CN102386381B - A kind of preparation method of lithium-ion battery nanoscale cathode material - Google Patents
A kind of preparation method of lithium-ion battery nanoscale cathode material Download PDFInfo
- Publication number
- CN102386381B CN102386381B CN201010266326.0A CN201010266326A CN102386381B CN 102386381 B CN102386381 B CN 102386381B CN 201010266326 A CN201010266326 A CN 201010266326A CN 102386381 B CN102386381 B CN 102386381B
- Authority
- CN
- China
- Prior art keywords
- lithium
- salt
- manganese
- nickel
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 11
- 239000010406 cathode material Substances 0.000 title claims abstract description 8
- 229910014422 LiNi1/3Mn1/3Co1/3O2 Inorganic materials 0.000 claims abstract description 19
- 239000002244 precipitate Substances 0.000 claims abstract description 18
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 11
- 150000002696 manganese Chemical class 0.000 claims abstract description 9
- YQOXCVSNNFQMLM-UHFFFAOYSA-N [Mn].[Ni]=O.[Co] Chemical compound [Mn].[Ni]=O.[Co] YQOXCVSNNFQMLM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 150000001868 cobalt Chemical class 0.000 claims abstract description 7
- 239000008139 complexing agent Substances 0.000 claims abstract description 7
- 150000002815 nickel Chemical class 0.000 claims abstract description 7
- 229910001317 nickel manganese cobalt oxide (NMC) Inorganic materials 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000000047 product Substances 0.000 claims abstract description 6
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 4
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 4
- 230000001376 precipitating effect Effects 0.000 claims abstract description 4
- 239000011259 mixed solution Substances 0.000 claims abstract 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical group [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 13
- 238000003756 stirring Methods 0.000 claims description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 239000007774 positive electrode material Substances 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 6
- 239000004202 carbamide Substances 0.000 claims description 6
- 238000011049 filling Methods 0.000 claims description 6
- 239000012065 filter cake Substances 0.000 claims description 6
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 6
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 4
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 4
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 4
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims description 3
- 235000017491 Bambusa tulda Nutrition 0.000 claims description 3
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims description 3
- 240000008042 Zea mays Species 0.000 claims description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 3
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical group [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 3
- 239000011425 bamboo Substances 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 229940011182 cobalt acetate Drugs 0.000 claims description 3
- MULYSYXKGICWJF-UHFFFAOYSA-L cobalt(2+);oxalate Chemical compound [Co+2].[O-]C(=O)C([O-])=O MULYSYXKGICWJF-UHFFFAOYSA-L 0.000 claims description 3
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical group [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 3
- 235000005822 corn Nutrition 0.000 claims description 3
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 claims description 3
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 3
- 229940071264 lithium citrate Drugs 0.000 claims description 3
- WJSIUCDMWSDDCE-UHFFFAOYSA-K lithium citrate (anhydrous) Chemical compound [Li+].[Li+].[Li+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WJSIUCDMWSDDCE-UHFFFAOYSA-K 0.000 claims description 3
- 229940071125 manganese acetate Drugs 0.000 claims description 3
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical group [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 3
- RGVLTEMOWXGQOS-UHFFFAOYSA-L manganese(2+);oxalate Chemical compound [Mn+2].[O-]C(=O)C([O-])=O RGVLTEMOWXGQOS-UHFFFAOYSA-L 0.000 claims description 3
- 229940078494 nickel acetate Drugs 0.000 claims description 3
- DOLZKNFSRCEOFV-UHFFFAOYSA-L nickel(2+);oxalate Chemical compound [Ni+2].[O-]C(=O)C([O-])=O DOLZKNFSRCEOFV-UHFFFAOYSA-L 0.000 claims description 3
- 229920001451 polypropylene glycol Polymers 0.000 claims description 3
- 235000017060 Arachis glabrata Nutrition 0.000 claims description 2
- 244000105624 Arachis hypogaea Species 0.000 claims description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 claims description 2
- 235000018262 Arachis monticola Nutrition 0.000 claims description 2
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 229920002472 Starch Polymers 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910001429 cobalt ion Inorganic materials 0.000 claims description 2
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 claims description 2
- ZJXZSIYSNXKHEA-UHFFFAOYSA-N ethyl dihydrogen phosphate Chemical compound CCOP(O)(O)=O ZJXZSIYSNXKHEA-UHFFFAOYSA-N 0.000 claims description 2
- IDNHOWMYUQKKTI-UHFFFAOYSA-M lithium nitrite Chemical compound [Li+].[O-]N=O IDNHOWMYUQKKTI-UHFFFAOYSA-M 0.000 claims description 2
- XKPJKVVZOOEMPK-UHFFFAOYSA-M lithium;formate Chemical compound [Li+].[O-]C=O XKPJKVVZOOEMPK-UHFFFAOYSA-M 0.000 claims description 2
- 229910001437 manganese ion Inorganic materials 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910001453 nickel ion Inorganic materials 0.000 claims description 2
- 235000020232 peanut Nutrition 0.000 claims description 2
- -1 poly Propylene Polymers 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 229920001289 polyvinyl ether Polymers 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 239000002023 wood Substances 0.000 claims description 2
- 244000082204 Phyllostachys viridis Species 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000007864 aqueous solution Substances 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 12
- 238000001354 calcination Methods 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 7
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 239000002245 particle Substances 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 239000012467 final product Substances 0.000 abstract 1
- 229920002994 synthetic fiber Polymers 0.000 abstract 1
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000011572 manganese Substances 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 229910013716 LiNi Inorganic materials 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000009830 intercalation Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 241001330002 Bambuseae Species 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004966 Carbon aerogel Substances 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910014420 LiNi1/3Mn1/3Co1/3O Inorganic materials 0.000 description 1
- 229910006685 Li—Ni—Mn—Co—O Inorganic materials 0.000 description 1
- ZYXUQEDFWHDILZ-UHFFFAOYSA-N [Ni].[Mn].[Li] Chemical group [Ni].[Mn].[Li] ZYXUQEDFWHDILZ-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- CJYZTOPVWURGAI-UHFFFAOYSA-N lithium;manganese;manganese(3+);oxygen(2-) Chemical compound [Li+].[O-2].[O-2].[O-2].[O-2].[Mn].[Mn+3] CJYZTOPVWURGAI-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000011257 shell material Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明属于纳米材料制备技术与绿色能源领域,涉及一种应用于锂离子电池的纳米级正极材料LiNi1/3Mn1/3Co1/3O2的制备方法。该方法主要解决目前合成材料所需煅烧温度高、煅烧时间长、产物颗粒尺寸不均一等缺点。在镍盐、锰盐、钴盐的混合水溶液中加入一定量的模板剂,再滴加沉淀剂和络合剂形成沉淀;将上述沉淀与混合液在水热釜中高压热反应,清洗烘干得到氧化镍锰钴;再与锂盐混合均匀,经煅烧,冷却制得最终产物。本发明能够在较短的煅烧时间内得到电化学性能良好的产物,节约了能量消耗,在工业合成大规模应用时具有明显的经济效益。
The invention belongs to the field of nanometer material preparation technology and green energy, and relates to a method for preparing a nanoscale cathode material LiNi 1/3 Mn 1/3 Co 1/3 O 2 applied to a lithium ion battery. The method mainly solves the disadvantages of high calcination temperature, long calcination time and non-uniform product particle size required by the current synthetic materials. Add a certain amount of templating agent to the mixed aqueous solution of nickel salt, manganese salt, and cobalt salt, and then add a precipitating agent and a complexing agent dropwise to form a precipitate; react the above precipitate with the mixed solution in a hydrothermal kettle under high pressure, wash and dry Obtain nickel manganese cobalt oxide; then mix with lithium salt evenly, calcined, and cooled to obtain the final product. The invention can obtain a product with good electrochemical performance in a short calcining time, saves energy consumption, and has obvious economic benefits in large-scale application of industrial synthesis.
Description
技术领域 technical field
本发明属于纳米材料制备技术与绿色能源领域,涉及一种应用于锂离子电池的纳米级正极材料LiNi1/3Mn1/3Co1/3O2的制备方法。 The invention belongs to the field of nanometer material preparation technology and green energy, and relates to a method for preparing a nanoscale cathode material LiNi 1/3 Mn 1/3 Co 1/3 O 2 applied to a lithium ion battery.
背景技术 Background technique
锂离子电池研究的两大任务是提高性能(主要是高的能量密度和功率密度、长寿命、安全性)和降低成本。而正极材料是提高锂离子电池性能的关键,它决定锂离子电池的主要性能指标。就动力锂离子二次电池中正极材料而言,钴酸锂(LiCoO2)存在大电池的热失控风险和成本高等问题;锰酸锂(LiMn2O4)具有低成本、环境友好、安全性高等优点,但其能量密度低、循环性能差、Mn溶解问题突出;磷酸铁锂(LiFePO4)体系具有低成本、高充电稳定性和安全等优势,但能量密度低、电子导电率差、制备工艺复杂等问题。而近年来新起的层状嵌锂三元体系Li-Ni-Mn-Co-O复合氧化物的发展迅速,其代表物为镍锰钴酸锂(LiNi1/3Mn1/3Co1/3O2)。此类材料电化学性能稳定、放电容量和放电倍率高、热稳定性好、安全性好,其综合性能优于任一种单组份化合物,是一种有望替代钴酸锂的新型正极材料。 The two major tasks of lithium-ion battery research are to improve performance (mainly high energy density and power density, long life, safety) and reduce cost. The cathode material is the key to improving the performance of lithium-ion batteries, which determines the main performance indicators of lithium-ion batteries. As far as the positive electrode material in power lithium-ion secondary batteries is concerned, lithium cobalt oxide (LiCoO 2 ) has the problems of thermal runaway risk and high cost of large batteries; lithium manganese oxide (LiMn 2 O 4 ) has low cost, environmental friendliness, and safety Higher advantages, but its low energy density, poor cycle performance, and prominent Mn dissolution problems; lithium iron phosphate (LiFePO 4 ) system has the advantages of low cost, high charging stability and safety, but low energy density, poor electronic conductivity, preparation Process complexity and other issues. In recent years, the new layered lithium intercalation ternary system Li-Ni-Mn-Co-O composite oxide has developed rapidly, and its representative is lithium nickel manganese cobaltate (LiNi 1/3 Mn 1/3 Co 1/ 3 O 2 ). This kind of material has stable electrochemical performance, high discharge capacity and discharge rate, good thermal stability, and good safety. Its comprehensive performance is better than any single-component compound. It is a new type of positive electrode material that is expected to replace lithium cobalt oxide.
虽然LiNi1/3Mn1/3Co1/3O2材料具有广阔的发展前景,但其制备工艺复杂,不适合工业生产,限制了其实际应用。常用的固相法合成法操作步骤简单,但能耗大、反应时间较长、合成的材料组分不均一度不够;溶胶??凝胶法、沉淀法等液相法虽然能合成组分均一的产物,但是热处理的煅烧温度很高(超过900 ℃)、煅烧时间长,使得制备材料的能耗大。同时,正极材料的低电导率严重影响了其在大电流下的电化学性能。而纳米级的粉末颗粒是提高正极材料大电流电化学性能的一种有效途径:能缩短锂离子的扩散路径、增大材料比表面积,增加活性材料与电解液的接触面积,从而提高离子电导率。 Although LiNi 1/3 Mn 1/3 Co 1/3 O 2 material has broad development prospects, its preparation process is complex and unsuitable for industrial production, which limits its practical application. The commonly used solid-phase synthesis method has simple operation steps, but the energy consumption is large, the reaction time is long, and the heterogeneity of the synthesized material components is not enough; although liquid-phase methods such as sol-gel method and precipitation method can synthesize components with uniform However, the calcination temperature of heat treatment is very high (over 900 ℃), and the calcination time is long, which makes the energy consumption of the preparation material large. At the same time, the low electrical conductivity of the cathode material seriously affects its electrochemical performance under high current. Nanoscale powder particles are an effective way to improve the high-current electrochemical performance of positive electrode materials: they can shorten the diffusion path of lithium ions, increase the specific surface area of the material, and increase the contact area between the active material and the electrolyte, thereby improving the ion conductivity. .
Kobayashi等人(Kobayashi H, Arachi Y, Emura S,et al. Investigation on lithium de-intercalation mechanism for Li1-yNi1/3Mn1/3Co1/3O2[J]. Journal of Power Sources, 2005, 146: 640-644.)采用氢氧化物沉淀法在1000℃下煅烧24小时才得到放电容量为160 mAh/g的LiNi1/3Mn1/3Co1/3O2。而本发明能够在较短的煅烧时间(2~12小时)内得到电化学性能良好的产物,成本低廉,易于工业化;采用水作为溶剂,绿色环保;模板剂的添加使得产物形貌规则,尺寸均一、不易团聚,且大倍率充放电性能极佳,与其它文献专利报道的方法相比,具有突出的创新性和先进性。 Kobayashi et al. (Kobayashi H, Arachi Y, Emura S, et al. Investigation on lithium de-intercalation mechanism for Li1-yNi1/3Mn1/3Co1/3O2[J]. Journal of Power Sources, 2005, 146: 640-644. ) was calcined at 1000°C for 24 hours by hydroxide precipitation method to obtain LiNi 1/3 Mn 1/3 Co 1/3 O 2 with a discharge capacity of 160 mAh/g. However, the present invention can obtain a product with good electrochemical performance within a short calcination time (2-12 hours), which is cheap and easy to industrialize; water is used as a solvent, which is green and environmentally friendly; the addition of templates makes the product regular in shape and size It is uniform, not easy to agglomerate, and has excellent high-rate charge and discharge performance. Compared with the methods reported in other literature and patents, it has outstanding innovation and advancement.
发明内容 Contents of the invention
本发明的目的是提供一种能够在较短的煅烧时间内制备电化学性能良好的纳米级锂离子电池正极材料LiNi1/3Mn1/3Co1/3O2的方法。 The object of the present invention is to provide a method capable of preparing LiNi 1/3 Mn 1/3 Co 1/3 O 2 anode material of nanoscale lithium ion battery with good electrochemical performance within a short calcination time.
本发明的纳米级正极材料LiNi1/3Mn1/3Co1/3O2的制备方法,其具体步骤如下: The preparation method of the nanoscale cathode material LiNi 1/3 Mn 1/3 Co 1/3 O of the present invention, its specific steps are as follows:
(1)采用可溶性的镍盐、锰盐、钴盐为原料,按正极材料LiNi1/3Mn1/3Co1/3O2组分中镍、锰、钴比例,配制成镍盐、锰盐、钴盐的混合水溶液,其中金属含量为2 mol/L; (1) Using soluble nickel salt, manganese salt, and cobalt salt as raw materials, according to the ratio of nickel, manganese, and cobalt in the positive electrode material LiNi 1/3 Mn 1/3 Co 1/3 O 2 components, the nickel salt, manganese salt, and manganese salt are prepared Salt, cobalt salt mixed aqueous solution, wherein the metal content is 2 mol/L;
(2)在步骤(1)中的溶液中加入一定量的模板剂,模板剂质量与目标产物质量比为0.1~3,以800~1200转/分钟搅拌0.2~1.5小时; (2) Add a certain amount of template agent to the solution in step (1), the ratio of template agent mass to target product mass is 0.1~3, and stir at 800~1200 rpm for 0.2~1.5 hours;
(3)在N2气氛下向步骤(2)的溶液中同时滴加沉淀剂和络合剂,同时以800~1200转/分钟搅拌,保持反应温度40~70 ℃,保持反应体系的pH值9~13。沉淀形成完后继续保持搅拌1~3小时; (3) Add the precipitant and complexing agent dropwise to the solution in step (2) under N2 atmosphere, and stir at 800~1200 rpm at the same time, keep the reaction temperature at 40~70 ℃, and keep the pH value of the reaction system 9~13. After the precipitation is formed, continue to stir for 1 to 3 hours;
(4)将步骤(3)中形成的沉淀及溶液转移到水热釜中,填充度为60~90 %,在100~280 ℃水热环境下高压热反应6~40 小时; (4) Transfer the precipitate and solution formed in step (3) to a hydrothermal kettle with a filling degree of 60-90%, and conduct a high-pressure thermal reaction in a hydrothermal environment of 100-280 °C for 6-40 hours;
(5)将步骤(4)中的沉淀过滤清洗,滤饼烘干得前驱体氧化镍锰钴;按正极材料组分比例,将前驱体与锂化合物于混料机内混匀;在200~400 ℃下预热2~12小时,升温至600~1000℃煅烧2~15小时,冷却研磨后得到纳米级层状结构的LiNi1/3Mn1/3Co1/3O2。 (5) Filter and clean the precipitate in step (4), and dry the filter cake to obtain the precursor nickel manganese cobalt oxide; mix the precursor and lithium compound in a mixer according to the proportion of positive electrode material components; Preheat at 400°C for 2-12 hours, heat up to 600-1000°C for 2-15 hours, and then cool and grind to obtain LiNi 1/3 Mn 1/3 Co 1/3 O 2 with nanoscale layered structure.
所用的镍盐是乙酸镍、硝酸镍或草酸镍。 The nickel salt used is nickel acetate, nickel nitrate or nickel oxalate.
所用的锰盐是乙酸锰、硝酸锰或草酸锰。 The manganese salt used is manganese acetate, manganese nitrate or manganese oxalate.
所用的钴盐是乙酸钴、硝酸钴或草酸钴。 The cobalt salt used is cobalt acetate, cobalt nitrate or cobalt oxalate.
所用的锂盐是乙酸锂、硝酸锂、草酸锂、甲酸锂、亚硝酸锂或柠檬酸锂。 The lithium salt used is lithium acetate, lithium nitrate, lithium oxalate, lithium formate, lithium nitrite or lithium citrate.
所用的模板剂是活性炭粉末、活性炭纤维、碳纳米管、锯末、木粉、竹碳粉、玉米杆、纤维素、花生壳、碳气凝胶、淀粉、蔗糖、乙基磷酸酯、聚丙二醇、聚丙烯酰胺、聚丙烯醚、聚苯乙烯、聚乙烯醚、聚碳酸酯或聚甲基丙烯酸甲酯。 The templates used are activated carbon powder, activated carbon fiber, carbon nanotubes, sawdust, wood powder, bamboo carbon powder, corn stalk, cellulose, peanut shell, carbon aerogel, starch, sucrose, ethyl phosphate, polypropylene glycol, Polyacrylamide, polypropylene ether, polystyrene, polyvinyl ether, polycarbonate or polymethyl methacrylate.
所用络合剂是尿素或氨水。 The complexing agent used is urea or ammonia water.
所用沉淀剂是氢氧化锂或氢氧化钠,其与镍离子+锰离子+钴离子总摩尔比为2~4。络合剂与沉淀剂的摩尔比为0.1~2。 The precipitating agent used is lithium hydroxide or sodium hydroxide, and its total molar ratio to nickel ion + manganese ion + cobalt ion is 2-4. The molar ratio of complexing agent to precipitating agent is 0.1~2.
本发明纳米级正极材料LiNi1/3Mn1/3Co1/3O2的制备方法,其特点是:通过改变模板剂和调节煅烧时间和温度,可制备平均晶粒在15 nm~200 nm的纳米级LiNi1/3Mn1/3Co1/3O2复合氧化物,振实密度为1.8~2.8 g/m3。在0.2 C充放电条件下,其放电容量在178 mAh/g以上。 The preparation method of the nanoscale cathode material LiNi 1/3 Mn 1/3 Co 1/3 O 2 of the present invention is characterized in that the average grain size of 15 nm to 200 nm can be prepared by changing the template agent and adjusting the calcination time and temperature. The nanoscale LiNi 1/3 Mn 1/3 Co 1/3 O 2 composite oxide has a tap density of 1.8~2.8 g/m 3 . Under the condition of 0.2 C charge and discharge, its discharge capacity is above 178 mAh/g.
本发明的优点在于: The advantages of the present invention are:
1、热处理时间短,能耗少; 1. Short heat treatment time and low energy consumption;
2、工艺简单,易于工业化放大,所制得的三元体系LiNi1/3Mn1/3Co1/3O2颗粒粒径分布均匀,形貌规则,不易团聚,成分易控; 2. The process is simple and easy for industrial scale-up. The prepared ternary system LiNi 1/3 Mn 1/3 Co 1/3 O 2 has uniform particle size distribution, regular shape, is not easy to agglomerate, and is easy to control the composition;
3、前驱体合成过程中采用水作为溶剂,绿色环保; 3. Water is used as a solvent in the precursor synthesis process, which is green and environmentally friendly;
4、所制得的三元体系LiNi1/3Mn1/3Co1/3O2充放电性能突出,0.2 C充放电条件下,其可逆嵌锂容量在178 mAh/g以上,1.0 C充放电条件循环40周的容量保持率在98 %左右,循环性能好,是动力型锂离子二次电池理想的正极材料。 4. The prepared ternary system LiNi 1/3 Mn 1/3 Co 1/3 O 2 has outstanding charge and discharge performance. Under 0.2 C charge and discharge conditions, its reversible lithium intercalation capacity is above 178 mAh/g, and 1.0 C charge The capacity retention rate of 40 cycles under discharge conditions is about 98%, and the cycle performance is good, so it is an ideal positive electrode material for power lithium ion secondary batteries.
附图说明 Description of drawings
图1是实施例1所制备的三元体系LiNi1/3Mn1/3Co1/3O2复合材料的扫描电镜照片,放大倍数为2万倍; Fig. 1 is the scanning electron micrograph of the ternary system LiNi 1/3 Mn 1/3 Co 1/3 O 2 composite materials prepared in embodiment 1, and the magnification is 20,000 times;
图2是实施例2所制备的三元体系LiNi1/3Mn1/3Co1/3O2的初始充放电曲线,电压范围为2.8-4.5 V,电解液为1mol/L LiPF6/EC-DMC(1:1),充放电电流密度为0.2 C; Figure 2 is the initial charge-discharge curve of the ternary system LiNi 1/3 Mn 1/3 Co 1/3 O 2 prepared in Example 2, the voltage range is 2.8-4.5 V, and the electrolyte is 1mol/L LiPF 6 /EC -DMC (1:1), the charge and discharge current density is 0.2 C;
图3是实施例1所制备的三元体系LiNi1/3Mn1/3Co1/3O2的循环性能曲线,电压范围为2.8-4.5V,电解液为1mol/L LiPF6/EC-DMC(1:1),充放电电流密度为1.0 C。 Figure 3 is the cycle performance curve of the ternary system LiNi 1/3 Mn 1/3 Co 1/3 O 2 prepared in Example 1, the voltage range is 2.8-4.5V, and the electrolyte is 1mol/L LiPF 6 /EC- DMC (1:1), the charge and discharge current density is 1.0 C.
具体实施方式 Detailed ways
实施例1:取11.63 g硝酸镍、7.158 g硝酸锰和11.64 g硝酸钴,溶解于去离子水溶液,金属离子的浓度为2 mol/L,同时加入0.5 g聚丙二醇,以800转/分钟搅拌0.5小时。在N2气氛下向上述溶液中同时滴加含氢氧化锂0.08 mol的水溶液和0.08 mol的尿素水溶液,并以800转/分钟搅拌,保持反应温度45 ℃,保持反应体系的pH值10。沉淀形成完后继续保持搅拌2小时。将形成的沉淀及溶液转移到水热釜中,填充度为70 %,在160 ℃水热环境下反应12小时后取出沉淀,过滤清洗,滤饼烘干得前驱体氧化镍锰钴。将前驱体与2.76 g硝酸锂于混料机内混匀,在400 ℃预热处理4小时,升温至800 ℃煅烧4小时,冷却研磨后得到纳米级层状结构的LiNi1/3Mn1/3Co1/3O2。其平均晶粒在100 nm,在0.2 C充放电条件下,其放电容量在178.7 mAh/g,1.0 C充放电条件循环40周的容量保持率在97.9 %。 Embodiment 1: Get 11.63 g nickel nitrate, 7.158 g manganese nitrate and 11.64 g cobalt nitrate, dissolve in deionized aqueous solution, the concentration of metal ion is 2 mol/L, add 0.5 g polypropylene glycol simultaneously, stir 0.5 with 800 rpm Hour. Under N2 atmosphere, 0.08 mol aqueous solution containing lithium hydroxide and 0.08 mol urea aqueous solution were simultaneously added dropwise to the above solution, and stirred at 800 rpm, the reaction temperature was kept at 45 °C, and the pH value of the reaction system was kept at 10. Stirring was continued for 2 hours after the precipitate formed. The formed precipitate and solution were transferred to a hydrothermal kettle with a filling degree of 70%. After reacting in a hydrothermal environment at 160 °C for 12 hours, the precipitate was taken out, filtered and cleaned, and the filter cake was dried to obtain the precursor nickel manganese cobalt oxide. The precursor was mixed with 2.76 g lithium nitrate in a mixer, preheated at 400 °C for 4 hours, heated to 800 °C for 4 hours, cooled and ground to obtain LiNi 1/3 Mn 1/ 3 Co 1/3 O 2 . Its average grain size is 100 nm, and its discharge capacity is 178.7 mAh/g under 0.2 C charge-discharge condition, and the capacity retention rate after 40 cycles of 1.0 C charge-discharge condition is 97.9%.
实施例2:取9.95 g乙酸镍、9.80 g乙酸锰和9.96 g乙酸钴溶解于去离子水溶液,金属离子的浓度为2 mol/L,同时加入1.5 g碳纳米管,以1000转/分钟搅拌0.6小时。在N2气氛下向上述溶液中同时滴加含氢氧化钠0.12 mol的水溶液和0.05 mol的尿素水溶液,并以1200转/分钟搅拌,保持反应温度40 ℃,保持反应体系的pH值11。沉淀形成完后继续保持搅拌2小时。将形成的沉淀及溶液转移到水热釜中,填充度为70 %,在150 ℃水热环境下反应16 小时后取出沉淀,过滤清洗,滤饼烘干得前驱体氧化镍锰钴。将前驱体与4.08 g乙酸锂于混料机内混匀;在350 ℃下预热处理3.5小时,升温至850℃煅烧6小时,冷却研磨后得到纳米级层状结构的LiNi1/3Mn1/3Co1/3O2。其平均晶粒在120 nm,在0.2 C充放电条件下,其放电容量在187.7 mAh/g,1.0 C充放电条件循环40周的容量保持率在98.7 %。 Embodiment 2: Get 9.95 g nickel acetate, 9.80 g manganese acetate and 9.96 g cobalt acetate and dissolve in deionized aqueous solution, the concentration of metal ion is 2 mol/L, add 1.5 g carbon nanotubes simultaneously, stir 0.6 with 1000 rpm Hour. Under N2 atmosphere, 0.12 mol aqueous solution containing sodium hydroxide and 0.05 mol urea aqueous solution were added dropwise to the above solution at the same time, and stirred at 1200 rpm, the reaction temperature was kept at 40 °C, and the pH value of the reaction system was kept at 11. Stirring was continued for 2 hours after the precipitate formed. The formed precipitate and solution were transferred to a hydrothermal kettle with a filling degree of 70%. After reacting in a hydrothermal environment at 150 °C for 16 hours, the precipitate was taken out, filtered and cleaned, and the filter cake was dried to obtain the precursor nickel manganese cobalt oxide. Mix the precursor with 4.08 g lithium acetate in a mixer; preheat treatment at 350 °C for 3.5 hours, heat up to 850 °C for 6 hours, cool and grind to obtain LiNi 1/3 Mn 1 with nanoscale layered structure /3 Co 1/3 O 2 . Its average grain size is 120 nm. Under 0.2 C charge and discharge conditions, its discharge capacity is 187.7 mAh/g, and the capacity retention rate after 1.0 C charge and discharge conditions for 40 cycles is 98.7 %.
实施例3:取17.06g草酸镍、19.06g草酸锰、19.59g草酸钴溶解于去离子水溶液,金属离子的浓度为2 mol/L,同时加入0.7 g玉米杆,以1000转/分钟搅拌1小时。在N2气氛下向上述溶液中同时滴加含氢氧化锂0.16 mol的水溶液和0.05 mol的尿素水溶液,并以1100转/分钟搅拌,保持反应温度45 ℃,保持反应体系的pH值12。沉淀形成完后继续保持搅拌2小时。将形成的沉淀及溶液转移到水热釜中,填充度为85 %,在200 ℃水热环境下反应12 小时后取出沉淀,过滤清洗,滤饼烘干得前驱体氧化镍锰钴。将前驱体与4.08 g草酸锂于混料机内混匀;在450 ℃下预热处理4小时,升温至900℃煅烧5小时,冷却研磨后得到纳米级层状结构的LiNi1/3Mn1/3Co1/3O2。其平均晶粒在150 nm。在0.2 C充放电条件下,其放电容量在192.3 mAh/g,1.0 C充放电条件循环40周的容量保持率在99.2 %。 Example 3: Dissolve 17.06g of nickel oxalate, 19.06g of manganese oxalate, and 19.59g of cobalt oxalate in a deionized aqueous solution. The concentration of metal ions is 2 mol/L. At the same time, 0.7 g of corn stalks are added and stirred at 1000 rpm for 1 hour . Under N2 atmosphere, 0.16 mol aqueous solution containing lithium hydroxide and 0.05 mol urea aqueous solution were added dropwise to the above solution at the same time, and stirred at 1100 rpm, the reaction temperature was kept at 45 °C, and the pH value of the reaction system was kept at 12. Stirring was continued for 2 hours after the precipitate formed. The formed precipitate and solution were transferred to a hydrothermal kettle with a filling degree of 85%. After reacting in a hydrothermal environment at 200 °C for 12 hours, the precipitate was taken out, filtered and cleaned, and the filter cake was dried to obtain the precursor nickel manganese cobalt oxide. The precursor was mixed with 4.08 g lithium oxalate in a mixer; preheated at 450 °C for 4 hours, heated to 900 °C for 5 hours, cooled and ground to obtain LiNi 1/3 Mn 1 with nanoscale layered structure /3 Co 1/3 O 2 . Its average grain size is 150 nm. Under the condition of 0.2 C charge and discharge, the discharge capacity is 192.3 mAh/g, and the capacity retention rate after 40 cycles of 1.0 C charge and discharge is 99.2%.
实施例4:取11.63 g硝酸镍、7.158 g硝酸锰和11.64 g硝酸钴溶解于去离子水溶液,金属离子的浓度为2 mol/L,同时加入1.0 g竹炭粉,以1000转/分钟搅拌0.5小时。在N2气氛下向上述溶液中同时滴加含氢氧化锂0.2 mol的水溶液和0.04 mol的尿素水溶液,并以1000转/分钟搅拌,保持反应温度40 ℃,保持反应体系的pH值13。沉淀形成完后继续保持搅拌1小时。将形成的沉淀及溶液转移到水热釜中,填充度为85 %,在180 ℃水热环境下反应20 小时后取出沉淀,过滤清洗,滤饼烘干得前驱体氧化镍锰钴。将前驱体与11.28 g柠檬酸锂于混料机内混匀;在400 ℃下预热处理4小时,升温至800℃煅烧7小时,冷却研磨后得到纳米级层状结构的LiNi1/3Mn1/3Co1/3O2。其平均晶粒在130 nm。在0.2 C充放电条件下,其放电容量在200.3 mAh/g,1.0 C充放电条件循环40周的容量保持率在99.5 %。 Embodiment 4: get 11.63 g nickel nitrate, 7.158 g manganese nitrate and 11.64 g cobalt nitrate to be dissolved in deionized aqueous solution, the concentration of metal ion is 2 mol/L, add 1.0 g bamboo charcoal powder simultaneously, stir 0.5 hour with 1000 rpm . Under N2 atmosphere, 0.2 mol aqueous solution containing lithium hydroxide and 0.04 mol urea aqueous solution were added dropwise to the above solution at the same time, and stirred at 1000 rpm, the reaction temperature was kept at 40 °C, and the pH value of the reaction system was kept at 13. Stirring was continued for 1 hour after the precipitate formed. The formed precipitate and solution were transferred to a hydrothermal kettle with a filling degree of 85%. After reacting in a hydrothermal environment at 180 °C for 20 hours, the precipitate was taken out, filtered and cleaned, and the filter cake was dried to obtain the precursor nickel manganese cobalt oxide. Mix the precursor with 11.28 g of lithium citrate in a mixer; preheat at 400 °C for 4 hours, heat up to 800 °C for 7 hours, cool and grind to obtain LiNi 1/3 Mn with nanoscale layered structure 1/3 Co 1/3 O 2 . Its average grain size is 130 nm. Under the condition of 0.2 C charge and discharge, the discharge capacity is 200.3 mAh/g, and the capacity retention rate of 40 cycles under the condition of 1.0 C charge and discharge is 99.5%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010266326.0A CN102386381B (en) | 2010-08-30 | 2010-08-30 | A kind of preparation method of lithium-ion battery nanoscale cathode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010266326.0A CN102386381B (en) | 2010-08-30 | 2010-08-30 | A kind of preparation method of lithium-ion battery nanoscale cathode material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102386381A CN102386381A (en) | 2012-03-21 |
CN102386381B true CN102386381B (en) | 2014-01-15 |
Family
ID=45825546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010266326.0A Expired - Fee Related CN102386381B (en) | 2010-08-30 | 2010-08-30 | A kind of preparation method of lithium-ion battery nanoscale cathode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102386381B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017058650A1 (en) * | 2015-09-30 | 2017-04-06 | Hongli Dai | Cathode-active materials, their precursors, and methods of preparation |
US10084187B2 (en) | 2016-09-20 | 2018-09-25 | Apple Inc. | Cathode active materials having improved particle morphologies |
US10128494B2 (en) | 2014-08-01 | 2018-11-13 | Apple Inc. | High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries |
US10141572B2 (en) | 2016-03-14 | 2018-11-27 | Apple Inc. | Cathode active materials for lithium-ion batteries |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6178554B2 (en) * | 2012-09-03 | 2017-08-09 | 日本ケミコン株式会社 | Method for producing composite material of metal oxide and conductive carbon |
CN102842709B (en) * | 2012-09-12 | 2015-10-28 | 成都晶元新材料技术有限公司 | A kind of high performance multielement cathode lithium electric material and preparation method thereof |
CN102956882A (en) * | 2012-11-01 | 2013-03-06 | 彩虹集团公司 | Metal-doped ternary material and preparation method thereof |
CN103066283A (en) * | 2013-01-15 | 2013-04-24 | 上海大学 | Method for preparing lithium manganese phosphate material with three-dimensional ordered macroporous structure |
CN103094555A (en) * | 2013-01-31 | 2013-05-08 | 中国科学院上海技术物理研究所 | Method for preparing manganese, cobalt, nickel, oxygen and lithium quinary lithium ion battery anode material with nanometer structure |
CN103165887B (en) * | 2013-02-28 | 2015-04-29 | 湖南桑顿新能源有限公司 | Method utilizing urea resin to prepare nickel cobalt manganese acid lithium |
EP2973802B1 (en) | 2013-03-12 | 2023-08-30 | Apple Inc. | High voltage, high volumetric energy density li-ion battery using advanced cathode materials |
CN103232069A (en) * | 2013-03-20 | 2013-08-07 | 江苏凯力克钴业股份有限公司 | Lithium ion battery lithium-rich manganese base positive electrode material preparation method |
CN103227314B (en) * | 2013-04-17 | 2015-05-13 | 嘉峪关大友嘉能化工有限公司 | Preparation method of ternary cathode material |
CN103545504B (en) * | 2013-10-17 | 2016-01-20 | 江西赣锋锂业股份有限公司 | A kind of preparation method of ternary anode material precursor |
CN103682311B (en) * | 2013-12-04 | 2016-04-13 | 浙江大学 | A kind of preparation method of ternary composite cathode material of lithium ion battery |
CN103985854A (en) * | 2014-04-14 | 2014-08-13 | 江苏中欧材料研究院有限公司 | A kind of preparation method of nanoscale lithium nickel manganese oxide cathode material |
CN105322155A (en) * | 2014-06-06 | 2016-02-10 | 安泰科技股份有限公司 | Lithium-rich manganese-based layered composite oxide cathode material, preparation method and application thereof |
CN104201324B (en) * | 2014-07-31 | 2016-10-05 | 山东精工电子科技有限公司 | A kind of method of Template synthesis anode material lithium nickle cobalt manganic acid of lithium ion battery |
CN104269530A (en) * | 2014-09-30 | 2015-01-07 | 中南大学 | Method for hydro-thermal synthesis of lithium iron phosphate-lithium vanadium phosphate composite material |
CN104362333B (en) * | 2014-10-30 | 2016-09-14 | 湘潭大学 | A kind of preparation method of spherical lithium-rich cathode material for lithium ion battery |
CN104362335B (en) * | 2014-11-29 | 2016-09-07 | 广州鸿森材料有限公司 | A kind of preparation method of nickel-cobalt lithium manganate cathode material |
CN104577100A (en) * | 2014-12-13 | 2015-04-29 | 山东精工电子科技有限公司 | Method for preparing lithium ion secondary battery positive electrode material LiNi0.5Co0.2Mn0.3O2 by adding high-polymer saccharides as forming media |
CN104779365B (en) * | 2015-03-24 | 2017-01-11 | 江苏乐能电池股份有限公司 | Li(Ni0.8Co0.1Mn0.1)O2 ternary material prepared by template method |
WO2018057621A1 (en) | 2016-09-21 | 2018-03-29 | Apple Inc. | Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same |
CN106935824A (en) * | 2017-03-21 | 2017-07-07 | 深圳市沃特玛电池有限公司 | A kind of preparation method of tertiary cathode material |
CN108221051A (en) * | 2017-12-11 | 2018-06-29 | 山东零壹肆先进材料有限公司 | Nickelic nickel-cobalt-manganese ternary monocrystal material, preparation method and applications |
CN108502937A (en) * | 2018-04-17 | 2018-09-07 | 哈尔滨工业大学 | A kind of polynary persursor material of ball-shaped lithium-ion battery anode and its preparation method and application |
US11695108B2 (en) | 2018-08-02 | 2023-07-04 | Apple Inc. | Oxide mixture and complex oxide coatings for cathode materials |
US11749799B2 (en) | 2018-08-17 | 2023-09-05 | Apple Inc. | Coatings for cathode active materials |
CN109167041A (en) * | 2018-08-29 | 2019-01-08 | 江西中汽瑞华新能源科技有限公司 | A kind of preparation method of anode material for compound lithium ion battery NCA |
CN109244579B (en) * | 2018-09-18 | 2020-07-03 | 余姚市鑫和电池材料有限公司 | Preparation method of ternary precursor powder with high specific surface area |
CN109698339A (en) * | 2018-12-28 | 2019-04-30 | 安徽科达铂锐能源材料有限公司 | A kind of lithium titanate composite material and its preparation method and application |
CN109786695B (en) * | 2018-12-29 | 2022-01-28 | 合肥融捷能源材料有限公司 | High-rate lithium nickel cobalt manganese oxide positive electrode material and preparation method thereof |
CN109835956B (en) * | 2019-01-11 | 2021-06-08 | 天津巴莫科技有限责任公司 | Preparation method and application of lithium ion battery positive electrode material |
CN111600010B (en) * | 2019-02-20 | 2021-08-31 | 荣盛盟固利新能源科技股份有限公司 | A kind of preparation method of single crystal large particle of ternary material |
CN110429267A (en) * | 2019-08-19 | 2019-11-08 | 河南师范大学 | The method for preparing nanoscale flake sodium-ion battery positive material using multi-template agent |
US11757096B2 (en) | 2019-08-21 | 2023-09-12 | Apple Inc. | Aluminum-doped lithium cobalt manganese oxide batteries |
US12206100B2 (en) | 2019-08-21 | 2025-01-21 | Apple Inc. | Mono-grain cathode materials |
US12074321B2 (en) | 2019-08-21 | 2024-08-27 | Apple Inc. | Cathode active materials for lithium ion batteries |
CN110690447B (en) * | 2019-10-15 | 2021-08-27 | 合肥国轩高科动力能源有限公司 | Ternary cathode material and preparation method and application thereof |
CN110862109B (en) * | 2019-11-22 | 2022-04-05 | 合肥工业大学 | A method for preparing ternary cathode materials for lithium ion batteries by a hydrothermally assisted co-precipitation strategy |
CN111115714A (en) * | 2019-12-30 | 2020-05-08 | 北京机科国创轻量化科学研究院有限公司 | Micron-sized non-agglomerated primary particle lithium-rich manganese-based material and preparation method thereof |
CN111129484A (en) * | 2020-01-09 | 2020-05-08 | 深圳渝鹏新能源汽车检测研究有限公司 | Peanut shell-shaped nickel cobalt lithium manganate positive electrode material and preparation method thereof |
CN111675249B (en) * | 2020-06-11 | 2022-09-02 | 上海纳米技术及应用国家工程研究中心有限公司 | Preparation method of copper-loaded ternary nanobelt cathode material, product and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1545158A (en) * | 2003-11-25 | 2004-11-10 | 复旦大学 | Method for preparing positive electrode material LiNi0.5Mn0.5O2 of lithium ion battery |
CN101083321A (en) * | 2006-05-31 | 2007-12-05 | 湖南美特新材料有限公司 | Lithium manganese cobalt nickle oxygen of manganese cobalt nickle triple lithium ionic cell positive material and its synthesizing method |
CN101202343A (en) * | 2006-12-15 | 2008-06-18 | 中国电子科技集团公司第十八研究所 | Lithium ion battery positive pole material cobalt nickel oxide manganses lithium and method for making same |
CN101807689A (en) * | 2010-04-28 | 2010-08-18 | 复旦大学 | Lithium ion battery electrode material and preparation method thereof |
-
2010
- 2010-08-30 CN CN201010266326.0A patent/CN102386381B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1545158A (en) * | 2003-11-25 | 2004-11-10 | 复旦大学 | Method for preparing positive electrode material LiNi0.5Mn0.5O2 of lithium ion battery |
CN101083321A (en) * | 2006-05-31 | 2007-12-05 | 湖南美特新材料有限公司 | Lithium manganese cobalt nickle oxygen of manganese cobalt nickle triple lithium ionic cell positive material and its synthesizing method |
CN101202343A (en) * | 2006-12-15 | 2008-06-18 | 中国电子科技集团公司第十八研究所 | Lithium ion battery positive pole material cobalt nickel oxide manganses lithium and method for making same |
CN101807689A (en) * | 2010-04-28 | 2010-08-18 | 复旦大学 | Lithium ion battery electrode material and preparation method thereof |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10128494B2 (en) | 2014-08-01 | 2018-11-13 | Apple Inc. | High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries |
WO2017058650A1 (en) * | 2015-09-30 | 2017-04-06 | Hongli Dai | Cathode-active materials, their precursors, and methods of preparation |
US10141572B2 (en) | 2016-03-14 | 2018-11-27 | Apple Inc. | Cathode active materials for lithium-ion batteries |
US10164256B2 (en) | 2016-03-14 | 2018-12-25 | Apple Inc. | Cathode active materials for lithium-ion batteries |
US10084187B2 (en) | 2016-09-20 | 2018-09-25 | Apple Inc. | Cathode active materials having improved particle morphologies |
US10297823B2 (en) | 2016-09-20 | 2019-05-21 | Apple Inc. | Cathode active materials having improved particle morphologies |
Also Published As
Publication number | Publication date |
---|---|
CN102386381A (en) | 2012-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102386381B (en) | A kind of preparation method of lithium-ion battery nanoscale cathode material | |
CN111785960B (en) | Vanadium pentoxide/rGO coated nickel cobalt lithium manganate cathode material and preparation method | |
CN102916169B (en) | Lithium-rich manganese-based anode material and method for manufacturing same | |
CN102569781B (en) | High-voltage lithium ion battery cathode material and preparation method thereof | |
CN101304090A (en) | Method for synthesizing lithium ion battery anode material LiNixCoyMn(1-x-y)O2 | |
CN104134797B (en) | A kind of high-capacity lithium-rich cathode material and preparation method thereof | |
CN1595689A (en) | Positive electrode material of manganese series, and preparation and usage thereof | |
CN110085858A (en) | A kind of nickelic tertiary cathode material of niobium-phosphor codoping and its preparation method and application | |
CN107910531A (en) | A kind of preparation method of high nickel base ternary cathode material | |
CN114361435A (en) | Nanoscale precursor, composite cathode material and preparation method of sodium ion battery | |
CN1595687A (en) | A positive electrode material for lithium secondary cell, and preparation and usage thereof | |
CN104362332B (en) | Preparation method of lithium-rich cathode material for lithium ion battery | |
CN114069083B (en) | Method for recycling and synthesizing high-safety anode material from anode scraps and application of high-safety anode material | |
CN105810934A (en) | Method capable of improving stability of crystal domain structure of lithium-rich layered oxide material | |
CN103435104B (en) | A kind of preparation method of lithium ion battery negative electrode material-nano zinc ferrite | |
CN103178252B (en) | A kind of anode material for lithium-ion batteries and preparation method thereof | |
CN107256964A (en) | A kind of preparation method of the bar-shaped nickel ion doped of high-voltage lithium-battery cathode material | |
CN107579242A (en) | Method for preparing nickel-cobalt-manganese ternary material doped with trivalent cations by direct precipitation | |
CN103441263B (en) | The method of a kind of collosol and gel-solid sintering technology synthesis nickle cobalt lithium manganate | |
CN108579661A (en) | A kind of doped modified lithium ion sieve and preparation method thereof, application | |
CN112225261B (en) | Lithium-rich manganese-based positive electrode material carbonate precursor and preparation method and application thereof | |
CN106904668B (en) | A kind of preparation method of cell positive material tetrakaidecahedron shape nanometer nickel-cobalt LiMn2O4 | |
CN105024065A (en) | Lithium ion battery cathode material and preparation method thereof | |
CN106129400A (en) | A kind of lanthanum part replaces spherical lithium-rich manganese-based anode material of manganese and preparation method thereof | |
CN106252594A (en) | A kind of ball-shaped lithium-ion battery anode material with nanoscale two-phase coexistent structure and synthetic method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140115 Termination date: 20180830 |