CN102397557B - Modification method for gold nanorods and gold nanorods-functional molecule composite - Google Patents
Modification method for gold nanorods and gold nanorods-functional molecule composite Download PDFInfo
- Publication number
- CN102397557B CN102397557B CN 201010274005 CN201010274005A CN102397557B CN 102397557 B CN102397557 B CN 102397557B CN 201010274005 CN201010274005 CN 201010274005 CN 201010274005 A CN201010274005 A CN 201010274005A CN 102397557 B CN102397557 B CN 102397557B
- Authority
- CN
- China
- Prior art keywords
- gold nanorods
- dna
- complex
- gold
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 208
- 239000010931 gold Substances 0.000 title claims abstract description 102
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 102
- 238000002715 modification method Methods 0.000 title abstract description 7
- 239000002131 composite material Substances 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000000243 solution Substances 0.000 claims description 34
- 229920001223 polyethylene glycol Polymers 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 27
- 238000002360 preparation method Methods 0.000 claims description 19
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 108010077850 Nuclear Localization Signals Proteins 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 8
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 7
- 239000007853 buffer solution Substances 0.000 claims description 7
- 239000013612 plasmid Substances 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 4
- 108010043121 Green Fluorescent Proteins Proteins 0.000 claims description 4
- 102000004144 Green Fluorescent Proteins Human genes 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- 239000005090 green fluorescent protein Substances 0.000 claims description 4
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 4
- 229960005070 ascorbic acid Drugs 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 2
- 239000012279 sodium borohydride Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 230000004807 localization Effects 0.000 claims 6
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 claims 4
- SJUCACGNNJFHLB-UHFFFAOYSA-N O=C1N[ClH](=O)NC2=C1NC(=O)N2 Chemical compound O=C1N[ClH](=O)NC2=C1NC(=O)N2 SJUCACGNNJFHLB-UHFFFAOYSA-N 0.000 claims 3
- 238000005406 washing Methods 0.000 claims 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 2
- -1 amine salt Chemical class 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims 2
- 239000012153 distilled water Substances 0.000 claims 2
- 235000004237 Crocus Nutrition 0.000 claims 1
- 241000596148 Crocus Species 0.000 claims 1
- 102000002070 Transferrins Human genes 0.000 claims 1
- 108010015865 Transferrins Proteins 0.000 claims 1
- 235000010323 ascorbic acid Nutrition 0.000 claims 1
- 239000011668 ascorbic acid Substances 0.000 claims 1
- 230000001186 cumulative effect Effects 0.000 claims 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims 1
- 102000036639 antigens Human genes 0.000 abstract description 36
- 108091007433 antigens Proteins 0.000 abstract description 36
- 238000012637 gene transfection Methods 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 24
- 239000000427 antigen Substances 0.000 description 20
- 239000002609 medium Substances 0.000 description 18
- 239000012581 transferrin Substances 0.000 description 13
- 210000002966 serum Anatomy 0.000 description 12
- 210000000612 antigen-presenting cell Anatomy 0.000 description 11
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 10
- 239000002202 Polyethylene glycol Substances 0.000 description 10
- 238000002835 absorbance Methods 0.000 description 10
- 239000012091 fetal bovine serum Substances 0.000 description 10
- 239000011259 mixed solution Substances 0.000 description 10
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 229960005486 vaccine Drugs 0.000 description 8
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 7
- 230000008685 targeting Effects 0.000 description 7
- 230000035899 viability Effects 0.000 description 7
- 210000004443 dendritic cell Anatomy 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 239000002086 nanomaterial Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 239000013603 viral vector Substances 0.000 description 6
- 108010052285 Membrane Proteins Proteins 0.000 description 5
- 102000018697 Membrane Proteins Human genes 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 4
- 208000009869 Neu-Laxova syndrome Diseases 0.000 description 4
- 102000004338 Transferrin Human genes 0.000 description 4
- 108090000901 Transferrin Proteins 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 239000007987 MES buffer Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000012154 double-distilled water Substances 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 239000002073 nanorod Substances 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 2
- 108010041986 DNA Vaccines Proteins 0.000 description 2
- 229940021995 DNA vaccine Drugs 0.000 description 2
- 241000700721 Hepatitis B virus Species 0.000 description 2
- 241000701806 Human papillomavirus Species 0.000 description 2
- 239000012097 Lipofectamine 2000 Substances 0.000 description 2
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 2
- 108010058846 Ovalbumin Proteins 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 108010054176 apotransferrin Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 2
- 229960000304 folic acid Drugs 0.000 description 2
- 235000019152 folic acid Nutrition 0.000 description 2
- 239000011724 folic acid Substances 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 210000003563 lymphoid tissue Anatomy 0.000 description 2
- 210000003712 lysosome Anatomy 0.000 description 2
- 230000001868 lysosomic effect Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229940092253 ovalbumin Drugs 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000012460 protein solution Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000004055 small Interfering RNA Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 241000737052 Naso hexacanthus Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 102000002278 Ribosomal Proteins Human genes 0.000 description 1
- 108010000605 Ribosomal Proteins Proteins 0.000 description 1
- 108010087230 Sincalide Proteins 0.000 description 1
- XEIPQVVAVOUIOP-UHFFFAOYSA-N [Au]=S Chemical compound [Au]=S XEIPQVVAVOUIOP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 238000010609 cell counting kit-8 assay Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- MSNOMDLPLDYDME-UHFFFAOYSA-N gold nickel Chemical compound [Ni].[Au] MSNOMDLPLDYDME-UHFFFAOYSA-N 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
Images
Landscapes
- Peptides Or Proteins (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明提供一种金纳米棒的修饰方法,该方法包括:将金纳米棒与DNA的溶液或蛋白质抗原的溶液接触,所述金纳米棒表面带正电荷。本发明还提供通过所述修饰方法获得的金纳米棒-功能分子复合体。通过本发明的修饰方法获得的金纳米棒-功能分子复合体能够明显提高基因转染水平、促进蛋白质抗原进入细胞且安全性好。
The invention provides a method for modifying gold nanorods, the method comprising: contacting the gold nanorods with a solution of DNA or a solution of protein antigen, and the surface of the gold nanorods is positively charged. The invention also provides the gold nanorod-functional molecule complex obtained by the modification method. The gold nanorod-functional molecule complex obtained by the modification method of the invention can significantly improve the level of gene transfection, promote protein antigens to enter cells, and has good safety.
Description
技术领域 technical field
本发明涉及一种金纳米棒的修饰方法、由该方法获得的金纳米棒-功能分子复合体。The invention relates to a method for modifying gold nanorods and a gold nanorod-functional molecule complex obtained by the method.
背景技术 Background technique
在疾病的预防和治疗过程中,疫苗发挥着极其重要的作用。疫苗载体主要分为病毒载体和非病毒载体两种。相对于病毒载体来说,非病毒载体具有容易生产、毒副作用小等优点。因此,近年来非病毒载体作为潜在疫苗载体或佐剂的研究备受人们关注。与其它非病毒载体相比,纳米材料作为载体具有促进细胞对功能分子如DNA等的摄入、延长功能分子在血液的循环时间并通过适当的修饰加工实现功能分子的靶向运输等优点(Jun-ichiro Jo,Yasuhiko Tabata.Non-viral gene transfection technologies for geneticengineering of stem cells.European Journal of Pharmaceutics andBiopharmaceutics,2008,68:90-104.)。生物相容性好或生物可降解性的纳米材料作为最有前景的载体成为近年来的研究热点。而正由于其良好的生物相容性,金纳米颗粒和金纳米棒作为潜在的载体在疾病的诊断和治疗中备受关注。金纳米棒也由于其独特的光学性质,在生物医学成像、疾病诊断和治疗尤其是肿瘤热疗等领域的应用而成为近年来研究的热点。同时金纳米材料容易进行表面修饰,其可通过静电吸附作用与带负电的遗传分子如DNA、小干扰RNA(siRNA)等结合,进而实现遗传功能分子的有效输运并发挥其功能,预防或治疗相关疾病。通过在金纳米棒表面修饰一些生物分子,还可实现靶向输运,更好的发挥功能分子的作用。另有报道称金-镍纳米棒可显著增强抗原特异性的免疫反应(Megan E.Pearce,Jessica B.Melanko,Aliasger K.Salem.Multifunctional Nanorods for Biomedical Applications.PharmaceuticalResearch,2007,24(12):2335-2352.)。Vaccines play an extremely important role in the prevention and treatment of diseases. Vaccine vectors are mainly divided into two types: viral vectors and non-viral vectors. Compared with viral vectors, non-viral vectors have the advantages of easy production and less toxic side effects. Therefore, research on non-viral vectors as potential vaccine vectors or adjuvants has attracted much attention in recent years. Compared with other non-viral vectors, nanomaterials as carriers have the advantages of promoting the uptake of functional molecules such as DNA by cells, prolonging the circulation time of functional molecules in the blood, and realizing the targeted delivery of functional molecules through appropriate modification and processing (Jun -ichiro Jo, Yasuhiko Tabata. Non-viral gene transfection technologies for genetic engineering of stem cells. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68: 90-104.). As the most promising carrier, nanomaterials with good biocompatibility or biodegradability have become a research hotspot in recent years. Due to their good biocompatibility, gold nanoparticles and gold nanorods have attracted much attention as potential carriers in the diagnosis and treatment of diseases. Due to its unique optical properties, gold nanorods have become a research hotspot in recent years for their applications in biomedical imaging, disease diagnosis and treatment, especially tumor hyperthermia. At the same time, gold nanomaterials are easy to carry out surface modification, which can be combined with negatively charged genetic molecules such as DNA and small interfering RNA (siRNA) through electrostatic adsorption, thereby realizing the effective transportation of genetic functional molecules and exerting their functions, prevention or treatment. related diseases. By modifying some biomolecules on the surface of gold nanorods, targeted transport can also be achieved to better play the role of functional molecules. It is also reported that gold-nickel nanorods can significantly enhance antigen-specific immune response (Megan E.Pearce, Jessica B.Melanko, Aliasger K.Salem.Multifunctional Nanorods for Biomedical Applications.PharmaceuticalResearch, 2007, 24 (12): 2335 -2352.).
抗原呈递细胞(Antigen-Presenting Cells,APCs)在机体的免疫防御过程中发挥着重要作用。树突状细胞(Dendritic Cells,DCs)作为专职性的抗原呈递细胞,由于其摄入、处理抗原并将其运输至淋巴组织进而呈递给幼稚T细胞的能力而在免疫反应中发挥着更为重要的作用。对于疫苗来说,能否有效传递至APCs尤其是DCs中并与其相互作用,从而诱导长期、高效的免疫反应关系到预防或治疗疾病的成败。DCs也因此在疫苗的研究开发中备受研究人员的关注。相对于微米级疫苗载体来说,纳米材料更易进入机体,且粒径为40-70nm的纳米材料更容易进入淋巴组织(A.E.Hawley,S.S.Davis,L.Illum.Targeting of colloids to lymphnodes-influence of lymphatic physiologyand colloidal characteristics.Advanced Drug Delivery Review,1995,17(1):129-148.)。而在纳米材料表面修饰APCs尤其是DCs特异性表面分子的抗体,对于促进抗原的有效传递将提供更为有利的保障。Antigen-Presenting Cells (APCs) play an important role in the body's immune defense process. Dendritic cells (DCs), as professional antigen-presenting cells, play a more important role in the immune response due to their ability to ingest, process and transport antigens to lymphoid tissues for presentation to naive T cells role. For vaccines, whether they can be effectively delivered to and interacted with APCs, especially DCs, to induce a long-term and efficient immune response is related to the success or failure of disease prevention or treatment. Therefore, DCs have attracted the attention of researchers in the research and development of vaccines. Compared with micron-sized vaccine carriers, nanomaterials are easier to enter the body, and nanomaterials with a particle size of 40-70nm are more likely to enter lymphoid tissue (A.E.Hawley, S.S.Davis, L.Illum.Targeting of colloids to lymphnodes-influence of lymphatic physiology and colloidal characteristics. Advanced Drug Delivery Review, 1995, 17(1): 129-148.). The modification of APCs, especially DCs-specific surface molecules on the surface of nanomaterials will provide a more favorable guarantee for promoting the effective delivery of antigens.
功能分子或疫苗抗原尤其是DNA疫苗若要成功传递至免疫细胞,需要穿越以下三种屏障:(1)细胞膜;(2)内吞体或溶酶体的降解;(3)细胞核。换句话说,一种成功的疫苗尤其是DNA疫苗需要实现将抗原有效传递、保护其免于降解且进入细胞核中才能真正预防和治疗疾病。Functional molecules or vaccine antigens, especially DNA vaccines, need to cross the following three barriers if they are to be successfully delivered to immune cells: (1) cell membrane; (2) degradation of endosomes or lysosomes; (3) nucleus. In other words, a successful vaccine, especially a DNA vaccine, needs to effectively deliver the antigen, protect it from degradation, and enter the nucleus in order to truly prevent and treat disease.
发明内容 Contents of the invention
本发明的目的在于提供一种金纳米棒的修饰方法、由该方法获得的金纳米棒-功能分子复合体。The object of the present invention is to provide a method for modifying gold nanorods and a gold nanorod-functional molecule complex obtained by the method.
本发明提供一种金纳米棒的修饰方法,该方法包括:将金纳米棒与DNA的溶液或蛋白质抗原的溶液接触,所述金纳米棒表面带正电荷。The invention provides a method for modifying gold nanorods, the method comprising: contacting the gold nanorods with a solution of DNA or a solution of protein antigen, and the surface of the gold nanorods is positively charged.
本发明还提供一种金纳米棒-功能分子复合体,所述金纳米棒-功能分子复合体是通过上述金纳米棒的修饰方法获得的。The present invention also provides a gold nanorod-functional molecule complex, the gold nanorod-functional molecule complex is obtained by the above gold nanorod modification method.
本发明通过将金纳米棒与DNA的溶液或蛋白质抗原的溶液接触,成功地实现了金纳米棒与遗传功能分子的DNA或蛋白质抗原的复合,进而实现遗传功能分子的有效输运并发挥其功能,预防或治疗相关疾病。The present invention successfully realizes the compounding of gold nanorods and DNA or protein antigens of genetic functional molecules by contacting gold nanorods with DNA solution or protein antigen solution, thereby realizing the effective transportation of genetic functional molecules and exerting their functions , to prevent or treat related diseases.
本发明的优选实施方式通过以改性聚乙二醇(PEG)修饰金纳米棒,从而避免金纳米棒过早的被网状内皮系统吞噬,延长其在机体内的循环时间。In a preferred embodiment of the present invention, gold nanorods are modified with modified polyethylene glycol (PEG), so as to avoid premature phagocytosis of gold nanorods by the reticuloendothelial system and prolong their circulation time in the body.
本发明的优选实施方式通过在带正电荷的金纳米棒表面依次修饰融合肽或核定位信号、促进入胞的功能分子(如转铁蛋白、叶酸等),从而提高基因转染水平、促进蛋白质抗原进入细胞,使其更加有效地发挥作用。A preferred embodiment of the present invention sequentially modifies fusion peptides or nuclear localization signals and functional molecules (such as transferrin, folic acid, etc.) The antigen enters the cell, allowing it to function more efficiently.
本发明的优选实施方式通过以靶向抗原呈递细胞的特异性抗体修饰金纳米棒,从而保证DNA或蛋白质抗原更加有效地呈递至B细胞和T细胞。A preferred embodiment of the present invention ensures more efficient presentation of DNA or protein antigens to B cells and T cells by modifying gold nanorods with specific antibodies targeting antigen-presenting cells.
附图说明 Description of drawings
图1是实施例1中所述金纳米棒的TEM表征图片。FIG. 1 is a TEM characterization picture of the gold nanorods described in Example 1.
图2是实施例1中所述不同长径比金纳米棒的SEM表征图片。2 is a SEM characterization picture of gold nanorods with different aspect ratios described in Example 1.
图3是实施例1中所述的不同长径比金纳米棒的紫外扫描图谱。FIG. 3 is an ultraviolet scanning spectrum of gold nanorods with different aspect ratios described in Example 1. FIG.
图4是实施例1中所述金纳米棒的电位检测结果。FIG. 4 is the potential detection result of the gold nanorods described in Example 1. FIG.
图5是实施例2中所述的金纳米棒吸附pEGFP后的紫外扫描图谱。FIG. 5 is the ultraviolet scanning spectrum of the gold nanorods described in Example 2 after pEGFP is adsorbed.
图6是实施例6、7中所述的金纳米棒-pEGFP-PEG和金纳米棒-pEGFP-PEG-NLS复合体的紫外扫描图谱。Fig. 6 is the ultraviolet scanning spectrum of the gold nanorod-pEGFP-PEG and gold nanorod-pEGFP-PEG-NLS complexes described in Examples 6 and 7.
图7是实施例10中所述各种金纳米棒-功能分子复合体转染HEK293细胞的图片(放大倍数10×10)。Fig. 7 is a picture of HEK293 cells transfected by various gold nanorod-functional molecule complexes described in Example 10 (magnification 10×10).
图8是表示实施例1制备的长径比为4的金纳米棒对HEK293细胞活力的影响的柱状图。8 is a bar graph showing the effect of gold nanorods with an aspect ratio of 4 prepared in Example 1 on the viability of HEK293 cells.
具体实施方式 Detailed ways
本发明提供一种金纳米棒的修饰方法,该方法包括:将金纳米棒与DNA的溶液或蛋白质抗原的溶液接触,所述金纳米棒表面带正电荷。The invention provides a method for modifying gold nanorods, the method comprising: contacting the gold nanorods with a solution of DNA or a solution of protein antigen, and the surface of the gold nanorods is positively charged.
在本发明提供的修饰方法中,相对于1重量份的所述金纳米棒,DNA的用量为0.001-0.2重量份,DNA的溶液的浓度为2-400μg/ml,或蛋白质抗原的用量为0.1-2重量份,蛋白质的溶液的浓度为0.1-2mg/ml,优选情况下,相对于1重量份的所述金纳米棒,DNA的用量为0.1-0.2重量份,DNA的溶液的浓度为200-400μg/ml,或蛋白质抗原的用量为0.5-1重量份,蛋白质的溶液的浓度为0.5-1mg/ml。In the modification method provided by the present invention, relative to 1 part by weight of the gold nanorods, the amount of DNA used is 0.001-0.2 parts by weight, the concentration of the DNA solution is 2-400 μg/ml, or the amount of protein antigen used is 0.1 -2 parts by weight, the concentration of the protein solution is 0.1-2 mg/ml, preferably, relative to 1 part by weight of the gold nanorods, the amount of DNA is 0.1-0.2 parts by weight, and the concentration of the DNA solution is 200 - 400 μg/ml, or the amount of protein antigen used is 0.5-1 parts by weight, and the concentration of the protein solution is 0.5-1 mg/ml.
在本发明中使用的金纳米棒的长度为40-70nm,长径比为1-6∶1。由于在金纳米棒的制备原料中含有如十六烷基三甲基溴化铵(CTAB)等阳离子型的表面活性剂或如聚二甲基二烯丙基氯化铵(PDDAC)等带正电的聚电解质,因此所述的金纳米棒表面带正电荷,本发明中的所述金纳米棒带有10-50毫伏的正电荷。The gold nanorods used in the present invention have a length of 40-70 nm and an aspect ratio of 1-6:1. Since the raw materials for the preparation of gold nanorods contain cationic surfactants such as cetyltrimethylammonium bromide (CTAB) or positively charged surfactants such as polydimethyldiallylammonium chloride (PDDAC). Electric polyelectrolyte, so the surface of the gold nanorods is positively charged, and the gold nanorods in the present invention have a positive charge of 10-50 millivolts.
由于DNA和绝大多数蛋白质抗原均带负电,而本发明中所述的金纳米棒表面带正电荷,其易通过静电吸附作用结合在一起,因此在本发明中,对所述DNA或蛋白质抗原的种类没有特别的限制,所述DNA例如艾滋病病毒膜蛋白编码基因(HIV Env DNA)、乙肝病毒膜蛋白编码基因(HBV)和人乳头瘤病毒膜蛋白编码基因(HPV)等,所述蛋白质抗原例如艾滋病病毒膜蛋白(gp140)、乙肝病毒膜蛋白和人乳头瘤病毒膜蛋白抗原等,所举出的这些DNA或蛋白质抗原均可与本发明中的金纳米棒相互结合。Since DNA and most of the protein antigens are negatively charged, and the surface of the gold nanorods described in the present invention is positively charged, it is easy to combine together by electrostatic adsorption, so in the present invention, the DNA or protein antigens The type of DNA is not particularly limited, the DNA such as HIV Env DNA (HIV Env DNA), hepatitis B virus membrane protein encoding gene (HBV) and human papillomavirus membrane protein encoding gene (HPV) etc., the protein antigen For example, AIDS virus membrane protein (gp140), hepatitis B virus membrane protein and human papillomavirus membrane protein antigen, etc., these DNA or protein antigens can be combined with the gold nanorods in the present invention.
为了提高DNA和蛋白质抗原进入细胞的量,同时使DNA避免溶酶体的降解,从而保证DNA和蛋白质抗原有效发挥作用,本发明所提供的修饰方法中还包括,将金纳米棒与DNA的溶液或蛋白质抗原的溶液接触之后,再在溶剂存在下与改性聚乙二醇、融合肽、核定位信号、促进入胞功能分子、靶向抗原呈递细胞的特异性抗体中的任意一种或多种一次或分多次接触,每次接触的时间为2-12小时,所述改性聚乙二醇的骨架为聚乙二醇骨架,所述改性聚乙二醇的一端为巯基且另一端为氨基或羧基。所述溶剂可以为去离子水、磷酸盐缓冲液(PBS)或吗啉乙磺酸缓冲液(MES)等中的一种。In order to increase the amount of DNA and protein antigens entering cells, and at the same time prevent DNA from being degraded by lysosomes, so as to ensure that DNA and protein antigens play an effective role, the modification method provided by the present invention also includes mixing gold nanorods with a solution of DNA or protein antigen solution, in the presence of a solvent, any one or more of modified polyethylene glycol, fusion peptides, nuclear localization signals, molecules that promote cell entry, and specific antibodies targeting antigen-presenting cells One or multiple contacts, each contact time is 2-12 hours, the skeleton of the modified polyethylene glycol is a polyethylene glycol skeleton, one end of the modified polyethylene glycol is a mercapto group and the other One end is amino or carboxyl. The solvent may be one of deionized water, phosphate buffered saline (PBS) or morpholinoethanesulfonic acid buffered solution (MES).
在本发明中,所述改性聚乙二醇的重均分子量可以为150-635,所述改性聚乙二醇可以使用例如波兰Prochimia公司的HSC11-EG2NH2。In the present invention, the weight average molecular weight of the modified polyethylene glycol may be 150-635, and the modified polyethylene glycol may be, for example, HSC 11 -EG 2 NH 2 from Prochimia, Poland.
在本发明的金纳米棒的修饰方法中,相对于1重量份的金纳米棒,所述融合肽的用量可以为0-2重量份,优选为0-1重量份,所述核定位信号的用量可以为0-2重量份,优选为0-1重量份,所述促进入胞功能分子的用量可以为0-2重量份,优选为0-1重量份,所述靶向抗原呈递细胞的特异性抗体的用量可以为0-2重量份,优选为0-1重量份,所述改性聚乙二醇的用量可以为0-3重量份,优选为0-1.5重量份,且金纳米棒与融合肽、核定位信号、促进入胞功能分子、靶向抗原呈递细胞的特异性抗体以及改性聚乙二醇的总用量可以为0.01-11重量份,优选为3.5-6.5重量份。In the method for modifying gold nanorods of the present invention, relative to 1 part by weight of gold nanorods, the amount of the fusion peptide can be 0-2 parts by weight, preferably 0-1 parts by weight, and the nuclear localization signal The dosage can be 0-2 parts by weight, preferably 0-1 parts by weight, the dosage of the molecules promoting cell entry can be 0-2 parts by weight, preferably 0-1 parts by weight, and the targeted antigen-presenting cell The amount of specific antibody can be 0-2 parts by weight, preferably 0-1 parts by weight, the amount of modified polyethylene glycol can be 0-3 parts by weight, preferably 0-1.5 parts by weight, and the gold nano The total amount of rod and fusion peptide, nuclear localization signal, cell entry-promoting functional molecule, specific antibody targeting antigen-presenting cells and modified polyethylene glycol can be 0.01-11 parts by weight, preferably 3.5-6.5 parts by weight.
在本发明中,对所述融合肽、核定位信号、促进入胞功能分子、或靶向抗原呈递细胞的特异性抗体的种类没有特别的限制,所述融合肽例如JTS-1序列小肽(GLEEALLFLLESLWELLLEA)、INF-7序列小肽(GLFEAIEGFIENGWEGMIWDYG)和含KALA序列的小肽等;所述核定位信号例如SV40T抗原、被间隔区分开的两簇带正电的氨基酸残基序列、c-MYC原癌基因的核定位信号及其他类型核定位信号如核糖体蛋白等;所述促进入胞功能分子可以举出例如含精氨酸-甘氨酸-天冬氨酸(RGD)序列的小肽、转铁蛋白、表皮生长因子(EGF)、叶酸等,所述靶向抗原呈递细胞的特异性抗体例如靶向树突状细胞的特异性抗体anti-DEC205等。In the present invention, there is no particular limitation on the type of the fusion peptide, nuclear localization signal, cell entry-promoting function molecule, or specific antibody targeting antigen-presenting cells, such as the JTS-1 sequence small peptide ( GLEEALLFLLESLWELLLEA), INF-7 sequence small peptide (GLFEAIEGFIENGWEGMIWDYG) and small peptide containing KALA sequence, etc.; the nuclear localization signal such as SV40T antigen, two clusters of positively charged amino acid residue sequences separated by a spacer, c-MYC Nuclear localization signals of oncogenes and other types of nuclear localization signals such as ribosomal proteins, etc.; the molecules that promote cell entry can include, for example, small peptides containing arginine-glycine-aspartic acid (RGD) sequences, transferrin protein, epidermal growth factor (EGF), folic acid, etc., the specific antibody targeting antigen-presenting cells, such as the specific antibody anti-DEC205 targeting dendritic cells, etc.
本发明还提供一种金纳米棒-功能分子复合体,所述金纳米棒-功能分子复合体是通过上述金纳米棒的修饰方法获得的。The present invention also provides a gold nanorod-functional molecule complex, the gold nanorod-functional molecule complex is obtained by the above gold nanorod modification method.
以下结合实施例和附图对本发明进行详细说明。The present invention will be described in detail below in conjunction with the embodiments and the accompanying drawings.
实施例1Example 1
金纳米棒基体的合成Synthesis of Gold Nanorod Matrix
在25℃条件下,将0.2mol/L的十六烷基三甲基溴化铵(CTAB,Amersco公司,美国)溶液5mL与0.96mmol/L的四氯金酸溶液5mL混合后,向该混合体系中加入0.01mol/L的冰浴的硼氢化钠溶液0.6mL,以800rpm的速度搅拌2min,得到晶种液。At 25°C, mix 5 mL of 0.2 mol/L cetyltrimethylammonium bromide (CTAB, Amersco, USA) solution with 5 mL of 0.96 mmol/L tetrachloroauric acid solution, and add Add 0.6 mL of 0.01 mol/L ice-bathed sodium borohydride solution to the system, and stir at 800 rpm for 2 min to obtain a seed crystal solution.
在25℃条件下,将25mmol/L的四氯金酸溶液10mL、水250mL加至4mmol/L的硝酸银溶液12.5mL中混匀,然后向该混合体系中加入0.2mol/L的CTAB溶液250mL和0.08mol/L的抗坏血酸溶液5mL,混合15-30秒,即得生长液。当生长液由橘黄色逐渐变为无色时,即向生长液中加入0.6mL晶种液,混合均匀后25℃下静置16-18h,最后离心洗涤即得金纳米棒2。At 25°C, add 10mL of 25mmol/L tetrachloroauric acid solution and 250mL of water to 12.5mL of 4mmol/L silver nitrate solution and mix well, then add 250mL of 0.2mol/L CTAB solution to the mixed system and 5 mL of 0.08 mol/L ascorbic acid solution, and mix for 15-30 seconds to obtain the growth solution. When the growth liquid gradually changed from orange to colorless, 0.6 mL of seed crystal liquid was added to the growth liquid, mixed evenly, left standing at 25° C. for 16-18 h, and finally centrifuged and washed to obtain gold nanorods 2 .
按照上述方法制备金纳米棒,不同的是将调节生长液中硝酸银与四氯金酸的摩尔比调节为0、0.2、0.3、0.4,且生长液总体积不变,得到金纳米棒1、金纳米棒2、金纳米棒3、金纳米棒4。Prepare gold nanorods according to the above method, the difference is that the molar ratio of silver nitrate and tetrachloroauric acid in the growth solution is adjusted to 0, 0.2, 0.3, 0.4, and the total volume of the growth solution remains unchanged, and
利用透射电子显微镜、扫描电子显微镜对所得到的金纳米棒进行观察,结果见图1和图2所示。图1A、图1B、图1C、图1D分别表示金纳米棒1、金纳米棒2、金纳米棒3、金纳米棒4,金纳米棒1、金纳米棒2、金纳米棒3、金纳米棒4的平均粒径分别为40nm、20nm×40nm、15nm×45nm、15nm×60nm,金纳米棒1、金纳米棒2、金纳米棒3、金纳米棒4的长径比分别为1∶1、2∶1、3∶1、4∶1。图2A、图2B、图2C、图2D分别表示金纳米棒1、金纳米棒2、金纳米棒3、金纳米棒4,金纳米棒1、金纳米棒2、金纳米棒3、金纳米棒4的平均粒径分别为40nm、20nm×40nm、15nm×45nm、15nm×60nm,金纳米棒1、金纳米棒2、金纳米棒3、金纳米棒4的长径比分别为1∶1、2∶1、3∶1、4∶1。The obtained gold nanorods were observed with a transmission electron microscope and a scanning electron microscope, and the results are shown in FIGS. 1 and 2 . Fig. 1A, Fig. 1B, Fig. 1C, Fig. 1D represent respectively
利用紫外光谱仪(UV-vis)对所得到金纳米棒进行检测,结果见图3,金纳米棒1、金纳米棒2、金纳米棒3、金纳米棒4的特征吸收峰分别在530nm、620nm、700nm和820nm。Utilize the ultraviolet spectrometer (UV-vis) to detect the obtained gold nanorods, the results are shown in Figure 3, the characteristic absorption peaks of
利用激光粒度仪对所得到金纳米棒进行检测,结果见图4,金纳米棒1、金纳米棒2、金纳米棒3、金纳米棒4表面均带有约28.6毫伏的正电荷。The obtained gold nanorods were detected by a laser particle size analyzer, and the results are shown in Figure 4. The surfaces of the
实施例2Example 2
金纳米棒-DNA复合体的制备Preparation of gold nanorod-DNA complex
将1mg/mL的金纳米棒4的水溶液0.2mL与2μg/mL的pEGFP(绿色荧光蛋白的质粒DNA,Biovector-08,Clontech公司)溶液0.1mL混合均匀,25℃条件下放置约30min,即得含有金纳米棒-DNA复合体的混合液,最后离心洗涤即得金纳米棒-DNA复合体。Mix 0.2 mL of an aqueous solution of 1 mg/mL gold nanorod 4 with 0.1 mL of a 2 μg/mL pEGFP (green fluorescent protein plasmid DNA, Biovector-08, Clontech company) solution, and place it at 25 ° C for about 30 min to obtain The mixed solution containing the gold nanorod-DNA complex is finally centrifuged and washed to obtain the gold nanorod-DNA complex.
利用UV-vis对所得到金纳米棒-DNA复合体进行检测,结果见图5,可见相对于金纳米棒来说,金纳米棒-DNA复合体的吸光度(OD)值降低。The obtained gold nanorod-DNA complex was detected by UV-vis, and the results are shown in Figure 5. It can be seen that the absorbance (OD) value of the gold nanorod-DNA complex is lower than that of the gold nanorod.
实施例3Example 3
金纳米棒-DNA复合体的制备Preparation of gold nanorod-DNA complex
将1mg/mL的金纳米棒4的水溶液0.2mL与200μg/mL的pEGFP(绿色荧光蛋白的质粒DNA,Biovector-08,Clontech公司)溶液0.1mL混合均匀,25℃条件下放置约30min,即得含有金纳米棒-DNA复合体的混合液,最后离心洗涤即得金纳米棒-DNA复合体。Mix 0.2 mL of an aqueous solution of 1 mg/mL gold nanorod 4 with 0.1 mL of a 200 μg/mL pEGFP (green fluorescent protein plasmid DNA, Biovector-08, Clontech company) solution, and place it at 25 ° C for about 30 min to obtain The mixed solution containing the gold nanorod-DNA complex is finally centrifuged and washed to obtain the gold nanorod-DNA complex.
利用UV-vis对所得到金纳米棒进行检测,结果与实施例2类似,与金纳米棒相比,金纳米棒吸附DNA后,其吸光度(OD)值降低。The obtained gold nanorods were detected by UV-vis, and the result was similar to that of Example 2. Compared with the gold nanorods, the absorbance (OD) value of the gold nanorods decreased after adsorbing DNA.
实施例4Example 4
金纳米棒-DNA复合体的制备Preparation of gold nanorod-DNA complex
将1mg/mL的金纳米棒4的水溶液0.2mL与400μg/mL的pEGFP(绿色荧光蛋白的质粒DNA,Biovector-08,Clontech公司)溶液0.1mL混合均匀,25℃条件下放置约30min,即得含有金纳米棒-DNA复合体的混合液,最后离心洗涤即得金纳米棒-DNA复合体。Mix 0.2 mL of an aqueous solution of 1 mg/mL gold nanorod 4 with 0.1 mL of a 400 μg/mL pEGFP (green fluorescent protein plasmid DNA, Biovector-08, Clontech company) solution, and place it at 25 ° C for about 30 min to obtain The mixed solution containing the gold nanorod-DNA complex is finally centrifuged and washed to obtain the gold nanorod-DNA complex.
利用UV-vis对所得到金纳米棒进行检测,结果与实施例2类似,与金纳米棒相比,金纳米棒吸附DNA后,其吸光度(OD)值降低。The obtained gold nanorods were detected by UV-vis, and the result was similar to that of Example 2. Compared with the gold nanorods, the absorbance (OD) value of the gold nanorods decreased after adsorbing DNA.
实施例5Example 5
金纳米棒对DNA吸附率的检测Detection of DNA Adsorption Rate of Gold Nanorods
将1mg/mL金纳米棒4的水溶液与不同浓度(见表1)的pEGFP溶液等体积混合均匀,在25℃条件下静置30min后,以10000rpm离心15min,之后利用酶标仪在260nm检测上清液中DNA的吸光度(OD),并根据“当DNA的吸光度为1时,其浓度相当于50ng/μL”计算上清液中DNA的残留量,从而根据公式:吸附率=(DNA总量-残留DNA的量)×100%/DNA总量,确定金纳米棒对DNA的吸附率,结果见表1。Mix the aqueous solution of 1 mg/mL gold nanorod 4 with pEGFP solutions of different concentrations (see Table 1) in equal volumes, let stand at 25°C for 30 min, centrifuge at 10,000 rpm for 15 min, and then use a microplate reader at 260 nm to detect The absorbance (OD) of DNA in the supernatant, and according to "when the absorbance of DNA is 1, its concentration is equivalent to 50ng/μL", calculate the residual amount of DNA in the supernatant, thereby according to the formula: adsorption rate=(DNA total amount -the amount of residual DNA)×100%/total amount of DNA to determine the adsorption rate of gold nanorods to DNA, the results are shown in Table 1.
表1Table 1
实施例6Example 6
金纳米棒-DNA-PEG复合体的制备Preparation of gold nanorod-DNA-PEG complex
取150μL实施例2中获得的含有金纳米棒-DNA复合体的混合液,加入1μL HSC11-EG6OCH2COOH(1mmol/L,波兰Prochimia公司,重均分子量为635)混合均匀,25℃条件下静置2h,即得金纳米棒-DNA-PEG复合体的混合液,最后离心即得金纳米棒-DNA-PEG复合体。由于金-硫共价键极易形成,所以SH-PEG可轻易地连接在金纳米棒-DNA复合体表面。利用UV-vis对所得到金纳米棒-DNA-PEG复合体进行检测,结果见图6。Take 150 μL of the mixed solution containing gold nanorods-DNA complexes obtained in Example 2, add 1 μL of HSC 11 -EG 6 OCH 2 COOH (1 mmol/L, Prochimia, Poland, weight average molecular weight 635) and mix well, at 25°C Stand still for 2 hours under the condition to obtain the gold nanorod-DNA-PEG complex mixture, and finally centrifuge to obtain the gold nanorod-DNA-PEG complex. Due to the easy formation of gold-sulfur covalent bonds, SH-PEG can be easily attached to the surface of gold nanorods-DNA complexes. The obtained gold nanorod-DNA-PEG complex was detected by UV-vis, and the results are shown in FIG. 6 .
实施例7Example 7
金纳米棒-DNA-PEG-NLS复合体的制备Preparation of Gold Nanorod-DNA-PEG-NLS Complex
将150μL实施例6获得的含有金纳米棒-DNA-PEG复合体的混合液与20μL含NLS(2.5mg/mL,序列为PAAKRVKLD,西安联美生物科技有限公司合成)的吗啉乙磺酸缓冲液(MES)混合均匀,25℃条件下静置30min。之后向上述混合体系中加入30μL含碳二乙亚胺盐酸盐(EDC,0.5mg/mL)的MES缓冲液,4℃条件下反应2h,之后以9500rpm离心10min,再用去离子水离心洗涤一次,之后重悬于150μL双蒸水中,即得含有金纳米棒-DNA-PEG-NLS复合体的混合液,最后离心即得金纳米棒-DNA-PEG-NLS复合体。Mix 150 μL of the mixture containing gold nanorods-DNA-PEG complexes obtained in Example 6 with 20 μL of morpholineethanesulfonic acid buffer containing NLS (2.5 mg/mL, the sequence is PAAKRVKLD, synthesized by Xi’an Lianmei Biotechnology Co., Ltd.) Mix the solution (MES) evenly, and let stand at 25°C for 30 minutes. Then add 30 μL of MES buffer containing carbodiethylimide hydrochloride (EDC, 0.5 mg/mL) to the above mixed system, react at 4 °C for 2 h, then centrifuge at 9500 rpm for 10 min, and wash with deionized water Once, and then resuspended in 150 μL double-distilled water to obtain a mixture containing gold nanorods-DNA-PEG-NLS complexes, and finally centrifuged to obtain gold nanorods-DNA-PEG-NLS complexes.
利用UV-vis对所得到金纳米棒-DNA-PEG-NLS复合体进行检测,结果见图6,可见金纳米棒-DNA-PEG-NLS复合体的吸光度较金纳米棒-DNA-PEG低。The obtained gold nanorod-DNA-PEG-NLS complex was detected by UV-vis, and the results are shown in Figure 6. It can be seen that the absorbance of the gold nanorod-DNA-PEG-NLS complex is lower than that of the gold nanorod-DNA-PEG.
实施例8Example 8
金纳米棒-DNA-PEG-NLS-转铁蛋白复合体的制备Preparation of gold nanorod-DNA-PEG-NLS-transferrin complex
将150μL实施例7获得的含有金纳米棒-DNA-PEG-NLS复合体的混合液与20μL含转铁蛋白(2.5mg/mL,apo-Transferrin,Sigma公司)的吗啉乙磺酸缓冲液(MES)混合均匀,25℃条件下静置30min。之后向上述混合体系中加入30μL含碳二乙亚胺盐酸盐(EDC,0.5mg/mL)的MES缓冲液,4℃条件下反应2h,之后以9500rpm离心10min,再用去离子水离心洗涤一次,之后重悬于150μL双蒸水中,即得含有金纳米棒-DNA-PEG-NLS-转铁蛋白复合体的混合液,最后离心即得金纳米棒-DNA-PEG-NLS-转铁蛋白复合体。150 μL of the mixed solution containing gold nanorods-DNA-PEG-NLS complex obtained in Example 7 was mixed with 20 μL of morpholinoethanesulfonic acid buffer containing transferrin (2.5 mg/mL, apo-Transferrin, Sigma Company) ( MES) were mixed evenly, and stood at 25°C for 30min. Then add 30 μL of MES buffer containing carbodiethylimide hydrochloride (EDC, 0.5 mg/mL) to the above mixed system, react at 4 °C for 2 h, then centrifuge at 9500 rpm for 10 min, and wash with deionized water Once, and then resuspended in 150 μL double distilled water to obtain a mixture containing gold nanorods-DNA-PEG-NLS-transferrin complex, and finally centrifuged to obtain gold nanorods-DNA-PEG-NLS-transferrin Complex.
利用UV-vis对所得到金纳米棒-DNA-PEG-NLS-转铁蛋白复合体进行检测,结果与实施例2类似,金纳米棒-DNA-PEG-NLS-转铁蛋白复合体吸光度较金纳米棒-DNA-PEG-NLS复合体的低。The obtained gold nanorod-DNA-PEG-NLS-transferrin complex is detected by UV-vis, and the result is similar to that of Example 2. The absorbance of the gold nanorod-DNA-PEG-NLS-transferrin complex is higher than that of gold Low for nanorod-DNA-PEG-NLS complexes.
实施例9Example 9
金纳米棒-功能分子复合体对HEK293细胞的转染试验Transfection test of gold nanorod-functional molecule complex to HEK293 cells
含金纳米棒-功能分子复合体的血清培养基的配制:分别取30μL实施例2、6-8中制备的含金纳米棒-功能分子复合体的混合液,以含10%胎牛血清(FBS)的DMEM培养基稀释至300μL。Preparation of serum medium containing gold nanorods-functional molecule complexes: Take 30 μL of the mixed solution containing gold nanorods-functional molecule complexes prepared in Example 2 and 6-8 respectively, and add 10% fetal bovine serum ( FBS) in DMEM medium was diluted to 300 μL.
金纳米棒-功能分子复合体转染HEK293细胞:首先以0.25%胰酶消化HEK293细胞,终止消化后,以1000rpm离心5min。用含10%胎牛血清(FBS)的DMEM培养基制成单细胞悬液,并以5×104/ml浓度接种于24孔板中,每孔500μl,之后置于培养箱(37℃、5%CO2)中培养24h。之后吸出原培养基,每孔加入400μl含血清的培养基。分设1个空白对照组、1个裸EGFP质粒对照组、4个金纳米棒-功能分子复合体试验组、脂质体(Lipofectamine2000,Invitrogen公司)转染阳性对照组,每组设三个平行孔,空白对照组加入含血清DMEM培养基100μl/孔,裸EGFP质粒对照组加入含有EGFP质粒(绿色荧光蛋白的质粒DNA,Biovector-08,Clontech公司)的含血清DMEM培养基(EGFP质粒的浓度为8μg/mL)100μl/孔,4个金纳米棒-功能分子复合体试验组加入上述配制的含金纳米棒-功能分子复合体的血清培养基100μl/孔,摇匀,置于培养箱(37℃、5%CO2)中培养12h,更换含血清的培养基,继续培养,于48h后利用荧光显微镜观察转染结果。Transfection of HEK293 cells with gold nanorods-functional molecule complexes: First, HEK293 cells were digested with 0.25% trypsin, and centrifuged at 1000 rpm for 5 min after the digestion was terminated. A single cell suspension was prepared with DMEM medium containing 10% fetal bovine serum (FBS), and inoculated in a 24-well plate at a concentration of 5×10 4 /ml, 500 μl per well, and then placed in an incubator (37°C, 5% CO 2 ) for 24 hours. Afterwards, the original medium was aspirated, and 400 μl of serum-containing medium was added to each well. A blank control group, a naked EGFP plasmid control group, 4 gold nanorod-functional molecule complex test groups, and liposome (Lipofectamine2000, Invitrogen) transfection positive control group were set up, and three parallel wells were set up for each group. 100 μl/well of serum-containing DMEM medium was added to the blank control group, and 100 μl/hole of serum-containing DMEM medium was added to the naked EGFP plasmid control group. 8 μg/mL) 100 μl/well, 4 gold nanorods-functional molecule complexes test groups were added the
试验结果如图7所示,图7A为pEGFP质粒DNA对照组、图7B为金纳米棒-pEGFP复合体、图7C为金纳米棒-pEGFP-PEG复合体、图7D为金纳米棒-pEGFP-PEG-NLS复合体、图7E为金纳米棒-pEGFP-PEG-NLS-Tf复合体、图7F为脂质体(Lipofectamine 2000)转染阳性对照组。由图可知,裸pEGFP很难转染HEK293细胞,无荧光蛋白表达,而金纳米棒-pEGFP复合体可以转染HEK293细胞,且随着对金纳米棒-pEGFP复合体的一系列修饰,即金纳米棒-pEGFP-PEG-NLS、金纳米棒-pEGFP-PEG-NLS-Tf复合体转染细胞的能力明显提高,且金纳米棒-pEGFP-PEG-NLS-Tf复合体的转染效率与阳性对照组相当。The test results are shown in Figure 7, Figure 7A is the pEGFP plasmid DNA control group, Figure 7B is the gold nanorod-pEGFP complex, Figure 7C is the gold nanorod-pEGFP-PEG complex, Figure 7D is the gold nanorod-pEGFP- PEG-NLS complex, Figure 7E is the gold nanorod-pEGFP-PEG-NLS-Tf complex, Figure 7F is the liposome (Lipofectamine 2000) transfection positive control group. It can be seen from the figure that it is difficult to transfect HEK293 cells with naked pEGFP, and there is no fluorescent protein expression, while the gold nanorod-pEGFP complex can transfect HEK293 cells, and with a series of modifications to the gold nanorod-pEGFP complex, the gold nanorods The ability of rod-pEGFP-PEG-NLS and gold nanorod-pEGFP-PEG-NLS-Tf complex to transfect cells was significantly improved, and the transfection efficiency of gold nanorod-pEGFP-PEG-NLS-Tf complex was comparable to that of the positive control group quite.
实施例10Example 10
金纳米棒-蛋白质抗原复合体的制备Preparation of gold nanorod-protein antigen complex
将1mg/mL金纳米棒4的水溶液0.2mL与0.1mg/mL卵清蛋白(OVA,Sigma公司)水溶液0.2mL混合均匀,25℃条件下静置30min,即得含有金纳米棒-蛋白质抗原复合体的混合液,最后离心洗涤即得金纳米棒-蛋白质抗原复合体。Mix 0.2 mL of an aqueous solution of 1 mg/mL gold nanorods 4 with 0.2 mL of an aqueous solution of 0.1 mg/mL ovalbumin (OVA, Sigma Company) and leave to stand at 25°C for 30 min to obtain a complex containing gold nanorods-protein antigen. The mixed solution of the body was finally centrifuged and washed to obtain the gold nanorod-protein antigen complex.
利用UV-vis对所得到金纳米棒-蛋白质抗原复合体进行检测,结果与实施例2类似,可见金纳米棒-蛋白质抗原复合体吸光度较金纳米棒低。The obtained gold nanorod-protein antigen complex was detected by UV-vis, and the result was similar to Example 2. It can be seen that the absorbance of the gold nanorod-protein antigen complex was lower than that of the gold nanorod.
实施例11Example 11
金纳米棒-蛋白质抗原复合体的制备Preparation of gold nanorod-protein antigen complex
将1mg/mL金纳米棒4的水溶液0.2mL与2mg/mL卵清蛋白(OVA,Sigma公司)水溶液0.2mL混合均匀,25℃条件下静置30min,即得含有金纳米棒-蛋白质抗原复合体的混合液,最后离心洗涤即得金纳米棒-蛋白质抗原复合体。Mix 0.2 mL of an aqueous solution of 1 mg/mL gold nanorod 4 with 0.2 mL of a 2 mg/mL ovalbumin (OVA, Sigma company) aqueous solution, and let stand at 25° C. for 30 min to obtain a gold nanorod-protein antigen complex The mixed solution was finally centrifuged and washed to obtain the gold nanorod-protein antigen complex.
利用UV-vis对所得到金纳米棒-蛋白质抗原复合体进行检测,结果与实施例2类似,可见金纳米棒-蛋白质抗原复合体的吸光度较金纳米棒低。The obtained gold nanorod-protein antigen complex was detected by UV-vis, and the result was similar to Example 2. It can be seen that the absorbance of the gold nanorod-protein antigen complex was lower than that of the gold nanorod.
实施例12Example 12
金纳米棒-蛋白质抗原-促进入胞功能分子复合体的制备Preparation of Gold Nanorod-Protein Antigen-Molecule Complex for Enhancing Cell Entry
将150μL实施例11获得的含有金纳米棒-蛋白质抗原复合体的混合液与20μL含转铁蛋白(2.5mg/mL,apo-Transferrin,Sigma公司)的吗啉乙磺酸缓冲液(MES)混合均匀,25℃条件下静置30min。之后向上述混合体系中加入30μL含碳二乙亚胺盐酸盐(EDC,0.5mg/mL)的MES缓冲液,4℃条件下反应2h,之后以9500rpm离心10min,再用去离子水离心洗涤一次,之后重悬于150μL双蒸水中,即得金纳米棒-蛋白质抗原-转铁蛋白复合体的混合液,最后离心即得金纳米棒-蛋白质抗原-转铁蛋白复合体。Mix 150 μL of the mixture containing gold nanorods-protein antigen complex obtained in Example 11 with 20 μL of morpholineethanesulfonic acid buffer (MES) containing transferrin (2.5 mg/mL, apo-Transferrin, Sigma Company) Evenly, let stand at 25°C for 30min. Then add 30 μL of MES buffer containing carbodiethylimide hydrochloride (EDC, 0.5 mg/mL) to the above mixed system, react at 4 °C for 2 h, then centrifuge at 9500 rpm for 10 min, and wash with deionized water Once, and then resuspended in 150 μL double-distilled water to obtain a gold nanorod-protein antigen-transferrin complex mixture, and finally centrifuged to obtain a gold nanorod-protein antigen-transferrin complex.
利用UV-vis对所得到金纳米棒-蛋白质抗原-转铁蛋白复合体进行检测,结果与实施例2类似,可见金纳米棒-蛋白质抗原-转铁蛋白复合体的吸光度较金纳米棒-蛋白质抗原复合体的低。Utilize UV-vis to detect the obtained gold nanorod-protein antigen-transferrin complex, the result is similar to embodiment 2, the absorbance of visible gold nanorod-protein antigen-transferrin complex is higher than gold nanorod-protein Antigen complexes are low.
实施例13Example 13
金纳米棒-蛋白质抗原-促进入胞功能分子-PEG的制备Preparation of gold nanorods-protein antigen-enhancing functional molecule-PEG
取150μL实施例12中获得的含有金纳米棒-蛋白质抗原-转铁蛋白复合体的混合液,加入1μL HSC11-EG6OCH2COOH(1mmol/L,波兰Prochimia公司,重均分子量为635)混合均匀,25℃条件下静置2h,即得含有金纳米棒-蛋白质抗原-转铁蛋白-PEG复合体的混合液。Take 150 μL of the mixture containing gold nanorods-protein antigen-transferrin complex obtained in Example 12, add 1 μL of HSC 11 -EG 6 OCH 2 COOH (1 mmol/L, Prochimia, Poland, weight average molecular weight 635) Mix evenly and let stand at 25° C. for 2 hours to obtain a mixed solution containing gold nanorods-protein antigen-transferrin-PEG complex.
实施例14Example 14
金纳米棒对HEK293细胞活力的影响Effect of gold nanorods on the viability of HEK293 cells
含金纳米棒的含血清培养基的配制:取6μL实施例1制备的长径比为4的金纳米棒水溶液,以含10%胎牛血清(FBS)的DMEM培养基稀释至300μL,使得金纳米棒的终浓度为20μg/mL。Preparation of serum-containing medium containing gold nanorods: Take 6 μL of the aqueous solution of gold nanorods with an aspect ratio of 4 prepared in Example 1 and dilute to 300 μL with DMEM medium containing 10% fetal bovine serum (FBS), so that the gold The final concentration of nanorods was 20 μg/mL.
含金纳米棒-功能分子复合体的含血清培养基的配制:分别取6μL实施例2、6-8、11-13制备的含金纳米棒-功能分子复合体的混合液,以含10%胎牛血清(FBS)的DMEM培养基稀释至300μL,使得金纳米棒的终浓度为20μg/mL。Preparation of serum-containing medium containing gold nanorods-functional molecule complexes: take 6 μL of the mixed solution containing gold nanorods-functional molecule complexes prepared in Examples 2, 6-8, and 11-13, respectively, to contain 10% Fetal bovine serum (FBS) was diluted to 300 μL in DMEM medium so that the final concentration of gold nanorods was 20 μg/mL.
金纳米棒对HEK293细胞活力的影响:首先以0.25%胰酶消化HEK293细胞,终止消化后,1000rpm,离心5min。用含10%胎牛血清(FBS)的DMEM培养基制成单细胞悬液,并以5×104/ml浓度接种于96孔板中,每孔100μl,之后置于培养箱(37℃、5%CO2)中培养24h。分设空白对照组、阴性对照组、金纳米棒试验组、金纳米棒-功能分子复合体试验组,每组设3个平行组。分别将含血清培养基和上述配制含金纳米棒的含血清培养基以及含金纳米棒-功能分子复合体的含血清培养基加至孔中,每孔100μl,置于培养箱(37℃、5%CO2)中培养12、24、48h,之后弃去培养基,以PBS缓冲液洗涤2次,最后加入含10%CCK-8的含血清培养基,每孔100μl,继续培养2h,之后利用酶标仪(检测波长为450nm)进行检测,确定金纳米棒-功能分子复合体对HEK293细胞活力的影响情况。The effect of gold nanorods on the viability of HEK293 cells: First, HEK293 cells were digested with 0.25% trypsin, and after the digestion was terminated, centrifuged at 1000rpm for 5min. A single cell suspension was prepared with DMEM medium containing 10% fetal bovine serum (FBS), and inoculated in a 96-well plate at a concentration of 5×10 4 /ml, 100 μl per well, and then placed in an incubator (37°C, 5% CO 2 ) for 24 hours. A blank control group, a negative control group, a gold nanorod test group, and a gold nanorod-functional molecule complex test group were divided into three parallel groups. Add serum-containing medium, the serum-containing medium containing gold nanorods prepared above, and the serum-containing medium containing gold nanorods-functional molecule complexes to the wells, 100 μl per well, and place in an incubator (37°C, 5% CO 2 ) for 12, 24, and 48 h, then discard the medium, wash twice with PBS buffer, and finally add serum-containing medium containing 10% CCK-8, 100 μl per well, continue to culture for 2 h, then A microplate reader (detection wavelength: 450nm) was used for detection to determine the effect of the gold nanorod-functional molecule complex on the viability of HEK293 cells.
图8是表示实施例1制备的长径比为4的金纳米棒对HEK293细胞活力的影响的柱状图,与阴性对照组相比,金纳米棒对HEK293的细胞活力没有影响,所制备的金纳米棒安全性好。实施例2、6-8、11-13所制备的金纳米棒-功能分子复合体对HEK293细胞活力亦无明显影响,其结果与实施例1结果类似,显示出良好的安全性。8 is a histogram showing the effect of gold nanorods with an aspect ratio of 4 on the viability of HEK293 cells prepared in Example 1. Compared with the negative control group, gold nanorods have no effect on the viability of HEK293 cells. The prepared gold Nanorods are safe. The gold nanorod-functional molecule complexes prepared in Examples 2, 6-8, and 11-13 had no obvious effect on the viability of HEK293 cells, and the results were similar to those in Example 1, showing good safety.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010274005 CN102397557B (en) | 2010-09-07 | 2010-09-07 | Modification method for gold nanorods and gold nanorods-functional molecule composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010274005 CN102397557B (en) | 2010-09-07 | 2010-09-07 | Modification method for gold nanorods and gold nanorods-functional molecule composite |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102397557A CN102397557A (en) | 2012-04-04 |
CN102397557B true CN102397557B (en) | 2013-08-21 |
Family
ID=45880450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010274005 Active CN102397557B (en) | 2010-09-07 | 2010-09-07 | Modification method for gold nanorods and gold nanorods-functional molecule composite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102397557B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106770049A (en) * | 2016-12-22 | 2017-05-31 | 南京邮电大学 | Based on the method that DNA paper foldings template and nanometer gold bar build Dolmen structures |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104999071B (en) * | 2015-06-24 | 2017-04-05 | 深圳先进技术研究院 | A kind of gold nano stick array and its preparation method and application |
CN106141201B (en) * | 2016-08-26 | 2019-07-23 | 首都师范大学 | A method of improving gold nanorods light thermal property and photo and thermal stability |
CN108115127A (en) * | 2017-11-29 | 2018-06-05 | 上海师范大学 | A kind of Nanometer Copper biomimetic material and preparation method and application |
CN108048906A (en) * | 2017-12-08 | 2018-05-18 | 中山大学 | A kind of DNA is oriented to gold nano-crystal and preparation method and application |
CN108395531B (en) * | 2018-01-18 | 2021-02-26 | 东华大学 | A kind of preparation method of zwitterion and morpholine-modified polyamide-amine dendrimers encapsulating gold nanoparticles |
CN109030450A (en) * | 2018-05-25 | 2018-12-18 | 苏州大学 | A method for two-way controllable self-assembly of metal nanoparticles with different charges on the surface of a substrate |
CN111529713B (en) * | 2020-05-11 | 2021-10-22 | 山东大学 | A kind of AuNPs/miR-140 complex and its preparation method and application |
CN114609215A (en) * | 2022-03-22 | 2022-06-10 | 汪开继 | Portable device for simultaneously detecting glucose and insulin and preparation and detection methods |
CN116441555B (en) * | 2023-06-16 | 2023-08-22 | 北京建工环境修复股份有限公司 | Functionalized gold nanorod probe, preparation method and application thereof in pentachlorophenol dark field microscopic imaging detection |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101153333A (en) * | 2007-09-27 | 2008-04-02 | 上海交通大学 | Fabrication method of gold nanorod array chip based on DNA molecule |
-
2010
- 2010-09-07 CN CN 201010274005 patent/CN102397557B/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106770049A (en) * | 2016-12-22 | 2017-05-31 | 南京邮电大学 | Based on the method that DNA paper foldings template and nanometer gold bar build Dolmen structures |
CN106770049B (en) * | 2016-12-22 | 2020-04-14 | 南京邮电大学 | A method for constructing Dolmen structures based on DNA origami templates and gold nanorods |
Also Published As
Publication number | Publication date |
---|---|
CN102397557A (en) | 2012-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102397557B (en) | Modification method for gold nanorods and gold nanorods-functional molecule composite | |
Chen et al. | Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications | |
Ayame et al. | Self-assembled cationic nanogels for intracellular protein delivery | |
CN103435815B (en) | A kind of functionalization Polyamidoamine Dendrimers and nano-complex thereof are used for the method for gene transfection | |
Jiang et al. | Target specific intracellular delivery of siRNA/PEI− HA complex by receptor mediated endocytosis | |
Han et al. | Functionalization and optimization-strategy of graphene oxide-based nanomaterials for gene and drug delivery | |
CN103255174B (en) | With liquid and application that the hyaluronic acid of polyoxyethylene glycol grafting is outer field ternary complex and ternary complex | |
CN102380103B (en) | Mannose-modified thiolated chitosan quaternary ammonium salt nanoparticle, preparing method and application thereof | |
CN102397266B (en) | Nanoparticle preparation method and nanoparticles prepared by method thereof | |
Ojea-Jiménez et al. | Engineered nonviral nanocarriers for intracellular gene delivery applications | |
Játiva et al. | Use of nanoparticles for glioblastoma treatment: a new approach | |
CN106890343B (en) | Targeting polypeptide nano gene vector compound | |
Aljabali et al. | Inorganic-organic nanomaterials for therapeutics and molecular imaging applications | |
CN101845451A (en) | PEI (Polyetherimide)-chitosan triply compound gene vector with low molecular weight and preparation method and application thereof | |
CN105199400A (en) | Beta-cyclodextrin-modified polyamide-dendrimer and preparation method of gold nanoparticle compound of beta-cyclodextrin-modified polyamide-dendrimer | |
CN102268436A (en) | Oligonucleotide aptamer of prostatic cancer target gene, delivery carrier, delivery system and preparation methods thereof | |
CN107129522B (en) | Lipoic acid modified inherent disordered protein nano-carrier and preparation method and application thereof | |
CN105218699A (en) | The chitosan of oligomerization arginine covalent modification, preparation method, screening and application | |
CN103623417B (en) | A kind of application of nano-complex of functionalization Polyamidoamine Dendrimers | |
CN103627005B (en) | Polyethyleneglycol modified polymine and the purposes as antigen protein carrier thereof | |
CN103990138B (en) | Layer-by-layer assembled nanogold composite drug delivery carrier system, preparation method and application thereof | |
CN101302532A (en) | A kind of gene carrier system containing targeting masking system and its preparation method and application | |
CN102961759B (en) | A kind of target gene transfection method wrapping up the folic acid functional poly amide amine dendrimer supports of nanogold particle | |
CN115282293A (en) | Cyclic mRNA polymer-lipid hybrid delivery system and preparation method and application thereof | |
CN102517332B (en) | EGF (epidermal growth factor)-modified PAMAM (polyamidoamine) self-assembled composite for transgenosis as well as preparation method and applications thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |