,最佳的反应时间不同,也可以自动决定反应时间。In the above-mentioned second embodiment, the parameters contained in the calculation formula are obtained from the absorbance data multiple times during the reaction time, the concentration value is calculated, and the time fluctuation of the concentration value is used to determine whether the time required for calculating the concentration has passed. time. Therefore, even when it is unclear how much measurement time should be set specifically, the reaction time can be automatically determined. In addition, even if the optimum reaction time differs depending on the type of the substance to be measured and the reagent used, the reaction time can be automatically determined.
另外,为了与所使用的时序数据数,即反应时间对应地推断误差,装置使用者可以定量得知设定多少左右的反应时间会得到多少左右的误差。也可以根据项目或目的来设定最佳的反应时间。In addition, in order to estimate the error corresponding to the number of time-series data used, that is, the response time, the device user can quantitatively know how much the response time is set and how much error will be obtained. It is also possible to set the optimal reaction time according to the project or purpose.
实施例3Example 3
本发明的第3实施例的生化自动分析装置也与第1实施例相同,构成的概略如图2所示。由于控制部13以外的操作与第1实施例相同,因此省略详细说明。The biochemical automatic analyzer of the third embodiment of the present invention is also the same as that of the first embodiment, and its configuration is schematically shown in FIG. 2 . Since operations other than the
参照图10说明第3实施例的、将控制部的吸光度转换为样本的浓度的处理的详情。另外,附上与图1相同符号的处理由于与图1的用相同符号表示的处理相同,因此以下省略详细说明。Details of the process of converting the absorbance of the control unit into the concentration of the sample in the third embodiment will be described with reference to FIG. 10 . In addition, since the processing denoted by the same code|symbol as FIG. 1 is the same as the process denoted by the same code|symbol in FIG. 1, detailed description is abbreviate|omitted below.
首先,在步骤S5中选择近似式,在步骤S210中选择反应时间。控制部13存储有如图11所示的、记载了针对检查项目(测定对象物质)和所使用的试剂的组合的最佳的近似式和反应时间的表格500。列510中记载有检查项目,列520中记载有试剂的种类。检查项目表示测定对象物质。列530中记载了针对检查项目和试剂的种类的最佳的近似式的种类,列540中记载了最佳的反应时间。从检查项目和试剂的组合考虑,在步骤S5中使用表格500来选择最佳的近似式,在步骤S210中同样使用表格500来选择最佳的反应时间。另外,该表格的内容可以为使用者可以变更的构成。First, an approximate formula is selected in step S5, and a reaction time is selected in step S210. The
在步骤S10中,从测光机构8输入吸光度数据,在步骤S20中存储吸光度数据。在步骤S25中,判定是否经过了在步骤S210中选择出的反应时间,未经过时将处理返回至步骤S10,输入下一吸光度数据。已经过时将处理移至步骤S30。In step S10, absorbance data is input from the
在步骤S30中,使用存储的吸光度数据来计算在步骤S5中选择出的算式的参数。进一步在步骤S65中将在步骤S30中计算出的参数值换算成测定对象的化学成分的浓度。在步骤S70中,算出对应于反应时间的误差。In step S30, the parameters of the formula selected in step S5 are calculated using the stored absorbance data. Furthermore, in step S65, the parameter value calculated in step S30 is converted into the concentration of the chemical component of a measuring object. In step S70, an error corresponding to the reaction time is calculated.
在上述第3实施例中,存储有多个记载了吸光度的时间变化的包含1个或多个参数的算式,根据测定对象物质与试剂的组合,通过选择最佳的算式,能够利用算式与以往相比高精度地表示吸光度的时间变化,能够更加容易地设定最佳的反应时间。例如图12是使用通过终点法测量的某检查项目TG(中性脂肪)的图8所示的吸光度数据,求出(数1)的参数值,将得到的参数值代入(数1),将所得的吸光度变化曲线(反应过程曲线)和实际的吸光度数据在相同图上进行绘图的例子。横轴110表示时间的推移,纵轴120表示吸光度。另外,符号140表示在各时间点实际测得的吸光度,曲线150表示由近似式计算的吸光度的时间变化。本例中,实际得到的吸光度的时间变化与由(数1)表示的时间变化良好一致。In the above-mentioned third embodiment, a plurality of formulas including one or more parameters describing the time change of absorbance are stored, and by selecting the optimum formula according to the combination of the substance to be measured and the reagent, the formula can be compared with the conventional method. It is easier to set the optimal reaction time than expressing the time change of absorbance with high accuracy. For example, Figure 12 uses the absorbance data shown in Figure 8 of a certain inspection item TG (neutral fat) measured by the end point method to obtain the parameter value of (number 1), and substitute the obtained parameter value into (number 1), and An example of plotting the obtained absorbance change curve (reaction process curve) and actual absorbance data on the same graph. The
将使用其他检查项目TP(总蛋白)的吸光度数据来进行同样的处理的结果示于图13。由图明确可知,经过足够时间后的、实际测得的吸光度与由近似式计算的吸光度的误差大。由本例可知,(数1)不适合用于表示该检查项目的吸光度的时间变化。将针对该吸光度数据而使用(数2)进行处理的结果示于图14。由该图可知,(数2)适合用于表示该检查项目的吸光度数据的时间变化。FIG. 13 shows the results of similar processing using the absorbance data of another test item TP (total protein). As can be clearly seen from the figure, the error between the actually measured absorbance and the absorbance calculated by the approximate formula is large after a sufficient time has elapsed. It can be seen from this example that (Number 1) is not suitable for expressing the time change of the absorbance of this inspection item. The result of processing the absorbance data using (2) is shown in FIG. 14 . As can be seen from this figure, (Expression 2) is suitable for expressing the time change of the absorbance data of the test item.
另外,速率法中,从吸光度的变化成为直线部分的斜率来求出作为测定对象物质的酶的活性值等,但在使用(数1)的情况下,难以明确检测出直线部分。在通过速率法进行测量的项目中,通过使用(数7)~(数11),能够容易地检测出直线部分的斜率作为参数a的值。在使用(数12)的情况下,能够容易地算出直线部分的斜率,作为时间的2次微分为最小的点的时间1次微分。In addition, in the rate method, the change in absorbance becomes the slope of the linear portion to obtain the activity value of the enzyme as the measurement target substance, but when (equation 1) is used, it is difficult to clearly detect the linear portion. In items measured by the velocity method, by using (Expression 7) to (Expression 11), the slope of the straight line portion can be easily detected as the value of the parameter a. When (Expression 12) is used, the slope of the straight line can be easily calculated as the time primary differential at the point where the secondary differential of time becomes the minimum.
如上所述,使用1种算式无法针对各种检查项目、试剂的组合而以足够高精度表示吸光度的时间变化。如本实施例那样,通过选择并使用多个算式,能够针对各个检查项目、试剂的组合而以高精度表示时间变化,能够在短反应时间内得到高精度的结果。As described above, it is not possible to express the temporal change of absorbance with sufficient accuracy for various test items and combinations of reagents using a single formula. As in the present embodiment, by selecting and using a plurality of calculation formulas, time changes can be expressed with high precision for each test item and reagent combination, and high precision results can be obtained within a short reaction time.
实施例4Example 4
在第4实施例中,图2所示的装置构成、图1所示的处理步骤均与第1实施例共同。由于仅图1的步骤S5中选择的近似式和步骤S30的近似参数计算方法、步骤S65的浓度算出不同,因此对这3种处理步骤进行详细说明。In the fourth embodiment, the device configuration shown in FIG. 2 and the processing steps shown in FIG. 1 are the same as those in the first embodiment. Since only the approximation formula selected in step S5 of FIG. 1 is different from the approximation parameter calculation method in step S30 and the density calculation in step S65, these three processing steps will be described in detail.
在第1实施例中,作为步骤S5中可以选择的算式,使用将吸光度x作为时间t的函数来表示的算式,但在本实施例中,使用微分方程式作为算式。为了理论地说明吸光度的时间变化,多数使用微分方程式,但在本实施例中可以直接运用理论式。例如将时间设为t、将吸光度设为x、将∑{}设为表示使{}内的式子的i从0变化至n并相加而得的和的符号、将n设为1以上的整数、将fi(t,x)设为包含t或者x或x的任意次数的时间微分的函数、也包含fi(t,x)为常数的情况、将qi设为参数时,可以利用由下式表现的形式的微分方程式。In the first embodiment, a formula representing absorbance x as a function of time t was used as a formula that can be selected in step S5, but in this embodiment, a differential equation is used as the formula. In order to theoretically explain the temporal change of absorbance, differential equations are often used, but in this example, the theoretical equations can be directly used. For example, let time be t, absorbance be x, Σ{} be the symbol representing the sum obtained by changing i in the expression in {} from 0 to n and adding, and n be 1 or more Integers, if fi(t, x) is set as a function including t or x or any number of times of time differentiation of x, including the case where fi(t, x) is a constant, when qi is set as a parameter, you can use A differential equation of the form expressed by the following expression.
∑{qi*fi(t,x)}=0 ...(数13)∑{qi*fi(t, x)}=0 back time ... (Number 13)
另外,作为(数13)的特殊情况,可以利用(数14)所示的微分方程式。其中将吸光度x的时刻t的n次时间微分设为x[n](t),将p和pi设为参数。In addition, as a special case of (Expression 13), the differential equation shown in (Expression 14) can be used. Wherein, the n-time time differential of absorbance x at time t is set as x[n](t), and p and pi are set as parameters.
p+∑{pi*x[n](t)}=0 ...(数14)p+∑{pi*x[n](t)}=0
更具体而言,可以利用例如下述的微分方程式。其中,x(t)^2表示x(t)的平方。More specifically, for example, the following differential equation can be used. Among them, x(t)^2 means the square of x(t).
p+p0*x(t)+p1*x[1](t)=0 ...(数15)p+p0*x (t)+p1*x [1] (t) = 0 ... (number 15)
p+p0*x(t)+p1*x[1](t)+p2*x[2](t)=0 ...(数16)p+p0*x(t)+p1*x[1](t)+p2*x[2](t)=0 ...
q2*x(t)^2+q3*x[1](t)=0 ...(数17)q2*x (t)^2+q3*x [1] (t) = 0 ... (Number 17)
q1*x(t)+q2*x(t)^2+q3*x[1](t)=0 ...(数18)q1*x(t)+q2*x(t)^2+q3*x[1](t)=0 ... (Number 18)
q0+q1*x(t)+q2*x(t)^2+q3*x[1](t)=0 ...(数19)q0+q1*x(t)+q2*x(t)^2+q3*x[1](t)=0 ... (Number 19)
在步骤S30中,使用已存储的吸光度数据来决定(数13)、(数14)中包含的参数的值。由于吸光度作为时序数据被存储,因此通过计算差分,能够近似地计算时间微分。因此,为了求出相当于测定吸光度的时刻t的(数13)的fi(t,x)、(数14)的x[n](t)的值,在多个时间点求出这些值时,(数13)、(数14)分别用fi(t,x)、x[n](t)的线性组合的形式表示,因此利用最小二乘法能够容易地求出参数p、pi、qi的值。这里,作为一例,对吸光度x的时间变化用(数15)所示的算式表示的情况进行说明。另外,测定m+1次吸光度,得到x0~xm的吸光度。(数15)通过将x(t)设为左边、将其余项设为右边可以变形成下述形式。In step S30, the values of the parameters included in (13) and (14) are determined using the stored absorbance data. Since the absorbance is stored as time-series data, the time differential can be approximately calculated by calculating the difference. Therefore, in order to obtain the values of fi(t,x) of (Expression 13) and x[n](t) of (Expression 14) corresponding to the time t at which the absorbance is measured, these values are obtained at multiple time points , (Number 13) and (Number 14) are respectively represented by the linear combination of fi(t, x) and x[n](t), so the parameters p, pi, and qi can be easily obtained by using the least square method value. Here, as an example, a case where the time change of the absorbance x is expressed by the formula shown in (Expression 15) will be described. In addition, the m+1 absorbance is measured to obtain the absorbance of x0 to xm. (Equation 15) can be transformed into the following form by setting x(t) to the left and setting the remaining terms to the right.
x(t)=r1*x[1](t)+r ...(数20)x (t) = r1*x [1] (t)+r ... (number 20)
这种情况下,作为相当于一次时间微分的量,例如通过y1=(x2-x0)/(2*h)、y2=(x3-x1)/(2*h)这样的运算来求出y1~y(m-1)中m-1个差分值。在(数20)中,取代x(t)和x[1](t)而代入xi和yi时,(数20)以(数21)表示。其中,i=1~m-1。In this case, y1 is obtained by calculations such as y1=(x2-x0)/(2*h) and y2=(x3-x1)/(2*h) as an amount corresponding to the primary time differential. m-1 difference values in ~y(m-1). In (Number 20), when xi and yi are substituted for x(t) and x[1](t), (Number 20) is represented by (Number 21). Wherein, i=1~m-1.
xi=p1*yi+p ...(数21)xi=p1*yi+p ...(Number 21)
由于实际上(数20)所表示的关系与观测的吸光度并不完全一致,因此(数21)的右边的值不一致。因此,按照使右边与左边之差尽可能减小的方式,利用最小二乘法确定参数r1、r。这里,将xi设为纵向排列的向量X、将A设为以下所示的m-1行2列的矩阵、R=(r1,r)′时,(数21)的关系用(数22)表示。其中,符号′表示转置。Since the relationship represented by (number 20) is not completely consistent with the observed absorbance, the value on the right side of (number 21) is inconsistent. Therefore, the parameters r1 and r are determined by the method of least squares in such a way that the difference between the right side and the left side is minimized. Here, when xi is a vector X arranged vertically, and A is a matrix of m-1 rows and 2 columns shown below, and R=(r1, r)', the relationship of (21) can be expressed by (22) express. Among them, the symbol ' means transposition.
y1 1y1 1
y2 1y2 1
y3 1y3 1
: :: :
y(m-1) 1y(m-1) 1
X=AR ...(数22)X=AR ...(Number 22)
如果要解出(数22)的特性方程式,则最小二乘解利用(数23)求出。其中inv()表示()内的矩阵的逆矩阵。If the characteristic equation of (Number 22) is to be solved, the least square solution is obtained by (Number 23). where inv() represents the inverse matrix of the matrix in ().
R={inv(A′A)}A′X ...(数23)R = {inv (a′a)} a′x ... (Number 23)
表现吸光度与时间的关系的情况下,与通常作为t的函数表现相比,利用微分方程式来表现会使待求出的参数数减少。另外,如(数13)、(数14)那样微分方程式以测得的吸光度数据的函数的线性组合表示的情况下,能够如上所述容易地利用最小二乘法来计算参数。When expressing the relationship between absorbance and time, expressing it using a differential equation reduces the number of parameters to be obtained compared to expressing it as a function of t normally. Also, when the differential equation is represented by a linear combination of functions of the measured absorbance data like (Expression 13) and (Expression 14), the parameters can be easily calculated by the least square method as described above.
在步骤S65中,使用在步骤S30中求出的参数值,计算测定对象成分的浓度。在终点法中,经过了足够时间时,吸光度成为恒定值。也就是说,由于无时间变化,因此时间变化为0。因此,在(数13)、(数14)中,由使n≥1的x[n](t)全部为0时的x(t)的值可以求出经过了足够时间、吸光度变为恒定时的吸光度。例如(数15)、(数16)中,由于使x[1](t)=0、x[2](t)=0时x=-p/p0,因此将该值作为经过足够时间后的吸光度。测定对象物质的浓度由该吸光度、使用标准曲线等来换算。In step S65, the concentration of the component to be measured is calculated using the parameter values obtained in step S30. In the endpoint method, the absorbance becomes a constant value when a sufficient time has elapsed. That is, since there is no time change, the time change is 0. Therefore, in (Equation 13) and (Equation 14), from the value of x(t) when all x[n](t) of n≥1 are 0, it can be obtained that the absorbance becomes constant after a sufficient time has elapsed. absorbance at . For example, in (Number 15) and (Number 16), since x=-p/p0 when x[1](t)=0 and x[2](t)=0, this value is taken as of absorbance. The concentration of the substance to be measured is converted from the absorbance using a calibration curve or the like.
在速率法中,经过了足够时间时,吸光度相对时间以直线变化,由该直线的斜率算出测定对象成分的浓度。因此,可以将经过了足够时间时、使n≥2的x[n](t)全部为0时的x[1](t)的值作为经过了足够时间时的吸光度的时间变化的斜率。测定对象物质的浓度值由该斜率、使用标准曲线等来换算。In the rate method, when a sufficient time has elapsed, the absorbance changes linearly with respect to time, and the concentration of the component to be measured is calculated from the slope of the straight line. Therefore, the value of x[1](t) when all x[n](t) of n≧2 are 0 after a sufficient time has passed can be used as the slope of the time change in absorbance when a sufficient time has passed. The concentration value of the substance to be measured is converted from the slope, using a calibration curve, or the like.
如上所述,在第4实施例中,通过将表示吸光度的时间变化的算式作为微分方程式,能够直接利用从化学反应速度论导出的微分方程式,另外,与将吸光度作为时间t的函数表示的情况相比,可以得到参数数减少、决定参数的最小二乘法的计算也变得容易这样的效果。As described above, in the fourth embodiment, by using the formula expressing the time change of absorbance as a differential equation, the differential equation derived from the chemical reaction velocity theory can be used directly. Compared to this, the number of parameters is reduced and the calculation of the least squares method for determining the parameters becomes easier.
实施例5Example 5
本发明的第5实施例的生化自动分析装置也与第1实施例相同,构成的概略如图2所示,由于控制部13以外的操作与第1实施例相同,因此省略详细说明。The automatic biochemical analysis apparatus of the fifth embodiment of the present invention is also the same as the first embodiment, and the outline of its structure is shown in FIG.
参照图15说明第5实施例的、将控制部中的吸光度转换为样本的浓度的处理的详情。另外,附上与图1相同符号的处理由于与图1的用相同符号表示的处理相同,因此以下省略详细说明。Details of the process of converting the absorbance in the control unit into the concentration of the sample in the fifth embodiment will be described with reference to FIG. 15 . In addition, since the processing denoted by the same code|symbol as FIG. 1 is the same as the process denoted by the same code|symbol in FIG. 1, detailed description is abbreviate|omitted below.
从处理的开始起,步骤S5、步骤S10、步骤S15、步骤S20、步骤S30、直至步骤S35的处理是与图1所示的第1实施例相同的处理。在步骤S35中计算参数之后,在本实施例中,通过步骤S200,将算出的参数代入近似式,使用近似式计算当前时间点的吸光度的预测值。From the start of the process, the processes of step S5, step S10, step S15, step S20, step S30, and step S35 are the same as those of the first embodiment shown in FIG. 1 . After the parameters are calculated in step S35, in this embodiment, through step S200, the calculated parameters are substituted into the approximate formula, and the predicted value of the absorbance at the current time point is calculated using the approximate formula.
在步骤S210中,计算在步骤S200中求出的当前的吸光度的预测值与实际测量的在步骤S10中输入的吸光度的误差。In step S210, the error between the current predicted value of absorbance obtained in step S200 and the actually measured absorbance input in step S10 is calculated.
在步骤S220中,将在步骤S210中求出的吸光度的误差与预先规定的阈值进行比较。这里,浓度值的时间变动在预先规定的阈值以下时,判定为积累了用于计算测定对象物质的浓度的足够量的吸光度数据,因此将处理移至步骤S70来算出误差。浓度值的时间变动大于预先规定的阈值时,认为还未积累用于计算浓度值的足够的吸光度数据,因此将处理移至步骤S55,进一步检查是否有下一数据。用于比较吸光度误差的阈值预先根据装置的目的进行设定,以得到需要的测定精度。但是,根据检查的目的,使用者可以进行变更。另外,还可以对每个检查项目设定不同的值。In step S220, the error in the absorbance obtained in step S210 is compared with a predetermined threshold value. Here, when the time variation of the concentration value is equal to or less than a predetermined threshold, it is determined that sufficient absorbance data for calculating the concentration of the measurement target substance has been accumulated, and therefore the processing proceeds to step S70 to calculate an error. If the time variation of the concentration value is greater than the predetermined threshold value, it is considered that sufficient absorbance data for calculating the concentration value has not been accumulated, so the process moves to step S55 to further check whether there is the next data. The threshold value for comparing the absorbance error is set in advance according to the purpose of the device so that the required measurement accuracy can be obtained. However, the user can change it according to the purpose of inspection. In addition, it is also possible to set different values for each inspection item.
步骤S55、S60、S70的处理由于与第1实施例的相同符号的处理相同,因此省略说明。The processing of steps S55, S60, and S70 is the same as the processing of the same symbols in the first embodiment, and thus description thereof will be omitted.
在上述第5实施例中,在反应时间中由吸光度数据求出近似式所含的参数,由近似式求出测定吸光度的时间点的吸光度预测值。进一步算出吸光度的预测值与实际测量的吸光度的误差。反应时间越长、测定的吸光度越多,则近似的精度越高、误差越小。因此,根据误差的大小能够判定是否经过了用于算出浓度所需要的时间。在不清楚具体设定多少测定时间好的情况下,也可以自动决定反应时间。另外,根据测定对象物质的种类、所使用的试剂,最佳的反应时间也不同,也可以自动决定反应时间。In the above-mentioned fifth embodiment, the parameters included in the approximate formula are obtained from the absorbance data in the reaction time, and the predicted value of the absorbance at the time point when the absorbance is measured is obtained from the approximate formula. Further, the error between the predicted value of absorbance and the actually measured absorbance was calculated. The longer the reaction time and the more measured absorbance, the higher the accuracy of the approximation and the smaller the error. Therefore, it can be determined whether or not the time required to calculate the concentration has elapsed based on the magnitude of the error. It is also possible to automatically determine the reaction time when it is not clear how much measurement time should be set specifically. In addition, the optimum reaction time varies depending on the type of the substance to be measured and the reagent used, and the reaction time can also be determined automatically.
符号说明Symbol Description
1 样品盘1 sample tray
2 试剂盘2 reagent trays
3 反应盘3 reaction trays
4 反应槽4 reaction tanks
5 采样机构5 sampling mechanism
6 移液机构6 pipetting mechanism
7 搅拌机构7 Stirring mechanism
8 测光机构8 Light Metering Mechanism
9 洗涤机构9 washing mechanism
10 显示部10 Display
11 输入部11 Input section
12 存储部12 storage department
13 控制部13 Control Department
14 压电元件驱动器14 Piezo element driver
15 搅拌机构控制器15 Stirring Mechanism Controller
16 试样容器16 sample container
17、19 圆形盘17, 19 round plate
18 试剂瓶18 reagent bottles
20 冷藏库20 cold storage
21 反应容器21 reaction vessel
22 反应容器支持物22 Reaction Vessel Holder
23 驱动机构23 drive mechanism
24、27 探头24, 27 probe
25、28 支承轴25, 28 Support shaft
26、29 臂26, 29 arms
31 固定部31 fixed part
32 电极32 electrodes
33 喷嘴33 nozzles
34 上下驱动机构34 Up and down driving mechanism
110 表示时间推移的轴110 represents the time-lapse axis
120 表示吸光度的轴120 Axis representing absorbance
130 表示添加引起主反应的试剂的时刻的虚线130 Dashed line representing the moment of addition of the reagent causing the main reaction
140 表示测量出的吸光度的符号140 Symbol for measured absorbance
150 利用近似式计算的吸光度的时间变化150 Temporal change in absorbance calculated using approximate formula
220 表示参数值的轴220 represents the axis of the parameter value
240 表示在各时刻算出的参数值的符号240 A symbol representing the parameter value calculated at each time
320 表示参数的方差的轴320 represents the axis of the variance of the parameter
330 表示对方差设定的阈值的虚线330 is the dashed line representing the threshold set for the variance
340 表示在各时刻算出的参数的方差的符号340 The sign indicating the variance of the parameter calculated at each time
420 表示浓度值的误差的轴420 An axis representing the error of the concentration value
440 表示浓度值的误差的平均值的符号440 The sign indicating the average value of the error of the concentration value
460 表示浓度值的误差的标准偏差的线段460 A line segment representing the standard deviation of the error of the concentration value
500 记载了针对检查项目和所使用的试剂的组合的最佳的近似式和反应时间的表格500 A table that records the optimal approximate formula and reaction time for the combination of inspection items and reagents used
510 记载了检查项目的列510 List of inspection items
520 记载了试剂种类的列520 A column describing the type of reagent
530 记载了近似式的种类的列530 List of types of approximation expressions
540 记载了反应时间的列。540 is a column that records the reaction time.
Claims (22)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009114112A JP5193940B2 (en) | 2009-05-11 | 2009-05-11 | Automatic analyzer |
JP2009-114112 | 2009-05-11 | ||
PCT/JP2010/002632 WO2010131413A1 (en) | 2009-05-11 | 2010-04-12 | Automatic analysis device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102422144A CN102422144A (en) | 2012-04-18 |
CN102422144B true CN102422144B (en) | 2014-05-07 |
Family
ID=43084799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080020647.0A Active CN102422144B (en) | 2009-05-11 | 2010-04-12 | Automatic analysis device |
Country Status (5)
Country | Link |
---|---|
US (1) | US9488667B2 (en) |
EP (1) | EP2431731B1 (en) |
JP (1) | JP5193940B2 (en) |
CN (1) | CN102422144B (en) |
WO (1) | WO2010131413A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9695464B2 (en) * | 2011-11-11 | 2017-07-04 | Axis-Shield As | Blood sample assay method |
WO2013146065A1 (en) * | 2012-03-28 | 2013-10-03 | テルモ株式会社 | Component measuring device |
JP6179932B2 (en) * | 2013-01-29 | 2017-08-16 | 国立研究開発法人産業技術総合研究所 | Metal complex quantification method and metal complex quantification apparatus in plating solution |
CN105102988B (en) * | 2013-04-02 | 2017-03-08 | 株式会社日立高新技术 | Automatic analysis device and analysis method |
JP6312313B2 (en) * | 2014-04-17 | 2018-04-18 | 日本電子株式会社 | Automatic analyzer and automatic analysis method |
JP6415893B2 (en) | 2014-08-05 | 2018-10-31 | キヤノンメディカルシステムズ株式会社 | Sample measuring apparatus and sample measuring method |
CN105116156B (en) * | 2015-07-22 | 2017-12-12 | 江苏英诺华医疗技术有限公司 | A kind of biochemical detection methods of the suitable medical test of optimization |
JP6791800B2 (en) * | 2017-04-05 | 2020-11-25 | 株式会社日立製作所 | Calculation method using computer system and recurrent neural network |
CN107902364B (en) * | 2017-09-26 | 2019-11-01 | 迈克医疗电子有限公司 | Dispatching method and device, the computer readable storage medium of reaction cup transmission part |
CN109030801B (en) * | 2018-06-02 | 2021-08-20 | 宏葵生物(中国)股份有限公司 | Automatic biochemical analyzer for clinical samples |
CN109580549B (en) * | 2018-11-14 | 2022-07-01 | 深圳市理邦精密仪器股份有限公司 | Method and device for calculating and calibrating material content |
CN111381055A (en) * | 2018-12-29 | 2020-07-07 | 深圳迈瑞生物医疗电子股份有限公司 | Calibration data display method and sample analysis device |
CN112014335A (en) * | 2019-05-30 | 2020-12-01 | 深圳迈瑞生物医疗电子股份有限公司 | Method for measuring analyte based on turbidimetry, sample analyzer and storage medium |
CN110160980B (en) * | 2019-06-25 | 2021-12-28 | 迈克医疗电子有限公司 | Method and device for analyzing sample absorbance change rate and optical detection system |
CN110967306B (en) * | 2019-11-14 | 2023-11-24 | 迈克医疗电子有限公司 | Method and device for determining the start time of a reaction, analytical instrument and storage medium |
CN114236152A (en) * | 2021-12-28 | 2022-03-25 | 江苏英诺华医疗技术有限公司 | Method and system for automatically analyzing quality of detection result of biochemical analyzer by endpoint method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004347385A (en) * | 2003-05-21 | 2004-12-09 | Hitachi Ltd | Anomaly detection system and anomaly detection method |
JP2006337125A (en) * | 2005-06-01 | 2006-12-14 | Hitachi High-Technologies Corp | Automatic analyzer, analysis method using automatic analyzer |
CN101042407A (en) * | 2006-03-23 | 2007-09-26 | 株式会社日立制作所 | Automated analyzer |
CN101344530A (en) * | 2007-07-13 | 2009-01-14 | 株式会社日立高新技术 | Automatic analysis device and analysis method of automatic analysis device |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57147039A (en) * | 1981-03-09 | 1982-09-10 | Hitachi Ltd | Data discriminating device for photometer |
JPS63111446A (en) | 1986-10-29 | 1988-05-16 | Konica Corp | Analyzing device |
JPS6459041A (en) | 1987-08-31 | 1989-03-06 | Toshiba Corp | Method for correcting absorbancy measuring range |
JPH0359461A (en) * | 1989-07-27 | 1991-03-14 | Shimadzu Corp | Automatic biochemical analysis apparatus |
JP2934653B2 (en) * | 1990-06-20 | 1999-08-16 | 株式会社ニッテク | Automatic analyzer |
JP3027061B2 (en) * | 1992-12-24 | 2000-03-27 | 日本電子株式会社 | Reaction measurement method |
JPH06249856A (en) * | 1993-02-26 | 1994-09-09 | Shimadzu Corp | Measurement of automatic biochemical analyzing device |
JP3357494B2 (en) * | 1995-02-13 | 2002-12-16 | 日本電子株式会社 | Biochemical analyzer |
JP2001083081A (en) * | 1999-09-17 | 2001-03-30 | Hitachi Ltd | Method for making nonlinear calibration curve in automatic chemical analyzer |
JP4006203B2 (en) * | 2001-08-21 | 2007-11-14 | 株式会社日立製作所 | Precision analysis method for automatic analyzer and chemical analysis method |
JP4805564B2 (en) * | 2004-10-22 | 2011-11-02 | シスメックス株式会社 | Biological sample analyzer and method |
US20080133141A1 (en) * | 2005-12-22 | 2008-06-05 | Frost Stephen J | Weighted Scoring Methods and Use Thereof in Screening |
US20070178504A1 (en) * | 2005-12-22 | 2007-08-02 | Tracey Colpitts | Methods and marker combinations for screening for predisposition to lung cancer |
JP2009002864A (en) * | 2007-06-22 | 2009-01-08 | Olympus Corp | Analysis apparatus and analysis method |
EP2183382A1 (en) * | 2007-08-08 | 2010-05-12 | Chemimage Corporation | Raman difference spectra based disease classification |
JP2009047638A (en) * | 2007-08-22 | 2009-03-05 | Toshiba Corp | Automatic analyzer |
JP5193937B2 (en) * | 2009-05-08 | 2013-05-08 | 株式会社日立ハイテクノロジーズ | Automatic analyzer and analysis method |
-
2009
- 2009-05-11 JP JP2009114112A patent/JP5193940B2/en active Active
-
2010
- 2010-04-12 EP EP10774673.7A patent/EP2431731B1/en active Active
- 2010-04-12 WO PCT/JP2010/002632 patent/WO2010131413A1/en active Application Filing
- 2010-04-12 CN CN201080020647.0A patent/CN102422144B/en active Active
- 2010-04-12 US US13/318,819 patent/US9488667B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004347385A (en) * | 2003-05-21 | 2004-12-09 | Hitachi Ltd | Anomaly detection system and anomaly detection method |
JP2006337125A (en) * | 2005-06-01 | 2006-12-14 | Hitachi High-Technologies Corp | Automatic analyzer, analysis method using automatic analyzer |
CN101042407A (en) * | 2006-03-23 | 2007-09-26 | 株式会社日立制作所 | Automated analyzer |
CN101344530A (en) * | 2007-07-13 | 2009-01-14 | 株式会社日立高新技术 | Automatic analysis device and analysis method of automatic analysis device |
Also Published As
Publication number | Publication date |
---|---|
EP2431731A1 (en) | 2012-03-21 |
WO2010131413A1 (en) | 2010-11-18 |
JP5193940B2 (en) | 2013-05-08 |
CN102422144A (en) | 2012-04-18 |
JP2010261876A (en) | 2010-11-18 |
EP2431731B1 (en) | 2019-06-12 |
US9488667B2 (en) | 2016-11-08 |
EP2431731A4 (en) | 2017-12-06 |
US20120065898A1 (en) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102422144B (en) | Automatic analysis device | |
JP5599219B2 (en) | Automatic analyzer and automatic analysis method | |
JP5520519B2 (en) | Automatic analyzer and analysis method | |
JP4654256B2 (en) | Automatic analyzer | |
JP5562421B2 (en) | Automatic analyzer, analysis method and information processing apparatus | |
EP3693744A1 (en) | Automatic analyzer | |
CN102422162B (en) | Automatic analysis device and analysis method | |
JP6039940B2 (en) | Automatic analyzer | |
JP7448521B2 (en) | Data analysis methods, data analysis systems, and calculators | |
JP4825442B2 (en) | Accuracy control method of automatic analyzer for clinical examination, and automatic analyzer | |
JP2008203008A (en) | Automatic analyzer | |
CN115004034A (en) | Automatic analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |