CN102386907B - Integrating circuit - Google Patents
Integrating circuit Download PDFInfo
- Publication number
- CN102386907B CN102386907B CN 201010269770 CN201010269770A CN102386907B CN 102386907 B CN102386907 B CN 102386907B CN 201010269770 CN201010269770 CN 201010269770 CN 201010269770 A CN201010269770 A CN 201010269770A CN 102386907 B CN102386907 B CN 102386907B
- Authority
- CN
- China
- Prior art keywords
- terminal
- capacitor
- coupled
- switch
- integrating circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 61
- 238000004146 energy storage Methods 0.000 claims description 25
- 230000000630 rising effect Effects 0.000 abstract description 2
- 230000010354 integration Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Landscapes
- Amplifiers (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种积分电路,且特别涉及一种利用电容的电荷分配理论来达到高解析度与低相位差的积分电路。The present invention relates to an integrating circuit, and in particular to an integrating circuit which utilizes the charge distribution theory of capacitance to achieve high resolution and low phase difference.
背景技术 Background technique
积分器是常见的模拟电路,主要用来进行数学中的积分运算。典型的电压积分器是利用电阻与电容组成的分压电路来实现。由于通过电容的电流与电压的变化速度有关,也就是相关于电压被时间微分的结果,所以电容两端的分压可视为输入电压的积分结果,而电阻两端的分压则可视为输入电压的微分结果。在现有技术中,运算放大器也常应用于积分电路或微分电路中以达到调整输入阻抗与输出阻抗的效果。Integrators are common analog circuits that are mainly used for integral operations in mathematics. A typical voltage integrator is implemented using a voltage divider circuit composed of resistors and capacitors. Since the current passing through the capacitor is related to the speed of voltage change, that is, the result of the voltage being differentiated by time, the divided voltage across the capacitor can be regarded as the integral result of the input voltage, and the divided voltage across the resistor can be regarded as the input voltage The differential result. In the prior art, operational amplifiers are often used in integrating circuits or differential circuits to achieve the effect of adjusting input impedance and output impedance.
另一种现有的低频积分器是利用模数转换器(Analog to Digital Converter,ADC)将信号转换为数字信号,然后再进行积分,但是这样电路积分的准确度会受限于ADC的解析度。使用高解析度的ADC虽然可提高积分器的准确度,但是会使得电路设计成本上升。另外,现有技术中需要使用低通滤波器来滤除高频以取得直流成分,然后再进行积分,然而要滤除愈低频的成分,需要的电容值会愈大,这会造成本上升,也会产生相位落差,并且会造成系统控制的低频震荡。Another existing low-frequency integrator uses an analog-to-digital converter (Analog to Digital Converter, ADC) to convert the signal into a digital signal and then integrates it, but the accuracy of the circuit integration is limited by the resolution of the ADC . Although the use of a high-resolution ADC can improve the accuracy of the integrator, it will increase the cost of circuit design. In addition, in the prior art, it is necessary to use a low-pass filter to filter out the high frequency to obtain the DC component and then integrate it. However, the lower the frequency component is to be filtered out, the larger the capacitor value will be required, which will increase the cost. Phase drop is also produced and can cause system controlled low frequency oscillations.
发明内容 Contents of the invention
本发明提供一种积分电路,其利用电容的电荷分配原理,实现低频混合式的积分电路,不仅解析度高,同时也不会造成大的相位差,可达到低成本高效能的效果。The invention provides an integrating circuit, which utilizes the charge distribution principle of a capacitor to realize a low-frequency hybrid integrating circuit, which not only has high resolution, but also does not cause a large phase difference, and can achieve low-cost and high-efficiency effects.
本发明提出一种积分电路,包括一第一储能元件、一第一切换单元、一第二切换单元以及一第二储能元件。第一储能元件耦接于一第一端与一第二端之间。第一切换单元耦接于第一端与一输入端以及耦接于第二端与接地端,用以选择性导通第一端与输入端以及选择性导通第二端与该接地端。第二切换单元耦接于第一端与第二端与一第三端,用以选择性导通第一端与第三端以及选择性传导第一端的电压至第二端。第二储能元件耦接于第三端与接地端之间。The present invention proposes an integrating circuit, which includes a first energy storage element, a first switching unit, a second switching unit and a second energy storage element. The first energy storage element is coupled between a first end and a second end. The first switching unit is coupled between the first terminal and an input terminal and between the second terminal and the ground terminal, and is used for selectively conducting the first terminal and the input terminal and selectively conducting the second terminal and the ground terminal. The second switching unit is coupled to the first terminal, the second terminal and a third terminal, and is used for selectively conducting the first terminal and the third terminal and selectively conducting the voltage of the first terminal to the second terminal. The second energy storage element is coupled between the third end and the ground end.
在本发明一实施例中,其中当第一切换单元导通第一端与输入端且导通第二端与接地端时,第二切换单元不导通第一端与第三端。In an embodiment of the present invention, when the first switching unit conducts the first terminal and the input terminal and conducts the second terminal and the ground terminal, the second switching unit does not conduct the first terminal and the third terminal.
在本发明一实施例中,其中当第二切换单元导通第一端与第三端且传导第一端的电压至第二端时,第一切换单元不导通第一端与输入端且不导通第二端与接地端。In an embodiment of the present invention, when the second switching unit conducts the first terminal and the third terminal and conducts the voltage of the first terminal to the second terminal, the first switching unit does not conduct the first terminal and the input terminal and The second end and the ground end are not conducted.
在本发明一实施例中,其中第一切换单元包括一第一开关与一第二开关。第一开关耦接于该第一端与该输入端之间,第二开关耦接于该第二端与该接地端之间。其中,第一开关与第二开关受控于一第一控制信号。In an embodiment of the present invention, the first switching unit includes a first switch and a second switch. The first switch is coupled between the first terminal and the input terminal, and the second switch is coupled between the second terminal and the ground terminal. Wherein, the first switch and the second switch are controlled by a first control signal.
在本发明一实施例中,其中第二切换单元包括一第三开关、一第一单位增益放大器与一第四开关。第三开关耦接于该第一端与该第三端之间,第一单位增益放大器的输入耦接于该第一端。第四开关耦接于第一单位增益放大器的输出与第二端之间。其中第三开关与第四开关受控于一第二控制信号。In an embodiment of the present invention, the second switching unit includes a third switch, a first unity gain amplifier and a fourth switch. The third switch is coupled between the first terminal and the third terminal, and the input of the first unit gain amplifier is coupled to the first terminal. The fourth switch is coupled between the output of the first unit gain amplifier and the second terminal. Wherein the third switch and the fourth switch are controlled by a second control signal.
在本发明一实施例中,上述第一控制信号致能时,第二控制信号禁能。In an embodiment of the present invention, when the first control signal is enabled, the second control signal is disabled.
在本发明一实施例中,上述积分电路还包括一第五开关,耦接于第三端与接地端之间。上述第一储能元件为一第一电容,上述第二储能元件为一第二电容,且第一电容的电容值小于第二电容的电容值。In an embodiment of the present invention, the integration circuit further includes a fifth switch coupled between the third terminal and the ground terminal. The first energy storage element is a first capacitor, the second energy storage element is a second capacitor, and the capacitance of the first capacitor is smaller than the capacitance of the second capacitor.
在本发明一实施例中,上述积分电路还包括一输出缓冲单元,耦接于第三端与一输出端之间。该输出缓冲单元包括一第二单位增益放大器、一第六开关、一第三单位增益放大器以及一第三电容。第二单位增益放大器的输入耦接于第三端,第六开关的一端耦接于第二单位增益放大器的输出。第三单位增益放大器的输入耦接于第六开关的另一端,第三单位增益放大器的输出耦接于输出端。第三电容耦接于第三单位增益放大器的输入与接地端之间。In an embodiment of the present invention, the integration circuit further includes an output buffer unit coupled between the third terminal and an output terminal. The output buffer unit includes a second unit gain amplifier, a sixth switch, a third unit gain amplifier and a third capacitor. The input of the second unit gain amplifier is coupled to the third end, and one end of the sixth switch is coupled to the output of the second unit gain amplifier. The input of the third unit gain amplifier is coupled to the other end of the sixth switch, and the output of the third unit gain amplifier is coupled to the output end. The third capacitor is coupled between the input of the third unit gain amplifier and the ground terminal.
本发明的有益效果在于,综合上述,本发明所提出的积分电路,利用电容电荷分配原理,将分时取样的电压压缩并存储于电容中,借此提高积分电路的线性度。此外,相较于现有的积分器,本发明的积分电路的准确度不会受限于ADC的解析度也不会有相位差过大的问题,并且可达到低成本高效能的目的。The beneficial effect of the present invention is that, based on the above, the integrating circuit proposed by the present invention uses the capacitor charge distribution principle to compress and store the time-division sampled voltage in the capacitor, thereby improving the linearity of the integrating circuit. In addition, compared with the existing integrator, the accuracy of the integrating circuit of the present invention is not limited by the resolution of the ADC and there is no problem of excessive phase difference, and can achieve the goal of low cost and high performance.
为让本发明的上述特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings.
附图说明 Description of drawings
图1为根据本发明一实施例的积分电路的功能方框图。FIG. 1 is a functional block diagram of an integrating circuit according to an embodiment of the present invention.
图2为根据本实施例的积分电路图。FIG. 2 is a diagram of an integrating circuit according to this embodiment.
图3为根据本实施例的波形示意图。FIG. 3 is a schematic diagram of waveforms according to this embodiment.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100、200:积分电路100, 200: integrating circuit
110:第一切换单元110: the first switching unit
120:第一储能元件120: the first energy storage element
130:第二切换单元130: second switching unit
140:第二储能元件140: Second energy storage element
150:输出缓冲单元150: output buffer unit
310~360:波形310~360: waveform
T1~T3:第一至第三端T1~T3: first to third terminal
GND:接地端GND: ground terminal
TIN:输入端TIN: input terminal
TOUT:输出端TOUT: output terminal
SW1~SW6:第一至第六开关SW1~SW6: the first to sixth switches
C1~C3:第一至第三电容C1~C3: first to third capacitors
GA1~GA3:第一至第三单位增益放大器GA1~GA3: first to third unity gain amplifiers
CON1~CON3:第一至第三控制信号CON1~CON3: first to third control signals
VIN:输入信号VIN: input signal
VOUT:输出信号VOUT: output signal
具体实施方式 Detailed ways
请参照图1,图1为根据本发明一实施例的积分电路的功能方框图。积分电路100包括第一切换单元110、第一储能元件120、第二切换单元130、第二储能元件140与输出缓冲单元150。第一储能元件120耦接于第一端T1与第二端T2之间,第一切换单元110耦接于第一端T1与输入端TIN以及耦接于第二端T2与接地端GND,用以选择性导通第一端T1与输入端TIN以及选择性导通第二端T2与接地端GND。第二切换单元130耦接于第一端T1与第二端T2与第三端T3,用以选择性导通第一端T1与第三端T3以及选择性传导第一端T1的电压至第二端T2。第二储能元件140耦接于第三端T3与接地端GND之间。输出缓冲单元150耦接于第三端T3与输出端TOUT之间。Please refer to FIG. 1 , which is a functional block diagram of an integrating circuit according to an embodiment of the present invention. The
其中,当第一切换单元110导通第一端T1与输入端TIN且导通第二端T2与接地端GND时,第二切换单元130不导通第一端T1与第三端T3。当第二切换单元130导通第一端T1与第三端T3且传导第一端T1的电压至第二端T2时,第一切换单元110不导通第一端T1与输入端TIN且不导通第二端T2与接地端GND。第一切换单元110主要是用来决定取样输入信号VIN的取样率,每一次导通第一端T1与输入端TIN以及第二端T2与接地端GND时,就是对输入信号VIN取样一次。输入信号VIN的电压会存储在第一储能元件120中,然后第一切换单元110会关闭导通路径,接着第二切换单元130会导通第三端T3与第一端T1,并且将第一端T1的电压传导到第二端T2以推升第一储能元件120的基准电压。此时,第一储能元件120中的电荷会分布于第一储能元件120与第二储能元件140中以推升第三端T3的电压。借此,便可达到电压积分的效果。Wherein, when the
此外,值得注意的是,第一切换单元110与第二切换单元130主要用来切换导通路径,可利用多个开关或多路复用器或切换元件来实现,本实施例并不受限。第一储能元件120与第二储能元件140可利用单个电容器或多个电容器来实现,本实施例并不受限。输出缓冲单元150主要用来调整输出阻抗,可利用缓冲电路或单位增益放大器来组成,本实施例并不受限。In addition, it is worth noting that the
接下来,进一步说明本实施例的积分电路的电路实施细节,请同时参照图1与图2,图2为根据本实施例的积分电路图。在图2所示的积分电路200中,第一切换单元110包括第一开关SW1与第二开关SW2,第二切换单元130包括第三开关SW3与第四开关SW4与第一单位增益放大器GA1。第一储能元件120由第一电容C1实现,第二储能元件140由第二电容C2实现。输出缓冲单元150包括第二单位增益放大器GA2、第三单位增益放大器GA3、第六开关SW6与第三电容C3。积分电路200还包括第五开关SW5,耦接于第三端T3与接地端GND之间,用以将第二电容C2中的电荷引导至接地端GND以重置积分电路200。Next, the implementation details of the integration circuit of this embodiment will be further described. Please refer to FIG. 1 and FIG. 2 at the same time. FIG. 2 is a diagram of the integration circuit according to this embodiment. In the integrating
第一电容C1耦接于第一端T1与第二端T2之间,第二电容C2耦接于第三端与接地端GND之间。第一开关SW1耦接于第一端T1与输入端TIN之间,第二开关SW2耦接于第二端T2与接地端GND之间。第三开关SW3耦接于第一端T1与第三端T3之间,第一单位增益放大器GA1的输入耦接于第一端T1。第四开关SW4耦接于第一单位增益放大器GA1的输出与第二端T2之间。第二单位增益放大器GA2耦接于第三端T3与第六开关SW6之间,第三单位增益放大器GA3耦接于第六开关SW6的另一端与输出端TOUT之间。其中,第一至第三单位增益放大器GA1~GA3以负反馈的运算放大器实现,但本实施例并不受限于此。此外,值得注意的是,上述元件之间的耦接关系包括直接或间接或两者并行的电性连接,只要可以达到所需的电信号传递功能即可,本实施例并不受限。The first capacitor C1 is coupled between the first terminal T1 and the second terminal T2, and the second capacitor C2 is coupled between the third terminal and the ground terminal GND. The first switch SW1 is coupled between the first terminal T1 and the input terminal TIN, and the second switch SW2 is coupled between the second terminal T2 and the ground terminal GND. The third switch SW3 is coupled between the first terminal T1 and the third terminal T3, and the input of the first unity gain amplifier GA1 is coupled to the first terminal T1. The fourth switch SW4 is coupled between the output of the first unit gain amplifier GA1 and the second terminal T2. The second unity gain amplifier GA2 is coupled between the third terminal T3 and the sixth switch SW6 , and the third unity gain amplifier GA3 is coupled between the other terminal of the sixth switch SW6 and the output terminal TOUT. Wherein, the first to third unit gain amplifiers GA1 - GA3 are realized by negative feedback operational amplifiers, but this embodiment is not limited thereto. In addition, it should be noted that the coupling relationship between the above elements includes direct or indirect or parallel electrical connection, as long as the required electrical signal transmission function can be achieved, the present embodiment is not limited.
第一开关SW1与第二开关SW2受控于第一控制信号CON1,而第三开关SW3与第四开关SW4受控于第二控制信号CON2。当第一控制信号CON1致能时,第一开关SW1与第二开关SW2导通,反之则不导通。当第二控制信号CON2致能时,第三开关SW3与第四开关SW4导通,反之则不导通。第一控制信号CON1与第二控制信号CON2的波形请参考图3,图3为根据本实施例的波形示意图。请同时参照图2与图3,在进行积分运算时,第一控制信号CON1是用来控制取样的频率,每一次的致能(如波形310)都会在其致能期间中将输入信号VIN的电压存储至第一电容C1中。在第一控制信号CON1致能时,第二控制信号CON2会禁能。在第一控制信号CON1禁能后,第二控制信号CON2会随之致能(如波形340),让第一电容C1中的电荷可以分配至第二电容C2中以将输入信号VIN的电压压缩存储至第二电容C2。The first switch SW1 and the second switch SW2 are controlled by the first control signal CON1 , and the third switch SW3 and the fourth switch SW4 are controlled by the second control signal CON2 . When the first control signal CON1 is enabled, the first switch SW1 and the second switch SW2 are turned on, otherwise they are not turned on. When the second control signal CON2 is enabled, the third switch SW3 and the fourth switch SW4 are turned on, otherwise they are not turned on. Please refer to FIG. 3 for the waveforms of the first control signal CON1 and the second control signal CON2 . FIG. 3 is a schematic diagram of the waveforms according to this embodiment. Please refer to FIG. 2 and FIG. 3 at the same time. During the integration operation, the first control signal CON1 is used to control the sampling frequency, and each enable (such as waveform 310) will change the input signal VIN during its enable period. The voltage is stored in the first capacitor C1. When the first control signal CON1 is enabled, the second control signal CON2 is disabled. After the first control signal CON1 is disabled, the second control signal CON2 is then enabled (such as waveform 340), so that the charge in the first capacitor C1 can be distributed to the second capacitor C2 to compress the voltage of the input signal VIN stored in the second capacitor C2.
在第二控制信号CON2致能时,第三开关SW3与第四开关SW4会导通,所以第三端T3的电压会传导至第二端T2以推升第一电容C1的直流准位,让第一电容C1两端的电压差可以加载在原先的第三端T3的直流准位(电压)之上。然后利用电容的电荷分配原理,让第二电容C2得到对应的电压上升值,借此达到积分的效果。上述第二电容C2的电压上升值可视为输入信号VIN的压缩值,其比例相关于第一电容C1与第二电容C2的电容值。假设第一电容C1的电容值以C1表示,第二电容C2的电容值以C2表示,这样在第一控制信号CON1致能后,第一电容C1中所存储的电荷可表示如公式(1),而在第二控制信号CON2致能后,第二电容C2的电压上升值如公式(2)。When the second control signal CON2 is enabled, the third switch SW3 and the fourth switch SW4 are turned on, so the voltage of the third terminal T3 is transmitted to the second terminal T2 to push up the DC level of the first capacitor C1, so that The voltage difference between the two ends of the first capacitor C1 can be applied on the original DC level (voltage) of the third terminal T3. Then, the charge distribution principle of the capacitor is used to allow the second capacitor C2 to obtain a corresponding voltage rise value, thereby achieving the effect of integration. The above-mentioned voltage rise value of the second capacitor C2 can be regarded as a compressed value of the input signal VIN, and its ratio is related to the capacitance values of the first capacitor C1 and the second capacitor C2. Assuming that the capacitance value of the first capacitor C1 is represented by C1, and the capacitance value of the second capacitor C2 is represented by C2, after the first control signal CON1 is enabled, the charge stored in the first capacitor C1 can be expressed as formula (1) , and after the second control signal CON2 is enabled, the voltage rise of the second capacitor C2 is as shown in formula (2).
Q=C1×V1=C2×V1′---------公式(1)Q=C1×V1=C2×V1′---------Formula (1)
其中,上述公式中的V1表示输入信号VIN在被提取时的电压值,V1’表示分配后在第三端T3所造成的电压上升值。也就是说,在第二控制信号CON2致能后,在第三端T3的电压值会因为电荷分配而上升,其上升的电压差值为V1’。由上述公式可知,V1’会与V1有一定的比例关系,其比例与电容值C1与C2相关。因此,通过控制第一控制信号CON1的时序可以达到分时取样输入信号VIN的效果,而控制第二控制信号CON2的时序则会将电荷重新分配至第二电容C2,让第三端T3的电压得到对应的上升值以达到积分的效果。另一方面,若输入信号VIN为负值,则V1为负值,这会使得第二电容C2两端的电压差下降,同样也是会有积分的结果。在经由上述实施例的说明后,本技术领域技术人员应可推知其实施方式,在此不加赘述。Wherein, V1 in the above formula represents the voltage value of the input signal VIN when it is extracted, and V1' represents the voltage rise value at the third terminal T3 after distribution. That is to say, after the second control signal CON2 is enabled, the voltage at the third terminal T3 will increase due to charge distribution, and the increased voltage difference is V1'. It can be seen from the above formula that V1' has a certain proportional relationship with V1, and the ratio is related to the capacitance values C1 and C2. Therefore, by controlling the timing of the first control signal CON1, the effect of time-division sampling of the input signal VIN can be achieved, while controlling the timing of the second control signal CON2 will redistribute the charge to the second capacitor C2, so that the voltage of the third terminal T3 Get the corresponding rising value to achieve the effect of integral. On the other hand, if the input signal VIN is negative, then V1 is negative, which will cause the voltage difference across the second capacitor C2 to decrease, which also has an integral result. After the description of the above-mentioned embodiments, those skilled in the art should be able to infer the implementation manner thereof, and details are not repeated here.
此外,本实施例中的第一电容C1的电容值会小于第二电容C2的电容值,例如100C1=C2,这样才能避免第二电容C2在积分过程中产生过高的电压而超过电路的正常工作区间,但本实施例并不受限于上述比例关系。In addition, the capacitance value of the first capacitor C1 in this embodiment will be smaller than the capacitance value of the second capacitor C2, for example, 100C1=C2, so as to prevent the second capacitor C2 from generating an excessively high voltage during the integration process and exceeding the normal voltage of the circuit. working interval, but this embodiment is not limited to the above proportional relationship.
此外,第五开关SW5可用来重置积分电路200,当第三控制信号CON3致能时(请参照图3的波形360),第二电容C2中的电荷会被引导至接地端GND以重置积分电路200。所以在进行积分运算前,第三控制信号CON3会先致能以将第三端T3的电压归零。In addition, the fifth switch SW5 can be used to reset the
在输出缓冲单元150中,第二单位增益放大器GA2会将第三端T3的电压传导至第三电容C3中,第六开关SW6则是用来维持第三电容C3中所存储的电荷,避免漏电流发生。第三单位增益放大器GA3则是将积分结果输出至输出端TOUT以产生输出信号VOUT。输出信号VOUT会与输入信号VIN的积分结果成一比例关系,其比例关系与第一电容C1与第二电容C2的电容值相关。在经由上述实施例的说明后,本技术领域技术人员应可推知其计算方式,在此不加赘述。In the
综上所述,本发明利用电容的电荷分配原理来实现低频积分电路,此积分电路可将分时取样的电压压缩存储以达到线性积分器的效果。此外,本发明不需使用ADC来达到积分效果,可有效降低电路成本,并且达到更准确的积分结果。To sum up, the present invention utilizes the principle of charge distribution of capacitors to implement a low-frequency integrating circuit. The integrating circuit can compress and store time-sampled voltages to achieve the effect of a linear integrator. In addition, the present invention does not need to use an ADC to achieve the integration effect, which can effectively reduce the circuit cost and achieve more accurate integration results.
虽然本发明的较佳实施例已揭示如上,然本发明并不受限于上述实施例,任何所属技术领域技术人员,在不脱离本发明所揭示的范围内,当可作些许的更动与调整,因此本发明的保护范围应当以权利要求所界定者为准。Although the preferred embodiments of the present invention have been disclosed above, the present invention is not limited to the above embodiments, and any person skilled in the art may make some modifications and changes without departing from the disclosed scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010269770 CN102386907B (en) | 2010-08-31 | 2010-08-31 | Integrating circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010269770 CN102386907B (en) | 2010-08-31 | 2010-08-31 | Integrating circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102386907A CN102386907A (en) | 2012-03-21 |
CN102386907B true CN102386907B (en) | 2013-07-17 |
Family
ID=45825933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010269770 Expired - Fee Related CN102386907B (en) | 2010-08-31 | 2010-08-31 | Integrating circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102386907B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060119412A1 (en) * | 2004-12-03 | 2006-06-08 | Silicon Laboratories, Inc. | Switched capacitor input circuit and method therefor |
CN101621292A (en) * | 2009-04-10 | 2010-01-06 | 浙江大学 | Switch-capacitor integrator |
CN101625718A (en) * | 2009-06-19 | 2010-01-13 | 复旦大学 | Double sampling integrator |
US20100134173A1 (en) * | 2008-12-02 | 2010-06-03 | Soon-Jyh Chang | Integrator-based common-mode stabilization technique for pseudo-differential switched-capacitor circuits |
-
2010
- 2010-08-31 CN CN 201010269770 patent/CN102386907B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060119412A1 (en) * | 2004-12-03 | 2006-06-08 | Silicon Laboratories, Inc. | Switched capacitor input circuit and method therefor |
US20100134173A1 (en) * | 2008-12-02 | 2010-06-03 | Soon-Jyh Chang | Integrator-based common-mode stabilization technique for pseudo-differential switched-capacitor circuits |
CN101621292A (en) * | 2009-04-10 | 2010-01-06 | 浙江大学 | Switch-capacitor integrator |
CN101625718A (en) * | 2009-06-19 | 2010-01-13 | 复旦大学 | Double sampling integrator |
Non-Patent Citations (1)
Title |
---|
Low-power switched-capacitor integrator for delta-sigma ADCs;Sch.of Electr.Eng.&Comput Sci,Oregon State Univ.Corvallis OR,USA;《circuits and systems(MWSCAS),2010 53rd IEEE International Midwest Symposium on》;20100804;493-496 * |
Also Published As
Publication number | Publication date |
---|---|
CN102386907A (en) | 2012-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9727118B2 (en) | Measuring circuit and measuring method for a capacitive touch-sensitive panel | |
CN108124474B (en) | Device for detecting capacitance, electronic equipment and device for detecting pressure | |
CN1882843A (en) | Battery cell voltage and impedance measuring circuit | |
KR20160010347A (en) | Sampling circuitry and sampling method for a plurality of electrodes | |
TW200919983A (en) | Method and systems for calibrating RC apparatus | |
CN101398670A (en) | Time-based control of a system having integration response | |
US5099195A (en) | Electronic device for measuring electrical power supply to a load | |
CN102749525B (en) | Capacitor detection method and capacitor detection circuit | |
CN110163015B (en) | Multiplier circuit, corresponding device and method | |
CN102466750B (en) | Circuit and method for measuring alternating current of digital universal meter | |
JP2022096642A (en) | Guidance sensing methods, devices and systems | |
CN107070453A (en) | A kind of real-time integral error compensation method of piecewise linearity and its integrating circuit | |
CN109818621A (en) | Voltage-to-digital converter and resistance sensor readout circuit | |
CN102386907B (en) | Integrating circuit | |
CN101487863B (en) | Apparatus for Accurately Measuring the Open Circuit Gain of Amplifiers Using Digital Excitation Signals | |
NL8020484A (en) | ||
WO2010086348A3 (en) | Method and system for measuring a time constant of an integrated circuit, and integrated circuit provided with such a system | |
CN204666166U (en) | Capacitor charge and discharge control module and power frequency change-over circuit | |
TWI436282B (en) | Integral circuit | |
CN201285411Y (en) | Graded DC signal tri-terminal isolation measurement apparatus for remote measuring system | |
US6697002B2 (en) | Low-pass filter | |
CN104202050B (en) | Multi-path multi-slope non-uniform sampling circuit | |
CN109840027A (en) | Touch panel driving device | |
EP2572454A1 (en) | Duty ratio/voltage conversion circuit | |
TW202141301A (en) | Device for calculating sum-of-products value |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130717 Termination date: 20150831 |
|
EXPY | Termination of patent right or utility model |