CN102420612B - Time-interleaving analogue-to-digital converter capable of suppressing sampling time mismatching - Google Patents
Time-interleaving analogue-to-digital converter capable of suppressing sampling time mismatching Download PDFInfo
- Publication number
- CN102420612B CN102420612B CN2011104244764A CN201110424476A CN102420612B CN 102420612 B CN102420612 B CN 102420612B CN 2011104244764 A CN2011104244764 A CN 2011104244764A CN 201110424476 A CN201110424476 A CN 201110424476A CN 102420612 B CN102420612 B CN 102420612B
- Authority
- CN
- China
- Prior art keywords
- sampling
- time
- sample
- digital converter
- clock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005070 sampling Methods 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims description 14
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 claims description 11
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- ZHVOBYWXERUHMN-KVJKMEBSSA-N 3-[(3s,5r,8r,9s,10s,13s,14s,17s)-10,13-dimethyl-3-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2h-furan-5-one Chemical compound O([C@@H]1C[C@H]2CC[C@@H]3[C@@H]([C@]2(CC1)C)CC[C@]1([C@H]3CC[C@@H]1C=1COC(=O)C=1)C)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O ZHVOBYWXERUHMN-KVJKMEBSSA-N 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000002347 injection Methods 0.000 abstract description 3
- 239000007924 injection Substances 0.000 abstract description 3
- 238000004377 microelectronic Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 description 2
- 102100040856 Dual specificity protein kinase CLK3 Human genes 0.000 description 2
- 102100040858 Dual specificity protein kinase CLK4 Human genes 0.000 description 2
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 description 2
- 101000749304 Homo sapiens Dual specificity protein kinase CLK3 Proteins 0.000 description 2
- 101000749298 Homo sapiens Dual specificity protein kinase CLK4 Proteins 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Landscapes
- Analogue/Digital Conversion (AREA)
Abstract
一种可抑制采样时间失配的时间交织模数转换器,涉及微电子技术领域。本发明针对采样时间失配对时间交织模数转换器的影响,提出了一种可抑制采样时间失配的时间交织模数转换器的结构。该模数转换器包括:通道采样保持电路,子模数转换器和多路复用器。通道采样保持电路中引入系统主时钟来决定采样时刻,从而避免各通道分别采样引起的采样时刻失配,有效提高时间交织模数转换器的动态性能。该方法无需前置采样保持电路,因此对输入信号带宽无任何影响,而且通道采样保持电路可以运用下极板采样技术,消除电荷注入的影响,提高系统的线性度。
A time-interleaving analog-to-digital converter capable of suppressing sampling time mismatch relates to the technical field of microelectronics. Aiming at the influence of the sampling time mismatch on the time-interleaving analog-digital converter, the invention proposes a structure of the time-interleaving analog-digital converter capable of suppressing the sampling time mismatch. The analog-to-digital converter includes: a channel sampling and holding circuit, a sub-analog-to-digital converter and a multiplexer. The system master clock is introduced into the channel sample-and-hold circuit to determine the sampling time, thereby avoiding the mismatch of sampling time caused by the separate sampling of each channel, and effectively improving the dynamic performance of the time-interleaved ADC. This method does not require a pre-sampling and holding circuit, so it has no impact on the bandwidth of the input signal, and the channel sampling and holding circuit can use the bottom plate sampling technology to eliminate the influence of charge injection and improve the linearity of the system.
Description
技术领域technical field
本发明涉及微电子技术中的模数转换器,特别是涉及一种可抑制采样时间失配的时间交织模数转换器的结构的设计。The invention relates to an analog-to-digital converter in microelectronic technology, in particular to a structure design of a time-interleaved analog-to-digital converter capable of suppressing sampling time mismatch.
背景技术Background technique
模数转换器是一种将模拟信号转换为数字信号的工具,其作为模拟技术与数字技术的接口,被广泛应用于工业控制、雷达、通信、消费电子等领域,在信息技术中起着重要作用。随着集成电路制造工艺的不断改进和新材料的引入使得数字信号处理技术不断进步,从而对模数转换器的速度提出了更高的要求。Analog-to-digital converter is a tool that converts analog signals into digital signals. As an interface between analog technology and digital technology, it is widely used in industrial control, radar, communication, consumer electronics and other fields, and plays an important role in information technology. effect. With the continuous improvement of the integrated circuit manufacturing process and the introduction of new materials, the digital signal processing technology has been continuously improved, thus putting forward higher requirements for the speed of the analog-to-digital converter.
目前提高模数转换器速度最流行的方法之一是将多个模数转换器并联起来使用。利用交错时钟使多个模数转换器轮流工作,在维持单个模数转换器低速工作的情况下,实现整体速度的提高,该结构称为时间交织模数转换器(Time-interleaved ADC)。One of the most popular ways to increase the speed of an A/D converter is to use multiple A/D converters in parallel. The interleaved clock is used to make multiple ADCs work in turn, and the overall speed can be improved while maintaining the low-speed operation of a single ADC. This structure is called Time-interleaved ADC (Time-interleaved ADC).
图1为一个四通道时间交织模数转换器的基本结构,每个通道由一个采样保持电路(S/H)和一个子模数转换器(ADC)构成,因此整个四通道时间交织模数转换器包含四个采样保持电路(S/H1,S/H2,S/H3和S/H4),四个子模数转换器(ADC1,ADC2,ADC3和ADC4)和一个多路复用器(MUX)。各通道子模数转换器的精度为N位,工作速度为fs/4,分别工作在四个不同的相位,相邻通道的时钟相位差为90°。四个通道依次对输入信号进行采样和数据转换,并分别输出速率为fs/4、精度为N位的数字信号,最后经多路复用器输出速率为fs、精度为N位的数字信号,从而实现整体模数转换器的工作速率提高为单个模数转换器率的4倍。图2为四通道时间交织模数转换器的时序图。Figure 1 shows the basic structure of a four-channel time-interleaved analog-to-digital converter, each channel consists of a sample-and-hold circuit (S/H) and a sub-analog-to-digital converter (ADC), so the entire four-channel time-interleaved analog-to-digital conversion The converter consists of four sample-and-hold circuits (S/H 1 , S/H 2 , S/H 3 and S/H 4 ), four sub-ADCs (ADC 1 , ADC 2 , ADC 3 and ADC 4 ) and a Multiplexer (MUX). The sub-analog-to-digital converters of each channel have an accuracy of N bits, a working speed of f s /4, and work in four different phases respectively, and the clock phase difference of adjacent channels is 90°. The four channels sample and convert the input signal in turn, and output digital signals with a rate of f s /4 and an accuracy of N bits respectively, and finally output a digital signal with a rate of f s and an accuracy of N bits through a multiplexer signal, so that the operating rate of the overall analog-to-digital converter is increased to 4 times the rate of a single analog-to-digital converter. Figure 2 is a timing diagram of the four-channel time-interleaved analog-to-digital converter.
理论上,通道数越多,时间交织模数转换器的工作速度越快。但是,实际上,各通道子模数转换器间存在采样时间失配(Timingmismatch)、增益失配(Gain mismatch)、失调失配(Offset mismatch)和带宽失配(Bandwidth mismatch)等非理想因素,严重影响了整个模数转换器的动态性能。Theoretically, the higher the number of channels, the faster the time-interleaved ADC will work. However, in fact, there are non-ideal factors such as sampling time mismatch (Timingmismatch), gain mismatch (Gain mismatch), offset mismatch (Offset mismatch) and bandwidth mismatch (Bandwidth mismatch) among the sub-ADCs of each channel. Seriously affects the dynamic performance of the entire analog-to-digital converter.
针对采样时间失配,有相关论文和专利提出了一种解决方法,即采样开关前置技术。该方法通过将采样开关前置,由主时钟控制采样时刻,避免了各通道时钟分别采样所引起的采样时间失配,能显著提高整个模数转换器的动态性能。但是该方法会带来两个缺点:Aiming at the sampling time mismatch, related papers and patents have proposed a solution, that is, the sampling switch front-end technology. The method pre-positions the sampling switch and controls the sampling time by the master clock, thereby avoiding the sampling time mismatch caused by the separate sampling of each channel clock, and can significantly improve the dynamic performance of the entire analog-to-digital converter. However, this method has two disadvantages:
1、前置开关的引入会增加信号通路的导通电阻和寄生电容,减小输入信号带宽,使得信号带宽的相对误差变大,带宽失配的影响进一步加剧。1. The introduction of the front switch will increase the on-resistance and parasitic capacitance of the signal path, reduce the input signal bandwidth, increase the relative error of the signal bandwidth, and further intensify the impact of bandwidth mismatch.
2、采样时刻由前置采样开关的主时钟决定,使得各通道采样保持电路不能采用下极板采样技术,从而导致采样开关引入的电荷注入等非线性将无法避免,恶化整个模数转换器的线性度。2. The sampling time is determined by the main clock of the pre-sampling switch, so that the sampling and holding circuit of each channel cannot adopt the lower plate sampling technology, which will lead to the unavoidable nonlinearity such as charge injection introduced by the sampling switch, and deteriorate the performance of the entire analog-to-digital converter. linearity.
发明内容Contents of the invention
本发明的目的在于提供一种既可以抑制采样时间失配,又不影响输入信号带宽和系统线性度的时间交织模数转换器结构,从而有效避免采样时间失配的影响,提高整个模数转换器的动态性能。The purpose of the present invention is to provide a time-interleaved analog-to-digital converter structure that can suppress sampling time mismatch without affecting the input signal bandwidth and system linearity, thereby effectively avoiding the influence of sampling time mismatch and improving the overall analog-to-digital conversion the dynamic performance of the device.
为了实现上述目的,本发明提供的时间交织模数转换器如图3所示,包含四个相同的采样保持电路(S/H1,S/H2,S/H3和S/H4),四个相同的子模数转换器(ADC1,ADC2,ADC3和ADC4)和一个多路复用器(MUX)。与已有技术(图5)的区别是本发明的采样保持电路(图6)加入开关S4,由四个开关(S1,S2,S3和S4),一个采样电容(Csample)和一个运算放大器(AMP)组成。开关S4由主时钟MCLK控制,因此各通道的采样时刻由MCLK的下降沿决定,从而抑制了各通道时钟分别采样引起的采样时间失配。In order to achieve the above object, the time-interleaved analog-to-digital converter provided by the present invention is shown in Figure 3, which includes four identical sample-and-hold circuits (S/H 1 , S/H 2 , S/H 3 and S/H 4 ) , four identical sub-ADCs (ADC 1 , ADC 2 , ADC 3 and ADC 4 ) and a multiplexer (MUX). The difference with the prior art (Fig. 5) is that the sample and hold circuit (Fig. 6) of the present invention adds switch S4, consists of four switches (S1, S2, S3 and S4), a sampling capacitor (C sample ) and an operational amplifier (AMP) composition. The switch S4 is controlled by the main clock MCLK, so the sampling time of each channel is determined by the falling edge of MCLK, thereby suppressing the sampling time mismatch caused by the separate sampling of each channel clock.
图6所示的采样保持电路的具体连接关系如下:开关S1的左端接输入信号Vin,右端接采样电容(Csample)的左极板和开关S2的左端;开关S2的右端接开关S4的右端和运算放大器(AMP)的输出Vout;采样电容的右极板接开关S3的左端和运算放大器(AMP)的正端,运算放大器(AMP)的负端接地,开关S3的右端接开关S4的左端。开关S1和S3具有相同的时钟控制信号CLKi(i表示不同的通道,i=1,2,3,4),开关S2由与CLKi两相非交叠的时钟CLKib(i表示不同的通道,i=1,2,3,4)控制,开关S4由主时钟MCLK控制。The specific connection relationship of the sample-and-hold circuit shown in Figure 6 is as follows: the left terminal of the switch S1 is connected to the input signal Vin, the right terminal is connected to the left plate of the sampling capacitor (C sample ) and the left terminal of the switch S2; the right terminal of the switch S2 is connected to the right terminal of the switch S4 and the output Vout of the operational amplifier (AMP); the right plate of the sampling capacitor is connected to the left end of the switch S3 and the positive end of the operational amplifier (AMP), the negative end of the operational amplifier (AMP) is grounded, and the right end of the switch S3 is connected to the left end of the switch S4 . Switches S1 and S3 have the same clock control signal CLKi (i represents different channels, i=1, 2, 3, 4), and switch S2 is controlled by a clock CLKib that is non-overlapping with CLKi (i represents different channels, i =1,2,3,4) control, the switch S4 is controlled by the main clock MCLK.
附图说明:Description of drawings:
图1为传统四通道时间交织模数转换器的原理图Figure 1 is a schematic diagram of a traditional four-channel time-interleaved analog-to-digital converter
图2为传统四通道时间交织模数转换器的时序图Figure 2 is a timing diagram of a traditional four-channel time-interleaved analog-to-digital converter
图3为本发明设计的四通道时间交织模数转换器结构图Fig. 3 is the structural diagram of the four-channel time-interleaved analog-to-digital converter designed by the present invention
图4为本发明设计的四通道时间交织模数转换器结构的时序图Fig. 4 is the timing diagram of the four-channel time-interleaving analog-to-digital converter structure designed by the present invention
图5为传统的采样保持电路(S/H)结构Figure 5 is a traditional sample and hold circuit (S/H) structure
图6为本发明设计的采样保持电路(S/H)结构Fig. 6 is the sample and hold circuit (S/H) structure that the present invention designs
图7为本发明设计的采样保持电路(S/H)的时序图Fig. 7 is the sequence diagram of the sample and hold circuit (S/H) that the present invention designs
具体实施方式Detailed ways
以下结合图进一步描述本发明。The present invention is further described below in conjunction with the figures.
如图3所示为本发明提出的四通道时间交织模数转换器,其时序图如图4所示。图4中,各通道时钟的占空比为25%,在每一个采样时钟相,始终只有一个通道采样,因此降低了输入信号负载,增大输入带宽。相比于传统时间交织模数转换器(如图1所示),图3中各通道采样保持电路由通道时钟CLKi(i表示不同的通道,i=1,2,3,4)和主时钟MCLK一起控制,各通道采样时间均由MCLK决定。具体工作方式以通道一为例,其余通道工作方式相同。As shown in FIG. 3 , the four-channel time-interleaving analog-to-digital converter proposed by the present invention is shown, and its timing diagram is shown in FIG. 4 . In Figure 4, the duty cycle of each channel clock is 25%. In each sampling clock phase, only one channel is always sampled, thus reducing the input signal load and increasing the input bandwidth. Compared with the traditional time-interleaved analog-to-digital converter (as shown in Figure 1), the sample-and-hold circuit of each channel in Figure 3 is composed of the channel clock CLKi (i represents a different channel, i=1, 2, 3, 4) and the main clock MCLK is controlled together, and the sampling time of each channel is determined by MCLK. The specific working method takes channel 1 as an example, and the working methods of other channels are the same.
通道一的采样保持电路结构如图6所示,其工作时序如图7所示。其中,MCLK为主时钟,工作频率为fs;CLK1和CLK1b是两相非交叠时钟,工作频率为fs/4。开关S1和S3的控制信号为CLK1,开关S2的控制信号为CLK1b,开关S4的控制信号为主时钟MCLK。The sample and hold circuit structure of channel one is shown in Figure 6, and its working sequence is shown in Figure 7. Among them, MCLK is the main clock, and the operating frequency is f s ; CLK1 and CLK1b are two-phase non-overlapping clocks, and the operating frequency is f s /4. The control signals of the switches S1 and S3 are CLK1, the control signal of the switch S2 is CLK1b, and the control signal of the switch S4 is the main clock MCLK.
步骤1、t1时刻,MCLK和CLK1同时跳变为高电平,CLK1b跳变为低电平,因此开关S1、S3和S4导通,S2断开,采样电容Csample对输入信号进行跟踪;Step 1, at time t1 , MCLK and CLK1 jump to high level at the same time, CLK1b jumps to low level, so switches S1, S3 and S4 are turned on, S2 is turned off, and the sampling capacitor C sample tracks the input signal;
步骤2、t2时刻,MCLK跳变为低电平,开关S4断开,采样电容Csample右极板电荷不再改变;Step 2. At time t2 , MCLK jumps to a low level, switch S4 is turned off, and the charge on the right plate of the sampling capacitor C sample does not change;
步骤3、t3时刻,CLK1跳变为低电平,CLK1b跳变为高电平,因此开关S1和S3断开,S2导通,采样电容翻转,通道一进入保持阶段,子模数转换器ADC1对采样值进行转换,输出N位数字信号DIG1。Step 3. At time t3 , CLK1 jumps to low level, CLK1b jumps to high level, so switches S1 and S3 are disconnected, S2 is turned on, the sampling capacitor is reversed, channel 1 enters the hold phase, and the sub-analog-to-digital converter ADC 1 converts the sampled value and outputs an N-bit digital signal DIG 1 .
步骤4、t3时刻,CLK1跳变为低电平,根据图4所示,CLK2跳变为高电平。因此,在通道一进入保持阶段时,通道二对输入进行跟踪,开始采样保持过程(重复步骤1~步骤3)。
步骤5、同理,当CLK2跳变为低电平时,通道二完成采样进入控化保持阶段,子模数转换器ADC2对采样值进行转换,输出N位数字信号DIG2。此时,根据图4所示,CLK3跳变为高电平,通道三对输入进行跟踪,开始采样保持过程(重复步骤1~步骤3)。Step 5. Similarly, when CLK2 transitions to a low level, channel 2 completes sampling and enters the control and hold phase. The sub-analog-to-digital converter ADC 2 converts the sampled value and outputs an N-bit digital signal DIG 2 . At this point, as shown in Figure 4, CLK3 jumps to a high level, channel three tracks the input, and starts the sample-and-hold process (repeat steps 1 to 3).
步骤6、同理,当CLK3跳变为低电平时,通道三完成采样进入保持阶段,子模数转换器ADC3对采样值进行转换,输出N位数字信号DIG3。此时,根据图4所示,CLK4跳变为高电平,通道四对输入进行跟踪,开始采样保持过程(重复步骤1~步骤3)。Step 6. Similarly, when CLK3 transitions to a low level, channel 3 completes sampling and enters a hold phase, and the sub-analog-to-digital converter ADC 3 converts the sampled value and outputs an N-bit digital signal DIG 3 . At this point, as shown in Figure 4, CLK4 jumps to a high level, channel four tracks the input, and starts the sample-and-hold process (repeat steps 1 to 3).
步骤7、同理,当CLK4跳变为低电平时,通道四完成采样进入保持阶段,子模数转换器ADC4对采样值进行转换,输出N位数字信号DIG4。此时,根据图4所示,CLK1又跳变为高电平,通道一对输入进行跟踪,开始采样保持过程(重复步骤1~步骤3)。Step 7. Similarly, when CLK4 transitions to a low level,
根据步骤1~步骤7可见,四个通道按照图4所示的时钟关系依次对输入信号进行采样保持和数据转换,并不断循环,循环周期为4*Ts(Ts为主时钟MCLK的周期,Ts=1/fs)。而多路复用器(MUX)则根据图4所示时钟的相位关系将各通道数字信号(DIG1~DIG4)依次输出,从而实现了精度为N位、速度为fs的高速转换。本发明的时间交织模数转换器的通道数可以为大于等于二的整数。According to steps 1 to 7, it can be seen that the four channels sequentially sample and hold the input signal and convert the data according to the clock relationship shown in Figure 4, and continue to cycle. The cycle period is 4*T s (T s is the period of the master clock MCLK , T s =1/f s ). The multiplexer (MUX) outputs the digital signals of each channel (DIG 1 ~ DIG 4 ) sequentially according to the phase relationship of the clock shown in Figure 4, thus realizing high-speed conversion with an accuracy of N bits and a speed of f s . The number of channels of the time-interleaved analog-to-digital converter of the present invention may be an integer greater than or equal to two.
本发明的时间交织模数转换器具有以下四个优点:The time-interleaved analog-to-digital converter of the present invention has the following four advantages:
1、在t2时刻,MCLK跳变为低电平,开关S4断开,采样电容的右极板电荷不再跟随输入变化,因此该时刻即决定了采样值。而后开关S3比S4晚半个主时钟周期(Ts)断开,对采样值无贡献,因此通道时钟CLK1的相位偏差对采样结果没有任何影响,同理其余三个通道时钟的相位偏差对采样结果没有任何影响。1. At time t2 , MCLK jumps to low level, switch S4 is turned off, and the charge on the right plate of the sampling capacitor no longer follows the input change, so the sampling value is determined at this time. Then switch S3 is turned off half a master clock cycle (T s ) later than S4, and has no contribution to the sampling value, so the phase deviation of the channel clock CLK1 has no influence on the sampling result. Similarly, the phase deviations of the other three channel clocks have no effect on the sampling The result has no effect.
2、在t2时刻,MCLK跳变为低电平,开关S4断开,采样电容的右极板电荷不再跟随输入变化,实现下极板采样,避免了采样开关S1的电荷注入,消除了由此引起的非线性效应。2. At time t2 , MCLK jumps to a low level, switch S4 is turned off, the charge on the right plate of the sampling capacitor no longer follows the input change, and the sampling of the lower plate is realized, which avoids the charge injection of the sampling switch S1 and eliminates the The resulting non-linear effects.
3、因为主时钟MCLK控制的采样开关S4没有放在输入信号通路上,开关的导通电阻和寄生电容不会增加输入信号的负载,因此对输入信号带宽不会产生任何影响。3. Because the sampling switch S4 controlled by the main clock MCLK is not placed on the input signal path, the on-resistance and parasitic capacitance of the switch will not increase the load of the input signal, so it will not have any impact on the bandwidth of the input signal.
4、本例中,MCLK与CLK1是同时跳变,但实际上,只要MCLK的高电平被CLK1的高电平覆盖,就能实现上述功能,因此缓解了对主时钟延迟时间的要求。4. In this example, MCLK and CLK1 jump at the same time, but in fact, as long as the high level of MCLK is covered by the high level of CLK1, the above functions can be realized, thus alleviating the delay time requirement of the main clock.
以上实例仅为本发明的优选例子而已,本发明的使用并不局限于该实例,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above example is only a preferred example of the present invention, and the use of the present invention is not limited to this example. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention should be included in the present invention. within the scope of protection.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104244764A CN102420612B (en) | 2011-12-16 | 2011-12-16 | Time-interleaving analogue-to-digital converter capable of suppressing sampling time mismatching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104244764A CN102420612B (en) | 2011-12-16 | 2011-12-16 | Time-interleaving analogue-to-digital converter capable of suppressing sampling time mismatching |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102420612A CN102420612A (en) | 2012-04-18 |
CN102420612B true CN102420612B (en) | 2013-11-13 |
Family
ID=45944872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011104244764A Expired - Fee Related CN102420612B (en) | 2011-12-16 | 2011-12-16 | Time-interleaving analogue-to-digital converter capable of suppressing sampling time mismatching |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102420612B (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103916126A (en) * | 2013-10-22 | 2014-07-09 | 新乡学院 | Pipelined ADC circuit with digital correction module |
CN103905046B (en) * | 2013-10-22 | 2018-03-30 | 新乡学院 | A kind of 9 grade of ten bit stream waterline adc circuit |
CN104753534A (en) * | 2013-12-27 | 2015-07-01 | 中兴通讯股份有限公司 | Device and method for expanding the bandwidth of ADC sampling |
CN103746695B (en) * | 2013-12-27 | 2017-04-19 | 电子科技大学 | Correction Method of Sampling Time Mismatch Between Channels of Time-Interleaved Analog-to-Digital Converter |
US9236878B2 (en) * | 2014-02-14 | 2016-01-12 | Infineon Technologies Ag | Analog-to-digital conversion |
CN103905047A (en) * | 2014-03-04 | 2014-07-02 | 东莞博用电子科技有限公司 | Circuit system topological structure and method for increasing sampling rate of ADC |
CN104038226B (en) * | 2014-06-25 | 2018-06-05 | 华为技术有限公司 | The time-interleaved analog-digital converter of multichannel |
CN109361393A (en) * | 2014-12-26 | 2019-02-19 | 华为技术有限公司 | A kind of analog-to-digital converter and analog-to-digital conversion method |
CN107852160B (en) * | 2015-07-23 | 2021-05-14 | 日本电信电话株式会社 | Analog multiplexer core circuit and analog multiplexer circuit |
CN105162466B (en) * | 2015-08-28 | 2018-07-06 | 西安启微迭仪半导体科技有限公司 | Increase the ADC structures of production line analog-digital converter surplus amplifier settling time |
US9455737B1 (en) * | 2015-09-25 | 2016-09-27 | Qualcomm Incorporated | Delta-sigma analog-to-digital converter (ADC) with time-interleaved (TI) or two-step successive approximation register (SAR) quantizer |
CN106571823B (en) * | 2016-11-10 | 2020-03-27 | 电子科技大学 | Multi-channel time-interleaved analog-to-digital converter bandwidth mismatch optimization method |
CN106911331A (en) * | 2017-02-04 | 2017-06-30 | 武汉科技大学 | Digital verification circuit and real-time verification method of time-interleaved ADC system |
CN107154804B (en) * | 2017-03-28 | 2020-07-24 | 中山大学 | Two-channel TIADC nonlinear system parameter estimation method of low-pass signal |
CN106992783B (en) * | 2017-04-06 | 2019-12-06 | 电子科技大学 | Sampling time mismatch correction method for time-interleaved ADC (analog to digital converter) based on binary search |
CN107907866B (en) * | 2017-12-15 | 2020-02-18 | 深圳先进技术研究院 | A circuit, method and device for digitizing array radar signals |
CN109274372B (en) * | 2018-09-05 | 2022-03-11 | 东南大学 | A Method for Extracting Sampling Time Mismatch Error Between Channels in TIADC System |
CN110518910A (en) * | 2019-09-02 | 2019-11-29 | 电子科技大学 | A kind of time-interleaved ADC mismatch optimization method of task based access control scheduling |
CN113098515B (en) * | 2020-01-08 | 2025-07-04 | 炬芯科技股份有限公司 | Analog-to-digital conversion systems and audio equipment |
CN114301457A (en) * | 2021-12-17 | 2022-04-08 | 中国兵器装备集团自动化研究所有限公司 | Nuclide sampling method, sampling device, identification method and identification device |
CN116298488B (en) * | 2023-03-24 | 2024-02-02 | 高澈科技(上海)有限公司 | Voltage sampling circuit, control method thereof and battery management system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7292170B2 (en) * | 2005-06-13 | 2007-11-06 | Texas Instruments Incorporated | System and method for improved time-interleaved analog-to-digital converter arrays |
CN101281792A (en) * | 2007-04-05 | 2008-10-08 | 中国科学院微电子研究所 | Sampling hold circuit |
CN101217278A (en) * | 2008-01-10 | 2008-07-09 | 复旦大学 | A time-interleaved analog-to-digital converter capable of suppressing the influence of sampling clock phase deviation |
-
2011
- 2011-12-16 CN CN2011104244764A patent/CN102420612B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102420612A (en) | 2012-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102420612B (en) | Time-interleaving analogue-to-digital converter capable of suppressing sampling time mismatching | |
CN107395206B (en) | Successive Approximation Digital-to-Analog Converter with Feedback Advance Setting and Corresponding Delta-SigmaADC Architecture | |
US6653966B1 (en) | Subranging analog to digital converter with multi-phase clock timing | |
US10110242B2 (en) | Interleaving successive approximation analog-to-digital converter with noise shaping | |
US8217824B2 (en) | Analog-to-digital converter timing circuits | |
CN109787633B (en) | ΣΔADC with Chopper Stabilization for Hybrid ADC Architectures | |
US20140184434A1 (en) | Analog/digital converter | |
US8643529B2 (en) | SAR assisted pipelined ADC and method for operating the same | |
US20150009053A1 (en) | Input configuration for analog to digital converter | |
CN101931410A (en) | 1-Bit Cell Circuit for Pipelined Analog-to-Digital Converters | |
US7821436B2 (en) | System and method for reducing power dissipation in an analog to digital converter | |
CN101895295B (en) | Operational amplifier-shared low-power consumption production line analog-digital converter | |
CN104753533B (en) | One kind is classified shared binary channels flow-line modulus converter | |
CN102013894B (en) | Low-power pipeline analogue-digital converter (ADC) | |
CN101980446A (en) | A High Performance and Low Power Consumption Pipelined Analog-to-Digital Converter | |
CN110943726A (en) | Multi-channel multi-stage parallel ultra-high-speed sample hold circuit | |
Zahrai et al. | A low-power hybrid ADC architecture for high-speed medium-resolution applications | |
CN106788437B (en) | Pipelined analog-to-digital converter and method for increasing sampling rate of analog-to-digital converter | |
KR20090054272A (en) | Analog-to-Digital Converter Accumulates 1/2 Multiplier Reference Voltage | |
CN103124177A (en) | Circular A/D (Analog/Digital) converter and digital calibration method | |
Chen et al. | A 1-GS/s 6-Bit Two-Channel Two-Step ADC in 0.13-$\mu $ m CMOS | |
CN100586024C (en) | Double Sampling Multiplication Digital-to-Analog Conversion Circuit and Its Application | |
CN107346973B (en) | Pipeline analog-to-digital converter based on time-sharing multiplexing of DAC (digital-to-analog converter) and Sub ADC (analog-to-digital converter) sampling networks | |
CN111193516B (en) | Output common mode rejection circuit for MDAC in pipeline analog-to-digital converter | |
Liechti et al. | A 1.8 V 12-bit 230-MS/s pipeline ADC in 0.18 μm CMOS technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131113 Termination date: 20141216 |
|
EXPY | Termination of patent right or utility model |