CN102410834B - Three-dimensional laser scanning tailings dam dynamic monitoring system device - Google Patents
Three-dimensional laser scanning tailings dam dynamic monitoring system device Download PDFInfo
- Publication number
- CN102410834B CN102410834B CN 201110215579 CN201110215579A CN102410834B CN 102410834 B CN102410834 B CN 102410834B CN 201110215579 CN201110215579 CN 201110215579 CN 201110215579 A CN201110215579 A CN 201110215579A CN 102410834 B CN102410834 B CN 102410834B
- Authority
- CN
- China
- Prior art keywords
- data acquisition
- motor
- dam body
- monitoring system
- dynamic monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 61
- 238000004891 communication Methods 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 4
- 239000003550 marker Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域 technical field
本发明涉及非接触测量技术,具体地涉及三维激光扫描尾矿坝体的非接触动态在线监测系统装置。The invention relates to a non-contact measurement technology, in particular to a non-contact dynamic on-line monitoring system device for three-dimensional laser scanning tailings dam body.
背景技术 Background technique
国家安全生产“十二五”发展规划中对三等及以上尾矿库限期全部安装在线监测系统装置提出了明确要求。三维激光扫描尾矿坝体动态监测系统装置作为尾矿坝体在线监控系统的典型样机,适应时代关于安全稳步发展的需要,对保护国家和人民的生命财产安全具有重要意义。In the "Twelfth Five-Year Plan" development plan for national safety production, there are clear requirements for the installation of online monitoring system devices for third-class and above tailings ponds within a limited period. The 3D laser scanning tailings dam dynamic monitoring system device is a typical prototype of the tailings dam on-line monitoring system, which meets the needs of the era for safe and steady development, and is of great significance to the protection of the country and people's life and property safety.
国外在尾矿库安全运行监测上已形成了包含现场实时数据采集、数据资料综合分析和安全警报等功能的监测预警系统。而国内的尾矿坝体监测主要包括人工测量、光纤监测及全站仪监测等方法,人工采用传统仪器到现场进行测量,易受环境和现场条件的影响,且采集精度不高、信息滞后,同时还存在人员的人身安全问题;运用光纤监测安装复杂,干扰施工,成本高,不适于远距离测量,且误差较大;运用全站仪需要在多个位置进行测量,采样点稀疏且费时。目前尾矿坝体监测开始转向以自动化、网络化和信息管理智能化为手段的数字监控,迫切需要一种高精度、低成本和高效率的三维激光扫描尾矿坝体动态监测系统装置,满足国家关于安全生产的要求。Foreign countries have formed a monitoring and early warning system that includes functions such as on-site real-time data collection, comprehensive analysis of data, and safety alarms for tailings pond safety operation monitoring. Domestic tailings dam monitoring mainly includes manual measurement, optical fiber monitoring, and total station monitoring. Manually using traditional instruments to measure on site is easily affected by the environment and site conditions, and the acquisition accuracy is not high and information lags behind. At the same time, there is also the problem of personal safety of personnel; the use of optical fiber monitoring is complicated to install, interferes with construction, has high cost, is not suitable for long-distance measurement, and has large errors; the use of total stations requires measurement at multiple locations, and the sampling points are sparse and time-consuming. At present, tailings dam monitoring has begun to turn to digital monitoring by means of automation, networking and intelligent information management. There is an urgent need for a high-precision, low-cost and high-efficiency 3D laser scanning tailings dam dynamic monitoring system device to meet National requirements on production safety.
发明内容 Contents of the invention
本发明的解决的技术问题:克服现有在线监测技术的不足,提供一套三维激光扫描尾矿坝体的非接触动态在线监测装置,实现非接触在线定时监测,单次扫描速度快,测量精度高,成本低;本发明有效地解决了国家关于安全生产的要求,且装置适用于不同场景的尾矿坝体监测。The technical problem solved by the present invention is to overcome the shortcomings of the existing online monitoring technology, provide a set of non-contact dynamic online monitoring device for three-dimensional laser scanning tailings dam body, realize non-contact online timing monitoring, fast single scanning speed, and high measurement accuracy High and low cost; the invention effectively meets the national requirements on safe production, and the device is suitable for tailings dam monitoring in different scenarios.
本发明的技术方案:三维激光扫描尾矿坝体动态监测系统装置,其特征在于包括:机械单元、激光数据采集单元、控制驱动与反馈单元、通信及上位机单元,其中The technical solution of the present invention: a three-dimensional laser scanning tailings dam dynamic monitoring system device, which is characterized in that it includes: a mechanical unit, a laser data acquisition unit, a control drive and feedback unit, a communication and a host computer unit, wherein
机械单元,用于连接激光数据采集单元与水平方向电机和竖直方向电机,实现激光数据采集单元的水平和竖直方向扫描;水平方向旋转变压器与水平方向电机在水平方向电机与水平方向旋转变压器连接装置的固定下同步运动,竖直方向旋转变压器和竖直方向电机在竖直方向电机与竖直方向旋转变压器连接装置的固定下同步运动。The mechanical unit is used to connect the laser data acquisition unit with the horizontal direction motor and the vertical direction motor to realize the horizontal and vertical direction scanning of the laser data acquisition unit; the horizontal direction rotary transformer and the horizontal direction motor are connected between the horizontal direction motor and the horizontal direction rotary transformer The connecting device moves synchronously when the connecting device is fixed, and the vertical rotary transformer and the vertical motor move synchronously when the vertical motor and the vertical rotary transformer connecting device are fixed.
激光数据采集单元,可实时获取地物点场景极半径信息,在水平方向电机和竖直方向电机的带动下,对尾矿坝体全景扫描,将获得的数据信息通过高速数据采集卡传递给上位机。The laser data acquisition unit can obtain the extreme radius information of the ground object point scene in real time. Driven by the horizontal direction motor and the vertical direction motor, it scans the tailings dam body and transmits the obtained data information to the upper position through the high-speed data acquisition card. machine.
控制驱动与反馈单元,水平方向驱动器和竖直方向驱动器分别控制水平方向电机和竖直方向电机,带动激光数据采集单元实现水平和竖直维度的匀速扫描,通过水平方向旋转变压器和竖直方向旋转变压器实时获取各个扫描位置的角度信息,在水平方向旋转变压器-数字转换器和竖直方向旋转变压器-数字转换器的整合下分别传递给水平方向驱动器和竖直方向驱动器,通过高速数据采集卡传递给上位机。Control the driving and feedback unit, the horizontal driver and the vertical driver respectively control the horizontal motor and the vertical motor, drive the laser data acquisition unit to realize uniform scanning in the horizontal and vertical dimensions, through the horizontal rotary transformer and the vertical rotation The transformer obtains the angle information of each scanning position in real time, and transmits it to the horizontal driver and the vertical driver respectively under the integration of the horizontal resolver-digital converter and the vertical resolver-digital converter, and transmits it through the high-speed data acquisition card to the host computer.
通信及上位机单元,高速数据采集卡将激光数据采集单元获取的场景极半径信息、水平方向旋转变压器及竖直方向旋转变压器获得的角度信息实时传送到上位机。上位机对获取数据进行系统矫正,将各坐标系的数据归一化到三维激光扫描尾矿坝体动态监测系统装置的基准坐标系下,并将结果以三维点云的形式显示出来;对各个标志点的三维坐标运用智能监测算法,判断其是否与标准库的结果一致;若不一致,则启动相应的应急预案。The communication and upper computer unit, the high-speed data acquisition card transmits the scene polar radius information obtained by the laser data acquisition unit, the angle information obtained by the horizontal rotary transformer and the vertical rotary transformer to the upper computer in real time. The upper computer performs systematic correction on the acquired data, normalizes the data of each coordinate system to the reference coordinate system of the 3D laser scanning tailings dam dynamic monitoring system device, and displays the results in the form of a 3D point cloud; The three-dimensional coordinates of the marker points use the intelligent monitoring algorithm to judge whether they are consistent with the results of the standard library; if they are not consistent, the corresponding emergency plan is activated.
所述的激光数据采集单元为单点激光传感器,在自然表面下采样量程不小于300m,采样频率不小于2000,测量精度不小于60mm,具有RS-232/422/485接口的基于脉冲反射时差法的激光传感器。较高的采样频率可减少单次激光扫描时间,激光传感器的测量精度越高,三维激光扫描尾矿坝体动态监测系统装置的扫描精度就越高,更加接近场景的真三维图像,且控制接口简单。The laser data acquisition unit is a single-point laser sensor, the sampling range under the natural surface is not less than 300m, the sampling frequency is not less than 2000, the measurement accuracy is not less than 60mm, and it has RS-232/422/485 interface based on pulse reflection time difference method laser sensor. A higher sampling frequency can reduce the time of a single laser scan. The higher the measurement accuracy of the laser sensor, the higher the scanning accuracy of the 3D laser scanning tailings dam dynamic monitoring system device, which is closer to the true 3D image of the scene, and the control interface Simple.
所述的水平方向电机为功率不小于172.8W,最大空载转速630r/min,峰值堵转扭矩不小于2.2N.m,电流不小于3.6A,质量小于1.5Kg,力矩电机通常使用在堵转或低速情况下,具有堵转力矩大,空载转速低,不需要任何减速装置可直接驱动负载,过载能力强,通过调节端电压来控制输出力矩与转速的大小,体积较小等特点。The power of the horizontal direction motor is not less than 172.8W, the maximum no-load speed is 630r/min, the peak stall torque is not less than 2.2N.m, the current is not less than 3.6A, and the mass is less than 1.5Kg. The torque motor is usually used in stall or low speed Under normal circumstances, it has the characteristics of large stall torque, low no-load speed, direct drive of load without any deceleration device, strong overload capacity, control of output torque and speed by adjusting terminal voltage, and small volume.
所述的竖直方向电机为功率不小于211.2w,最大空载转速460r/min,峰值堵转扭矩不小于4.4N.m,电流不小于4.4A,质量小于2.4Kg,力矩电机通常使用在堵转或低速情况下,具有堵转力矩大,空载转速低,不需要任何减速装置可直接驱动负载,过载能力强,通过调节端电压来控制输出力矩与转速的大小,体积较小等特点。The power of the vertical direction motor is not less than 211.2w, the maximum no-load speed is 460r/min, the peak stall torque is not less than 4.4N.m, the current is not less than 4.4A, and the mass is less than 2.4Kg. The torque motor is usually used in stall or In the case of low speed, it has the characteristics of large stall torque, low no-load speed, direct drive of load without any deceleration device, strong overload capacity, control of output torque and speed by adjusting terminal voltage, and small volume.
所述的水平方向旋转变压器为转换率最大为0.5±5%,最大电气误差为±10′,适用于-55~+155℃的环境,质量小于0.065Kg,输出为正余弦模拟信号的角度传感器。适用于高温、严寒、潮湿、高振动等环境,为高精度监测、应用广泛打下基础。The horizontal resolver has a maximum conversion rate of 0.5±5%, a maximum electrical error of ±10′, is suitable for an environment of -55°C to +155°C, has a mass of less than 0.065Kg, and an angle sensor whose output is a sine-cosine analog signal . It is suitable for high temperature, severe cold, humidity, high vibration and other environments, laying the foundation for high-precision monitoring and wide application.
所述的竖直方向旋转变压器为转换率最大为0.5±5%,最大电气误差为±10′,适用于-55~+155℃的环境,质量小于0.065Kg,输出为正余弦模拟信号的角度传感器。适用于高温、严寒、潮湿、高振动等环境,为高精度监测、应用广泛打下基础。The vertical rotary transformer has a maximum conversion rate of 0.5±5%, a maximum electrical error of ±10′, is suitable for an environment of -55 to +155°C, has a mass of less than 0.065Kg, and outputs an angle of sine and cosine analog signals sensor. It is suitable for high temperature, severe cold, humidity, high vibration and other environments, laying the foundation for high-precision monitoring and wide application.
所述的水平方向旋转变压器-数字转换器为分辨率不小于14位,脉冲数不小于16384,将水平方向旋转变压器获得的正余弦模拟信号转换为A、B、Z相脉冲信号,可用于-40~+85℃环境的角度解码器。该输出信号简单,采样分辨率高,可实现对水平方向电机的精确控制。The resolution of the horizontal resolver-to-digital converter is not less than 14 bits, and the number of pulses is not less than 16384. It converts the sine and cosine analog signals obtained by the horizontal resolver into A, B, and Z phase pulse signals, which can be used for- Angle decoder for 40~+85℃ environment. The output signal is simple, the sampling resolution is high, and the precise control of the motor in the horizontal direction can be realized.
所述的竖直方向旋转变压器-数字转换器为分辨率不小于14位,脉冲数不小于16384,将竖直方向旋转变压器获得的正余弦模拟信号转换为A、B、Z相脉冲信号,可用于-40~+85℃环境的角度解码器。该输出信号简单,采样分辨率高,可实现对竖直方向电机的精确控制。The resolution of the vertical rotary transformer-digital converter is not less than 14 bits, and the number of pulses is not less than 16384. The sin-cosine analog signals obtained by the vertical rotary transformer are converted into A, B, and Z-phase pulse signals, which can be used Angle decoder for -40~+85℃ environment. The output signal is simple, the sampling resolution is high, and the precise control of the vertical motor can be realized.
所述的水平方向驱动器为额定电压+80V以内,额定电流8A,输入角度信号为A、B、Z相脉冲信号,具有R232接口的直流电机驱动器。实现对水平方向力矩电机的闭环控制,并将实时获取的水平方向角度信息传输给上位机,为高精度监测的实现打下基础。The horizontal driver is a DC motor driver with a rated voltage of +80V, a rated current of 8A, an input angle signal of A, B, and Z phase pulse signals, and an R232 interface. Realize the closed-loop control of the horizontal torque motor, and transmit the real-time acquired horizontal angle information to the host computer, laying the foundation for the realization of high-precision monitoring.
所述的竖直方向驱动器为额定电压+80V以内,额定电流8A,输入角度信号为A、B、Z相脉冲信号,具有R232接口的直流电机驱动器。实现对竖直方向力矩电机的闭环控制,并将实时获取的竖直方向角度信息传输给上位机,为高精度监测的实现打下基础。The vertical driver is a DC motor driver with a rated voltage of +80V, a rated current of 8A, an input angle signal of A, B, and Z phase pulse signals, and an R232 interface. Realize the closed-loop control of the vertical torque motor, and transmit the real-time acquired vertical angle information to the host computer, laying the foundation for the realization of high-precision monitoring.
所述的高速数据采集卡为供电电压在12~48V,输出为RJ45型网卡接口、支持10兆和100兆自适应的网络连接速度,至少具有四个RS-232/422/485接口的数据传输装置,为高速精准的数据传输打下基础。The high-speed data acquisition card has a power supply voltage of 12-48V, an output of an RJ45 network card interface, supports 10M and 100M adaptive network connection speeds, and has at least four RS-232/422/485 interfaces for data transmission The device lays the foundation for high-speed and accurate data transmission.
所述通信及上位机单元中的上位机为至少具有网口,系统内存大于2GB,支持WindowsXP操作系统的工控机,具有较高的可靠性。The upper computer in the communication and upper computer unit is an industrial computer with at least a network port, a system memory greater than 2GB, and a WindowsXP operating system, which has high reliability.
所述通信及上位机单元中的控制软件实现过程如下:The implementation process of the control software in the communication and upper computer unit is as follows:
1)激光数据采集单元与控制驱动及反馈单元初始化:系统上电后,水平方向电机和竖直方向电机分别按照水平方向驱动器和竖直方向驱动器的设置运动到三维激光扫描尾矿坝体动态监测系统装置基准位置,高速数据采集卡自启动成功;1) Laser data acquisition unit and control drive and feedback unit initialization: After the system is powered on, the horizontal direction motor and vertical direction motor move to the dynamic monitoring of the 3D laser scanning tailings dam according to the settings of the horizontal direction driver and the vertical direction driver respectively The reference position of the system device, the high-speed data acquisition card starts successfully;
2)通信及上位机单元初始化:设置激光数据采集单元的串口相关参数,连接激光数据采集单元,设置激光脉冲的发射频率;设置控制驱动及反馈单元的功能参数:控制串口号、扫描范围、扫描速度,根据工程的要求定时设置当天的扫描次数及扫描时间间隔时间,设置各个扫描标志点的位置参数;2) Communication and host computer unit initialization: set the serial port related parameters of the laser data acquisition unit, connect the laser data acquisition unit, set the laser pulse emission frequency; set the functional parameters of the control drive and feedback unit: control serial port number, scanning range, scanning Speed, according to the requirements of the project, regularly set the number of scans and scan time intervals of the day, and set the position parameters of each scan mark point;
3)启动在线监测按钮,激光数据采集单元和控制驱动及反馈单元实时将获取的场景极半径信息、水平和竖直方向的角度信息通过高速数据采集卡传递给上位机做进一步处理;3) Start the online monitoring button, and the laser data acquisition unit and the control drive and feedback unit will transmit the acquired scene polar radius information, horizontal and vertical angle information to the host computer through the high-speed data acquisition card for further processing in real time;
4)解算数据;4) Solve the data;
上位机对采集的数据信息运用坐标归一算法处理,即将激光数据采集单元坐标系、水平方向旋转变压器坐标系和竖直方向旋转变压器坐标系归一到三维激光扫描尾矿坝体动态监测系统装置的基准坐标系下。具体过程如图2所示,建立激光数据采集单元原点坐标系OL-XLYLZL、系统基准坐标系OB-XBYBZB以及三个过渡坐标系OM-XMYMZM、OH-XHYHZH及OV-XVYVZV,且各坐标系均为笛卡尔右手坐标系。根据坐标系的相关转换关系,解算出场景空间点在三维激光扫描尾矿坝体动态监测系统装置基准坐标系OB-XBYBZB下的三维坐标通式:The upper computer uses the coordinate normalization algorithm to process the collected data information, that is, the coordinate system of the laser data acquisition unit, the coordinate system of the horizontal resolver and the coordinate system of the vertical resolver are normalized to the three-dimensional laser scanning tailings dam dynamic monitoring system device in the base coordinate system. The specific process is shown in Figure 2. Establish the origin coordinate system O L -X L Y L Z L of the laser data acquisition unit, the system reference coordinate system O B -X B Y B Z B and three transitional coordinate systems O M -X M Y M Z M , O H -X H Y H Z H and O V -X V Y V Z V , and each coordinate system is a Cartesian right-hand coordinate system. According to the relevant conversion relationship of the coordinate system, the three-dimensional coordinate general formula of the scene space point in the reference coordinate system O B -X B Y B Z B of the 3D laser scanning tailings dam dynamic monitoring system device is solved:
其中,in,
α、β分别为竖直方向旋转变压器(14)和水平方向旋转变压器(8)的获取信息;α and β are respectively the acquisition information of the vertical direction rotary transformer (14) and the horizontal direction rotary transformer (8);
r为场景极半径信息;r is the polar radius information of the scene;
Δx、Δz、Δx′分别为坐标系间沿相关坐标轴的偏移值,当系统整体装配完成后,Δx、Δz为固定值,可通过机械设计尺寸推算得出,Δx′为激光数据采集单元(2)测量原点与水平旋转轴之间的偏移值;Δx, Δz, and Δx' are the offset values between the coordinate systems along the relevant coordinate axes. After the overall assembly of the system is completed, Δx and Δz are fixed values, which can be calculated through mechanical design dimensions. Δx' is the laser data acquisition unit (2) Measure the offset value between the origin and the horizontal rotation axis;
将上述经坐标归一算法处理过的数据进行精简、降噪处理后予以实时显示,将扫描结果以三维坐标的形式实时存储在Excel中,并将各个标志点的三维坐标存储在Excel中;其中,扫描参数因应用区域的远近不同而不同,在装置初次使用时,对扫描参数予以精准设定,存储在上位机的存储数据库中,并将测量的三维点云数据库精准模型及标志点的三维坐标信息存入智能对比模板数据库;The above-mentioned data processed by the coordinate normalization algorithm are streamlined and de-noised and displayed in real time, and the scanning results are stored in Excel in the form of three-dimensional coordinates in real time, and the three-dimensional coordinates of each marker point are stored in Excel; , the scanning parameters are different depending on the distance of the application area. When the device is used for the first time, the scanning parameters are accurately set, stored in the storage database of the host computer, and the measured 3D point cloud database accurate model and the 3D marker point The coordinate information is stored in the intelligent comparison template database;
5)计算三维点云模型及标志点三维信息是否与标准库的结果一致,若不一致,则启动相应的应急预案;5) Calculate whether the 3D point cloud model and the 3D information of the marker points are consistent with the results of the standard library, and if not, start the corresponding emergency plan;
6)判断尾矿坝体扫描是否结束:若扫描结束,装置停止本次工作,根据三维激光扫描尾矿坝体动态监测系统装置关于定时扫描的设置,再次启动进入第3步,继续进行监测。6) Judging whether the scanning of the tailings dam is over: if the scanning is over, the device stops working, and according to the setting of the 3D laser scanning tailings dam dynamic monitoring system device about the timing scanning, start again and enter the third step to continue monitoring.
本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:
1)本发明装置使用上位机软件对各单元统一控制,采用激光数据采集单元对尾矿坝体实时扫描,上位机软件进行处理与结果显示,为非接触检测,因此检测方便,自动化程度高,可长时间工作,没有因人员疲劳导致出错的现象;1) The device of the present invention uses the host computer software to uniformly control each unit, adopts the laser data acquisition unit to scan the tailings dam body in real time, and the host computer software performs processing and result display, which is non-contact detection, so the detection is convenient and the degree of automation is high. It can work for a long time, and there is no error caused by personnel fatigue;
2)本发明装置实现非接触在线定时监测,单次扫描速度快,测量精度高,成本低;2) The device of the present invention realizes non-contact online timing monitoring, with fast single scanning speed, high measurement accuracy and low cost;
3)本发明装置有效地解决了国家关于安全生产的要求,且装置适用于不同场景的尾矿坝体监测。3) The device of the present invention effectively meets the national requirements on production safety, and the device is suitable for tailings dam monitoring in different scenarios.
附图说明 Description of drawings
图1为本发明三维激光扫描尾矿坝体动态监测系统装置的系统结构图;Fig. 1 is the system structural diagram of the dynamic monitoring system device of three-dimensional laser scanning tailings dam body of the present invention;
图2为本发明三维激光扫描尾矿坝体动态监测系统装置的系统标定坐标系;Fig. 2 is the system calibration coordinate system of the dynamic monitoring system device of the three-dimensional laser scanning tailings dam body of the present invention;
图3为本发明三维激光扫描尾矿坝体动态监测系统装置的工作流程图;Fig. 3 is the work flowchart of the dynamic monitoring system device of the three-dimensional laser scanning tailings dam body of the present invention;
图4为实际的尾矿坝体场景外观图;Fig. 4 is the appearance diagram of the actual tailings dam body scene;
图5为本发明处理后的三维点云模型图,其中灰色点代表各个标志点。Fig. 5 is a three-dimensional point cloud model diagram processed by the present invention, wherein the gray points represent each marker point.
其中,图1,1、机械单元;2、激光数据采集单元;3、控制驱动与反馈单元;4、通信及上位机单元;5、激光固定装置;6、水平方向电机;7、激光与水平方向电机连接装置;8、水平方向旋转变压器;9、水平方向电机与水平方向旋转变压器连接装置;10、水平方向旋转变压器-数字转换器;11、水平方向驱动器;12、竖直方向电机;13、水平方向电机与竖直方向电机连接装置;14、竖直方向旋转变压器;15、竖直方向电机与竖直方向旋转变压器连接装置;16、竖直方向旋转变压器-数字转换器;17、竖直方向驱动器;18、高速数据采集卡;19、上位机。Among them, Figure 1, 1. Mechanical unit; 2. Laser data acquisition unit; 3. Control drive and feedback unit; 4. Communication and host computer unit; 5. Laser fixing device; 6. Horizontal motor; 7. Laser and horizontal Direction motor connection device; 8. Horizontal direction rotary transformer; 9. Horizontal direction motor and horizontal direction rotary transformer connection device; 10. Horizontal direction rotary transformer-digital converter; 11. Horizontal direction driver; 12. Vertical direction motor; 13 1. Horizontal direction motor and vertical direction motor connection device; 14. Vertical direction rotary transformer; 15. Vertical direction motor and vertical direction rotary transformer connection device; 16. Vertical direction rotary transformer-digital converter; 17. Vertical direction Direct drive; 18. High-speed data acquisition card; 19. Host computer.
具体实施方式 Detailed ways
如图1所示,本发明的三维激光扫描尾矿坝体动态监测系统装置,包括:机械单元1、激光数据采集单元2、控制驱动与反馈单元3、通信及上位机单元4,其中As shown in Figure 1, the dynamic monitoring system device of the three-dimensional laser scanning tailings dam body of the present invention includes: a
机械单元1,用于连接激光数据采集单元2与水平方向电机6和竖直方向电机12,实现激光数据采集单元2的水平和竖直方向扫描;水平方向旋转变压器8与水平方向电机6在水平方向电机与水平方向旋转变压器连接装置9的固定下同步运动,竖直方向旋转变压器14和竖直方向电机12在竖直方向电机与竖直方向旋转变压器连接装置15的固定下同步运动。The
激光数据采集单元2,可实时获取地物点场景极半径信息,在水平方向电机6和竖直方向电机12的带动下,对尾矿坝体全景扫描,将获得的数据信息通过高速数据采集卡18传递给上位机19;The laser
控制驱动及反馈单元3,水平方向驱动器11和竖直方向驱动器17分别控制水平方向电机6和竖直方向电机12,带动激光数据采集单元2实现水平和竖直维度的匀速扫描,通过水平方向旋转变压器8和竖直方向旋转变压器14实时获取各个扫描位置的角度信息,在水平方向旋转变压器-数字转换器10和竖直方向旋转变压器-数字转换器16的整合下分别传递给水平方向驱动器11和竖直方向驱动器17,通过高速数据采集卡18传递给上位机19。Control the drive and
通信及上位机单元4,高速数据采集卡18将激光数据采集单元2获取的场景极半径信息、水平方向旋转变压器8及竖直方向旋转变压器14获得的角度信息实时传送到上位机19。上位机19对获取数据进行系统矫正,将各坐标系的数据归一化到三维激光扫描尾矿坝体动态监测系统装置的基准坐标系下,并将结果以三维点云的形式显示出来;对各个标志点的三维坐标运用智能监测算法,判断其是否与标准库的结果一致;若不一致,则启动相应的应急预案。The communication and upper computer unit 4 and the high-speed
将各单元相关部件进行装配,连接好供电与信号线,首先进行整个装置关键部件的开发。为连接上位机19与高速数据采集卡18安装驱动程序,在高速数据采集卡18的系统页面下,按照激光数据采集单元2、水平方向电机驱动器11和竖直方向电机驱动器17各自端口的要求进行设置,有效地建立上位机19与各个传感器的数据通道。依据激光数据采集单元2底层控制指令,对激光数据采集单元2进行开发,上位机软件以串口控制发送相应命令字的方式实现对激光数据采集单元2的参数设置与数据接收。依据水平方向电机6、水平方向旋转变压器8、竖直方向电机12和竖直方向旋转变压器14的参数设置水平方向驱动器和竖直方向驱动器,分别调节其PID参数,使水平方向电机6和竖直方向电机12稳步运行,设置相应程序,使水平方向电机6和竖直方向电机12在上电的同时经过某些位姿的变换恢复到三维激光扫描动态监测系统装置基准位置。Assemble the relevant components of each unit, connect the power supply and signal lines, and first develop the key components of the entire device. For connecting the
如图3所示,本发明装置的工作流程具体如下:As shown in Figure 3, the workflow of the device of the present invention is specifically as follows:
1)确认部件供电、信号线路正确连接,装置上电,控制驱动及反馈单元(3)带动激光数据采集单元2运动到三维激光扫描尾矿坝体动态监测系统装置基准位置,等待通信及上位机单元4的指令;1) Confirm that the power supply of the components and the signal line are correctly connected, power on the device, control the drive and feedback unit (3) drive the laser
2)通信及上位机单元4初始化:设置激光数据采集单元2的串口相关参数,连接激光数据采集单元2,设置激光脉冲的发射频率;设置控制驱动与反馈单元3的功能参数:控制串口号、扫描范围、扫描速度,根据工程的要求定时设置当天的扫描次数及扫描时间间隔,设置各个扫描标志点的位置参数;2) Communication and host computer unit 4 initialization: set the serial port related parameters of the laser
3)启动在线监测按钮,激光数据采集单元2和控制驱动及反馈单元3实时将数据信息通过高速数据采集卡18传递给上位机19做进一步处理;3) Start the online monitoring button, the laser
4)解算数据;4) Solve the data;
在监测过程中,上位机软件对采集的数据信息运用坐标归一算法处理,即将激光数据采集单元2坐标系、水平方向旋转变压器8坐标系和竖直方向旋转变压器14坐标系归一到三维激光扫描尾矿坝体动态监测系统装置的基准坐标系下。当系统整体装配完成后,竖直旋转轴中心线与水平旋转轴中心线位于同一个平面,通过机械设计尺寸推算得出Δx=0、Δz=113.5mm,激光数据采集单元2光心与水平旋转轴之间的偏移值Δx′=74.5mm。代入场景空间点在三维激光扫描尾矿坝体动态监测系统装置基准坐标系OB-XBYBZB下的三维坐标通式得:During the monitoring process, the upper computer software uses the coordinate normalization algorithm to process the collected data information, that is, the laser
其中,in,
α、β分别为竖直方向旋转变压器(14)和水平方向旋转变压器(8)的获取信息;α and β are respectively the acquisition information of the vertical direction rotary transformer (14) and the horizontal direction rotary transformer (8);
r为场景极半径信息;r is the polar radius information of the scene;
将上述经坐标归一算法处理过的数据进行精简、降噪处理后予以实时显示,将扫描结果以三维坐标的形式实时存储在Excel中,并将各个标志点的三维坐标存储在Excel中;其中,扫描参数因应用区域的远近不同而不同,在装置初次使用时,对扫描参数予以精准设定,存储在上位机19的存储数据库中,并将测量的三维点云数据库精准模型及标志点的三维坐标信息存入智能对比模板数据库。The above-mentioned data processed by the coordinate normalization algorithm are streamlined and de-noised and displayed in real time, and the scanning results are stored in Excel in the form of three-dimensional coordinates in real time, and the three-dimensional coordinates of each marker point are stored in Excel; , the scanning parameters are different depending on the distance of the application area. When the device is used for the first time, the scanning parameters are accurately set, stored in the storage database of the
5)计算三维点云模型及标志点三维信息是否与标准库的结果一致,若不一致,则启动相应的应急预案;5) Calculate whether the 3D point cloud model and the 3D information of the marker points are consistent with the results of the standard library, and if not, start the corresponding emergency plan;
6)判断尾矿坝体扫描是否结束;6) Judging whether the scanning of the tailings dam body is over;
若扫描结束,装置停止本次工作,根据上位机软件关于定时扫描的设置,再次启动进入第3步,继续进行监测。If the scanning is over, the device will stop the current work, according to the settings of the host computer software on timing scanning, start again and enter
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110215579 CN102410834B (en) | 2011-07-29 | 2011-07-29 | Three-dimensional laser scanning tailings dam dynamic monitoring system device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110215579 CN102410834B (en) | 2011-07-29 | 2011-07-29 | Three-dimensional laser scanning tailings dam dynamic monitoring system device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102410834A CN102410834A (en) | 2012-04-11 |
CN102410834B true CN102410834B (en) | 2013-05-29 |
Family
ID=45913049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110215579 Expired - Fee Related CN102410834B (en) | 2011-07-29 | 2011-07-29 | Three-dimensional laser scanning tailings dam dynamic monitoring system device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102410834B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102984423A (en) * | 2012-11-26 | 2013-03-20 | 中国科学院长春光学精密机械与物理研究所 | Spot scanning imaging method for trigger exposure of encoder |
CN105157687B (en) * | 2015-09-08 | 2017-07-28 | 北京控制工程研究所 | A kind of position attitude measurement method of the dynamic object based on wMPS |
CN107356203B (en) * | 2017-08-09 | 2023-07-25 | 顺丰科技有限公司 | Loading capacity measuring device and measuring method |
CN108989605A (en) * | 2018-07-27 | 2018-12-11 | 湖南科技大学 | A kind of image capturing and transmitting system and method |
CN108931208A (en) * | 2018-08-31 | 2018-12-04 | 苏交科集团股份有限公司 | A kind of intelligentized bracket component and fitting quality testing assessment system and method |
CN109297980B (en) * | 2018-11-30 | 2021-02-05 | 北京建筑大学 | Tower crane inspection method based on three-dimensional laser scanning technology |
CN110209089A (en) * | 2019-06-13 | 2019-09-06 | 中交一航局安装工程有限公司 | A kind of silo comprehensive monitoring system based on BIM |
CN111948631B (en) * | 2020-08-12 | 2023-06-30 | 天津汇智三维科技有限公司 | Foundation type dynamic positioning system |
CN115673874B (en) * | 2022-12-30 | 2023-03-14 | 北京精雕科技集团有限公司 | Method and device for detecting maneuvering balance of numerical control machine turntable |
CN116680925B (en) * | 2023-06-15 | 2024-02-06 | 深圳市智慧空间平台技术开发有限公司 | Intelligent space emergency processing method, system and medium based on big data |
CN116879920B (en) * | 2023-07-12 | 2024-02-09 | 中电建绿建有限公司 | Dyke quality detection method and system based on laser point cloud technology |
CN116883295B (en) * | 2023-09-10 | 2023-12-15 | 苏州聚视兴华智能装备有限公司 | Line scanning three-dimensional image acquisition vibration correction method and device and electronic equipment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1048334C (en) * | 1997-04-15 | 2000-01-12 | 沈阳世纪节能有限公司 | Three-D deforming automatic follow monitoring method for arch dam |
US6823737B2 (en) * | 2001-06-06 | 2004-11-30 | The United States Of America As Represented By The Secretary Of The Interior | Non-contact inspection system for large concrete structures |
CN2508234Y (en) * | 2001-11-26 | 2002-08-28 | 武汉大学 | Automatic laser measuring device |
CN100395520C (en) * | 2004-12-23 | 2008-06-18 | 西安华腾光电有限责任公司 | High precision photoelectric measuring method and measuring apparatus for three-dimensional dip |
-
2011
- 2011-07-29 CN CN 201110215579 patent/CN102410834B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102410834A (en) | 2012-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102410834B (en) | Three-dimensional laser scanning tailings dam dynamic monitoring system device | |
CN105116922B (en) | A kind of there-dimensional laser scanning device control system | |
CN204575030U (en) | Three-dimensional laser automatically scanning measuring system | |
CN102095384A (en) | Multiparameter internal-diameter measurement system and method based on high-precision coaxial positioning | |
CN106091961A (en) | High-rate laser inner diameter measurement system | |
CN102878928B (en) | Storage yard real-time dynamic three dimensional measurement and control system | |
CN109358342B (en) | Three-dimensional laser SLAM system based on 2D laser radar and control method | |
CN102425991A (en) | Automatic storage yard laser measuring device and using method thereof | |
CN105222711A (en) | A kind of gathering pipe field measurement apparatus based on laser ranging technique and measuring method | |
CN105269404A (en) | Detection device for knife point dynamic characteristics of numerical control machine tool and method of detection device | |
CN114563809B (en) | GNSS-based bridge rotation attitude real-time monitoring method and system | |
CN103501141A (en) | Angle position error detecting and compensating device of round angle position sensor and compensating method | |
CN108278970A (en) | A kind of III type track plates machining deviation automated detection methods of CRTS | |
CN105783851A (en) | Roughness detection system and detection method | |
CN102221335A (en) | Positioning system and method for engineering machine | |
CN109282833B (en) | Automatic calibration device and calibration method for plumb line coordinatograph | |
CN1987344A (en) | Flexible three dimension holographic measuring system | |
CN205066693U (en) | Fold a tub on --spot measuring device based on laser rangefinder technique | |
CN109634204A (en) | A kind of automatic control system for multifunctional material testing | |
CN202382708U (en) | Automatic storage yard laser measuring device | |
CN103615999A (en) | Motion synchronization precision detecting device based on linear motors | |
CN219037913U (en) | Elevator well measuring device | |
CN208296754U (en) | A kind of Bridge Crack detection device | |
CN202033006U (en) | Location system of engineering machinery | |
CN2508234Y (en) | Automatic laser measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130529 Termination date: 20170729 |