CN102407153A - Preparation method of nanogold catalyst for improving acidity of catalyst - Google Patents
Preparation method of nanogold catalyst for improving acidity of catalyst Download PDFInfo
- Publication number
- CN102407153A CN102407153A CN2011103243228A CN201110324322A CN102407153A CN 102407153 A CN102407153 A CN 102407153A CN 2011103243228 A CN2011103243228 A CN 2011103243228A CN 201110324322 A CN201110324322 A CN 201110324322A CN 102407153 A CN102407153 A CN 102407153A
- Authority
- CN
- China
- Prior art keywords
- gold
- zeolite
- hours
- catalyst
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 103
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- 239000010931 gold Substances 0.000 claims abstract description 156
- 229910052737 gold Inorganic materials 0.000 claims abstract description 142
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 107
- 238000000034 method Methods 0.000 claims abstract description 86
- 239000010457 zeolite Substances 0.000 claims abstract description 69
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 68
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 67
- 239000002253 acid Substances 0.000 claims abstract description 50
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 17
- 230000001965 increasing effect Effects 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 239000000243 solution Substances 0.000 claims description 33
- 238000001556 precipitation Methods 0.000 claims description 27
- 239000002243 precursor Substances 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 238000001035 drying Methods 0.000 claims description 24
- 230000008021 deposition Effects 0.000 claims description 21
- 238000001354 calcination Methods 0.000 claims description 15
- 239000011148 porous material Substances 0.000 claims description 15
- 238000011068 loading method Methods 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- 230000001376 precipitating effect Effects 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 239000012266 salt solution Substances 0.000 claims description 10
- 150000003863 ammonium salts Chemical class 0.000 claims description 9
- 239000004202 carbamide Substances 0.000 claims description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 238000007872 degassing Methods 0.000 claims description 9
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 9
- 230000035484 reaction time Effects 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 3
- 238000005342 ion exchange Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000001099 ammonium carbonate Substances 0.000 claims description 2
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims description 2
- 239000002808 molecular sieve Substances 0.000 abstract description 33
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 abstract description 33
- 230000000694 effects Effects 0.000 abstract description 10
- 239000002245 particle Substances 0.000 abstract description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 8
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 abstract description 8
- 238000006555 catalytic reaction Methods 0.000 abstract description 7
- 229910018557 Si O Inorganic materials 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 4
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 abstract description 3
- 230000029936 alkylation Effects 0.000 abstract description 2
- 238000005804 alkylation reaction Methods 0.000 abstract description 2
- 238000005899 aromatization reaction Methods 0.000 abstract description 2
- 230000001588 bifunctional effect Effects 0.000 abstract description 2
- 238000006317 isomerization reaction Methods 0.000 abstract description 2
- 230000010287 polarization Effects 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 description 18
- 230000008859 change Effects 0.000 description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 229910001868 water Inorganic materials 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 12
- 238000005470 impregnation Methods 0.000 description 12
- 239000000969 carrier Substances 0.000 description 10
- 238000002425 crystallisation Methods 0.000 description 10
- 230000008025 crystallization Effects 0.000 description 10
- 229910003771 Gold(I) chloride Inorganic materials 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 238000000975 co-precipitation Methods 0.000 description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052680 mordenite Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000011973 solid acid Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000004566 IR spectroscopy Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011964 heteropoly acid Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910004042 HAuCl4 Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- DCRNVZUOGPNBNM-UHFFFAOYSA-K [Au+3].[O-][Cl](=O)=O.[O-][Cl](=O)=O.[O-][Cl](=O)=O Chemical compound [Au+3].[O-][Cl](=O)=O.[O-][Cl](=O)=O.[O-][Cl](=O)=O DCRNVZUOGPNBNM-UHFFFAOYSA-K 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000013335 mesoporous material Substances 0.000 description 2
- 239000012229 microporous material Substances 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 239000003930 superacid Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- RJHLTVSLYWWTEF-UHFFFAOYSA-K gold trichloride Chemical compound Cl[Au](Cl)Cl RJHLTVSLYWWTEF-UHFFFAOYSA-K 0.000 description 1
- 229910021505 gold(III) hydroxide Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 238000007038 hydrochlorination reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000320 mechanical mixture Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- SDKPSXWGRWWLKR-UHFFFAOYSA-M sodium;9,10-dioxoanthracene-1-sulfonate Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)[O-] SDKPSXWGRWWLKR-UHFFFAOYSA-M 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
本发明属于催化剂制备领域,涉及一种能增加催化剂酸性的纳米金催化剂的制备方法。其特征是将纳米金负载于高硅沸石上,金可与高硅沸石中的硅羟基发生强相互作用,从而形成Si-O(H)-Au结构。由于Au的极化作用,其中的Si-O(H)-Au桥羟基具有较强的质子酸性。所说的分子筛指高硅沸石分子筛,尤其是S-1、ZSM-5、ZSM-8、ZSM-11、MCM-22、MCM-49、MCM-56、ITQ-2,以及ZSM-12、β-沸石、丝光沸石和TS-1为载体。本方法工艺简单、金粒子高分散、载体的酸性得到显著提高,可以得到酸性强的金属-酸双功能分子筛催化剂。获得的催化剂用于芳构化、异构化和烷基化等众多酸催化反应中,具有活性高,反应温度低等特点。
The invention belongs to the field of catalyst preparation, and relates to a preparation method of a nano-gold catalyst capable of increasing catalyst acidity. It is characterized in that nano-gold is supported on high-silica zeolite, and gold can strongly interact with silanol in high-silica zeolite to form a Si-O(H)-Au structure. Due to the polarization of Au, the Si-O(H)-Au bridging hydroxyl group has strong proton acidity. Said molecular sieve refers to high silica zeolite molecular sieve, especially S-1, ZSM-5, ZSM-8, ZSM-11, MCM-22, MCM-49, MCM-56, ITQ-2, and ZSM-12, β - Zeolite, Mordenite and TS-1 as supports. The method has the advantages of simple process, highly dispersed gold particles, significantly improved carrier acidity, and can obtain a metal-acid bifunctional molecular sieve catalyst with strong acidity. The obtained catalyst is used in many acid-catalyzed reactions such as aromatization, isomerization and alkylation, and has the characteristics of high activity, low reaction temperature and the like.
Description
技术领域 technical field
本发明属于催化剂制备领域,涉及一种能增加催化剂酸性的纳米金催化剂的制备方法。The invention belongs to the field of catalyst preparation, and relates to a preparation method of a nano-gold catalyst capable of increasing catalyst acidity.
背景技术 Background technique
纳米金催化剂的制备和应用,是催化界的重大发现。历来金被认为是催化惰性的,但将其负载在氧化物载体上进行高分散后,就显示出独特的催化活性。纳米金催化剂在催化CO氧化、臭氧分解、水气转化反应、NOx的还原、乙炔氢氯化、丙烯环氧化、燃料电池、石油化工等领域显示出应用前景(Catal.Rev.-Sci.Eng,1999,41(3)319-388)。The preparation and application of nano-gold catalysts is a major discovery in the field of catalysis. Gold has always been considered to be catalytically inert, but when it is loaded on an oxide support for high dispersion, it shows unique catalytic activity. Nano-gold catalysts have shown application prospects in the fields of catalyzing CO oxidation, ozonolysis, water gas shift reaction, reduction of NOx , acetylene hydrochlorination, propylene epoxidation, fuel cells, petrochemical industry (Catal.Rev.-Sci. Eng, 1999, 41(3) 319-388).
纳米金催化剂的制备方法分为两种:一是载体和金前体共沉淀法;一是将金前体负载到事先制备好的载体上的浸渍法和沉积沉淀法。早期负载型金催化剂的制备方法常用浸渍法。浸渍法通常用于来制备活性组分含量较低,且需要足够机械强度的催化剂。用该方法纳米金催化剂的制备过程是,首先将载体浸渍于含金的盐溶液中,然后再进行干燥、焙烧和还原处理、方法简单。浸渍法可选用各种不同的金属或非金属氧化物以及分子筛等为载体。制备纳米金催化剂的常用金前体是氯金酸(HAuCl4.3H2O)和氯化金(AuCl3)以及金络合物KAu(CN)2和[Au(en)2]Cl3(en为乙二胺)等。The preparation methods of nano-gold catalysts are divided into two types: one is the co-precipitation method of the carrier and the gold precursor; the other is the impregnation method and the deposition precipitation method of loading the gold precursor on the pre-prepared carrier. The preparation method of early supported gold catalysts is commonly used impregnation method. The impregnation method is usually used to prepare catalysts with low content of active components and sufficient mechanical strength. The preparation process of the nano-gold catalyst by the method is as follows: first, the carrier is immersed in the gold-containing salt solution, and then dried, calcined and reduced, and the method is simple. Various metal or non-metal oxides and molecular sieves can be used as carriers in the impregnation method. Commonly used gold precursors for the preparation of nano-gold catalysts are auric acid chloride (HAuCl 4 .3H 2 O) and gold chloride (AuCl 3 ) and gold complexes KAu(CN) 2 and [Au(en) 2 ]Cl 3 ( en is ethylenediamine) and so on.
共沉淀法是制备高负载量金催化剂的有效方法,典型的制备过程为:将载体的前体盐溶液与金前体盐溶液混合,然后用沉淀剂进行沉淀,再进行静置、过滤、水洗、干燥和高温焙烧处理。共沉淀法的优点是制备重复性好,缺点是部分金颗粒会被掩埋在载体内部,金的利用率低,不适合于氧化钛、沸石分子筛等载体。在应用沉淀法时pH值控制是技术难点。Co-precipitation method is an effective method for preparing high-loaded gold catalysts. The typical preparation process is: mixing the precursor salt solution of the carrier with the gold precursor salt solution, then precipitating with a precipitant, and then standing, filtering, and washing with water , drying and high-temperature roasting treatment. The advantage of the co-precipitation method is that the preparation is reproducible, but the disadvantage is that some gold particles will be buried inside the carrier, and the utilization rate of gold is low, so it is not suitable for carriers such as titanium oxide and zeolite molecular sieve. pH control is a technical difficulty when applying the precipitation method.
沉积-沉淀法也是常用的负载催化剂制备方法,它兼具浸渍法和沉淀法的优点。用沉积-沉淀法制备金催化剂的典型过程是:将金属或非金属氧化物以及分子筛等为载体加入到金前体溶液中,在一定的反应温度下连续搅拌并逐滴加入沉淀剂,使溶液反应在适宜的pH值下进行,直至沉淀完全。然后再对固形物进行沉降、过滤、洗涤、干燥、焙烧或活化处理。The deposition-precipitation method is also a commonly used preparation method for supported catalysts, which has the advantages of both the impregnation method and the precipitation method. The typical process of preparing gold catalysts by deposition-precipitation method is: adding metal or non-metal oxides and molecular sieves as carriers to the gold precursor solution, stirring continuously at a certain reaction temperature and adding a precipitant drop by drop to make the solution The reaction was carried out at a suitable pH value until the precipitation was complete. Then the solid is subjected to sedimentation, filtration, washing, drying, roasting or activation treatment.
在多数情况下,用各种方法制备的负载金催化剂干燥后,以+3价氧化态形式存在,经高温热处理后绝大多数金原子可变成零价。为了使负载金催化剂具有高活性,采用合适的制备方法使金粒子在载体上高分散是关键。In most cases, the supported gold catalysts prepared by various methods exist in the oxidation state of +3 after drying, and most of the gold atoms can become zero-valent after high-temperature heat treatment. In order to make the supported gold catalyst have high activity, it is the key to adopt a suitable preparation method to make the gold particles highly dispersed on the support.
现在,已有许多专利披露了负载型纳米金催化剂的制备方法。如:Now, many patents have disclosed the preparation method of supported nano-gold catalyst. like:
专利CN101530814A(2009)披露了一种负载型纳米金催化剂的制备方法。其特征是:以具有介孔-微孔复合结构的钛硅分子筛为载体,负载方法为沉积沉淀法,负载在常压下进行,以氯金酸为金的前躯体。Patent CN101530814A (2009) discloses a method for preparing a supported nano-gold catalyst. It is characterized in that: titanium-silicon molecular sieve with mesoporous-microporous composite structure is used as a carrier, the loading method is a deposition precipitation method, the loading is carried out under normal pressure, and chloroauric acid is used as a gold precursor.
专利CN101237931A(2008)披露了一种负载金催化剂的制备方法。其特征是:以多孔金属氧化物为载体,氯金酸为前躯体,负载方法为常规浸渍法,浸渍在常压下进行。Patent CN101237931A (2008) discloses a preparation method of supported gold catalyst. It is characterized in that: porous metal oxide is used as carrier, chloroauric acid is used as precursor, the loading method is conventional impregnation method, and the impregnation is carried out under normal pressure.
专利CN101204655A(2008)披露了一种纳米金催化剂的制备方法。其特征是:以氧化铝、氧化硅、陶瓷、TiO2等为载体,氯金酸为金前躯体,负载方法为浸渍法,浸渍在超声波或超声波和真空共存的条件下进行。Patent CN101204655A (2008) discloses a preparation method of nano-gold catalyst. Its characteristics are: alumina, silicon oxide, ceramics, TiO2 , etc. are used as carriers, chloroauric acid is used as the gold precursor, and the loading method is impregnation, and the impregnation is carried out under the condition of ultrasonic waves or the coexistence of ultrasonic waves and vacuum.
专利CN1795985A(2006)披露了一种制备负载型金催化剂的方法。其特征是:以硝酸铁为共沉淀载体,氯酸金为前躯体,以碳酸钠为沉淀剂,负载方法为共沉淀法,共沉淀在常压下进行。Patent CN1795985A (2006) discloses a method for preparing supported gold catalyst. It is characterized in that ferric nitrate is used as co-precipitation carrier, gold chlorate is used as precursor, sodium carbonate is used as precipitating agent, the loading method is co-precipitation method, and co-precipitation is carried out under normal pressure.
专利CN1565727A(2005)披露了一种负载型纳米金催化剂的制备方法。其特征是:以SiO2、Al2O3、TiO2等氧化物为载体,氯酸金为前躯体,负载方法为浸渍法,浸渍以等体积的方式在常压下进行。Patent CN1565727A (2005) discloses a preparation method of supported nano-gold catalyst. It is characterized in that oxides such as SiO 2 , Al 2 O 3 , TiO 2 are used as carriers, gold chlorate is used as a precursor, and the loading method is an impregnation method, and the impregnation is carried out under normal pressure in an equal-volume manner.
以下专利也披露了负载型金催化剂的制备方法。The following patents also disclose the preparation of supported gold catalysts.
涉及SiO2载体负载金催化剂有以下专利:CN101797514A(2010)、CN101862660A(2010)、CN101574654A(2009)、US6821923(2004)、EP1044067B1(2004)、EP1027153B1(2004)、US6486093(2002)、US6303537(2001)、US6174531(2001)、EP0906151B1(2001)、US6114571(2000)、CN1251323A(2000)、WO030818A1(1999)、WO062633A1(1999)、WO062632A1(1999)、US5693586(1997)。The following patents are related to SiO carrier loaded gold catalyst: CN101797514A (2010), CN101862660A (2010), CN101574654A (2009), US6821923 (2004), EP1044067B1 (2004), EP1027153B1 (2004), US64032093 (2004), US64032093 (2004), US64032093 (2004) .
涉及Al2O3载体的负载金催化剂有以下专利:CN101618328A(2010)、US0010278A1(2010)、EP1309536B1(2010)、US0221849A1(2009)、US0088319A1(2009)、CN101147862A(2008)、CN101049561A(2007)、CN101036887A(2007)、WO065138A1(2006)、US7119225(2006)、CN1827213A(2006)、WO016298A1(2002)、EP0909213B1(2001)、EP0653401B1(1997)。涉及Al 2 O 3载体的负载金催化剂有以下专利:CN101618328A(2010)、US0010278A1(2010)、EP1309536B1(2010)、US0221849A1(2009)、US0088319A1(2009)、CN101147862A(2008)、CN101049561A(2007)、CN101036887A (2007), WO065138A1(2006), US7119225(2006), CN1827213A(2006), WO016298A1(2002), EP0909213B1(2001), EP0653401B1(1997).
涉及TiO2载体的负载金催化剂有以下专利:CN101711982A(2010)、EP1309536B1(2010)、CN101380575A(2009)、WO076137A3R4(2008)、WO003450A1(2006)、US7119225(2006)、US6821923(2004)、WO016298A1(2002)、CN1349430A(2002)。The supported gold catalyst related to TiO carrier has the following patents: CN101711982A (2010), EP1309536B1 (2010), CN101380575A (2009), WO076137A3R4 (2008), WO003450A1 (2006), US7119225 (2006), US68010623 (20A ), CN1349430A (2002).
涉及ZrO2载体的负载金催化剂有以下专利:US0190347A1(2007)、WO0465145(2006)、US0276741A1(2005)、WO046255A1(1999)、US5895772(1999)。The supported gold catalysts related to ZrO2 carrier have the following patents: US0190347A1 (2007), WO0465145 (2006), US0276741A1 (2005), WO046255A1 (1999), US5895772 (1999).
另外,专利CN101683619A(2009)涉及以Fe2O3为载体的负载金催化剂。In addition, the patent CN101683619A (2009) relates to a supported gold catalyst supported by Fe 2 O 3 .
专利CN101722009A(2010)涉及以CuO为载体的负载金催化剂。Patent CN101722009A (2010) relates to a gold catalyst supported by CuO.
涉及复合氧化物载体的负载金催化剂有以下专利:CN101822990A(2010)、CN101822981A(2010)、CN101612578A(2009)、CN101376107A(2009)、US02410381A1(2008)、US0193354A1(2008)、CN1724153A(2006)、US0065355A1(2005)、CN1698932A(2005)、US0127353A1(2004)、US0060643A1(2003)、USP4839327、USP4837219。The supported gold catalyst related to the composite oxide carrier has the following patents: CN101822990A (2010), CN101822981A (2010), CN101612578A (2009), CN101376107A (2009), US02410381A1 (2008), US0193354A1 (2008), CN33A20105 (5624105) 2005), CN1698932A (2005), US0127353A1 (2004), US0060643A1 (2003), USP4839327, USP4837219.
还有涉及碳载体的负载金催化剂专利:CN101631610A(2010)、CN101648137A(2010)、CN101785997A(2010)、CN101804347A(2010)、CN101829567A(2010)。There are also supported gold catalyst patents involving carbon supports: CN101631610A (2010), CN101648137A (2010), CN101785997A (2010), CN101804347A (2010), CN101829567A (2010).
但是已有专利全部用常压法制备负载金催化剂。However, the existing patents all use the atmospheric pressure method to prepare supported gold catalysts.
除此之外,许多公开文献也涉及了负载型纳米金催化剂的制备方法。如:In addition, many published documents also relate to the preparation method of supported nano-gold catalysts. like:
公开文献Appl.Catal.A:Gen.291(2005)62,J.Catal.231(2005)105和Geochem.Intern.11(1985)1656报道了酸度(pH)对沉积沉淀法制备负载型金催化剂的影响,载体为TiO2。结果表明,pH对纳米金催化剂的活性有较大影响。这主要是因为,在不同的pH值下,金前驱体化合物的水解程度不同。随着pH值的升高,金前驱体化合物〔AuCl4〕-逐步水解为AuCl3(H2O),〔AuCl3(OH)〕-,〔AuCl2(OH)2〕-,〔AuCl(OH)3〕-和〔Au(OH)4〕-。不同金前躯体水解为因吸附能力等性质差异,对负载金催化剂产生影响。该公开文献采用的沉积沉淀法在常压条件下进行。Open literature Appl.Catal.A: Gen.291 (2005) 62, J.Catal.231 (2005) 105 and Geochem.Intern.11 (1985) 1656 have reported acidity (pH) on the preparation of loaded gold catalyst by deposition precipitation method effect, the carrier is TiO 2 . The results show that pH has a great influence on the activity of nano-gold catalyst. This is mainly because, at different pH values, the degree of hydrolysis of the gold precursor compounds is different. As the pH value increases, the gold precursor compound [AuCl 4 ] - gradually hydrolyzes to AuCl 3 (H 2 O), [AuCl 3 (OH)] - , [AuCl 2 (OH) 2 ] - , [AuCl( OH) 3 ] - and [Au(OH) 4 ] - . The hydrolysis of different gold precursors is due to the difference in properties such as adsorption capacity, which affects the supported gold catalyst. The deposition precipitation method adopted in this publication is carried out under normal pressure conditions.
公开文献Appl Catal A:Gen,291(2005)162报道了一种制备负载金催化剂的方法。其技术特征是:以Y、β和丝光沸石为载体,以HAuCl4为金前躯体,用NaOH为沉淀剂,采用沉积沉淀法,操作在常压下进行。Publication Appl Catal A: Gen, 291 (2005) 162 reports a method for preparing a supported gold catalyst. Its technical features are: Y, β and mordenite are used as carriers, HAuCl 4 is used as gold precursor, NaOH is used as precipitating agent, deposition and precipitation are adopted, and the operation is carried out under normal pressure.
公开文献Appl Catal B:Env,41(2003)83报道了一种制备负载金催化剂的方法。其技术特征是:以Y、β和丝光沸石为载体,以HAuCl4为金前躯体,用NaOH为沉淀剂,采用沉积沉淀法,操作在常压下进行。Publication Appl Catal B: Env, 41 (2003) 83 reports a method for preparing a supported gold catalyst. Its technical features are: Y, β and mordenite are used as carriers, HAuCl 4 is used as gold precursor, NaOH is used as precipitating agent, deposition and precipitation are adopted, and the operation is carried out under normal pressure.
公开文献Appl.Catal.A:Gen.240(2003)243报道了一种制备负载金催化剂的方法。其技术特征是:以Ti-MCM-41为载体,以NaOH为沉淀剂,采用沉积沉淀法,操作在常压下进行。Publication Appl. Catal. A: Gen. 240 (2003) 243 reports a method for preparing a supported gold catalyst. Its technical features are: Ti-MCM-41 is used as the carrier, NaOH is used as the precipitating agent, the deposition and precipitation method is adopted, and the operation is carried out under normal pressure.
公开文献J.Catal.209(2002)331报道了一种负载金催化剂的方法。其技术特征是:以Ti-MCM-48为载体,以NaOH为沉淀剂,采用沉积沉淀法,操作在常压下进行。Publication J.Catal.209(2002)331 reports a method for supporting gold catalysts. Its technical features are: Ti-MCM-48 is used as the carrier, NaOH is used as the precipitating agent, the deposition and precipitation method is adopted, and the operation is carried out under normal pressure.
公开文献Appl.Cattal.A:Gen.226(2002)1.报道了沉积沉淀法制备纳米金催化剂的化学原理。沉淀剂为尿素,TiO2为载体。该公开文献采用TiO2为载体和尿素为沉淀剂,沉积沉淀法,操作在常压条件下进行。Publication Appl. Cattal. A: Gen. 226 (2002) 1. Reported the chemical principle of preparing nano-gold catalyst by deposition precipitation method. The precipitant is urea, and TiO2 is the carrier. This publication adopts TiO2 as a carrier and urea as a precipitating agent, a deposition precipitation method, and the operation is carried out under normal pressure conditions.
公开文献App.Catal.A:Gen.190(2000)43报道了一种制备负载金催化剂的方法。其技术特征是:以Ti-MCM-41为载体,以NaOH为沉淀剂,采用沉积沉淀法,操作在常压下进行。Publication App. Catal. A: Gen. 190 (2000) 43 reports a method for preparing a supported gold catalyst. Its technical features are: Ti-MCM-41 is used as the carrier, NaOH is used as the precipitating agent, the deposition and precipitation method is adopted, and the operation is carried out under normal pressure.
此外,以下公开文献也涉及到负载型金催化剂的制备方法:J.Catal,2006,237:303-313;Catal.Today,2006,111(1-2):22-33;J.Phys.Chem,B:2005,109:2321-2330;Catal.Lett,2005,99(3-4):235-239;J.PhysChem,B:2005,109:3956-3965;Appl.Catal;B:Environ;2005,61:201-207;Appl.Catal,A:Gen,2005,191:222-229;Appl.Catal.A:Gen,2004,267:191-201;Appl.Catal,A:Gen,2004,277:31-40;J.Am.Chem.Soc,2004,126:38-39;J.Catal,2004,226:156-170;J.Catal,2003,216(1-2):213-222;Catal.Lett,2003,86:1-8;Oxid.Commun,2003,26(4):492;Appl.Catal,A:Gen,2003,246:29-38;Appl.Catal,A:Gen,2003,243:25-33;Appl.Catal.A:Gen.,2002,226:1-13;Appl.Catal,A:Gen,226(2002)1;化学进展2002(5):360-367.J.Phys.Chem,J.Catal,2002,209:331-340;B:2002,106(31):7634-7642;Catal.Today,2002,74:265-269;Gold Bull,34(2001)4:11;Appl.Catal,A:Gen,2001,215:137-148;Appl.Catal,A:Gen,2001,209:291-300;Catal.Today,2001,64(1):69-81;Appl.Catal,B:Environ,2001,33:217-222;Appl.Catal,A:Gen,2001,222:427-437;Appl.Catal,B:Environ,2000,28:245-251;J.Phys.Chem,B:2000,104:11153-11156;J.Catal,2000,191:332-347;J.Catal,2000,191:430-437;Catal.Rev-Sci.Eng,1999,41(3):319-388;Catal.Today,1999,54:31-38;Gold.Bull,1998,31:105-106;Gold Bull,31(1998)4:111-118;J.Catal,1998,178:566-575;Catal.Lett.(1997)43(1-2):51-54;Catal.Today,36(1997)153;Catal.Today,1996,29:443-447;Surf.Sci.Catal,91(1995)227;“Preparation of catalysts V”Edit.,1991,Amsterdam,695-704;J.Catal.,1989,115:301-309;Stud.Surf.Sci.Catal,44(1988)33;Chem.Lett,2(1987)405;J.Chem.Soc.Faraday Trans,175(1979)385。In addition, the following publications also relate to the preparation method of supported gold catalysts: J.Catal, 2006, 237: 303-313; Catal.Today, 2006, 111 (1-2): 22-33; J.Phys.Chem , B: 2005, 109: 2321-2330; Catal. Lett, 2005, 99 (3-4): 235-239; J. PhysChem, B: 2005, 109: 3956-3965; Appl. Catal; B: Environ; 2005, 61: 201-207; Appl. Catal, A: Gen, 2005, 191: 222-229; Appl. Catal. A: Gen, 2004, 267: 191-201; Appl. Catal, A: Gen, 2004, 277:31-40; J.Am.Chem.Soc, 2004, 126:38-39; J.Catal, 2004, 226:156-170; J.Catal, 2003, 216(1-2):213-222 ; Catal. Lett, 2003, 86: 1-8; Oxid. Commun, 2003, 26 (4): 492; Appl. Catal, A: Gen, 2003, 246: 29-38; Appl. Catal, A: Gen, 2003, 243: 25-33; Appl. Catal. A: Gen., 2002, 226: 1-13; Appl. Catal, A: Gen, 226 (2002) 1; Chemical Progress 2002 (5): 360-367. J. Phys. Chem, J. Catal, 2002, 209: 331-340; B: 2002, 106(31): 7634-7642; Catal. Today, 2002, 74: 265-269; Gold Bull, 34 (2001) 4: 11; Appl. Catal, A: Gen, 2001, 215: 137-148; Appl. Catal, A: Gen, 2001, 209: 291-300; Catal. Today, 2001, 64(1): 69-81 ; Appl. Catal, B: Environ, 2001, 33: 217-222; Appl. Catal, A: Gen, 2001, 222: 427-437; .Phys.Chem, B: 2000, 104: 11153-11156; J. Catal, 2000, 191: 332-347; J. Catal, 2000, 191: 430-437; Ca tal. Rev-Sci. Eng, 1999, 41(3): 319-388; Catal. Today, 1999, 54: 31-38; Gold. Bull, 1998, 31: 105-106; Gold Bull, 31 (1998) 4: 111-118; J. Catal, 1998, 178: 566-575; Catal. Lett. (1997) 43(1-2): 51-54; Catal. Today, 36 (1997) 153; Catal. Today, 1996, 29: 443-447; Surf. Sci. Catal, 91 (1995) 227; "Preparation of catalysts V" Edit., 1991, Amsterdam, 695-704; J. Catal., 1989, 115: 301-309; Stud. Surf. Sci. Catal, 44 (1988) 33; Chem. Lett, 2 (1987) 405; J. Chem. Soc. Faraday Trans, 175 (1979) 385.
以上公开文献采用了不同方法和不同氧化物和沸石分子筛载体制备了负载金催化剂。但这些方法的共同特点是,负载时操作均在常压下进行。所制得的催化剂经过焙烧很容易团聚。当采用ZSM-5为载体时,只能得到金颗粒为40-50nm的负载型金催化剂,不能得到更小颗粒的Au/ZSM-5催化剂。The above publications have adopted different methods and different oxides and zeolite molecular sieve carriers to prepare supported gold catalysts. However, the common feature of these methods is that the operation is carried out under normal pressure under load. The prepared catalyst is easy to agglomerate after calcining. When ZSM-5 is used as a carrier, only supported gold catalysts with gold particles of 40-50 nm can be obtained, and Au/ZSM-5 catalysts with smaller particles cannot be obtained.
公开文献Stud.Surf.Sci.Catal.84(1994)1059;J.Catal.152(1995)322,和J.Call.Inter.Sci.224(2000)366报道了以AuCl3为金前躯体,以脱水的沸石为载体,通过机械混合将金引入到沸石上的方法。其中涉及的沸石为NaY、Na-丝光沸石、Na-ZSM-5和HZSM-5。该文献的关键在于,在真空热处理机械混合物的过程中使金盐在沸石上高分散,处理温度为60~70℃。The public literature Stud.Surf.Sci.Catal.84 (1994) 1059; J.Catal.152 (1995) 322, and J.Call.Inter.Sci.224 (2000) 366 have reported that AuCl 3 is the gold precursor, Using dehydrated zeolite as a carrier, the method of introducing gold onto zeolite by mechanical mixing. The zeolites involved therein are NaY, Na-mordenite, Na-ZSM-5 and HZSM-5. The key point of this document is that the gold salt is highly dispersed on the zeolite during the vacuum heat treatment of the mechanical mixture, and the treatment temperature is 60-70°C.
公开文献Micro.Meso.Mater.66(2003)15和Catal.Lett.72(2001)1报道了一种负载金的方法。其技术特征是:以A型沸石和ZSM-5沸石为载体,操作在密闭暗瓶中进行,利用真空和加热条件下使AuCl3升华,进而负载在相应载体上。该方法实际是采用化学气相沉积法。Public documents Micro. Meso. Mater. 66 (2003) 15 and Catal. Lett. 72 (2001) 1 report a method of supporting gold. Its technical features are: A-type zeolite and ZSM-5 zeolite are used as carriers, the operation is carried out in a closed dark bottle, and AuCl 3 is sublimated under vacuum and heating conditions, and then loaded on the corresponding carrier. The method actually uses chemical vapor deposition.
上述两篇文献虽然在负压下负载金,但前者采用了机械混合法,后者采用了化学气相沉积法,负载效果不佳,且制备重复性差。Although the above two documents support gold under negative pressure, the former adopts mechanical mixing method, while the latter adopts chemical vapor deposition method, the loading effect is not good, and the preparation repeatability is poor.
固体酸是一种用途广泛的多相催化剂。在固体酸之中,分子筛因具有独特的结构而被认为是实现环境友好催化最具前景的固体酸。分子筛的酸量和酸强度在分子筛催化中十分关键。但在以往的文献中,虽然涉及分子筛固体酸者非常多,但绝大多数都是降低酸量和酸强度。而提高分子筛酸量和酸强度者极少。Solid acid is a versatile heterogeneous catalyst. Among solid acids, molecular sieves are considered to be the most promising solid acids for environmentally friendly catalysis because of their unique structures. The acid amount and acid strength of molecular sieves are very critical in the catalysis of molecular sieves. However, in the previous literature, although there are many related to molecular sieve solid acid, most of them are to reduce the acid amount and acid strength. There are very few people who increase the acid content and acid strength of molecular sieves.
以下几篇专利和文献介绍了增加分子筛或氧化物催化剂酸性的方法:The following patents and literature describe methods for increasing the acidity of molecular sieve or oxide catalysts:
专利CN1354045(2002.6.19)披露了一种增强分子筛催化剂酸性的方法。其特征是:用等离子体技术处理担载金属活性组分的分子筛催化剂,该专利涉及Zn、Fe、Mo等过渡金属改性的Y型分子筛、mordenite分子筛和HZSM-5分子筛。上述处理可提高催化剂的酸量,尤其是可提高B酸量。但等离子体处理技术涉及高压电,而且能耗很高。Patent CN1354045 (2002.6.19) discloses a method for enhancing the acidity of molecular sieve catalysts. It is characterized in that it uses plasma technology to treat molecular sieve catalysts loaded with metal active components. The patent relates to Y-type molecular sieves, mordenite molecular sieves and HZSM-5 molecular sieves modified by transition metals such as Zn, Fe, and Mo. The above treatment can increase the acid content of the catalyst, especially the B acid content. But plasma processing technology involves high voltage electricity and consumes a lot of energy.
公开文献催化学报2002(23)5:421-424报道了用碱性的水蒸气处理ZSM-5沸石,从而调节其酸性质及孔结构的方法。结果表明,当用10%NH3的蒸汽处理HZSM-5沸石时,在适当温度下可增加酸量。但这种方法不可靠,效果难以重复。The published literature, Acta Catalytica Sinica 2002 (23) 5: 421-424, reported a method of treating ZSM-5 zeolite with alkaline steam to adjust its acidity and pore structure. The results showed that when HZSM-5 zeolite was treated with steam of 10% NH3 , the amount of acid could be increased at appropriate temperature. But this method is unreliable and the effect is difficult to repeat.
公开文献Catal.Lett.1995.(30)241-248报道了将杂多酸组分(HPAs)负载于介孔分子筛中,从而制备出酸性比杂多酸强,其还可与浓硫酸相媲美的强酸性催化剂。但这种复合物不稳定。杂多酸组分在高温下结构易破坏,完全丧失酸性。在有水的环境中易流失,也导致失去酸性。Publication Catal.Lett.1995.(30)241-248 reported that heteropolyacid components (HPAs) were loaded on mesoporous molecular sieves to prepare acidic acid stronger than heteropolyacid, which was also comparable to concentrated sulfuric acid strong acidic catalyst. But this complex is unstable. The structure of the heteropolyacid component is easily destroyed at high temperature, and the acidity is completely lost. It is easy to lose in the environment with water, which also leads to the loss of acidity.
公开文献Chem.Commun(2000)2229-2230报道了用偏镨酸锆(Zr(OPr)4)作为锆源,在己烷溶液中与MCM-41分子筛搅拌回流,并不断加入水进行水解,再经过硫酸处理使MCM-41分子筛变成超强酸材料的方法。同样,这种硫酸根促进型固体超强酸也十分不稳定。Open document Chem.Commun (2000) 2229-2230 has reported to use zirconium metaprasetic acid (Zr (OPr) 4 ) as zirconium source, in hexane solution and MCM-41 molecular sieve stirring reflux, and constantly add water and carry out hydrolysis, then A method of making MCM-41 molecular sieve into a super acid material through sulfuric acid treatment. Also, this sulfate-promoted solid superacid is very unstable.
总而言之,以往负载金催化剂的制备主要是采用常压浸渍和常压沉积沉淀法。因焙烧处理时金容易团聚,所以人们都把注意力放在金颗粒的分散上。迄今为止,人们尚不知负载金可以提高分子筛的酸度,更不知如何负载金才有这种效果。All in all, the preparation of supported gold catalysts in the past mainly adopts atmospheric pressure impregnation and atmospheric pressure deposition precipitation methods. Because gold is easy to agglomerate during roasting, people pay attention to the dispersion of gold particles. So far, it is not known that loading gold can increase the acidity of molecular sieves, let alone how to load gold to have this effect.
发明内容 Contents of the invention
本发明提供了一种增加分子筛酸性的负载型纳米金催化剂的制备方法。The invention provides a preparation method of a supported nano-gold catalyst for increasing the acidity of molecular sieves.
我们经过研究发现,将纳米金负载于高硅沸石上时,金可与高硅沸石中的硅羟基发生强相互作用,从而形成Si-O(H)-Au结构。由于Au的极化作用,其中的Si-O(H)-Au桥羟基具有较强的质子酸性。通过研究进一步发现,Au的负载方法对于产生上述酸性桥羟基起十分重要的作用,对分子筛进行充分的负压脱气净化处理后,再采用负压沉积沉淀法把金前躯体负载到分子筛载体上,最有利于形成有强酸性的Si-O(H)-Au结构。所说的分子筛指高硅沸石分子筛,尤其是S-1、ZSM-5、ZSM-8、ZSM-11、MCM-22、MCM-49、MCM-56、ITQ-2,以及ZSM-12、β-沸石、丝光沸石和TS-1为载体。所说的金前躯体主要指HAuCl4,沉淀剂可用尿素。采用负压条件有利于净化分子筛内外表面和孔道,使Au进入孔道内以达到高分散并与内外表面的硅羟基结合形成Si-O(H)-Au结构。We have found through research that when nano-gold is loaded on high-silica zeolite, the gold can strongly interact with the silanol in the high-silica zeolite to form a Si-O(H)-Au structure. Due to the polarization of Au, the Si-O(H)-Au bridging hydroxyl group has strong proton acidity. Through research, it is further found that the loading method of Au plays a very important role in generating the above-mentioned acidic bridging hydroxyl groups. After sufficient negative pressure degassing and purification treatment on the molecular sieve, the gold precursor is loaded on the molecular sieve carrier by negative pressure deposition precipitation method. , which is most conducive to the formation of a strongly acidic Si-O(H)-Au structure. Said molecular sieve refers to high silica zeolite molecular sieve, especially S-1, ZSM-5, ZSM-8, ZSM-11, MCM-22, MCM-49, MCM-56, ITQ-2, and ZSM-12, β - Zeolite, Mordenite and TS-1 as supports. The said gold precursor mainly refers to HAuCl 4 , and the precipitating agent can be urea. The use of negative pressure conditions is conducive to purifying the inner and outer surfaces and pores of the molecular sieve, allowing Au to enter the pores to achieve high dispersion and combine with the silanol on the inner and outer surfaces to form a Si-O(H)-Au structure.
负载金引起的催化剂酸强度变化可用氨程序升温脱附(NH3-TPD)装置进行测定。由Si-OH与金作用形成的酸性羟基可用吡啶吸附红外表征。The change of catalyst acid strength caused by gold loading can be measured by ammonia temperature programmed desorption (NH 3 -TPD) device. The acidic hydroxyl formed by the interaction of Si-OH and gold can be characterized by pyridine adsorption infrared.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
第一步,对高硅沸石载体进行预处理。The first step is to pretreat the high silica zeolite carrier.
(1).对高硅沸石载体进行焙烧处理。焙烧温度选300~700℃,优选400~600℃;焙烧时间为4~20小时,优选3~8小时。所说的高硅沸石的硅铝比为10~∞,如ZSM-5、ZSM-8、ZSM-11、MCM-22、MCM-49、MCM-56、ITQ-2、ZSM-12、β-沸石、丝光沸石、TS-1以及纯硅沸石或者经过金属改性及其它方法处理过的上述沸石。沸石的晶粒度在5nm~30μm之间。(1). Roasting the high silica zeolite carrier. The calcination temperature is 300-700°C, preferably 400-600°C; the calcination time is 4-20 hours, preferably 3-8 hours. The silicon-aluminum ratio of the said high silica zeolite is 10~∞, such as ZSM-5, ZSM-8, ZSM-11, MCM-22, MCM-49, MCM-56, ITQ-2, ZSM-12, β- Zeolite, mordenite, TS-1 and pure silicalite or the above-mentioned zeolites treated by metal modification and other methods. The grain size of zeolite is between 5nm and 30μm.
以上载体的合成可以采用已经公开的专利和文献中的配方进行。如专利US3702886(1972)、US3941871(1976)、US4061724(1977)、US4166099(1979)、CN1086792A(1994)、CN1219571A(1999)、CN1056818C(2000)、CN100457622A(2001)、WO0138224A(2001)、CN1212892A(2002)、CN1328960A(2002)、CN1088406C(2002)、CN1417116A(2003)、CN1530323A(2004)、CN1699173A(2005)、CN1686801A(2005)、CN100344375A(2005)、CN1715186A(2006)、CN101007637A(2007)、CN1307102C(2007)、CN101279746A(2008)、CN101214971(2008)、CN101613114(2009)、CN101554592A(2009)、CN101559955A(2009)、CN101428818B(2010)、CN101993091A(2011)、CN101417810A(2009)、CN 101468800(2009)、CN 101519216(2009)、CN101554592A(2009)、CN101618337A(2010)、US20100298598A1(2010)、CN101801848A(2010)、CN10204023A(2010)、CN101973560A(2011)、US7883686B2(2011)、WO2011061204A1(2011)、Microporous and Mesoporous Materials 31(1999)241-251、Journal of Materials Chemistry 12(2002)369-373、Journal of MolecularCatalysis B:Enzymatic 22(2003)119-133、Journal of Catalysis 255(2008)68-78。熟悉本领域的工程师均可采用已有公开文献和专利中报道的技术方法,进行载体的合成。The synthesis of the above carriers can be carried out using the formulas in published patents and literatures.如专利US3702886(1972)、US3941871(1976)、US4061724(1977)、US4166099(1979)、CN1086792A(1994)、CN1219571A(1999)、CN1056818C(2000)、CN100457622A(2001)、WO0138224A(2001)、CN1212892A(2002 )、CN1328960A(2002)、CN1088406C(2002)、CN1417116A(2003)、CN1530323A(2004)、CN1699173A(2005)、CN1686801A(2005)、CN100344375A(2005)、CN1715186A(2006)、CN101007637A(2007)、CN1307102C(2007 )、CN101279746A(2008)、CN101214971(2008)、CN101613114(2009)、CN101554592A(2009)、CN101559955A(2009)、CN101428818B(2010)、CN101993091A(2011)、CN101417810A(2009)、CN 101468800(2009)、CN 101519216 (2009)、CN101554592A(2009)、CN101618337A(2010)、US20100298598A1(2010)、CN101801848A(2010)、CN10204023A(2010)、CN101973560A(2011)、US7883686B2(2011)、WO2011061204A1(2011)、Microporous and Mesoporous Materials 31( 1999) 241-251, Journal of Materials Chemistry 12(2002) 369-373, Journal of Molecular Catalysis B: Enzymatic 22(2003) 119-133, Journal of Catalysis 255(2008) 68-78. Engineers familiar with the field can use the technical methods reported in the existing published documents and patents to synthesize the carrier.
(2)铵交换处理:将焙烧过的沸石于适宜的温度下用铵盐溶液进行离子交换处理。然后,用去离子水洗涤,再干燥、焙烧得到氢型沸石。铵交换过程主要控制Na+含量,使其不能高于1.0%,最好低于0.8%。所述的铵盐可选硝酸铵、氯化铵、碳酸铵等中的任何一种,铵盐溶液浓度为0.05~1.0mol/L,催化剂与铵盐溶液的液固体积比为1∶1~20∶1,优选3∶1~10∶1;交换温度为20~80℃,优选20~60℃;交换时间为0.2~100小时,优选0.5~4小时;交换次数1~5次。干燥温度80~200℃,干燥时间1~100小时;由于NH4 +→NH3+H+中NH3与质子H+之间的强络合力,要求焙烧过程需充分,所以焙烧温度选300~700℃,优选400~600℃;焙烧时间为4~20小时,优选3~8小时。所说的Na+含量的测定方法可采用火焰光度计,Inductively Coupled Plasma(ICP)进行测定。熟悉本领域的工程师都可参考说明书进行Na+测定。(2) Ammonium exchange treatment: the calcined zeolite is subjected to ion exchange treatment with an ammonium salt solution at a suitable temperature. Then, it is washed with deionized water, dried and calcined to obtain hydrogen zeolite. The ammonium exchange process mainly controls the Na + content so that it cannot be higher than 1.0%, preferably lower than 0.8%. Described ammonium salt can be selected any one in ammonium nitrate, ammonium chloride, ammonium carbonate etc., and the concentration of ammonium salt solution is 0.05~1.0mol/L, and the liquid-solid volume ratio of catalyst and ammonium salt solution is 1: 1~ 20:1, preferably 3:1-10:1; exchange temperature is 20-80°C, preferably 20-60°C; exchange time is 0.2-100 hours, preferably 0.5-4 hours; exchange times 1-5 times. The drying temperature is 80-200°C, and the drying time is 1-100 hours; due to the strong complexing force between NH 3 and proton H + in NH 4 + →NH 3 +H + , the roasting process must be sufficient, so the roasting temperature is selected as 300 ~700°C, preferably 400~600°C; calcination time is 4~20 hours, preferably 3~8 hours. The assay method of said Na content can adopt flame photometer, Inductively Coupled Plasma (ICP) to measure. Engineers familiar with this field can refer to the manual for Na + determination.
(3)酸扩孔处理:将氢型沸石于适宜的酸浓度和温度下进行酸扩孔处理。然后用去离子水洗涤至中性,再干燥、焙烧得到载体。所说的酸可选HCl、HNO3、H2SO4或柠檬酸中的任何一种,优选HNO3和柠檬酸。因为采用HCl会引入Cl-,而H2SO4分解困难,不易除去。酸浓度为0.05~6mol/L,酸溶液与催化剂的液固体积比1∶1~20∶1,优选3∶1~10∶1;酸扩孔处理时间为30min~100小时,优选1~5小时;处理温度为20~80℃。干燥温度为50~200℃,干燥时间为3~20小时,焙烧温度选300~600℃,焙烧时间为1~4小时。(3) Acid pore expansion treatment: the hydrogen-type zeolite is subjected to acid pore expansion treatment at a suitable acid concentration and temperature. Then it was washed with deionized water until neutral, then dried and calcined to obtain the carrier. Said acid can be any one of HCl, HNO 3 , H 2 SO 4 or citric acid, preferably HNO 3 and citric acid. Because the use of HCl will introduce Cl - , and H 2 SO 4 is difficult to decompose and difficult to remove. The acid concentration is 0.05-6mol/L, the liquid-solid volume ratio of the acid solution to the catalyst is 1:1-20:1, preferably 3:1-10:1; the acid pore expansion treatment time is 30min-100 hours, preferably 1-5 hours; the treatment temperature is 20-80°C. The drying temperature is 50-200°C, the drying time is 3-20 hours, the roasting temperature is 300-600°C, and the roasting time is 1-4 hours.
酸扩孔的目的是清除HZSM-5晶核内部的无定型杂质,增加孔道的扩散速率。实际上铵交换后得到的氢型沸石就可以直接用做载体。但是,酸扩孔对有利于改进催化剂的活性。The purpose of acid reaming is to remove the amorphous impurities inside the HZSM-5 crystal nucleus and increase the diffusion rate of the pores. In fact, the hydrogen-type zeolite obtained after ammonium exchange can be directly used as a carrier. However, acid pore expansion is beneficial to improve the activity of the catalyst.
第二步,在负压条件下采用沉积沉淀法制备负载金催化剂。In the second step, a gold-loaded catalyst is prepared by a deposition precipitation method under a negative pressure condition.
(1).用负压沉积沉淀法负载金:将经过预处理的氢型沸石载体于一定温度下进行负压脱气净化处理。处理温度为20~90℃,脱气时间为0.5~12小时,负压范围为-0.01~-0.1Mpa;然后在充分搅拌下,保持温度和负压状态,先用金前驱体溶液接触载体,然后再向混合物中加入沉淀剂通过负压沉积沉淀反应负载金,反应时间为2~30小时;虽然更高的真空度对净化有利,但会增加催化剂制作成本。(1). Loading gold by negative pressure deposition precipitation method: the pretreated hydrogen-type zeolite carrier is subjected to negative pressure degassing and purification treatment at a certain temperature. The treatment temperature is 20-90°C, the degassing time is 0.5-12 hours, and the negative pressure range is -0.01--0.1Mpa; then, under full stirring, maintain the temperature and negative pressure state, first contact the carrier with the gold precursor solution, Then add a precipitant to the mixture to carry gold through negative pressure deposition precipitation reaction, and the reaction time is 2 to 30 hours; although a higher vacuum degree is beneficial to purification, it will increase the cost of catalyst production.
(2).对负载金的沉淀物进行后处理:包括固液分离,用去离子水洗涤至无Cl-以及固形物的干燥和焙烧。其中,干燥温度可选80~200℃,干燥时间可选0.5~100小时,焙烧温度可选200℃~600℃,焙烧时间可选0.5~100小时,焙烧气氛可选空气、氮气、氦气、氩气和氧气。(2). Carry out post-treatment to the gold-loaded precipitate: including solid-liquid separation, washing with deionized water until Cl - free and drying and roasting of solids. Among them, the drying temperature can be selected from 80 to 200°C, the drying time can be selected from 0.5 to 100 hours, the roasting temperature can be selected from 200°C to 600°C, the roasting time can be selected from 0.5 to 100 hours, and the roasting atmosphere can be selected from air, nitrogen, helium, argon and oxygen.
用上述方法制备的金催化剂的酸性可采用氨程序升温脱附(NH3-TPD)和振动吸附红外方法来表征。其中,氨程序升温脱附(NH3-TPD)的条件是,将0.14g试样(40-60目)置于内径5mm的U型石英管反应器中,在He气氛和600℃下活化1小时,然后降至150℃,注入NH3至饱和,经He气吹扫除去物理吸附的NH3后,以15℃/min的速度程序升温到600℃,在此过程中He气流速为20ml/min,脱附下来的NH3用GC7890F型气相色谱仪分析,TCD检测。The acidity of the gold catalyst prepared by the above method can be characterized by ammonia temperature-programmed desorption (NH 3 -TPD) and vibrational adsorption infrared methods. Among them, the conditions for ammonia temperature-programmed desorption (NH 3 -TPD) are that 0.14 g of sample (40-60 mesh) is placed in a U-shaped quartz tube reactor with an inner diameter of 5 mm, and activated in a He atmosphere at 600 °C for 1 hours, then lowered to 150°C, injected NH 3 to saturation, and purged with He gas to remove physically adsorbed NH 3 , then programmed to heat up to 600°C at a rate of 15°C/min, during which the He gas flow rate was 20ml/ min, the desorbed NH3 was analyzed by GC7890F gas chromatograph and detected by TCD.
用红外光谱表征催化剂的羟基和酸性的方法是:具体做法是:将研磨细的样品金催化剂粉末压成约10mg的自支撑薄片,在红外池中逐步升温至300℃并抽真空脱气,在高真空度(10-3Pa)下抽空脱附4小时,然后降至室温,在室温条件下测试吡啶红外羟基谱图。得到红外羟基谱图后室温下吸附吡啶0.5小时,升温脱附,分别在150℃、250℃、300℃和450℃下脱附后冷却到室温记录相应的吸附吡啶红外羟基谱图和吡啶红外谱图。The method for characterizing the hydroxyl group and acidity of the catalyst with infrared spectroscopy is as follows: the specific method is: the finely ground sample gold catalyst powder is pressed into a self-supporting sheet of about 10 mg, and the temperature is gradually raised to 300 ° C in the infrared cell and vacuumed to degas, Evacuated and desorbed under high vacuum (10 -3 Pa) for 4 hours, then lowered to room temperature, and tested pyridine infrared hydroxyl spectrum at room temperature. After obtaining the infrared hydroxyl spectrum, adsorb pyridine at room temperature for 0.5 hours, heat up and desorb, desorb at 150°C, 250°C, 300°C and 450°C respectively, then cool to room temperature and record the corresponding adsorption pyridine infrared hydroxyl spectrum and pyridine infrared spectrum picture.
本发明的有益效果是,通过此方法制备的负载金催化剂具有制备方法简单、金粒子高分散、载体的酸性得到显著提高等优点。可以得到酸性强的金属-酸双功能分子筛催化剂。The beneficial effect of the invention is that the loaded gold catalyst prepared by the method has the advantages of simple preparation method, highly dispersed gold particles, significantly improved acidity of the carrier, and the like. A highly acidic metal-acid bifunctional molecular sieve catalyst can be obtained.
因此这种催化剂用于芳构化、异构化和烷基化等众多酸催化反应中,具有活性高,反应温度低的优点。Therefore, this catalyst is used in many acid-catalyzed reactions such as aromatization, isomerization and alkylation, and has the advantages of high activity and low reaction temperature.
附图说明 Description of drawings
图1为本发明实施例1制备的催化剂的氨程序升温脱附(NH3-TPD)谱图。Fig. 1 is the ammonia temperature-programmed desorption (NH 3 -TPD) spectrogram of the catalyst prepared in Example 1 of the present invention.
图2为本发明实施例1制备的催化剂的吡啶吸附红外谱图。Fig. 2 is the pyridine adsorption infrared spectrum of the catalyst prepared in Example 1 of the present invention.
具体实施方式 Detailed ways
下面通过实施例对本发明做进一步说明,但是本发明不受这些实施例的限制。The present invention will be further described below by examples, but the present invention is not limited by these examples.
实施例1:Example 1:
0.1%Au/HZSM-5的制备:Preparation of 0.1% Au/HZSM-5:
(1).参照专利CN100364890C披露的方法合成出ZSM-5沸石原粉,沸石晶粒度小于50nm。然后在540℃下焙烧4小时得到ZSM-5沸石。(1). Referring to the method disclosed in patent CN100364890C, ZSM-5 zeolite raw powder is synthesized, and the zeolite grain size is less than 50nm. Then calcined at 540° C. for 4 hours to obtain ZSM-5 zeolite.
(2).铵交换处理:将焙烧过的沸石于适宜的温度下用铵盐溶液进行离子交换处理。然后,用去离子水洗涤,再干燥、焙烧得到氢型沸石。所说的铵盐为硝酸铵,铵盐溶液浓度为0.6mol/L,铵盐溶液与沸石的液固体积比为5∶1,交换温度为30℃,交换时间为1小时,交换次数2次。干燥温度110℃,干燥时间12小时,焙烧温度为540℃,焙烧时间为6小时。交换后Na+含量不高于0.5%。(2). Ammonium exchange treatment: the calcined zeolite is subjected to ion exchange treatment with an ammonium salt solution at a suitable temperature. Then, it is washed with deionized water, dried and calcined to obtain hydrogen zeolite. Said ammonium salt is ammonium nitrate, the concentration of ammonium salt solution is 0.6mol/L, the liquid-solid volume ratio of ammonium salt solution and zeolite is 5:1, the exchange temperature is 30°C, the exchange time is 1 hour, and the exchange times are 2 times . The drying temperature is 110°C, the drying time is 12 hours, the firing temperature is 540°C, and the firing time is 6 hours. The Na + content after exchange is not higher than 0.5%.
(3).酸扩孔处理:将氢型沸石于适宜的酸浓度和温度下进行酸扩孔处理。然后用去离子水洗涤至中性,再干燥、焙烧得到沸石载体。所说的酸为HNO3。酸浓度为0.6mol/L,酸溶液与沸石的液固体积比5∶1,酸扩孔处理时间为24小时,处理温度为30℃。干燥温度为110℃,干燥时间为12小时,焙烧温度选540℃,焙烧时间为3小时。(3). Acid pore expansion treatment: the hydrogen-type zeolite is subjected to acid pore expansion treatment at a suitable acid concentration and temperature. Then it is washed with deionized water until neutral, then dried and calcined to obtain the zeolite carrier. The acid is HNO 3 . The acid concentration is 0.6 mol/L, the liquid-solid volume ratio of the acid solution to the zeolite is 5:1, the acid pore expansion treatment time is 24 hours, and the treatment temperature is 30°C. The drying temperature is 110°C, the drying time is 12 hours, the calcination temperature is 540°C, and the calcination time is 3 hours.
实际上铵交换后得到的氢型沸石就可以直接用做载体。但是,酸扩孔有利于改进催化剂的活性。In fact, the hydrogen-type zeolite obtained after ammonium exchange can be directly used as a carrier. However, acid pore expansion is beneficial to improve the activity of the catalyst.
(4).用负压沉积沉淀法负载金:将经过预处理的氢型沸石载体于一定温度下进行负压脱气净化处理。具体是:取预处理好的载体5g进行负压脱气处理。负压脱气处理温度为80℃,脱气时间为5小时,压力为-0.05MPa。然后在充分搅拌下,保持温度和负压状态,先用金前驱体溶液接触载体,再向混合物中加入沉淀剂通过负压沉积沉淀反应负载金。金前躯体为HAuCl4,浓度为5~50mmol/L,金前躯体溶液与分子筛载体的体积比为1∶1~1∶10,所述的沉淀剂为尿素,用尿素调节溶液pH值为4~9。具体做法是,取浓度为24.26mmol/L的HAuCl4溶液1.26ml加水稀释至10ml,使金前躯体溶液与载体的体积比为2∶1;用尿素调节溶液pH值为8;沉积沉淀反应温度为80℃,反应时间为20小时,反应停止后静置4小时。(4). Loading gold by negative pressure deposition precipitation method: the pretreated hydrogen-type zeolite carrier is subjected to negative pressure degassing and purification treatment at a certain temperature. Specifically, 5 g of the pretreated carrier is taken for negative pressure degassing treatment. The negative pressure degassing treatment temperature is 80°C, the degassing time is 5 hours, and the pressure is -0.05MPa. Then, under full stirring, maintaining the temperature and negative pressure state, the gold precursor solution is first used to contact the carrier, and then a precipitant is added to the mixture to carry gold through negative pressure deposition precipitation reaction. The gold precursor is HAuCl4, the concentration is 5~50mmol/L, the volume ratio of the gold precursor solution and the molecular sieve carrier is 1:1~1:10, and the described precipitation agent is urea, and the pH value of the solution is adjusted with urea to be 4~ 9. The specific method is to take 1.26ml of HAuCl4 solution with a concentration of 24.26mmol/L and add water to dilute it to 10ml, so that the volume ratio of the gold precursor solution and the carrier is 2:1; the pH value of the solution is adjusted to 8 with urea; The temperature was 80°C, the reaction time was 20 hours, and the reaction was stopped for 4 hours.
(5).对负载金的固形物进行后处理:包括固液分离,用去离子水洗涤至无Cl-以及固形物的干燥和焙烧。其中,干燥温度为100℃,干燥时间12小时;焙烧温度400℃,焙烧时间4小时,焙烧气氛为空气。得到粒径小于10nm的负载型Au/HZSM-5沸石分子筛催化剂A-1。对此样品进行了NH3-TPD和红外光谱表征。谱图见附图1和图2。(5). Post-treatment of the gold-loaded solid: including solid-liquid separation, washing with deionized water until Cl - free, and drying and roasting of the solid. Wherein, the drying temperature is 100° C., and the drying time is 12 hours; the calcination temperature is 400° C., and the calcination time is 4 hours, and the calcination atmosphere is air. A supported Au/HZSM-5 zeolite molecular sieve catalyst A-1 with a particle diameter of less than 10 nm is obtained. The samples were characterized by NH 3 -TPD and infrared spectroscopy. Spectrum shown in Figure 1 and Figure 2.
实施例2:Example 2:
重复实施例1,但将氯金酸溶液用量改为3.14ml加水稀释至10ml,焙烧温度为300℃。得到0.3%Au/HZSM-5负载型金催化剂。标为:A-2。Repeat Example 1, but change the amount of chloroauric acid solution into 3.14ml and add water to dilute to 10ml, and the roasting temperature is 300°C. A 0.3% Au/HZSM-5 supported gold catalyst was obtained. Labeled: A-2.
实施例3:Example 3:
重复实施例1,但将真空度改为-0.01MPa,氯金酸溶液用量改为10.46ml,加水稀释至20ml,得到1.0%Au/HZSM-5负载型金催化剂。标为:A-3。Repeat Example 1, but change the vacuum to -0.01MPa, change the amount of chloroauric acid solution to 10.46ml, add water and dilute to 20ml, and obtain 1.0% Au/HZSM-5 supported gold catalyst. Labeled: A-3.
实施例4:Example 4:
重复实施例1,但将氯金酸溶液用量改为20.93用l,加水稀释至25ml,焙烧温度为500℃。得到2.0%Au/HZSM-5负载型金催化剂。标为:A-4。Repeat Example 1, but change the consumption of chloroauric acid solution into 20.93 μl, add water and dilute to 25ml, and the roasting temperature is 500°C. A 2.0% Au/HZSM-5 supported gold catalyst was obtained. Labeled: A-4.
实施例5:Example 5:
重复实施例1,但将真空度改为-0.06MPa,氯金酸溶液用量为41.86ml,加水稀释至50ml,焙烧温度为600℃。得到3.0%Au/HZSM-5负载型金催化剂。标为:A-5。Repeat Example 1, but change the degree of vacuum to -0.06MPa, the consumption of chloroauric acid solution is 41.86ml, add water and dilute to 50ml, and the roasting temperature is 600°C. A 3.0% Au/HZSM-5 supported gold catalyst was obtained. Labeled: A-5.
实施例6:Embodiment 6:
重复实施例1,但将焙烧温度分别改为200℃、300℃、400℃、500℃、600℃,焙烧气氛为氮气。得到不同温度焙烧后的负载型金催化剂,对催化剂进行NH3-TPD表征,酸量增加10-50%。则最适宜焙烧温度为300~600℃。Repeat Example 1, but change the firing temperature to 200°C, 300°C, 400°C, 500°C, and 600°C respectively, and the firing atmosphere is nitrogen. The supported gold catalysts calcined at different temperatures are obtained, and the catalysts are characterized by NH 3 -TPD, and the acid content increases by 10-50%. The optimum calcination temperature is 300-600°C.
实施例7:Embodiment 7:
重复实施例1,但按照如下方法合成晶粒度为5μm的大晶粒ZSM-5,并改变尿素沉淀剂的用量,使pH值分别为3、5、6、8、9和10。合成ZSM-5沸石的方法是:先称取一定量的工业硫酸铝并用去离子水溶解,然后向其中加入硫酸,搅拌均匀后,作为A溶液;再称取一定量水玻璃并用水稀释成B溶液。然后,在剧烈搅拌下,将A溶液缓慢滴加到B溶液中,加料完毕后加入一定量的晶种(晶种合成方法参照专利:ZL200510200328.9),继续搅拌2h,得到均匀凝胶,使凝胶的摩尔组成为:SiO2/Al2O3=50;Na2O/SiO2=0.078;H2O/SiO2=900;晶种用量为5%(合成体系中SiO2的质量百分数)。将所得凝胶装入不锈钢晶化釜中晶化。晶化温度为170℃,晶化时间为18h。晶化完毕后,抽滤法除去母液并将滤饼洗至中性,于110℃下烘干,得到Na型ZSM-5沸石原粉。对负载型金催化剂进行NH3-TPD表征,酸量与母体相比增加10-55%。Repeat Example 1, but synthesize large-grain ZSM-5 with a grain size of 5 μm as follows, and change the amount of urea precipitant to make the pH values 3, 5, 6, 8, 9 and 10, respectively. The method of synthesizing ZSM-5 zeolite is: first weigh a certain amount of industrial aluminum sulfate and dissolve it with deionized water, then add sulfuric acid to it, stir evenly, and use it as A solution; then weigh a certain amount of water glass and dilute it with water to form B solution. Then, under vigorous stirring, the A solution was slowly added dropwise to the B solution, and after the addition was completed, a certain amount of seed crystals were added (refer to the patent for the seed crystal synthesis method: ZL200510200328.9), and the stirring was continued for 2 hours to obtain a uniform gel. The molar composition of the gel is: SiO2/Al2O3=50; Na2O/SiO2=0.078; H2O/SiO2=900; the amount of seed crystal is 5% (mass percentage of SiO2 in the synthesis system). Put the obtained gel into a stainless steel crystallization kettle for crystallization. The crystallization temperature is 170°C, and the crystallization time is 18h. After the crystallization is completed, the mother liquor is removed by suction filtration and the filter cake is washed to neutrality, and dried at 110° C. to obtain Na-type ZSM-5 zeolite raw powder. The NH3-TPD characterization is carried out on the supported gold catalyst, and the acid content is increased by 10-55% compared with the parent body.
实施例8:Embodiment 8:
重复实施例3,但将反应时间分别改为0.5,1,2,5,10,15,20,25,30,35小时,得到不同反应时间下的1.0Au/HZSM-5催化剂。NH3-TPD结果表明:反应时间过短,载体表面只能形成少量Au-O(H)-Si结构。随着时间的延长,pH值逐渐增大,生成的金粒子数目增多,从而在载体表面形成更多的Au-O(H)-Si结构。最适宜的反应时间为2~30小时。Repeat Example 3, but change the reaction time to 0.5, 1, 2, 5, 10, 15, 20, 25, 30, 35 hours respectively to obtain 1.0Au/HZSM-5 catalysts with different reaction times. The results of NH3-TPD show that: the reaction time is too short, only a small amount of Au-O(H)-Si structure can be formed on the surface of the support. With the prolongation of time, the pH value gradually increased, and the number of gold particles generated increased, thus forming more Au-O(H)-Si structures on the surface of the carrier. The most suitable reaction time is 2 to 30 hours.
实施例9:Embodiment 9:
重复实施例1,但将真空度分别改为-0.01MPa、-0.03MPa、-0.05MPa、-0.07MPa、-0.1MPa。得到不同真空度下的负载型金催化剂,对催化剂进行NH3-TPD表征,酸量增加10-53%。Repeat Example 1, but change the degree of vacuum to -0.01MPa, -0.03MPa, -0.05MPa, -0.07MPa, -0.1MPa respectively. The supported gold catalysts under different vacuum degrees are obtained, and the catalysts are characterized by NH 3 -TPD, and the acid content increases by 10-53%.
实施例10:Example 10:
重复实施例1,但将载体换为HZSM-8沸石,ZSM-8沸石参照专利CN101703944A(2010)披露的方法合成,然后在540℃下焙烧4小时。得到0.1%Au/HZSM-8负载型金催化剂。标为:A-6。Repeat Example 1, but replace the carrier with HZSM-8 zeolite, ZSM-8 zeolite was synthesized by referring to the method disclosed in patent CN101703944A (2010), and then calcined at 540° C. for 4 hours. A 0.1% Au/HZSM-8 supported gold catalyst was obtained. Labeled: A-6.
实施例11:Example 11:
重复实施例2,但将载体换为HZSM-11沸石,ZSM-11沸石参照专利CN1367758(2002)披露的方法合成,然后在540℃下焙烧4小时。同时将焙烧温度改为400℃。得到0.3%Au/HZSM-11负载型金催化剂。标为:A-7。Repeat Example 2, but replace the carrier with HZSM-11 zeolite, ZSM-11 zeolite was synthesized with reference to the method disclosed in patent CN1367758 (2002), and then calcined at 540° C. for 4 hours. At the same time, the firing temperature was changed to 400°C. A 0.3% Au/HZSM-11 supported gold catalyst was obtained. Marked: A-7.
实施例12:Example 12:
重复实施例2,但将载体换为HZSM-12沸石,ZSM-12沸石参照专利CN1774398(2006)披露的方法合成,然后在540℃下焙烧4小时。同时将焙烧温度改为400℃。得到0.3%Au/HZSM-12负载型金催化剂。标为:A-8。Repeat Example 2, but replace the carrier with HZSM-12 zeolite, ZSM-12 zeolite was synthesized with reference to the method disclosed in patent CN1774398 (2006), and then calcined at 540° C. for 4 hours. At the same time, the firing temperature was changed to 400°C. A 0.3% Au/HZSM-12 supported gold catalyst was obtained. Marked: A-8.
实施例13:Example 13:
重复实施例3,但将载体换为MCM-22沸石,MCM-22沸石参照专利CN1328960A(2002)披露的方法合成,然后在540℃下焙烧4小时。同时将真空度改为-0.05MPa。得到1.0%Au/MCM-22负载型金催化剂。标为:A-9。Example 3 was repeated, but the carrier was replaced by MCM-22 zeolite, which was synthesized by referring to the method disclosed in patent CN1328960A (2002), and then calcined at 540° C. for 4 hours. At the same time, change the vacuum degree to -0.05MPa. A 1.0% Au/MCM-22 supported gold catalyst was obtained. Marked: A-9.
实施例14:Example 14:
重复实施例4,但将载体换为MCM-49沸石,MCM-49沸石参照专利CN101468800(2009)披露的方法合成,然后在540℃下焙烧4小时。同时将真空度改为-0.06MPa。得到2.0%Au/MCM-49负载型金催化剂。标为:A-10。Example 4 was repeated, but the carrier was replaced by MCM-49 zeolite, which was synthesized by referring to the method disclosed in patent CN101468800 (2009), and then calcined at 540° C. for 4 hours. At the same time, change the vacuum degree to -0.06MPa. A 2.0% Au/MCM-49 supported gold catalyst was obtained. Marked: A-10.
实施例15:Example 15:
重复实施例5,但将载体换为MCM-56沸石,MCM-56沸石参照专利CN101007637A(2007)披露的方法合成,然后在540℃下焙烧4小时。同时将真空度改为-0.05MPa,焙烧温度改为500℃。得到3.0%Au/MCM-56负载型金催化剂。标为:A-11。Example 5 was repeated, but the carrier was replaced by MCM-56 zeolite, which was synthesized by referring to the method disclosed in patent CN101007637A (2007), and then calcined at 540° C. for 4 hours. At the same time, the degree of vacuum was changed to -0.05MPa, and the firing temperature was changed to 500°C. A 3.0% Au/MCM-56 supported gold catalyst was obtained. Marked: A-11.
实施例16:Example 16:
重复实施例1,但将载体换为ITQ-2沸石,ITQ-2沸石参照专利CN101973560A(2011)披露的方法合成,然后在540℃下焙烧4小时。同时将氯金酸溶液用量改为15.70ml,加水稀释至20ml。得到1.5%Au/ITQ-2负载型金催化剂。标为:A-12。Repeat Example 1, but replace the carrier with ITQ-2 zeolite, which was synthesized by referring to the method disclosed in patent CN101973560A (2011), and then calcined at 540°C for 4 hours. At the same time, the amount of chloroauric acid solution was changed to 15.70ml, and diluted with water to 20ml. A 1.5% Au/ITQ-2 supported gold catalyst was obtained. Marked: A-12.
实施例17:Example 17:
重复实施例3,但将载体换为Hβ沸石,Hβ沸石参照专利CN1086792A(1994)披露的方法合成,然后在540℃下焙烧4小时。同时将真空度改为-0.05MPa。得到1.0%Au/Hβ负载型金催化剂。标为:A-13。Repeat Example 3, but the carrier is replaced by Hβ zeolite, Hβ zeolite is synthesized with reference to the method disclosed in patent CN1086792A (1994), and then calcined at 540° C. for 4 hours. At the same time, change the vacuum degree to -0.05MPa. A 1.0% Au/Hβ supported gold catalyst was obtained. Marked: A-13.
实施例18:Example 18:
重复实施例1,但将载体换为S-1沸石,S-1沸石参照公开文献Microporous andMesoporous Materials,1999(28)3:387-393披露的方法合成,然后在540℃下焙烧4小时。同时将真空度改为-0.045MPa,氯金酸溶液用量改为6.28ml,加水稀释至10ml。得到0.5%Au/S-1负载型金催化剂。标为:A-14。Repeat Example 1, but the carrier is replaced by S-1 zeolite, S-1 zeolite is synthesized with reference to the method disclosed in the open document Microporous and Mesoporous Materials, 1999 (28) 3: 387-393, and then calcined at 540 ° C for 4 hours. At the same time, change the vacuum degree to -0.045MPa, change the amount of chloroauric acid solution to 6.28ml, and add water to dilute to 10ml. A 0.5% Au/S-1 supported gold catalyst was obtained. Marked: A-14.
实施例19:Example 19:
重复实施例18,但将载体换为TS-1沸石,TS-1沸石参照专利CN100457622A(2001)披露的方法合成,然后在540℃下焙烧4小时。得到0.5%Au/TS-1负载型金催化剂。标为:A-15。Example 18 was repeated, but the carrier was replaced by TS-1 zeolite, which was synthesized by referring to the method disclosed in patent CN100457622A (2001), and then calcined at 540° C. for 4 hours. A 0.5% Au/TS-1 supported gold catalyst was obtained. Marked: A-15.
实施例20:Example 20:
重复实施例18,但将载体换为ZSM-22沸石,ZSM-22沸石参照专利US5783168A(1998)披露的方法合成,然后在540℃下焙烧4小时。得到0.5%Au/ZSM-22负载型金催化剂。标为:A-16。Example 18 was repeated, but the carrier was replaced by ZSM-22 zeolite, which was synthesized by referring to the method disclosed in the patent US5783168A (1998), and then calcined at 540° C. for 4 hours. A 0.5% Au/ZSM-22 supported gold catalyst was obtained. Marked: A-16.
实施例21:Example 21:
重复实施例4,但改变沉淀剂用量,使pH值为7,真空度改为-0.04MPa,焙烧温度改为400℃。得到2.0%Au/HZSM-5负载型金催化剂。标为:A-17。Repeat Example 4, but change the amount of precipitant so that the pH value is 7, the degree of vacuum is changed to -0.04MPa, and the calcination temperature is changed to 400°C. A 2.0% Au/HZSM-5 supported gold catalyst was obtained. Marked: A-17.
实施例22:Example 22:
重复实施例21,但用如下方法合成晶粒度为10μm的长条状ZSM-5沸石,同时改变沉淀剂用量,使pH值为5。合成沸石的方法为:称取一定量的工业硫酸铝并用去离子水溶解,然后向其中加入硫酸,搅拌均匀后,作为A溶液;再称取一定量水玻璃并用水稀释成B溶液。然后,在剧烈搅拌下,将A溶液和计量好的无水乙醇依次缓慢滴加到B溶液中,加料完毕后继续搅拌2h,得到均匀凝胶的摩尔组成为:SiO2/Al2O3=60;Na2O/SiO2=0.1;乙醇/SiO2=1.5;H2O/SiO2=900;晶种用量为5%(合成体系中SiO2的质量百分数)。将所得凝胶装入不锈钢晶化釜中晶化。晶化温度为170℃,晶化时间为20h。晶化完毕后,用抽滤法除去母液并将滤饼洗至中性,于110℃下烘干,得到Na型ZSM-5沸石分子筛原粉。得到2.0%Au/HZSM-5负载型金催化剂。标为:A-18。Repeat Example 21, but use the following method to synthesize strip-shaped ZSM-5 zeolite with a grain size of 10 μm, and change the amount of precipitant to make the
实施例23:Example 23:
对A2-A18样品进行了NH3-TPD和红外光谱表征,结果表明,上述负载金的催化剂的酸强度都在载体的基础上不同程度地得到提高,而且增加的是质子酸。NH 3 -TPD and infrared spectroscopy were performed on A2-A18 samples. The results showed that the acid strength of the above gold-supported catalysts was increased to varying degrees on the basis of the support, and the increase was protonic acid.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103243228A CN102407153A (en) | 2011-10-22 | 2011-10-22 | Preparation method of nanogold catalyst for improving acidity of catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103243228A CN102407153A (en) | 2011-10-22 | 2011-10-22 | Preparation method of nanogold catalyst for improving acidity of catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102407153A true CN102407153A (en) | 2012-04-11 |
Family
ID=45909676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103243228A Withdrawn CN102407153A (en) | 2011-10-22 | 2011-10-22 | Preparation method of nanogold catalyst for improving acidity of catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102407153A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103111320A (en) * | 2013-02-07 | 2013-05-22 | 大连理工大学 | Preparation method of nanogold catalyst |
CN106735301A (en) * | 2016-12-29 | 2017-05-31 | 西安交通大学青岛研究院 | A kind of preparation method of gold nanorod matrix |
CN109261198A (en) * | 2018-10-09 | 2019-01-25 | 宁波蒙曼生物科技有限公司 | A kind of gasoline catalyzing agent and its preparation method and application |
CN113042097A (en) * | 2019-12-26 | 2021-06-29 | 中国石油天然气股份有限公司 | Molecular sieve catalyst, preparation method thereof and application of molecular sieve catalyst |
-
2011
- 2011-10-22 CN CN2011103243228A patent/CN102407153A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103111320A (en) * | 2013-02-07 | 2013-05-22 | 大连理工大学 | Preparation method of nanogold catalyst |
CN106735301A (en) * | 2016-12-29 | 2017-05-31 | 西安交通大学青岛研究院 | A kind of preparation method of gold nanorod matrix |
CN109261198A (en) * | 2018-10-09 | 2019-01-25 | 宁波蒙曼生物科技有限公司 | A kind of gasoline catalyzing agent and its preparation method and application |
CN113042097A (en) * | 2019-12-26 | 2021-06-29 | 中国石油天然气股份有限公司 | Molecular sieve catalyst, preparation method thereof and application of molecular sieve catalyst |
CN113042097B (en) * | 2019-12-26 | 2023-09-26 | 中国石油天然气股份有限公司 | Molecular sieve catalyst, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106378194B (en) | A kind of UiO-66-NH of carrying transition metal copper2Composite catalyst and the preparation method and application thereof | |
CN103691431B (en) | A kind of palladium-carbon catalyst and preparation method and application | |
CN103143385A (en) | Method for use of modified molecular sieve catalyst in catalytic cracking of propane | |
CN104549368B (en) | A kind of supported bi-metallic type Cu Pt/TiO2The preparation method of NBs catalyst and application | |
CN111250081B (en) | A ligand-protected and in-situ supported noble metal nanocluster catalyst and application of its preparation method | |
CN108579781B (en) | A kind of phenol hydrogenation catalyst and preparation method thereof | |
CN106423161B (en) | A kind of preparation method of hydrogenation catalyst and catalyst | |
CN104084215B (en) | A kind of Fe2O3 and noble metal photocatalyst and its preparation method for preparing three-dimensional ordered macroporous BiVO4 loaded Fe2O3 | |
CN114653370B (en) | Metal oxide-based metal single-atom catalyst, preparation method and application thereof | |
CN104128199A (en) | Nano-gold catalyst and preparation method thereof | |
CN103724174B (en) | A kind of method preparing pimelinketone | |
CN101618320A (en) | Eggshell type Pd catalyst prepared by reaction deposition method | |
CN102407153A (en) | Preparation method of nanogold catalyst for improving acidity of catalyst | |
CN102416340A (en) | Method for converting n-butene into isobutene by using gold-loaded molecular sieve catalyst | |
CN103691434B (en) | A kind of metallic catalyst and preparation method and application | |
CN103159578A (en) | Method using molecular sieve catalyst immobilized with gold to transform low-carbon hydrocarbon into aromatic hydrocarbon | |
CN103111320A (en) | Preparation method of nanogold catalyst | |
CN108579794A (en) | The molecular sieve catalyst of gold-supported is used to convert the method that methanol is methyl acetate | |
CN115106124A (en) | Titanium-silicon molecular sieve solid-supported gold catalyst and preparation method and application thereof | |
CN110366444B (en) | Synthetic method of composite photocatalytic material with photo-thermal synergistic effect | |
CN106040258B (en) | A kind of magnetic Nano alloy and the hud typed catalysis material of mesoporous zirconium titanium composite oxides | |
CN116943709B (en) | Catalyst for preparing epoxypropane by epoxidation of propylene and oxygen and application thereof | |
CN102424647A (en) | Method for converting n-butane into isobutane by using gold-loaded molecular sieve catalyst | |
CN103739479A (en) | Method for preparing sodium gluconate through catalytic oxidation of glucose by using gold catalyst | |
CN102921475A (en) | Sheet-shaped or polyhedron-shaped supported silver catalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C04 | Withdrawal of patent application after publication (patent law 2001) | ||
WW01 | Invention patent application withdrawn after publication |
Open date: 20120411 |