CN102392151B - Method for refining SrMgSn phase in Mg-Sn-Sr magnesium alloy by adding Ca - Google Patents
Method for refining SrMgSn phase in Mg-Sn-Sr magnesium alloy by adding Ca Download PDFInfo
- Publication number
- CN102392151B CN102392151B CN 201110376054 CN201110376054A CN102392151B CN 102392151 B CN102392151 B CN 102392151B CN 201110376054 CN201110376054 CN 201110376054 CN 201110376054 A CN201110376054 A CN 201110376054A CN 102392151 B CN102392151 B CN 102392151B
- Authority
- CN
- China
- Prior art keywords
- alloy
- srmgsn
- phase
- refining
- magnesium alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及的是一种加Ca细化Mg-Sn-Sr系镁合金中SrMgSn相的方法,属于金属材料类及冶金领域。 The invention relates to a method for adding Ca to refine the SrMgSn phase in a Mg-Sn-Sr series magnesium alloy, belonging to the field of metal materials and metallurgy.
背景技术 Background technique
镁合金作为最轻质的商用金属工程结构材料,因其具有比重轻、比强度比刚度高、阻尼减振降燥能力强、液态成型性能优越和易于回收利用等优点,被誉为21世纪“绿色结构材料”。但目前由于现有镁合金的高温抗蠕变性能差,长期工作温度不能超过120℃,使其无法用于制造对高温蠕变性能要求高的汽车传动部件,因此极大地阻碍了镁合金的进一步应用。也正是由于这样,国内外对于具有高温抗蠕变性能的汽车用耐热镁合金的研究开发给予了高度重视,并先后试制研究了Mg-A1-Si、Mg-A1-RE、Mg-A1-Ca、Mg-A1-Ca-RE、Mg-A1-Sr、Mg-A1-Sn、Mg-Zn-A1、Mg-Zn-RE、Mg-Zn-Si、Mg-Zn-Sn和Mg-Sn-Ca等系列的耐热镁合金。在这些已得到试制研究的耐热镁合金中,Mg-Sn-Sr系镁合金由于具有高温性能较好、成本较低和抗腐蚀性能好等方面的优势,被认为是一种很有发展前途的新一代高温抗蠕变镁合金[Hongmei Liu,Yungui Chen,Haofeng Zhao,Shanghai Wei,Wei Gao,Effects of strontium on microstructure and mechanical properties of as-cast Mg-5 wt.%Sn alloy,Journal of Alloys and Compounds,2010,504(2):345-350]。与其他耐热镁合金相比,Mg-Sn-Sr系镁合金的耐热强化机理主要在于通过引入低成本合金元素Sn和Sr在晶界和晶内形成SrMgSn相来实现。由于SrMgSn相在300℃以下相当稳定,从而使得Mg-Sn-Sr系镁合金具有较高的高温抗蠕变性能。也正是看到Mg-Sn-Sr系镁合金所具有的优点,所以在最近几年人们对Mg-Sn-Sr系耐热镁合金的研究和开发给予了广泛的关注和高度的重视,并对此开展了积极的研究。如李世成等通过调查发现Mg-5Sn-2Sr和Mg-5Sn-3Sr三元镁合金在175℃和35MPa条件下的稳态蠕变速率分别为3.93×10-7s-1 和 3.67×10-7s-1,显示出了较高的高温抗蠕变性能 [李世成,陈云贵,肖素芬,唐永柏,王卿,赵源华和丁武城,铸态Mg-5Sn-(0~3)Sr合金的组织和性能,特种铸造及有色合金,2011,31(4):369-372]。目前,尽管国内外对于Mg-Sn-Sr系镁合金已开展了一定的研究,但其推广应用仍因合金的综合力学性能较差等原因而受到一定程度的限制。正如上面所述,Mg-Sn-Sr系镁合金的耐热强化机理主要在于通过引入低成本合金元素Sn和Sr在晶界和晶内形成SrMgSn相来实现,但由于形成的SrMgSn相比较粗大,而粗大的SrMgSn相会成为裂纹源而导致合金的抗蠕变性能下降。因此,细化SrMgSn相被认为是改善Mg-Sn-Sr系镁合金抗蠕变性能的关键因素之一。众所周知,合金化和/或微合金化是细化和/或变质工程合金中第二相的有效方法之一。但截止目前,关于合金化和/或微合金化细化Mg-Sn-Sr系镁合金中粗大SrMgSn相的调查还未见文献报道。 As the lightest commercial metal engineering structural material, magnesium alloy is known as the "21st century" because of its light specific gravity, high specific strength and specific stiffness, strong damping and vibration reduction, excellent liquid forming performance and easy recycling. Green Structural Materials". However, at present, due to the poor high-temperature creep resistance of existing magnesium alloys, the long-term working temperature cannot exceed 120°C, making it impossible to manufacture automotive transmission parts that require high high-temperature creep performance, thus greatly hindering the further development of magnesium alloys. application. It is precisely because of this that the research and development of heat-resistant magnesium alloys for automobiles with high-temperature creep resistance at home and abroad have been highly valued, and Mg-A1-Si, Mg-A1-RE, and Mg-A1 have been trial-produced successively. -Ca, Mg-A1-Ca-RE, Mg-A1-Sr, Mg-A1-Sn, Mg-Zn-A1, Mg-Zn-RE, Mg-Zn-Si, Mg-Zn-Sn and Mg-Sn - Ca and other series of heat-resistant magnesium alloys. Among these heat-resistant magnesium alloys that have been trial-produced and studied, the Mg-Sn-Sr series magnesium alloy is considered to be a promising one due to its advantages in high temperature performance, low cost and good corrosion resistance. A new generation of high-temperature creep-resistant magnesium alloys [Hongmei Liu, Yungui Chen, Haofeng Zhao, Shanghai Wei, Wei Gao, Effects of strontium on microstructure and mechanical properties of as-cast Mg-5 wt.%Sn alloy, Journal of Alloys and Compounds, 2010, 504(2): 345-350]. Compared with other heat-resistant magnesium alloys, the heat-resistant strengthening mechanism of Mg-Sn-Sr magnesium alloys is mainly achieved by introducing low-cost alloying elements Sn and Sr to form SrMgSn phases at grain boundaries and within grains. Since the SrMgSn phase is quite stable below 300°C, the Mg-Sn-Sr series magnesium alloy has high high temperature creep resistance. It is also because of the advantages of Mg-Sn-Sr series magnesium alloys that people have paid extensive attention and paid great attention to the research and development of Mg-Sn-Sr series heat-resistant magnesium alloys in recent years. Active research has been carried out on this. For example, Li Shicheng found that the steady-state creep rates of Mg-5Sn-2Sr and Mg-5Sn-3Sr ternary magnesium alloys at 175°C and 35MPa were 3.93×10 -7 s -1 and 3.67×10 -7 respectively. s -1 , showing high high temperature creep resistance [Li Shicheng, Chen Yungui, Xiao Sufen, Tang Yongbai, Wang Qing, Zhao Yuanhua and Ding Wucheng, Microstructure and properties of as-cast Mg-5Sn-(0~3)Sr alloy , Special Casting and Nonferrous Alloys, 2011, 31(4): 369-372]. At present, although a certain amount of research has been carried out on Mg-Sn-Sr series magnesium alloys at home and abroad, its popularization and application is still limited to a certain extent due to the poor comprehensive mechanical properties of the alloy. As mentioned above, the heat resistance strengthening mechanism of Mg-Sn-Sr magnesium alloys is mainly achieved by introducing low-cost alloying elements Sn and Sr to form SrMgSn phases at grain boundaries and within grains, but because the formed SrMgSn phase is relatively coarse, The coarse SrMgSn phase will become the source of cracks and lead to the decrease of the creep resistance of the alloy. Therefore, refining the SrMgSn phase is considered to be one of the key factors to improve the creep resistance of Mg-Sn-Sr series magnesium alloys. It is well known that alloying and/or microalloying is one of the effective methods to refine and/or modify second phases in engineering alloys. But so far, there is no literature report on the investigation of the coarse SrMgSn phase in Mg-Sn-Sr alloys refined by alloying and/or microalloying.
发明内容 Contents of the invention
本发明的目的在于针对现有Mg-Sn-Sr系镁合金因存在粗大SrMgSn相而影响合金性能这一不足,提出采用合金化和微合金化的方法,包括其细化工艺,以达到细化Mg-Sn-Sr系镁合金中粗大SrMgSn相这一目的,从而改善Mg-Sn-Sr系镁合金的力学性能,加快该系镁合金的工业化应用进程。 The purpose of the present invention is to solve the problem that the existing Mg-Sn-Sr series magnesium alloys have coarse SrMgSn phases that affect the performance of the alloys, and propose a method of alloying and microalloying, including its refinement process, to achieve refinement. The purpose of the coarse SrMgSn phase in the Mg-Sn-Sr series magnesium alloy is to improve the mechanical properties of the Mg-Sn-Sr series magnesium alloy and accelerate the industrial application process of this series magnesium alloy.
为了实现上述目的,本发明提出一种加Ca细化Mg-Sn-Sr系镁合金中粗大SrMgSn相的方法及细化工艺,在Mg-Sn-Sr系镁合金中通过添加Mg-19wt%Ca中间合金的方法,来细化Mg-Sn-Sr系镁合金中的粗大SrMgSn相,同时Ca的加入除有上述细化作用外还兼有强化合金的作用。 In order to achieve the above object, the present invention proposes a method and refinement process of adding Ca to refine the coarse SrMgSn phase in the Mg-Sn-Sr series magnesium alloy. In the Mg-Sn-Sr series magnesium alloy, by adding Mg-19wt%Ca The method of intermediate alloy is used to refine the coarse SrMgSn phase in the Mg-Sn-Sr series magnesium alloy. At the same time, the addition of Ca not only has the above-mentioned refining effect, but also has the effect of strengthening the alloy.
本发明的细化工艺如下:在熔剂或气体保护下,将Mg-Sn-Sr镁合金按相应的成分配比熔化后升温到720-740℃,加入Mg-19wt.%Ca中间合金;Ca加入量占炉料总重量的百分比为0.1-0.25wt.%,加入方法:在100-150℃将Mg-19wt.%Ca中间合金烘烤15-30分钟,然后用压瓢迅速压入合金液面以下约2-6分钟,搅拌后升温到730-750℃,然后用C2Cl6精炼剂精炼处理5-10分钟,精炼完毕后搅拌合金熔体并在740℃静置10-15分钟,静置完毕后捞去表面浮渣,然后进行铸造。 The refinement process of the present invention is as follows: Under the protection of flux or gas, melt the Mg-Sn-Sr magnesium alloy according to the corresponding composition ratio and then heat it up to 720-740°C, add Mg-19wt.%Ca master alloy; Ca is added The percentage of the amount to the total weight of the charge is 0.1-0.25wt.%, adding method: bake the Mg-19wt.%Ca master alloy at 100-150°C for 15-30 minutes, and then quickly press it into the alloy below the liquid level with a pressure ladle About 2-6 minutes, after stirring, heat up to 730-750°C, then refine with C 2 Cl 6 refining agent for 5-10 minutes, after refining, stir the alloy melt and stand at 740°C for 10-15 minutes, let stand After the completion, the surface scum is removed, and then casting is carried out.
采用本方法细化SrMgSn相的机理在于Ca元素具有较Sn元素更大的原子半径(Ca: 0.197nm; Sn: 0.141nm)。当添加Ca到Mg-Sn-Sr镁合金中后,由于Ca元素在镁基体中的固溶度较低,在凝固过程中会在固-液界面富集,从而阻碍Sn原子扩散,并最终导致SrMgSn相细化。此外,添加少量Ca在Mg-Sn-Sr镁合金中会形成CaMgSn相,由于CaMgSn相和SrMgSn相的晶体结构均为Orthorhombic/Pnma结构,且两者的晶格常数相近(CaMgSn相的晶格常数:a=7.86,b=4.66和c=8.74;SrMgSn相的晶格常数: a=8.18,b=4.92和c=8.75),使得CaMgSn相与SrMgSn相间的晶格错配度小于6%,因此CaMgSn相会在Mg-Sn-Sr镁合金凝固过程中成为SrMgSn相的异质形核核心,从而使SrMgSn相得到进一步细化。 The mechanism of using this method to refine the SrMgSn phase is that the Ca element has a larger atomic radius than the Sn element (Ca: 0.197nm; Sn: 0.141nm). When Ca is added to the Mg-Sn-Sr magnesium alloy, due to the low solid solubility of Ca element in the magnesium matrix, it will be enriched at the solid-liquid interface during solidification, thereby hindering the diffusion of Sn atoms, and eventually leading to SrMgSn phase refinement. In addition, adding a small amount of Ca will form the CaMgSn phase in the Mg-Sn-Sr magnesium alloy, because the crystal structures of the CaMgSn phase and the SrMgSn phase are both Orthorhombic/Pnma structures, and the lattice constants of the two are similar (the lattice constant of the CaMgSn phase : a=7.86, b=4.66 and c=8.74; the lattice constant of the SrMgSn phase: a=8.18, b=4.92 and c=8.75), making the lattice mismatch between the CaMgSn phase and the SrMgSn phase less than 6%, so The CaMgSn phase will become the heterogeneous nucleation core of the SrMgSn phase during the solidification process of the Mg-Sn-Sr magnesium alloy, thereby further refining the SrMgSn phase.
附图说明 Description of drawings
图1A和图1B是Mg-3Sn-2Sr镁合金未加Ca和加Ca细化后的金相组织对比图: Figure 1A and Figure 1B are the metallographic structure comparison diagrams of Mg-3Sn-2Sr magnesium alloy without adding Ca and adding Ca and refining:
图2A和图2B是Mg-5Sn-3Sr镁合金未加Ca和加Ca细化后的金相组织对比图: Fig. 2A and Fig. 2B are comparison diagrams of metallographic structure of Mg-5Sn-3Sr magnesium alloy without adding Ca and adding Ca and refining:
图3A和图3B是Mg-5Sn-1.5Sr镁合金未加Ca和加Ca细化后的金相组织对比图: Figure 3A and Figure 3B are comparison diagrams of metallographic structure of Mg-5Sn-1.5Sr magnesium alloy without adding Ca and adding Ca and refining:
图4A和图4B是Mg-4Sn-2Sr镁合金未加Ca和加Ca细化后的金相组织对比图。 Figure 4A and Figure 4B are comparison diagrams of metallographic structure of Mg-4Sn-2Sr magnesium alloy without adding Ca and adding Ca.
具体实施方式 Detailed ways
以下通过具体的四个实施例对本发明的技术方案和效果作进一步阐述。 The technical solutions and effects of the present invention will be further elaborated below through four specific examples.
实施例1:在熔剂或气体保护下,将Mg-3Sn-2Sr镁合金按相应的成分配比熔化后升温到720℃,加入Mg-19wt.%Ca中间合金;Ca加入量占炉料总重量的百分比为0.20wt.%,加入方法:在100-150℃将Mg-19wt.%Ca中间合金烘烤15-30分钟,然后用压瓢迅速压入合金液面以下约2分钟,搅拌后升温到730℃,然后用C2Cl6精炼剂精炼处理5-10分钟,精炼完毕后搅拌合金熔体并在740℃静置12分钟,静置完毕后捞去表面浮渣,然后进行铸造。 Example 1: Under the protection of flux or gas, the Mg-3Sn-2Sr magnesium alloy is melted according to the corresponding composition ratio, and then the temperature is raised to 720 °C, and the Mg-19wt.%Ca master alloy is added; the amount of Ca added accounts for 2% of the total weight of the charge The percentage is 0.20wt.%, adding method: bake the Mg-19wt.%Ca master alloy at 100-150°C for 15-30 minutes, then use a pressure ladle to quickly press it below the alloy liquid level for about 2 minutes, stir and heat up to 730°C, and then refined with C 2 Cl 6 refining agent for 5-10 minutes. After refining, stir the alloy melt and stand at 740°C for 12 minutes. After standing, remove the surface scum, and then cast.
实施例2:在熔剂或气体保护下,将Mg-5Sn-3Sr镁合金按相应的成分配比熔化后升温到730℃,加入Mg-19wt.%Ca中间合金;Ca加入量占炉料总重量的百分比为0.25wt.%,加入方法:在100-150℃将Mg-19wt.%Ca中间合金烘烤15-30分钟,然后用压瓢迅速压入合金液面以下约3分钟,搅拌后升温到740℃,然后用C2Cl6精炼剂精炼处理5-10分钟,精炼完毕后搅拌合金熔体并在740℃静置10分钟,静置完毕后捞去表面浮渣,然后进行铸造。 Example 2: Under the protection of flux or gas, the Mg-5Sn-3Sr magnesium alloy is melted according to the corresponding composition ratio, and then the temperature is raised to 730 ° C, and the Mg-19wt.%Ca master alloy is added; the amount of Ca added accounts for 2% of the total weight of the charge The percentage is 0.25wt.%, adding method: bake the Mg-19wt.%Ca master alloy at 100-150℃ for 15-30 minutes, then use a pressure ladle to quickly press it below the alloy liquid level for about 3 minutes, stir and heat up to 740°C, then refining with C 2 Cl 6 refining agent for 5-10 minutes, after refining, stir the alloy melt and stand at 740°C for 10 minutes, remove the surface scum after standing, and then cast.
实施例3:在熔剂或气体保护下,将Mg-5Sn-1.5Sr镁合金按相应的成分配比熔化后升温到740℃,加入Mg-19wt.%Ca中间合金;Ca加入量占炉料总重量的百分比为0.16wt.%,加入方法:在100-150℃将Mg-19wt.%Ca中间合金烘烤15-30分钟,然后用压瓢迅速压入合金液面以下约6分钟,搅拌后升温到750℃,然后用C2Cl6精炼剂精炼处理5-10分钟,精炼完毕后搅拌合金熔体并在740℃静置15分钟,静置完毕后捞去表面浮渣,然后进行铸造。 Example 3: Under the protection of flux or gas, the Mg-5Sn-1.5Sr magnesium alloy is melted according to the corresponding composition ratio, and then the temperature is raised to 740°C, and the Mg-19wt.%Ca master alloy is added; the amount of Ca added accounts for the total weight of the charge The percentage is 0.16wt.%, adding method: bake the Mg-19wt.%Ca master alloy at 100-150℃ for 15-30 minutes, then use a pressure ladle to quickly press it into the alloy liquid level for about 6 minutes, stir and heat up to 750°C, and then refined with C 2 Cl 6 refining agent for 5-10 minutes. After refining, stir the alloy melt and stand at 740°C for 15 minutes. After standing, remove the surface scum, and then cast.
实施例4:在熔剂或气体保护下,将Mg-4Sn-2Sr镁合金按相应的成分配比熔化后升温到740℃,加入Mg-19wt.%Ca中间合金;Ca加入量占炉料总重量的百分比为0.10wt.%,加入方法:在100-150℃将Mg-19wt.%Ca中间合金烘烤15-30分钟,然后用压瓢迅速压入合金液面以下约3分钟,搅拌后升温到740℃,然后用C2Cl6精炼剂精炼处理5-10分钟,精炼完毕后搅拌合金熔体并在740℃静置10分钟,静置完毕后捞去表面浮渣,然后进行铸造。 Example 4: Under the protection of flux or gas, the Mg-4Sn-2Sr magnesium alloy is melted according to the corresponding composition ratio and the temperature is raised to 740 ° C, and the Mg-19wt.%Ca master alloy is added; the amount of Ca added accounts for 2% of the total weight of the charge The percentage is 0.10wt.%, adding method: bake the Mg-19wt.%Ca master alloy at 100-150°C for 15-30 minutes, then use a pressure ladle to quickly press it below the alloy liquid level for about 3 minutes, stir and heat up to 740°C, then refining with C 2 Cl 6 refining agent for 5-10 minutes, after refining, stir the alloy melt and stand at 740°C for 10 minutes, remove the surface scum after standing, and then cast.
将以上四个实施例和未加Ca的Mg-Sn-Sr镁合金的成分和组织分析及性能测试结果如表1所示。 从表1中的对比分析结果可看到,Mg-Sn-Sr系镁合金中加入一定量Ca后,合金组织中SrMgSn相的平均尺寸明显减小。同时,合金抗拉性能和蠕变性能得到提高。 Table 1 shows the composition and structure analysis and performance test results of the above four examples and the Mg-Sn-Sr magnesium alloy without Ca addition. From the comparative analysis results in Table 1, it can be seen that after adding a certain amount of Ca to the Mg-Sn-Sr series magnesium alloy, the average size of the SrMgSn phase in the alloy structure is significantly reduced. At the same time, the tensile properties and creep properties of the alloy are improved.
。 .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110376054 CN102392151B (en) | 2011-11-23 | 2011-11-23 | Method for refining SrMgSn phase in Mg-Sn-Sr magnesium alloy by adding Ca |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110376054 CN102392151B (en) | 2011-11-23 | 2011-11-23 | Method for refining SrMgSn phase in Mg-Sn-Sr magnesium alloy by adding Ca |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102392151A CN102392151A (en) | 2012-03-28 |
CN102392151B true CN102392151B (en) | 2012-12-05 |
Family
ID=45859530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110376054 Expired - Fee Related CN102392151B (en) | 2011-11-23 | 2011-11-23 | Method for refining SrMgSn phase in Mg-Sn-Sr magnesium alloy by adding Ca |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102392151B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0578764A (en) | 1991-02-15 | 1993-03-30 | Kolbenschmidt Ag | Light metal piston for combustion engine and fabrication thereof |
EP1835042A1 (en) * | 2006-03-18 | 2007-09-19 | Acrostak Corp. | Magnesium-based alloy with improved combination of mechanical and corrosion characteristics |
CN101985712A (en) * | 2010-12-08 | 2011-03-16 | 重庆理工大学 | Method for thinning Mg-RE-Mn-Sc series magnesium alloy crystalline grains by adding Zr |
CN101985711A (en) * | 2010-12-08 | 2011-03-16 | 重庆理工大学 | Multicomponent heat-resistant magnesium alloy taking Sn and Gd as main components and preparation method thereof |
-
2011
- 2011-11-23 CN CN 201110376054 patent/CN102392151B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0578764A (en) | 1991-02-15 | 1993-03-30 | Kolbenschmidt Ag | Light metal piston for combustion engine and fabrication thereof |
EP1835042A1 (en) * | 2006-03-18 | 2007-09-19 | Acrostak Corp. | Magnesium-based alloy with improved combination of mechanical and corrosion characteristics |
CN101985712A (en) * | 2010-12-08 | 2011-03-16 | 重庆理工大学 | Method for thinning Mg-RE-Mn-Sc series magnesium alloy crystalline grains by adding Zr |
CN101985711A (en) * | 2010-12-08 | 2011-03-16 | 重庆理工大学 | Multicomponent heat-resistant magnesium alloy taking Sn and Gd as main components and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102392151A (en) | 2012-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106555067B (en) | A kind of composite refining Modification Manners for lifting Mechanical Properties of Aluminum Alloys | |
CN101158002A (en) | AE series heat-resistant die-casting magnesium alloy containing cerium and lanthanum | |
CN108950264B (en) | Refining method for cast aluminum-lithium alloy with high lithium content | |
CN101440449B (en) | Multicomponent heat resisting magnesium alloy and preparation thereof | |
CN102242298A (en) | Al and Zn strengthened Mg-Sn-RE-based high-toughness heat-resistant magnesium alloy | |
CN101928847B (en) | A kind of magnesium alloy smelting process | |
CN101469387B (en) | Yttrium-rich rare earth high-strength heat-resistant creep-resistant die-casting magnesium alloy | |
CN101403063B (en) | Process for producing in situ AM60 magnesium-base composite material semi-solid state | |
CN101985713A (en) | Method for refining CaMgSn phase in Mg-Sn-Ca series magnesium alloy by adding Sr | |
CN101440438B (en) | Method of adding Ce to refine CaMgSn phase in Mg-Sn-Ca series magnesium alloy | |
CN102140602A (en) | A kind of Al-Si-Cu-Mg-xSm rare earth die casting aluminum alloy | |
CN101871068A (en) | A kind of high-strength high-plasticity magnesium alloy containing tin and aluminum and preparation method thereof | |
CN101158003A (en) | A kind of Nd, Sr composite strengthening heat-resistant magnesium alloy and preparation method thereof | |
CN101235454A (en) | A kind of quasicrystal reinforced Mg-Zn-Er heat-resistant magnesium alloy and its preparation method | |
CN102392151B (en) | Method for refining SrMgSn phase in Mg-Sn-Sr magnesium alloy by adding Ca | |
CN101985712B (en) | Method for thinning Mg-RE-Mn-Sc series magnesium alloy crystalline grains by adding Zr | |
CN109762959B (en) | A kind of smelting method of special steel and special steel | |
CN101985711B (en) | Multicomponent heat-resistant magnesium alloy taking Sn and Gd as main components and preparation method thereof | |
CN102140601B (en) | Al-Si-Cu-Mg-xEr rare earth die-casting aluminum alloy | |
CN101440441B (en) | Method of adding Y to refine CaMgSn phase in Mg-Sn-Ca series magnesium alloy | |
CN101082093A (en) | Method for remelting and circulating utilization of waste foamed aluminium | |
CN115874073B (en) | A method for melting high entropy alloy | |
CN112063885A (en) | Ruthenium-containing multi-component TiAl alloy suitable for 800 DEG C | |
CN1523128A (en) | High fluidity lost foam casting magnesium alloy and its melting method | |
CN100415908C (en) | A solid solution treatment method for heat treatment strengthening of hypoeutectic cast aluminum-silicon alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121205 Termination date: 20201123 |
|
CF01 | Termination of patent right due to non-payment of annual fee |