CN102412762A - Cascade-type thermoelectric generator - Google Patents
Cascade-type thermoelectric generator Download PDFInfo
- Publication number
- CN102412762A CN102412762A CN2012100030987A CN201210003098A CN102412762A CN 102412762 A CN102412762 A CN 102412762A CN 2012100030987 A CN2012100030987 A CN 2012100030987A CN 201210003098 A CN201210003098 A CN 201210003098A CN 102412762 A CN102412762 A CN 102412762A
- Authority
- CN
- China
- Prior art keywords
- thermoelectric
- heat
- power generation
- cascaded
- generator according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 claims abstract description 102
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims description 50
- 238000003825 pressing Methods 0.000 claims description 24
- 230000017525 heat dissipation Effects 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000007769 metal material Substances 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 7
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 4
- 229910007657 ZnSb Inorganic materials 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 239000007770 graphite material Substances 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 12
- 239000002918 waste heat Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000012809 cooling fluid Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910018989 CoSb Inorganic materials 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- -1 ZrNiSn-based Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Electromechanical Clocks (AREA)
Abstract
本发明涉及一种级联式热电发电器,包括产生热量的热源、将热量转换成电能的热电发电部、及外壳,其中,所述热电发电部包括从所述热源沿热量传递方向依次径向向外设置的级联的至少两个热电发电系统,所述级联的至少两个热电发电系统逐级传递热量,且各级热电发电系统分别用其接收到的热量进行热电转换。
The present invention relates to a cascaded thermoelectric generator, comprising a heat source that generates heat, a thermoelectric power generation unit that converts heat into electrical energy, and a casing, wherein the thermoelectric power generation unit includes sequentially radial At least two thermoelectric power generation systems cascaded outwardly, the at least two thermoelectric power generation systems in cascade transfer heat step by step, and the thermoelectric power generation systems of each stage use the heat received by them to perform thermoelectric conversion.
Description
技术领域 technical field
本发明涉及热电转换技术领域,具体涉及一种级联式热电发电器。 The invention relates to the technical field of thermoelectric conversion, in particular to a cascaded thermoelectric generator.
背景技术 Background technique
热电(thermoelectric)发电技术是利用热电材料(thermoelectric materials)的赛贝克(Seebeck)效应将热能直接转换成电能的技术,具有热电器件体积小、可靠性高、寿命长等特点,按热电转换原理,可以利用包括太阳能在内的所有热源,可以用小面积获得大功率的电力,因此在空间科学、军事装备、废热发电等技术领域发挥着重要作用,并且越来越受到人们的重视。 Thermoelectric power generation technology is a technology that uses the Seebeck effect of thermoelectric materials to directly convert thermal energy into electrical energy. It has the characteristics of small size, high reliability, and long life of thermoelectric devices. According to the principle of thermoelectric conversion, All heat sources including solar energy can be utilized, and high-power electric power can be obtained with a small area. Therefore, it plays an important role in technical fields such as space science, military equipment, and waste heat power generation, and has attracted more and more attention.
热电发电器一般为圆筒结构,并采用单级结构,即仅使用一种热电材料或热电器件。其结构是,热源位于圆筒结构的中心,热电器件分布于热源外侧并呈辐射状,热电发电器最外层为散热结构,其中,热电器件将来自热源的热能转换成电能。热电器件是把热能直接转换成电能的一种元件,通常由均质热电材料构成;热电材料是一种利用固体内部载流子运动实现热能和电能直接相互转换的功能材料,其两端的温差可以产生电压。 Thermoelectric generators generally have a cylindrical structure and adopt a single-stage structure, that is, only one thermoelectric material or thermoelectric device is used. Its structure is that the heat source is located in the center of the cylindrical structure, the thermoelectric devices are distributed outside the heat source in a radial shape, and the outermost layer of the thermoelectric generator is a heat dissipation structure, wherein the thermoelectric devices convert heat energy from the heat source into electrical energy. A thermoelectric device is an element that directly converts thermal energy into electrical energy, and is usually composed of a homogeneous thermoelectric material; a thermoelectric material is a functional material that uses the movement of carriers inside a solid to achieve direct mutual conversion of thermal energy and electrical energy, and the temperature difference between its two ends can be generate voltage.
由于热电材料的性能优值Z(Z=α2σ/κ,其中α为Seebeck系数;σ为电导率;κ为热导率)与材料使用温度密切相关,每种热电材料的最佳工作温度区间只在某一特定的小范围内,超出最佳工作温度区间后热电材料的性能将急剧下降。如果热电材料(热电器件)的实际工作温度范围比较大(超过单种热电材料的工作温度范围),则由单种均质热电材料构成的热电发电器难以获得最大的能量转换效率,因此沿温度梯度方向选用具有不同最佳工作温度的热电材料(热电器件),并使之各自工作于其最佳工作温度区间,这样可以有效地提高热电发电效率。 Since the performance figure of merit Z of thermoelectric materials (Z=α 2 σ/κ, where α is the Seebeck coefficient; σ is the electrical conductivity; κ is the thermal conductivity) is closely related to the temperature of the material, the optimal working temperature of each thermoelectric material The interval is only within a specific small range, and the performance of thermoelectric materials will drop sharply after exceeding the optimum operating temperature interval. If the actual operating temperature range of thermoelectric materials (thermoelectric devices) is relatively large (beyond the operating temperature range of a single thermoelectric material), it is difficult for a thermoelectric generator composed of a single homogeneous thermoelectric material to obtain the maximum energy conversion efficiency, so along the temperature The gradient direction selects thermoelectric materials (thermoelectric devices) with different optimal operating temperatures, and makes them work in their optimal operating temperature range, which can effectively improve the efficiency of thermoelectric power generation.
通过热电材料的多段(segment)组合或者热电器件的级联(cascade)可以提高热电发电效率。Kajikawa(The 20th International Conference on Thermoelectrics, Beijing, 2001:49-56)、El-Genk(Energ. Convers. Manage, 2005(46):1083-1105)等报道了通过级联、多段复合的方式提高材料热电发电效率的实验结果。此外,在日本特开2005-19910,日本特开2006-245224,WO96/15412,US6722140B2,US6662570B2,US6505468B2等专利中也公开了各种多段复合热电材料和级联热电器件的技术方案。例如,日本专利特开2005-19910公开了在具有不相同的热膨胀率的不同热电材料之间插入了热膨胀率为两材料之间值的另外1至2种热电材料层,从而缓和了热应力的技术。日本专利特开2006-245224公开了在位于低温段热电转换用器件的上端部的绝缘性基板上,依次装载了高温段热电转换用器件和夹持用部件,从而降低作用于热电转换用器件上的热应力的同时降低热损失的技术。 The efficiency of thermoelectric power generation can be improved by combining multiple segments of thermoelectric materials or cascading thermoelectric devices. Kajikawa (The 20 th International Conference on Thermoelectrics, Beijing, 2001:49-56), El-Genk (Energ. Convers. Manage, 2005(46):1083-1105), etc. reported that the method of cascading and multi-stage compounding can improve Experimental results of material thermoelectric power generation efficiency. In addition, Japanese Patent Laid-Open 2005-19910, Japanese Patent Laid-Open 2006-245224, WO96/15412, US6722140B2, US6662570B2, US6505468B2 and other patents also disclose technical solutions of various multi-stage composite thermoelectric materials and cascaded thermoelectric devices. For example, Japanese Patent Laid-Open No. 2005-19910 discloses that another 1 to 2 thermoelectric material layers with thermal expansion rates between the two materials are inserted between different thermoelectric materials with different thermal expansion rates, thereby relieving the effect of thermal stress. technology. Japanese Patent Laid-Open No. 2006-245224 discloses that on the insulating substrate located at the upper end of the device for thermoelectric conversion in the low temperature segment, the device for thermoelectric conversion in the high temperature segment and the clamping part are sequentially loaded, thereby reducing the effect on the device for thermoelectric conversion. A technology that reduces heat loss while maintaining thermal stress.
然而,对于热电材料的多段复合虽然能提高复合材料的整体发电效率,但由于各个分段材料不同,不同材料在连接界面处存在不匹配的膨胀系数,在高温下容易变形和开裂,并且由于不同热电材料的电导率和热导率不完全一致,在连接界面处会增加额外的接触电阻和接触热阻。此外,在长期高温作用下载界面处或邻近界面区域内会产生元素间的相互扩散及元素间的化学反应,使得材料的热稳定性受到影响,其次各个分段材料中最佳几何尺寸要求差异较大时,难以获得预期的热电发电效率。 However, although the multi-stage composite of thermoelectric materials can improve the overall power generation efficiency of the composite material, due to the different materials of each segment, different materials have mismatched expansion coefficients at the connection interface, which is easy to deform and crack at high temperatures, and due to the different The electrical conductivity and thermal conductivity of thermoelectric materials are not completely consistent, and additional contact resistance and contact thermal resistance will be added at the connection interface. In addition, inter-diffusion between elements and chemical reactions between elements will occur at the interface or near the interface under long-term high-temperature action, which will affect the thermal stability of the material. Secondly, the optimal geometric size requirements of each segmented material are relatively different. When it is large, it is difficult to obtain the expected thermoelectric power generation efficiency.
对于级联热电器件,一般级与级之间有绝缘层隔开,即级间串联结构,要求级间的绝缘层具有高导热和高电绝缘性,并且要具有足够高的连接强度。由于级联热电器件实际使用温度区间很大,级间绝缘层长期在高温和大温差条件下工作容易开裂,引起级联热电器件内部出现过大的接触电阻和接触热阻,从而导致热电器件性能衰减甚至失效。 For cascaded thermoelectric devices, there is generally an insulating layer between the stages, that is, an inter-stage series structure. The insulating layer between the stages is required to have high thermal conductivity and high electrical insulation, and to have a sufficiently high connection strength. Due to the large actual operating temperature range of the cascaded thermoelectric device, the interstage insulating layer is prone to cracking when it works under high temperature and large temperature difference for a long time, causing excessive contact resistance and contact thermal resistance inside the cascaded thermoelectric device, which leads to poor performance of the thermoelectric device. Attenuation or even failure.
发明内容 Contents of the invention
本发明所要解决的技术问题包括提供一种级联式热电发电器,其可在不影响发电器可靠性的前提下,提高发电器整体效率。 The technical problem to be solved by the present invention includes providing a cascaded thermoelectric generator, which can improve the overall efficiency of the generator without affecting the reliability of the generator.
为了解决上述技术问题,本发明提供一种级联式热电发电器,包括产生热量的热源、将热量转换成电能的热电发电部、及外壳,其中,所述热电发电部包括从所述热源沿热量传递方向依次径向向外设置的级联的至少两个热电发电系统,所述级联的至少两个热电发电系统逐级传递热量,且各级热电发电系统分别用其接收到的热量进行热电转换。 In order to solve the above technical problems, the present invention provides a cascaded thermoelectric generator, which includes a heat source that generates heat, a thermoelectric power generation unit that converts heat into electrical energy, and a casing, wherein the thermoelectric power generation unit includes At least two thermoelectric power generation systems cascaded radially outward in the direction of heat transfer, the at least two thermoelectric power generation systems in cascade transfer heat step by step, and the thermoelectric power generation systems at each level use the heat received Thermoelectric conversion.
采用本发明,通过多个热电发电系统的级联,热量从热源经过各个温度段的热电发电系统传递至外壳,热量经过各级热电发电系统时产生温差,随即产生电能,且至少两个热电发电系统相对独立,以便热电发电系统可相对独立地进行热电转换,即使在一个系统失效的情况下,其他系统仍能正常工作。从而在保证了热电发电器的可靠性的前提下,扩大了热电发电器的工作温度区间,提高了热电发电器的整体效率。 With the present invention, through the cascading of multiple thermoelectric power generation systems, the heat is transferred from the heat source to the shell through the thermoelectric power generation systems of each temperature section, and a temperature difference is generated when the heat passes through the thermoelectric power generation systems of various levels, and then electric energy is generated, and at least two thermoelectric power generation systems The systems are relatively independent, so that the thermoelectric power generation system can perform thermoelectric conversion relatively independently, even if one system fails, other systems can still work normally. Therefore, on the premise of ensuring the reliability of the thermoelectric generator, the working temperature range of the thermoelectric generator is expanded, and the overall efficiency of the thermoelectric generator is improved.
在本发明中,也可以,各级热电发电系统分别包括沿热量传递方向依次径向向外设置的集热构件、热电构件以及散热构件,所述热电构件的高温侧与所述集热构件相连且所述热电构件的低温侧与所述散热构件相连,所述热电构件从所述集热构件接收热量以进行热电转换并进一步向所述散热构件传递热量。 In the present invention, it is also possible that the thermoelectric power generation systems at all levels respectively include a heat collecting member, a thermoelectric member and a heat dissipation member arranged radially outward along the heat transfer direction, and the high temperature side of the thermoelectric member is connected to the heat collecting member And the low-temperature side of the thermoelectric component is connected to the heat dissipation component, and the thermoelectric component receives heat from the heat collection component to perform thermoelectric conversion and further transfers heat to the heat dissipation component.
采用本发明,有利于实现各级热电发电系统的热电转换。 Adopting the invention is beneficial to realize the thermoelectric conversion of thermoelectric power generation systems at various levels.
在本发明中,也可以,相邻设置的两级热电发电系统中,位于热量传递方向上位的上一级热电发电系统的散热构件为位于热量传递方向下位的下一级热电发电系统的集热构件。 In the present invention, it is also possible that among the adjacently arranged two-stage thermoelectric power generation systems, the heat radiating member of the upper thermoelectric power generation system located at the upper position in the heat transfer direction is the heat collector of the lower thermoelectric generation system located at the lower position in the heat transfer direction. member.
采用本发明,由于两级热电发电系统共用了散热构件与集热构件,因此保证了热量传递的延续性,当一个系统处于失效状态时,其他系统仍能正常工作。 With the present invention, since the two-stage thermoelectric power generation system shares the heat dissipation component and the heat collection component, the continuity of heat transfer is ensured, and when one system is in failure state, other systems can still work normally.
在本发明中,也可以,各级热电发电系统分别根据其集热构件处的温度选择具有不同工作温度的热电构件。 In the present invention, it is also possible that the thermoelectric power generation systems at all levels select thermoelectric components with different working temperatures according to the temperature at the heat collecting components.
采用本发明,各级热电发电系统的热电构件分别处于其各自的最佳工作温度,因此能获得最大的能量转换效率。 By adopting the present invention, the thermoelectric components of the thermoelectric power generation systems at all levels are respectively at their respective optimal working temperatures, so that the maximum energy conversion efficiency can be obtained.
在本发明中,也可以,各级热电发电系统的集热构件和散热构件为同轴设置的筒状结构,所述热电构件为多个径向分布在所述集热构件与散热构件之间的热电器件。 In the present invention, it is also possible that the heat-collecting components and heat-dissipating components of the thermoelectric power generation system at each level are cylindrical structures arranged coaxially, and the thermoelectric components are distributed radially between the heat-collecting components and the heat-dissipating components. thermoelectric devices.
采用本发明,可提高整个热电发电器的热电转换效率。 By adopting the invention, the thermoelectric conversion efficiency of the whole thermoelectric generator can be improved.
在本发明中,也可以,位于热量传递方向最下位的热电发电系统的散热构件为所述级联式热电发电器的外壳。 In the present invention, it is also possible that the heat dissipation component of the thermoelectric power generation system located at the lowest position in the heat transfer direction is the casing of the cascaded thermoelectric generator.
采用本发明,外壳可作为整个热电发电器系统的散热结构,热量从热源经过各个温度段的热电发电系统传递至外壳后,从外壳散发。 By adopting the invention, the casing can be used as the heat dissipation structure of the whole thermoelectric generator system, and the heat is transmitted from the heat source to the casing through the thermoelectric generation systems of various temperature sections, and then dissipated from the casing.
在本发明中,也可以,还包括连接于所述位于热量传递方向最下位的热电发电系统的热电构件的低温侧与所述外壳之间以将各热电发电系统中的各个构件压紧的压紧固定装置。 In the present invention, it is also possible to further include a press connected between the low-temperature side of the thermoelectric components of the thermoelectric generation system located at the lowest position in the heat transfer direction and the housing to compress each component in each thermoelectric generation system. Tighten the fixture.
采用本发明,通过该压紧固定装置可以将各热电发电系统中的各个构件压紧,从而保持各热电构件与集热构件、散热构件之间的良好接触以保证热量的良好传递。 By adopting the present invention, each component in each thermoelectric power generation system can be compressed by the pressing and fixing device, so as to maintain good contact between each thermoelectric component, heat collecting component, and heat dissipation component to ensure good heat transfer.
在本发明中,也可以,还包括与所述压紧固定装置相连且紧贴设置于所述外壳的内侧的支撑构件。 In the present invention, it is also possible to further include a support member connected to the pressing and fixing device and closely attached to the inner side of the casing.
采用本发明,通过支撑部件的设置既可对压紧固定装置提供固定支持,又有利于热量的传递。 By adopting the present invention, the setting of the support component can not only provide fixed support for the pressing and fixing device, but also facilitate heat transfer.
在本发明中,也可以,所述压紧固定装置通过螺纹压紧方式或者弹簧压紧方式压紧各热电发电系统中的各个构件。 In the present invention, it is also possible that the pressing and fixing device presses each component in each thermoelectric power generation system by means of screw pressing or spring pressing.
采用本发明,压紧固定装置可以可靠而稳定地压紧各热电发电系统中的各个构件,保证热量的良好传递。 By adopting the present invention, the pressing and fixing device can reliably and stably press each component in each thermoelectric power generation system to ensure good heat transfer.
在本发明中,也可以,在所述外壳的外表面上形成有多个径向分布的散热翅片。 In the present invention, it is also possible that a plurality of radially distributed cooling fins are formed on the outer surface of the housing.
采用本发明,能使发电器内部的热量有效传递至外部,拉大热量传递方向上的温差,提高发电效率。 By adopting the invention, the heat inside the generator can be effectively transferred to the outside, the temperature difference in the direction of heat transfer can be widened, and the power generation efficiency can be improved.
在本发明中,也可以,在所述外壳的外表面上缠绕有螺旋式水管。 In the present invention, it is also possible that a spiral water pipe is wound on the outer surface of the casing.
采用本发明,通过在螺旋式水管中导入制冷流体,从而起到冷却外壳的作用,能使发电器内部的热量有效传递至外部,拉大热量传递方向上的温差,提高发电效率。 By adopting the present invention, the cooling fluid is introduced into the spiral water pipe to cool the shell, so that the heat inside the generator can be effectively transferred to the outside, the temperature difference in the direction of heat transfer can be widened, and the power generation efficiency can be improved.
在本发明中,也可以,在所述外壳的外表面上设置有U型水管。 In the present invention, it is also possible that a U-shaped water pipe is arranged on the outer surface of the housing.
采用本发明,通过在U型水管中导入制冷流体,能使发电器内部的热量有效传递至外部,拉大热量传递方向上的温差,提高发电效率。 By adopting the present invention, by introducing cooling fluid into the U-shaped water pipe, the heat inside the generator can be effectively transferred to the outside, the temperature difference in the direction of heat transfer can be widened, and the power generation efficiency can be improved.
在本发明中,也可以,所述热源为具有封闭结构的热源。 In the present invention, the heat source may be a heat source having a closed structure.
采用本发明,该热源结构简单,且无需与外部连通,从而以此构造的热电发电器结构简单,便于制造。 With the present invention, the heat source has a simple structure and does not need to communicate with the outside, so the thermoelectric generator constructed in this way has a simple structure and is easy to manufacture.
在本发明中,也可以,所述热源为具有管道结构的热源。 In the present invention, the heat source may also be a heat source having a pipe structure.
采用本发明,热源内部可通过与外部贯通,可以将如排气中的废热等从外壳的一端引入到热源内部,发生热传递后从另一端排出,使发电器能利用该热能产生电。 With the present invention, the inside of the heat source can be connected with the outside, and waste heat such as exhaust gas can be introduced into the heat source from one end of the casing, and discharged from the other end after heat transfer, so that the generator can use the heat energy to generate electricity.
在本发明中,也可以,在所述外壳轴向的两端分别安装有与所述热源的管道结构连通的管道转接接口或法兰。 In the present invention, it is also possible that pipe transfer interfaces or flanges communicating with the pipe structure of the heat source are respectively installed at both ends of the casing in the axial direction.
采用本发明,热源内部可通过管道转接接口或法兰与外部贯通,方便地将排气废热等从外壳的一端引入到热源内部,发生热传递后从另一端排出,使发电器能利用该热能产生电。 With the present invention, the inside of the heat source can be connected to the outside through the pipe adapter or flange, and the exhaust waste heat can be easily introduced from one end of the shell to the inside of the heat source, and then discharged from the other end after heat transfer, so that the generator can use this Heat energy produces electricity.
在本发明中,也可以,所述管道转接接口或法兰由金属材料或者耐高温有机材料制成。 In the present invention, it is also possible that the pipe transfer interface or the flange is made of metal material or high temperature resistant organic material.
采用本发明,有利于将外部的热量导入热电发电器内部,可提高整个发电器系统的发电效率。 Adopting the present invention is beneficial to lead the external heat into the thermoelectric generator, and can improve the power generation efficiency of the whole generator system.
在本发明中,也可以,所述管道转接接口或法兰通过螺纹紧固或者焊接的方式与所述外壳相连。 In the present invention, it is also possible that the pipe transfer interface or the flange is connected to the outer shell by screw fastening or welding.
采用本发明,可以更牢固地结合管道转接接口或法兰与外壳。 By adopting the present invention, it is possible to more firmly combine the pipe transfer interface or the flange with the shell.
在本发明中,也可以,所述热电构件为由SiGe合金材料、方钴矿或填充方钴矿热电材料、ZnSb3基热电材料、Bi2Te3基热电材料、半哈勒斯(half-Hesuler)化合物热电材料中的一种构成的热电构件。 In the present invention, it is also possible that the thermoelectric component is made of SiGe alloy material, skutterudite or filled skutterudite thermoelectric material, ZnSb 3 -based thermoelectric material, Bi 2 Te 3- based thermoelectric material, half-Hales (half- Hesuler) compound thermoelectric material composed of a thermoelectric component.
采用本发明,可有效地将热能转换为电能。 By adopting the invention, heat energy can be effectively converted into electric energy.
在本发明中,也可以,位于热量传递方向最上位的热电发电系统的集热构件由高导热的石墨或金属材料制成。 In the present invention, it is also possible that the heat collecting member of the thermoelectric power generation system located at the uppermost position in the heat transfer direction is made of graphite or metal material with high thermal conductivity.
采用本发明,可提高该集热构件的集热性能。 By adopting the present invention, the heat collecting performance of the heat collecting member can be improved.
在本发明中,也可以,除了位于热量传递方向最上位的热电发电系统的集热构件以外的集热构件由高导热金属材料制成。 In the present invention, the heat collecting members other than the heat collecting member of the thermoelectric power generation system positioned uppermost in the heat transfer direction may also be made of a highly thermally conductive metal material.
采用本发明,可提高该集热构件的集热性能,并可进一步提高热量传递性能,有利于整个热电发电器的热电转换。 By adopting the invention, the heat collection performance of the heat collection member can be improved, and the heat transfer performance can be further improved, which is beneficial to the thermoelectric conversion of the whole thermoelectric generator.
优选地,上述高导热的金属材料可以是铜,铝,或合金材料。 Preferably, the metal material with high thermal conductivity may be copper, aluminum, or an alloy material.
附图说明 Description of drawings
图1为本发明第一实施例的翅片散热式级联热电发电器的示意图; FIG. 1 is a schematic diagram of a finned heat dissipation cascaded thermoelectric generator according to a first embodiment of the present invention;
图2为图1所示的翅片散热式级联热电发电器的A-A线剖视图; Fig. 2 is the A-A line sectional view of the cascaded thermoelectric generator with fin cooling shown in Fig. 1;
图3为本发明第二实施例的螺旋水冷式级联热电发电器的示意图; 3 is a schematic diagram of a spiral water-cooled cascaded thermoelectric generator according to a second embodiment of the present invention;
图4为图3所示的螺旋水冷式级联热电发电器的B-B线剖视图; Fig. 4 is the B-B sectional view of the spiral water-cooled cascaded thermoelectric generator shown in Fig. 3;
图5为本发明第三实施例的U型水冷式级联热电发电器的示意图; 5 is a schematic diagram of a U-shaped water-cooled cascaded thermoelectric generator according to a third embodiment of the present invention;
图6为图5所示的U型水冷式级联热电发电器的C-C线剖视图; Fig. 6 is a C-C line sectional view of the U-shaped water-cooled cascaded thermoelectric generator shown in Fig. 5;
图7为具有管道式热源的图1所示翅片散热式级联热电发电器的示意图; Fig. 7 is a schematic diagram of the finned heat dissipation cascaded thermoelectric generator shown in Fig. 1 with a pipeline heat source;
图8为具有管道式热源的图3所示螺旋水冷式级联热电发电器的示意图; Fig. 8 is a schematic diagram of the spiral water-cooled cascaded thermoelectric generator shown in Fig. 3 with a pipeline heat source;
图9为具有管道式热源的图5所示U型水冷式级联热电发电器的示意图。 Fig. 9 is a schematic diagram of the U-shaped water-cooled cascaded thermoelectric generator shown in Fig. 5 with a pipe-type heat source.
具体实施方式 Detailed ways
以下,参照附图,并结合下述实施例进一步说明本发明。应理解附图及下述实施例仅是示例性地说明本发明,并不是限定本发明,在本发明的宗旨和范围内,下述实施例可有多种变更。其中,各实施例中相同的部件以相同的附图标记标出,并不再详细描述。 Hereinafter, the present invention will be further described with reference to the accompanying drawings and in conjunction with the following embodiments. It should be understood that the accompanying drawings and the following embodiments are only exemplary to illustrate the present invention, and are not intended to limit the present invention. Within the spirit and scope of the present invention, the following embodiments can be modified in many ways. Wherein, the same components in each embodiment are marked with the same reference numerals and will not be described in detail again.
图1至图9分别示出了本发明级联式热电发电器的各个实施例。本发明的级联式热电发电器,包括产生热量的热源、将热量转换成电能的热电发电部、及外壳,其中,热电发电部包括从热源沿热量传递方向依次径向向外设置的级联的至少两个热电发电系统,该级联的至少两个热电发电系统逐级传递热量,且各级热电发电系统分别用其接收到的热量进行热电转换。本发明提供的级联式热电发电器不采用多段复合热电材料或级联热电发电器件,而是采用多个热电发电系统的级联。本发明级联式热电发电器中的上述至少两个热电发电系统相对独立,在一个系统失效的情况下,其他系统仍能正常工作。 1 to 9 respectively show various embodiments of the cascaded thermoelectric generator of the present invention. The cascaded thermoelectric generator of the present invention includes a heat source that generates heat, a thermoelectric power generation unit that converts heat into electrical energy, and a casing, wherein the thermoelectric power generation unit includes cascaded thermoelectric generators that are sequentially arranged radially outward from the heat source along the direction of heat transfer. At least two thermoelectric power generation systems, the at least two thermoelectric power generation systems in cascade transfer heat step by step, and the thermoelectric power generation systems at each level use the heat received by them to perform thermoelectric conversion. The cascaded thermoelectric generator provided by the present invention does not use multi-stage composite thermoelectric materials or cascaded thermoelectric power generation devices, but uses cascade connection of multiple thermoelectric power generation systems. The above-mentioned at least two thermoelectric power generation systems in the cascaded thermoelectric generator of the present invention are relatively independent, and when one system fails, the other systems can still work normally.
如图1~9所示,本发明的热电发电器10、20、30形状可以为大致圆柱形,其中心部设有热源1,热电发电系统依照热量传递方向围绕热源层层设置,热量从热源1经过各个温度段的热电发电系统传递至外壳8后,从外壳8散发。热量经过各级热电发电系统时产生温差,随即产生电能,而位于最外层的外壳8可作为整个热电发电器的散热装置。
As shown in Figures 1 to 9, the
本发明通过将两个或两个以上的独立的热电发电系统组合起来,在保证了热电发电器的可靠性的前提下,扩大了热电发电器的工作温度区间,提高了热电发电器的整体效率。 By combining two or more independent thermoelectric power generation systems, the present invention expands the working temperature range of the thermoelectric generator and improves the overall efficiency of the thermoelectric generator under the premise of ensuring the reliability of the thermoelectric generator .
更具体的,在本发明的级联式热电发电器中,上述各级热电发电系统分别包括沿热量传递方向依次径向向外设置的集热器、热电器件以及散热器,热电器件的高温侧与集热器相连且该热电器件的低温侧与散热器相连,该热电器件从集热器接收热量以进行热电转换并进一步向散热器传递热量。各级热电发电系统的集热器和散热器为同轴设置的筒状结构,并具有径向分布在集热器与散热器之间的多个热电器件。 More specifically, in the cascaded thermoelectric generator of the present invention, the above-mentioned thermoelectric power generation systems at all levels respectively include heat collectors, thermoelectric devices, and radiators arranged radially outward in sequence along the heat transfer direction, and the high-temperature side of the thermoelectric devices The thermoelectric device is connected to the heat collector and the low-temperature side of the thermoelectric device is connected to the heat sink. The thermoelectric device receives heat from the heat collector for thermoelectric conversion and further transfers heat to the heat sink. The heat collectors and radiators of the thermoelectric power generation system at all levels are cylindrical structures arranged coaxially, and have multiple thermoelectric devices radially distributed between the heat collectors and the radiators.
对于上述热电发电器,相邻设置的两级热电发电系统中,位于热量传递方向上位的上一级热电发电系统的散热器为位于热量传递方向下位的下一级热电发电系统的集热器。由于两级热电发电系统共用了散热器与集热器,因此保证了热量传递的延续性,当一个系统处于失效状态时,其他系统仍能正常工作。 For the above-mentioned thermoelectric generators, among the adjacent two-stage thermoelectric power generation systems, the radiator of the upper thermoelectric power generation system located in the upper heat transfer direction is the heat collector of the lower thermoelectric power generation system located in the lower heat transfer direction. Because the two-stage thermoelectric power generation system shares the radiator and heat collector, the continuity of heat transfer is guaranteed. When one system is in failure state, the other systems can still work normally.
而且,各级热电发电系统的热电器件可由不同的热电材料构成,各级热电器件(热电材料)沿温度梯度方向具有不同的最佳工作温度。由于各级热电发电系统的热电器件分别处于其各自的最佳工作温度,因此能获得最大的能量转换效率。 Moreover, the thermoelectric devices of the thermoelectric power generation system at various levels can be composed of different thermoelectric materials, and the thermoelectric devices (thermoelectric materials) at all levels have different optimal operating temperatures along the direction of the temperature gradient. Since the thermoelectric devices of the thermoelectric power generation system at all levels are at their respective optimal operating temperatures, the maximum energy conversion efficiency can be obtained.
在本发明中使用的热电材料可以为SiGe合金材料、方钴矿或填充方钴矿(如CoSb3基)热电材料、ZnSb3基热电材料、Bi2Te3基热电材料、half-Hesuler化合物(如ZrNiSn基、TiCoSb基等)热电材料中的一种。其中,SiGe合金材料的工作温度为700~1000℃;方钴矿或填充方钴矿热电材料的工作温度为350~600;ZnSb3基热电材料的工作温度为200~400℃;Bi2Te3基热电材料的工作温度为25~300℃;half-Hesuler化合物的工作温度为300~500℃。 The thermoelectric materials used in the present invention can be SiGe alloy materials, skutterudite or filled skutterudite (such as CoSb 3- based) thermoelectric materials, ZnSb 3- based thermoelectric materials, Bi 2 Te 3- based thermoelectric materials, half-Hesuler compounds ( Such as ZrNiSn-based, TiCoSb-based, etc.) one of the thermoelectric materials. Among them, the working temperature of SiGe alloy material is 700-1000℃; the working temperature of skutterudite or filled skutterudite thermoelectric material is 350-600℃; the working temperature of ZnSb 3 -based thermoelectric material is 200-400℃; Bi 2 Te 3 The working temperature of the base thermoelectric material is 25-300°C; the working temperature of the half-Hesuler compound is 300-500°C.
各级热电发电系统可分别根据其集热器处的温度选择具有不同工作温度的热电材料以构成热电器件。在具体的实施例中,例如在选择位于热量传递方向最上位(高温段)的热电发电系统的热电材料时,可根据热源温度选择。在选择下位热电发电系统(低温段)的热电材料时,可根据与该热电发电系统相邻的上位热电发电系统的热电材料的低温侧温度选择。 Thermoelectric power generation systems at all levels can select thermoelectric materials with different working temperatures according to the temperature at the collector to form thermoelectric devices. In a specific embodiment, for example, when selecting the thermoelectric material of the thermoelectric power generation system located at the uppermost position (high temperature section) in the heat transfer direction, it can be selected according to the temperature of the heat source. When selecting the thermoelectric material of the lower thermoelectric power generation system (low temperature section), it can be selected according to the temperature of the low temperature side of the thermoelectric material of the upper thermoelectric power generation system adjacent to the thermoelectric power generation system.
本发明中,位于热量传递方向最上位的一级热电发电系统的集热器用高导热材料制成,该高导热材料可以是石墨、铜、铝或合金材料,除了该级集热器以外的其他级集热器可以采用高导热金属材料制成,该高导热金属材料可以是铜、铝或合金材料。这样,可进一步提高热量传递性能。 In the present invention, the heat collector of the first-stage thermoelectric power generation system located at the uppermost position in the heat transfer direction is made of high thermal conductivity material, which can be graphite, copper, aluminum or alloy materials. The first-stage heat collector can be made of high thermal conductivity metal material, which can be copper, aluminum or alloy material. In this way, heat transfer performance can be further improved.
如图2、4和6所示,在本发明的级联式热电发电器中,还包括连接于位于热量传递方向最下位的热电发电系统的热电器件的低温侧与外壳之间的压紧固定装置6。通过该压紧固定装置6可以将各热电发电系统中的各个构件压紧,从而保持各热电器件与集热器之间的良好接触以保证热量的良好传递。
As shown in Figures 2, 4 and 6, in the cascaded thermoelectric generator of the present invention, it also includes a compression fixing between the low-temperature side of the thermoelectric device connected to the thermoelectric power generation system located at the lowest position in the heat transfer direction and the casing device6. Each component in each thermoelectric power generation system can be compressed by the pressing and fixing
此外,在本发明的级联式热电发电器中,还包括与压紧固定装置6相连且紧贴设置于外壳8的内侧的支撑部件7。压紧固定装置6与支撑部件7连接,支撑部件7又与级联热电发电器的外壳8紧密接触,热量通过压紧固定装置6和支撑部件7继续传递,最终到达外壳8。外壳8也是整个系统的整体散热结构。该支撑部件7的设置既可对压紧固定装置6提供支持,又有利于热量的传递。
In addition, in the cascaded thermoelectric generator of the present invention, it also includes a
本发明的热电发电器的外壳8为整个热电发电器系统的散热结构,其可为具有各种散热结构的外壳,详细结构将在下文进行描述。通过这些散热结构,热量能很快从外壳上散发掉,从而拉大整个系统在热量传递方向上的温差,提高整个发电系统的发电效率。
The
下面结合附图对本发明的级联热电发电器的三个实施例进行说明,各实施例中相同的部件以相同的附图标记表示。以下实施例采用了两个热电发电系统,分别为高温段发电系统和低温段发电系统,但是并不限于此,也可以是三个或三个以上的组合。 Three embodiments of the cascaded thermoelectric generator of the present invention will be described below with reference to the accompanying drawings, and the same components in each embodiment are denoted by the same reference numerals. In the following embodiments, two thermoelectric power generation systems are used, namely a high-temperature section power generation system and a low-temperature section power generation system, but it is not limited thereto, and a combination of three or more is also possible.
实施例1 Example 1
图1为本发明第一实施例的翅片散热式级联热电发电器10的示意图;图2为图1所示的翅片散热式级联热电发电器10的A-A线剖视图。从图1和图2中可以看出,该热电发电器10具有大致圆柱形的外壳8;在外壳8的中心设有与外壳8同轴且产生热量的圆筒状热源1;在外壳8与热源1之间形成有将热量转换成电能的由高温段发电系统和低温段发电系统构成的发电部,高温段发电系统包括与外壳8同轴并与热源1外壁紧密接触的筒状的高温段集热器2、以一定间隔放射状设置在高温段集热器2外表面上的高温段热电器件(热电材料)3以及与外壳8同轴并与高温段热电器件3的低温端紧密接触的高温段散热器4,低温段发电系统包括与高温段散热器4共用的低温段集热器4、在低温段集热器4外表面以一定间隔设置的低温段热电器件5。其中,高温段集热器2将热量传递至高温段热电器件3,高温段热电器件3沿热量传递方向产生温差,由此产生电能,高温段热电器件3的低温端与低温段集热器4相连,热量通过低温段集热器4继续传递至低温段热电器件5,该低温段热电器件5沿热量传递方向同样产生温差,随即产生电能,并进一步向外传递热量。
FIG. 1 is a schematic diagram of a fin-radiated cascaded
在本实施例中,该热电发电器10还包括与低温段热电器件5的低温端相连的压紧固定装置6,用于保持各热电器件3、5与两个集热器2、4之间的良好接触以保证热量的良好传递。本发明中该压紧固定装置6的压紧固定方式可以采用螺纹压紧方式,或者弹簧压紧方式。
In this embodiment, the
该压紧固定装置6还与支撑部件7连接,支撑部件7又与外壳8紧密接触。热量通过压紧固定装置6和支撑部件7继续传递,最终到达外壳8。该支撑部件7既可起到固定并支持压紧固定装置6的作用,又由于其与外壳8紧密接触,因而有利于热量的传递。
The pressing and fixing
另外,在本实施例中,在外壳8的外表面上还形成有多个径向分布的散热翅片9。在外壳表面以一定间隔放射状形成散热翅片有利于整个发电器的散热。通过这些散热翅片9,热量能很快从外壳8上散发掉。
In addition, in this embodiment, a plurality of radially distributed
更优选地,上述高温段热电器件3、低温段热电器件5、压紧固定装置6以及散热翅片9形成在一条直线上,因此能使内部的热量有效传递至外部,拉大热量传递方向上的温差,提高发电效率。
More preferably, the
热源1可以是封闭式也可以是管道式,作为热源可以采用排气废热等热介质。热源1为具有管道结构的热源时,在外壳8轴向的两端安装有与热源的管道结构连通的管道转接接口或法兰12。图7示出了该具有管道式热源的图1所示翅片散热式级联热电发电器的示意图。从图7中可以看出,热源内部可通过管道转接接口12与外部贯通,可以将如排气中的废热等从外壳8的一端引入到热源内部,发生热传递后从另一端排出,使发电器10能利用该热能产生电。该管道转接接口或法兰12与外壳8的连接方式可以为螺纹紧固或者焊接,这样可以更牢固地结合。
The
实施例2 Example 2
图3为本发明第二实施例的螺旋水冷式级联热电发电器的示意图;图4为图3所示的螺旋水冷式级联热电发电器的B-B线剖视图;且图8为具有管道式热源的图3所示螺旋水冷式级联热电发电器的示意图。从图3、4和8中可以看出,本实施例2与实施例1的区别点在于在发电器的外壳8的外表面上缠绕有螺旋式水管11,其他与实施例1相同的结构在此不再详述。该螺旋式水管11中可以导入制冷流体,从而起到冷却外壳的作用。通过具有冷却作用的螺旋式水管11,能进一步拉大整个系统的温差,提高整个发电系统的发电效率。
Fig. 3 is a schematic diagram of a spiral water-cooled cascade thermoelectric generator according to the second embodiment of the present invention; Fig. 4 is a B-B sectional view of the spiral water-cooled cascade thermoelectric generator shown in Fig. 3; and Fig. 8 is a pipe-type heat source A schematic diagram of a spiral water-cooled cascaded thermoelectric generator shown in Figure 3. As can be seen from Figures 3, 4 and 8, the difference between
实施例3 Example 3
图5为本发明第三实施例的U型水冷式级联热电发电器的示意图;图6为图5所示的U型水冷式级联热电发电器的C-C线剖视图;图9为具有管道式热源的图5所示U型水冷式级联热电发电器的示意图。从图5、6和9中可以看出,本实施例3与实施例1的区别点在于发电器的外壳8的外表面上设置有U型水管13,该U型水管13中可以导入制冷流体,从而起到冷却外壳的作用。通过具有冷却作用的U型水管13,能进一步拉大整个系统的温差,提高整个发电系统的发电效率。
Fig. 5 is the schematic diagram of the U-shaped water-cooled cascaded thermoelectric generator of the third embodiment of the present invention; Fig. 6 is the C-C line sectional view of the U-shaped water-cooled cascaded thermoelectric generator shown in Fig. 5; A schematic diagram of the U-shaped water-cooled cascaded thermoelectric generators shown in Figure 5 of the heat source. As can be seen from Figures 5, 6 and 9, the difference between
通过上述这些散热结构,热量能很快从外壳上散发掉,从而拉大整个系统在热量传递方向上的温差,提高整个发电系统的发电效率。 Through the heat dissipation structures mentioned above, the heat can be quickly dissipated from the casing, thereby widening the temperature difference of the entire system in the direction of heat transfer and improving the power generation efficiency of the entire power generation system.
采用本发明的级联式热电发电器可特别有效地将热能转换成电能,系统稳定性强,且发电效率高。 The cascaded thermoelectric generator of the invention can particularly effectively convert heat energy into electric energy, has strong system stability and high power generation efficiency.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100030987A CN102412762A (en) | 2012-01-06 | 2012-01-06 | Cascade-type thermoelectric generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100030987A CN102412762A (en) | 2012-01-06 | 2012-01-06 | Cascade-type thermoelectric generator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102412762A true CN102412762A (en) | 2012-04-11 |
Family
ID=45914665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100030987A Pending CN102412762A (en) | 2012-01-06 | 2012-01-06 | Cascade-type thermoelectric generator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102412762A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106253751A (en) * | 2016-08-09 | 2016-12-21 | 浙江科技学院 | Biomass fuel thermal generator |
CN108281541A (en) * | 2018-02-08 | 2018-07-13 | 南方科技大学 | Pre-formable thermoelectric device and preparation method |
CN108347199A (en) * | 2018-01-11 | 2018-07-31 | 江苏大学 | A kind of light plate thermo-generator and its thermoelectric power generation component partition method for arranging |
CN108604870A (en) * | 2016-02-18 | 2018-09-28 | 三菱电机株式会社 | Thermo-electric conversion module and its manufacturing method |
CN111816722A (en) * | 2020-06-16 | 2020-10-23 | 桂林理工大学 | A solar photovoltaic and multi-layer thermoelectric composite power generation module |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006002704A (en) * | 2004-06-18 | 2006-01-05 | Toyota Motor Corp | Thermoelectric generator |
CN2899258Y (en) * | 2006-04-28 | 2007-05-09 | 锦州汉拿电机有限公司 | Mixed-cooling generator |
EP2197098A1 (en) * | 2007-09-27 | 2010-06-16 | IHI Marine United Inc. | Thermoelectric power generator and power generating system using thermoelectric power generator |
CN101789729A (en) * | 2010-03-03 | 2010-07-28 | 浙江大学宁波理工学院 | Engine residual heat power generation device and power generation module thereof |
CN101944867A (en) * | 2010-09-14 | 2011-01-12 | 华南理工大学 | Cylindrical thermoelectric generator |
CN202475323U (en) * | 2012-01-06 | 2012-10-03 | 中国科学院上海硅酸盐研究所 | Cascade type thermoelectric generator |
CN202475322U (en) * | 2012-01-06 | 2012-10-03 | 中国科学院上海硅酸盐研究所 | Cascade type thermoelectric generator |
CN202475321U (en) * | 2012-01-06 | 2012-10-03 | 中国科学院上海硅酸盐研究所 | Cascade type thermoelectric generator |
-
2012
- 2012-01-06 CN CN2012100030987A patent/CN102412762A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006002704A (en) * | 2004-06-18 | 2006-01-05 | Toyota Motor Corp | Thermoelectric generator |
CN2899258Y (en) * | 2006-04-28 | 2007-05-09 | 锦州汉拿电机有限公司 | Mixed-cooling generator |
EP2197098A1 (en) * | 2007-09-27 | 2010-06-16 | IHI Marine United Inc. | Thermoelectric power generator and power generating system using thermoelectric power generator |
CN101789729A (en) * | 2010-03-03 | 2010-07-28 | 浙江大学宁波理工学院 | Engine residual heat power generation device and power generation module thereof |
CN101944867A (en) * | 2010-09-14 | 2011-01-12 | 华南理工大学 | Cylindrical thermoelectric generator |
CN202475323U (en) * | 2012-01-06 | 2012-10-03 | 中国科学院上海硅酸盐研究所 | Cascade type thermoelectric generator |
CN202475322U (en) * | 2012-01-06 | 2012-10-03 | 中国科学院上海硅酸盐研究所 | Cascade type thermoelectric generator |
CN202475321U (en) * | 2012-01-06 | 2012-10-03 | 中国科学院上海硅酸盐研究所 | Cascade type thermoelectric generator |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108604870A (en) * | 2016-02-18 | 2018-09-28 | 三菱电机株式会社 | Thermo-electric conversion module and its manufacturing method |
CN108604870B (en) * | 2016-02-18 | 2020-03-31 | 三菱电机株式会社 | Thermoelectric conversion module and method of manufacturing the same |
CN106253751A (en) * | 2016-08-09 | 2016-12-21 | 浙江科技学院 | Biomass fuel thermal generator |
CN106253751B (en) * | 2016-08-09 | 2019-03-26 | 浙江科技学院 | Biomass fuel thermoelectric generator |
CN108347199A (en) * | 2018-01-11 | 2018-07-31 | 江苏大学 | A kind of light plate thermo-generator and its thermoelectric power generation component partition method for arranging |
CN108281541A (en) * | 2018-02-08 | 2018-07-13 | 南方科技大学 | Pre-formable thermoelectric device and preparation method |
CN111816722A (en) * | 2020-06-16 | 2020-10-23 | 桂林理工大学 | A solar photovoltaic and multi-layer thermoelectric composite power generation module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101246947A (en) | A multi-stage semiconductor cascade refrigeration element and refrigeration thermopile | |
RU124840U1 (en) | RADIAL-RING THERMOELECTRIC GENERATOR BATTERY | |
CN102412762A (en) | Cascade-type thermoelectric generator | |
US20110259386A1 (en) | Thermoelectric generating module | |
JP2015505163A (en) | Conduction-cooled high-power semiconductor laser and method for manufacturing the same | |
CN105444461B (en) | A kind of thermoelectric cooler | |
US9184363B2 (en) | Power generator | |
JP6350297B2 (en) | Thermoelectric generator | |
KR20170036885A (en) | Thermoelectric generation apparatus | |
CN202475321U (en) | Cascade type thermoelectric generator | |
CN202475322U (en) | Cascade type thermoelectric generator | |
CN202475323U (en) | Cascade type thermoelectric generator | |
JP2011192759A (en) | Thermoelectric generation system | |
JP6002623B2 (en) | Thermoelectric conversion module | |
CN110260556B (en) | Thermoelectric refrigerating device and preparation method thereof | |
CN110729393A (en) | High temperature differential annular segmented thermoelectric material generator and its radial equal cross-sectional area thermocouple unit | |
EP3435431B1 (en) | Thermoelectric conversion module | |
JP2003179274A (en) | Thermoelectric converting device | |
CN104154482A (en) | Steam compressing type refrigeration/thermoelectric conversion combined type LED lighting device | |
CN208690302U (en) | An organic-inorganic composite thermoelectric power generation device | |
CN114080139A (en) | A kind of pulse tube refrigerator and high temperature superconducting filter cooling structure | |
TWI744717B (en) | Thermoelectric power generating device and manufacturing method thereof | |
KR101673456B1 (en) | Heat absorption structure having heat spread bands in a thermoelectric generator module | |
JP2011027190A (en) | Expansion joint | |
CN114242881B (en) | Cascade type plane thermoelectric thin film structure for cooling chip hot spots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120411 |