CN102382984A - Method and device for separating magnesium and lithium and enriching lithium from salt lake brine - Google Patents
Method and device for separating magnesium and lithium and enriching lithium from salt lake brine Download PDFInfo
- Publication number
- CN102382984A CN102382984A CN2011101851286A CN201110185128A CN102382984A CN 102382984 A CN102382984 A CN 102382984A CN 2011101851286 A CN2011101851286 A CN 2011101851286A CN 201110185128 A CN201110185128 A CN 201110185128A CN 102382984 A CN102382984 A CN 102382984A
- Authority
- CN
- China
- Prior art keywords
- lithium
- chamber
- brine
- sieve
- bittern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012267 brine Substances 0.000 title claims abstract description 148
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 title claims abstract description 148
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 115
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 113
- 239000011777 magnesium Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 46
- 229910052749 magnesium Inorganic materials 0.000 title claims abstract description 21
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 150000002500 ions Chemical class 0.000 claims abstract description 96
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 82
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 82
- 238000000909 electrodialysis Methods 0.000 claims abstract description 65
- 239000000243 solution Substances 0.000 claims abstract description 60
- 239000003011 anion exchange membrane Substances 0.000 claims abstract description 12
- 238000000926 separation method Methods 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 239000003115 supporting electrolyte Substances 0.000 claims abstract description 8
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical group [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 claims description 37
- 229910000398 iron phosphate Inorganic materials 0.000 claims description 30
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 23
- 239000010936 titanium Substances 0.000 claims description 20
- 241001131796 Botaurus stellaris Species 0.000 claims description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 239000010439 graphite Substances 0.000 claims description 17
- 229910002804 graphite Inorganic materials 0.000 claims description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910010707 LiFePO 4 Inorganic materials 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000004744 fabric Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims description 2
- GCICAPWZNUIIDV-UHFFFAOYSA-N lithium magnesium Chemical compound [Li].[Mg] GCICAPWZNUIIDV-UHFFFAOYSA-N 0.000 claims description 2
- 230000010287 polarization Effects 0.000 claims description 2
- DPGAAOUOSQHIJH-UHFFFAOYSA-N ruthenium titanium Chemical compound [Ti].[Ru] DPGAAOUOSQHIJH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910015645 LiMn Inorganic materials 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 125000002091 cationic group Chemical group 0.000 claims 1
- 229910052736 halogen Inorganic materials 0.000 claims 1
- 150000002367 halogens Chemical class 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 17
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000012528 membrane Substances 0.000 description 37
- 239000002131 composite material Substances 0.000 description 34
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 32
- 229940085991 phosphate ion Drugs 0.000 description 16
- 239000011780 sodium chloride Substances 0.000 description 16
- 238000001179 sorption measurement Methods 0.000 description 16
- 230000002687 intercalation Effects 0.000 description 13
- 238000009830 intercalation Methods 0.000 description 13
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 239000005955 Ferric phosphate Substances 0.000 description 7
- 150000001768 cations Chemical class 0.000 description 7
- 229940021013 electrolyte solution Drugs 0.000 description 7
- 229940032958 ferric phosphate Drugs 0.000 description 7
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 7
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- -1 Li x Me y FePO 4 Inorganic materials 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical class [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明涉及一种盐湖卤水镁锂分离及富集锂的方法和装置。用阴离子交换膜将电渗析装置隔成锂盐室和卤水室两个区域,卤水室内充入盐湖卤水,锂盐室内充入不含Mg2+的支持电解质溶液;将涂覆有离子筛的导电基体置于卤水室中,作为阴极;将涂覆有嵌锂态离子筛的导电基体置于锂盐室中,作为阳极;在外电势的驱动下,使卤水室卤水中的Li+嵌入到离子筛中形成嵌锂态离子筛,锂盐室中的嵌锂态离子筛将Li+释放到导电溶液后,恢复为离子筛;卤水室中的嵌锂后液排出,重新加入盐湖卤水,两室电极交换放置,重复循环操作。高效实现锂与其他离子的分离,同时获得富锂溶液。本方法流程短,操作简单,生产成本低,可连续操作,易于工业化应用。The invention relates to a method and a device for separating magnesium and lithium from salt lake brine and enriching lithium. Anion-exchange membranes are used to separate the electrodialysis device into two areas: a lithium salt chamber and a brine chamber. The brine chamber is filled with salt lake brine, and the lithium salt chamber is filled with a supporting electrolyte solution that does not contain Mg 2+ ; The substrate is placed in the brine chamber as the cathode; the conductive substrate coated with the lithium-intercalated ion sieve is placed in the lithium salt chamber as the anode; driven by the external potential, Li + in the brine of the brine chamber is inserted into the ion sieve The lithium-intercalated ion sieve is formed in the lithium-salt chamber, and the lithium-intercalated ion sieve in the lithium-salt chamber releases Li + into the conductive solution, and then recovers as an ion sieve; the lithium-intercalated liquid in the brine chamber is discharged, and the salt lake brine is added again, and the electrodes in the two chambers Replace and repeat the cycle. Efficiently realize the separation of lithium and other ions, and at the same time obtain a lithium-rich solution. The method has the advantages of short flow, simple operation, low production cost, continuous operation and easy industrial application.
Description
技术领域 technical field
本发明属于提取冶金领域,具体来说,涉及一种用于直接处理盐湖卤水,使之镁锂分离,进而富集锂的方法和装置。The invention belongs to the field of extraction metallurgy, and specifically relates to a method and a device for directly treating salt lake brine to separate magnesium and lithium, and then enrich lithium.
背景技术 Background technique
自从1990年锂离子电池被索尼公司商业化以来,锂在现代工业中显得越来越重要,被誉为“21世纪的新能源金属”,由于其高能量密度和很长的循环寿命,锂离子电池被广泛应用于电子设备中,锂的市场需求急剧扩大,锂资源的开采显得更加重要。Since lithium-ion batteries were commercialized by Sony in 1990, lithium has become more and more important in modern industry, and is known as "the new energy metal in the 21st century". Due to its high energy density and long cycle life, lithium-ion Batteries are widely used in electronic equipment, and the market demand for lithium is expanding rapidly, so the mining of lithium resources becomes more important.
在自然界,锂主要以矿石和卤水两种形式存在,大部分锂资源存在于卤水尤其是盐湖卤水中,其储量占全部锂资源储量的80%以上。随着市场需求的增长,矿物锂资源显得供不应求,且开采成本高,人们开始开发盐湖卤水中的锂资源。卤水中通常含有钠、钾、镁、钙、硼、锂的氯化物、硫酸盐和碳酸盐,除少数盐湖如智利阿塔卡玛盐湖卤水的镁锂比相对较低(约6∶1),其他大部分盐湖卤水中的镁锂比都在40以上,最高的达到1837,锂与大量的碱土金属离子共存。由于对角线规则的原因,Mg2+与Li+的化学性质非常相似,镁锂分离非常困难,严重制约了锂的提取和应用。一直以来,从高镁锂比盐湖卤水中提取锂成为一个世界性难题。研究者们采用沉淀法、碳化法、离子交换法、溶剂萃取法等技术来开发卤水中的锂资源,但这些方法大多过程复杂,成本高,对设备腐蚀严重,且产品纯度不高,不利于大规模生产。In nature, lithium mainly exists in two forms of ore and brine. Most lithium resources exist in brine, especially salt lake brine, and its reserves account for more than 80% of the total lithium resource reserves. With the growth of market demand, mineral lithium resources are in short supply and the mining cost is high. People begin to develop lithium resources in salt lake brine. Brine usually contains sodium, potassium, magnesium, calcium, boron, and lithium chlorides, sulfates, and carbonates, except for a few salt lakes such as Chile's Atacama Salt Lake, where the ratio of magnesium to lithium is relatively low (about 6:1) , the ratio of magnesium to lithium in most other salt lake brines is above 40, the highest reaching 1837, and lithium coexists with a large number of alkaline earth metal ions. Due to the diagonal rule, the chemical properties of Mg 2+ and Li + are very similar, and the separation of magnesium and lithium is very difficult, which seriously restricts the extraction and application of lithium. For a long time, extracting lithium from salt lake brine with high magnesium-lithium ratio has become a worldwide problem. Researchers use precipitation method, carbonization method, ion exchange method, solvent extraction method and other technologies to develop lithium resources in brine, but most of these methods are complicated in process, high in cost, severely corroded to equipment, and the product purity is not high, which is not conducive to Mass production.
发明内容 Contents of the invention
本发明的目的在于,提出一种用于直接从盐湖卤水中将镁锂分离,富集锂的方法及其配套的装置。高效实现锂与其他离子的分离,同时获得富锂溶液。本方法流程短,操作简单,生产成本低,可连续操作,易于工业化应用。The purpose of the present invention is to propose a method for directly separating magnesium and lithium from salt lake brine and enriching lithium and its supporting device. Efficiently realize the separation of lithium and other ions, and at the same time obtain a lithium-rich solution. The method has the advantages of short flow, simple operation, low production cost, continuous operation and easy industrial application.
一种盐湖卤水镁锂分离及富集锂的方法,依次包括如下步骤:A method for separating magnesium and lithium from salt lake brine and enriching lithium comprises the following steps in sequence:
(1)用阴离子交换膜将电渗析装置的电渗析槽垂直隔成锂盐室和卤水室两个区域,卤水室内充入盐湖卤水,锂盐室内充入不含Mg2+的支持电解质溶液,如NaCl、KCl、NH4Cl、Na2SO4、K2SO4、NaNO3、KNO3溶液。(1) The electrodialysis cell of the electrodialysis device is vertically separated into two regions, a lithium salt chamber and a brine chamber, with an anion exchange membrane, the brine chamber is filled with salt lake brine, and the lithium salt chamber is filled with a Mg -free supporting electrolyte solution, Such as NaCl, KCl, NH 4 Cl, Na 2 SO 4 , K 2 SO 4 , NaNO 3 , KNO 3 solution.
(2)将涂覆有离子筛的导电基体置于卤水室中作为阴极;将涂覆有嵌锂态离子筛的导电基体置于锂盐室中作为阳极,在外电势的驱动下,使卤水室卤水中的Li+嵌入到离子筛中形成嵌锂态离子筛,同时锂盐室中的嵌锂态离子筛将Li+释放到导电溶液后,恢复为离子筛;实现卤水室中的Li+与Mg2+及其他阳离子的分离,同时锂在锂盐室中富集,得到富锂溶液。(2) Place the conductive substrate coated with the ion sieve in the brine chamber as the cathode; place the conductive substrate coated with the lithium-intercalated ion sieve in the lithium salt chamber as the anode, and under the drive of the external potential, the brine chamber Li + in the brine is embedded in the ion sieve to form a lithium-intercalated ion sieve, and at the same time, the lithium-intercalated ion sieve in the lithium salt chamber releases Li + into the conductive solution and recovers as an ion sieve; the realization of Li + in the brine chamber and Separation of Mg 2+ and other cations, while lithium is enriched in the lithium salt chamber to obtain a lithium-rich solution.
经过上述步骤(2)的操作,卤水室卤水中的Li+嵌入到离子筛中形成嵌锂态离子筛,同时锂盐室中的嵌锂态离子筛将Li+释放到导电溶液后,恢复为离子筛;所以两个电极可以交换位置重复使用。After the operation of the above step (2), the Li + in the brine chamber brine is embedded in the ion sieve to form a lithium-intercalated ion sieve, and the lithium-intercalated ion sieve in the lithium-salt chamber releases Li + into the conductive solution and recovers to Ion sieve; so the two electrodes can be exchanged for reuse.
因此,步骤(2)完成后,至少还可以进行一次以下操作:Therefore, after step (2) is completed, the following operations can be performed at least once:
将卤水室中的嵌锂后液排出,重新加入盐湖卤水,然后将阴极和阳极交换放置,继续进行电渗析。Drain the lithium-intercalated solution in the brine chamber, add salt lake brine again, and then replace the cathode and anode to continue electrodialysis.
或者步骤(2)完成后,为了避免每次交换阴极和阳极,还可以至少进行一次以下操作,进一步使Li+与Mg2+及其他阳离子分离,同时富集锂:Or after step (2) is completed, in order to avoid exchanging the cathode and anode each time, the following operations can be performed at least once to further separate Li + from Mg 2+ and other cations, and enrich lithium at the same time:
保持阳极和阴极位置固定,将卤水室中的嵌锂后液排出,将锂盐室中的含锂溶液转移到卤水室中,将新的盐湖卤水加入到锂盐室中;即将卤水室和锂盐室转换功能使用,继续进行电渗析。(即每重复一次上述操作,卤水室和锂盐室就转换功能使用一次)Keep the position of the anode and the cathode fixed, discharge the lithium-intercalated liquid in the brine chamber, transfer the lithium-containing solution in the lithium salt chamber to the brine chamber, and add new salt lake brine to the lithium salt chamber; that is, the brine chamber and lithium The salt chamber conversion function is used, and the electrodialysis is continued. (That is, every time the above operation is repeated, the brine chamber and the lithium salt chamber are used once for switching function)
所述的嵌锂态离子筛直接采用磷酸铁锂或LiMn2O4中的一种;所述的磷酸铁锂为LiFePO4、LixMeyFePO4、LiFexMeyPO4、LiFePO4/C、LixMeyFePO4/C、LiFexMeyPO4/C中的一种或几种的混合物,其中Me为Mn、Co、Mo、Ti、Al、Ni、Nb中的一种或几种的混合,0<x<1,0<y<1;The lithium-intercalated ion sieve directly adopts one of lithium iron phosphate or LiMn 2 O 4 ; the lithium iron phosphate is LiFePO 4 , Li x Me y FePO 4 , LiF x Me y PO 4 , LiFePO 4 / C, a mixture of one or more of Li x Me y FePO 4 /C, LiF x Me y PO 4 /C, where Me is one of Mn, Co, Mo, Ti, Al, Ni, Nb or A mixture of several types, 0<x<1, 0<y<1;
或者通过如下过程得到:用阴离子交换膜将电渗析装置隔成锂盐室和卤水室两个区域,卤水室内充入盐湖卤水,锂盐室内充入不含Mg2+的支持电解质溶液;将对Li+有选择性吸附作用的离子筛涂覆在导电基体上,置于电渗析装置的卤水室中,以离子筛为阴极,以惰性电极为对电极进行阴极极化,使卤水中的Li+嵌入到离子筛中得到嵌锂态离子筛。Or obtain through the following process: the electrodialysis device is separated into lithium salt chamber and brine chamber by anion exchange membrane, the brine chamber is filled with salt lake brine, and the lithium salt chamber is filled with Mg -free supporting electrolyte solution; The ion sieve with selective adsorption of Li + is coated on the conductive substrate, placed in the brine chamber of the electrodialysis device, the ion sieve is used as the cathode, and the inert electrode is used as the counter electrode for cathodic polarization to make the Li + in the brine Embedded in ion sieves to obtain lithium-intercalated ion sieves.
所述的盐湖卤水包括任意含Li+的溶液、任意盐湖中的原始卤水及其蒸发浓缩后的卤水和提钾后的蒸发老卤中的一种或几种。The salt lake brine includes one or more of any Li + -containing solution, the original brine in any salt lake and the brine after evaporation and concentration, and the evaporated old brine after potassium extraction.
所述的导电基体为涂钌钛网、石墨板、Pt族金属及其合金箔、碳纤维布、石墨纸中的一种。The conductive substrate is one of ruthenium-coated titanium mesh, graphite plate, Pt group metal and its alloy foil, carbon fiber cloth, and graphite paper.
所述的电渗析装置中溶液的温度为0~80℃,pH值为2~12;电渗析装置中两电极间的电压范围为0.5~2.0V。The temperature of the solution in the electrodialysis device is 0-80°C, and the pH value is 2-12; the voltage range between the two electrodes in the electrodialysis device is 0.5-2.0V.
所述的离子筛为磷酸铁、钛酸锂、MnO2中的一种或几种的混合物。The ion sieve is one or a mixture of iron phosphate, lithium titanate and MnO 2 .
所述的磷酸铁为Fe1-xMexPO4,其中Me为Mn、Co、Mo、Ti、Al、Ni、Nb中的一种或几种的混合,x的范围为:0≤x≤0.1;钛酸锂为Li4Ti5O12、LixMeyTi5O12、Li4MemTinO12中的一种或几种的混合物;Me为V、Fe、Co、Mn、Al、Ba、Ag、Zr、Sr、Nb、F中的一种或几种的混合;0<x<4,0<y<4,0<m<5,0<n<5。The iron phosphate is Fe 1-x Me x PO 4 , where Me is a mixture of one or more of Mn, Co, Mo, Ti, Al, Ni, Nb, and the range of x is: 0≤x≤ 0.1; lithium titanate is one or a mixture of Li 4 Ti 5 O 12 , Li x Me y Ti 5 O 12 , Li 4 Me m Ti n O 12 ; Me is V, Fe, Co, Mn, A mixture of one or more of Al, Ba, Ag, Zr, Sr, Nb, F; 0<x<4, 0<y<4, 0<m<5, 0<n<5.
上述的盐湖卤水镁锂分离及富集锂的方法的配套装置,包括具有被阴离子交换膜分隔成两个空间的电渗析槽的电渗析装置,以及阴极和阳极,所述的阴极和阳极分别设置于隔成的两个空间内;所述的阴极为涂覆有离子筛的导电基体,阳极为涂覆有嵌锂态离子筛的导电基体。The supporting device for the above-mentioned method for separating magnesium and lithium from salt lake brine and enriching lithium includes an electrodialysis device having an electrodialysis cell separated into two spaces by an anion exchange membrane, and a cathode and an anode, and the cathode and the anode are respectively set In the two spaces separated; the cathode is a conductive substrate coated with an ion sieve, and the anode is a conductive substrate coated with a lithium-intercalated ion sieve.
本发明的技术措施是:自主设计一种电渗析装置,采用在水溶液中稳定工作并对Li+有记忆效应的离子筛材料,通过调整体系电势,使溶液中的Li+嵌入到离子筛的晶格中,其他离子留在溶液中,通过这一过程实现锂与其他离子的有效分离;再将嵌锂态的离子筛置于不含Mg2+的支持电解质溶液如NaCl溶液中,调整体系的电势,使嵌锂态离子筛中的Li+释放到溶液中,得到富锂溶液,实现镁锂的高效分离和锂的富集;其优点在于:在电渗析装置运行过程中,卤水中的锂嵌入到离子筛的同时,嵌锂态离子筛脱锂到锂盐室,这一过程有效降低了能耗,提高了锂的提取效率。The technical measures of the present invention are: independently design an electrodialysis device, adopt an ion sieve material that works stably in an aqueous solution and has a memory effect on Li + , and adjusts the potential of the system so that Li + in the solution is embedded in the crystal of the ion sieve. In the lattice, other ions remain in the solution, through which the effective separation of lithium and other ions is achieved; then the lithium-intercalated ion sieve is placed in a supporting electrolyte solution without Mg 2+ such as NaCl solution to adjust the system’s Potential, so that the Li + in the lithium-intercalated ion sieve is released into the solution to obtain a lithium-rich solution, which realizes the efficient separation of magnesium and lithium and the enrichment of lithium; its advantage is that during the operation of the electrodialysis device, the lithium in the brine While being embedded in the ion sieve, the lithium-intercalated ion sieve delithiates to the lithium salt chamber. This process effectively reduces energy consumption and improves the extraction efficiency of lithium.
具体的步骤为:The specific steps are:
(1).离子筛的初始嵌锂:用阴离子交换膜将电渗析装置隔成锂盐室和卤水室两个区域,卤水室内充入盐湖卤水,锂盐室内充入不含Mg2+的支持电解质溶液;将对Li+有选择性吸附作用的离子筛涂覆在导电基体上,置于电渗析装置的卤水室中,使其与盐湖卤水充分接触,以离子筛材料为阴极,以惰性阳极为对电极进行阴极极化,使卤水中的Li+嵌入到离子筛中得到嵌锂态离子筛;(1). Initial lithium intercalation of ion sieve: use anion exchange membrane to separate the electrodialysis device into lithium salt room and brine room. The brine room is filled with salt lake brine, and the lithium salt room is filled with support without Mg 2+ Electrolyte solution: Coat the ion sieve with selective adsorption on Li + on the conductive substrate, place it in the brine chamber of the electrodialysis device, make it fully contact with the brine of the salt lake, use the ion sieve material as the cathode, and use the inert anode To polarize the electrode cathodically, the Li + in the brine is intercalated into the ion sieve to obtain the lithium-intercalated ion sieve;
(2).镁锂分离:将离子筛涂覆在导电基体上,置于装有卤水的卤水室中,作为阴极;将嵌锂态离子筛涂覆在导电基体上置于加入不含Mg2+的支持电解质溶液的锂盐室中,作为阳极,在外电势的驱动下,使卤水室卤水中的Li+嵌入到离子筛中形成嵌锂态离子筛,而锂盐室中的嵌锂态离子筛将Li+释放到导电溶液中,由于阴离子交换膜阻止卤水室和锂盐室两个区域之间阳离子的相互迁移,阴离子从卤水室透过交换膜进入锂盐室维持电荷平衡,而卤水室中的Li+通过固相转移到锂盐室中;(2). Separation of magnesium and lithium: Coat the ion sieve on the conductive substrate and place it in a brine chamber filled with brine as the cathode; coat the lithium-intercalated ion sieve on the conductive substrate and place it in a place that does not contain Mg 2 + In the lithium salt chamber of the supporting electrolyte solution, as the anode, under the drive of the external potential, Li + in the brine in the brine chamber is intercalated into the ion sieve to form a lithium-intercalated ion sieve, while the lithium-intercalated ion in the lithium salt chamber The sieve releases Li + into the conductive solution. Since the anion exchange membrane prevents the mutual migration of cations between the two regions of the brine chamber and the lithium salt chamber, the anions pass through the exchange membrane from the brine chamber into the lithium salt chamber to maintain charge balance, while the brine chamber Li + in the solid-phase transfer to the lithium salt chamber;
(3).步骤(2)完成后,为进一步使Li+与Mg2+及其他阳离子分离,同时富集锂,还可以进行如下操作:(3). After step (2) is completed, in order to further separate Li + from Mg 2 + and other cations, and simultaneously enrich lithium, the following operations can also be performed:
将卤水室中的嵌锂后液排出,重新加入盐湖卤水,将步骤(2)锂盐室中所得的离子筛导电基体置于卤水室中作为阴极,将卤水室中所得的嵌锂态离子筛导电基体置于锂盐室中作为阳极,进行电渗析,使卤水中的Li+嵌入到离子筛中,而嵌锂态离子筛中的Li+释放到锂盐室的溶液中,使卤水室中的Li+通过固相转移到锂盐室中的溶液中,进一步实现了卤水室中的Li+与Mg2+及其他阳离子的分离,同时锂在锂盐室中富集,得到富锂溶液;按上述电渗析过程重复循环操作即可实现锂的富集,当富锂溶液中的Li+达到一定浓度时即可用于直接提取锂。Discharge the lithium-intercalated liquid in the brine chamber, add salt lake brine again, place the ion sieve conductive substrate obtained in the lithium salt chamber in step (2) as a cathode in the brine chamber, and place the lithium-intercalated ion sieve obtained in the brine chamber The conductive matrix is placed in the lithium salt chamber as an anode, and electrodialysis is carried out to make Li + in the brine intercalate into the ion sieve, and the Li + in the lithium-intercalated ion sieve is released into the solution in the lithium salt chamber, so that the brine chamber The Li + in the brine chamber is transferred to the solution in the lithium salt chamber through solid phase, further realizing the separation of Li + in the brine chamber from Mg 2+ and other cations, and at the same time, lithium is enriched in the lithium salt chamber to obtain a lithium-rich solution; Lithium enrichment can be realized by repeated cycle operation according to the above electrodialysis process, and when the Li + in the lithium-rich solution reaches a certain concentration, it can be used to directly extract lithium.
为简化上述操作,避免电极在卤水室和锂盐室之间不断调换,上述的步骤(3)还可以按如下方式进行操作:步骤(2)完成后,阴极和阳极位置固定不变,将卤水室中的嵌锂后液分别排出,将锂盐室中的含锂溶液转移到嵌锂态离子筛所在的半渗析槽(即卤水室)中,将盐湖卤水加入到离子筛所在的半渗析槽(即锂盐室)中;使原卤水室转换为新的锂盐室,原锂盐室转换为新的卤水室(即将卤水室和锂盐室转换功能使用),继续进行电渗析,重复上述这种新的步骤(3)的操作,实现了卤水中的Li+与Mg2+及其他阳离子的分离,同时得到富锂溶液;按上述电渗析过程重复操作即可实现锂的富集,当富锂溶液中的Li+达到一定浓度时即可用于直接提取锂。In order to simplify the above operation and avoid the constant exchange of electrodes between the brine chamber and the lithium salt chamber, the above step (3) can also be operated in the following manner: after step (2) is completed, the positions of the cathode and the anode are fixed, and the brine The lithium-intercalated liquid in the chamber is discharged separately, the lithium-containing solution in the lithium salt chamber is transferred to the semi-dialysis tank (that is, the brine chamber) where the lithium-intercalated ion sieve is located, and the salt lake brine is added to the semi-dialysis tank where the ion sieve is located. (i.e. lithium-salt chamber); the original brine chamber is converted into a new lithium-salt chamber, and the former lithium-salt chamber is converted into a new brine chamber (that is, the conversion function of the brine chamber and the lithium-salt chamber is used), continue electrodialysis, and repeat the above The operation of this new step (3) realizes the separation of Li + and Mg 2+ and other cations in the brine, and simultaneously obtains a lithium-rich solution; repeating the above-mentioned electrodialysis process can realize the enrichment of lithium, when When the Li + in the lithium-rich solution reaches a certain concentration, it can be used to directly extract lithium.
使用本发明方法,并采用磷酸铁为离子筛进行镁锂分离及富集锂时,可以按如下方式进行:When using the inventive method and adopting ferric phosphate as an ion sieve to separate magnesium and lithium and enrich lithium, it can be carried out as follows:
(1).将磷酸铁锂涂覆在导电基体上,置于导电溶液中作为阳极,以惰性电极为阴极;在两电极间施加外电势,使磷酸铁锂中的Li+脱嵌到溶液中,磷酸铁锂转化为磷酸铁离子筛;(1). Coat lithium iron phosphate on a conductive substrate, place it in a conductive solution as an anode, and use an inert electrode as a cathode; apply an external potential between the two electrodes to deintercalate Li + in lithium iron phosphate into the solution , lithium iron phosphate is converted into iron phosphate ion sieve;
(2).镁锂分离:将步骤(1)所得的磷酸铁离子筛涂覆在导电基体上,置于装有卤水的卤水室中,作为阴极;将磷酸铁锂涂覆在导电基体上,置于装有不含Mg2+的支持电解质溶液的锂盐室中,作为阳极,在外电势的驱动下,使卤水室卤水中的Li+嵌入到磷酸铁离子筛中形成嵌锂态离子筛,而同时锂盐室中的磷酸铁锂将Li+释放到导电溶液中;由于阴离子交换膜阻止卤水室和锂盐室两个区域之间阳离子的相互迁移,阴离子从卤水室透过交换膜进入锂盐室维持电荷平衡;步骤(1)和(2)总的效果相当于卤水室中的Li+先转移到固相离子筛,进而转移到锂盐室中,从而使锂与镁分离;(2). Separation of magnesium and lithium: the ferric phosphate ion sieve obtained in step (1) is coated on the conductive substrate, placed in a brine chamber equipped with brine, as the cathode; the lithium iron phosphate is coated on the conductive substrate, Placed in a lithium salt chamber containing a supporting electrolyte solution that does not contain Mg2 + , as an anode, driven by an external potential, the Li + in the brine of the brine chamber is inserted into the iron phosphate ion sieve to form a lithium-intercalated ion sieve. At the same time, the lithium iron phosphate in the lithium salt chamber releases Li + into the conductive solution; since the anion exchange membrane prevents the mutual migration of cations between the two regions of the brine chamber and the lithium salt chamber, the anions enter the lithium from the brine chamber through the exchange membrane. The salt chamber maintains charge balance; the overall effect of steps (1) and (2) is equivalent to the Li + in the brine chamber being transferred to the solid-phase ion sieve first, and then transferred to the lithium salt chamber, thereby separating lithium from magnesium;
磷酸铁锂为LiFePO4、LixMeyFePO4、LiFexMeyPO4、LiFePO4/C、LixMeyFePO4/C、LiFexMeyPO4/C中的一种或几种的混合物中的一种或几种的混合物;Me为Mg、Al、Ti、Ni、Co、Mn、Mo、Nb中的一种或几种的混合;0<x<1,0<y<1。Lithium iron phosphate is one or more of LiFePO 4 , Li x Me y FePO 4 , LiF x Me y PO 4 , LiFePO 4 /C, Li x Me y FePO 4 /C, LiF x Me y PO 4 /C Me is a mixture of one or more of the mixtures; Me is a mixture of one or more of Mg, Al, Ti, Ni, Co, Mn, Mo, Nb; 0<x<1, 0<y<1 .
本发明具有如下优点:The present invention has the following advantages:
本发明所述的离子筛对Li+具有很好的选择性,且吸附量大,稳定性好,能循环富集卤水中的锂;The ion sieve of the present invention has good selectivity to Li + , and has large adsorption capacity and good stability, and can cyclically enrich lithium in brine;
1、此方法能处理不同镁锂比的卤水,特别是能高效解决高镁锂比卤水中镁锂分离的技术难题;1. This method can handle brines with different ratios of magnesium to lithium, especially the technical problem of separating magnesium and lithium from brines with high ratios of magnesium to lithium;
2、此方法所设计的电渗析装置可以同时完成两个工作电极上锂的嵌入和脱出,实现锂的高效选择性提取,且槽电压低,能耗低;在完成一个周期的操作后,通过调换电极或者电解质溶液来实现连续循环工作;2. The electrodialysis device designed by this method can simultaneously complete the insertion and extraction of lithium on the two working electrodes, realize efficient and selective extraction of lithium, and have low cell voltage and low energy consumption; after completing a cycle of operation, through Replace electrodes or electrolyte solutions to achieve continuous cycle work;
3、此方法所设计的电渗析装置在镁锂分离的同时可以同步完成锂的富集;且电渗析装置结构简单,操作方便,能循环处理盐湖卤水;3. The electrodialysis device designed by this method can simultaneously complete the enrichment of lithium while separating magnesium and lithium; and the electrodialysis device is simple in structure, easy to operate, and can recycle salt lake brine;
4、此方法成本低,易于规模化生产。4. The method has low cost and is easy to produce on a large scale.
附图说明 Description of drawings
图1为本发明的电渗析槽俯视示意图;Fig. 1 is the schematic diagram of top view of electrodialysis cell of the present invention;
图中1为阴离子交换膜,2为阴极,3为阳极,4为卤水室,5为锂盐室In the figure, 1 is the anion exchange membrane, 2 is the cathode, 3 is the anode, 4 is the brine chamber, and 5 is the lithium salt chamber
图2为本发明Li+浓度随电渗析时间的变化图;Fig. 2 is the change figure of Li concentration of the present invention with electrodialysis time;
图3为本发明Li+浓度随循环系数的变化图。Fig. 3 is a graph showing the variation of Li + concentration with cycle coefficient in the present invention.
具体实施方式 Detailed ways
为了更详细地解释本发明,列举以下实施例进行说明,但本发明不局限于这些实施例。In order to explain the present invention in more detail, the following examples are given for illustration, but the present invention is not limited to these examples.
本发明装置参见图1,电渗析装置的电渗析槽用阴离子交换膜1垂直隔离成两个空间,即卤水室4和锂盐室5,阴极2和阳极3分别设置于隔成的两个空间内;阴极2为涂覆有离子筛的导电基体,阳极3为涂覆有嵌锂态离子筛的导电基体。Referring to Fig. 1 for the device of the present invention, the electrodialysis cell of the electrodialysis device is vertically separated into two spaces by an
实施例1Example 1
按20∶1∶1的重量比将10gFePO4离子筛、0.5g高纯石墨和0.5gPVDF混合均匀,将N-甲基吡咯烷酮(NMP)有机溶剂加入到混合好的粉末中研磨调浆,将浆状物涂覆在石墨板上,在110℃的真空箱内保温干燥12小时,冷却后得到磷酸铁离子筛复合膜;将磷酸铁复合膜置于电渗析装置中的卤水室,电渗析装置的俯视示意图如图1所示;将2L某盐湖卤水加入卤水室,盐湖卤水的主要成分及含量如下表所示:Mix 10g FePO ion sieve, 0.5g high-purity graphite and 0.5g PVDF in a weight ratio of 20:1:1, and add N-methylpyrrolidone (NMP) organic solvent to the mixed powder to grind and adjust the slurry. Coated on the graphite plate, heat-preserved and dried in a vacuum box at 110°C for 12 hours, and obtained the iron phosphate ion sieve composite membrane after cooling; the iron phosphate composite membrane was placed in the brine chamber of the electrodialysis device, and the electrodialysis device The schematic diagram of the top view is shown in Figure 1; 2L of a certain salt lake brine is added to the brine chamber, and the main components and contents of the salt lake brine are shown in the following table:
将500mL浓度为20g/L的NaCl溶液加入到电渗析装置的锂盐室中;以磷酸铁离子筛膜为阴极,以锂盐室中的惰性石墨为阳极,在电极两端施加0.5V的电压,在25℃下维持15h后,卤水室中的Li+浓度降低至358mg/L,Mg2+的浓度为约17994mg/L,磷酸铁离子筛对Li+的吸附量约为28.4mg/g,对Mg2+的吸附量约为1.2mg/g;Add 500mL of NaCl solution with a concentration of 20g/L into the lithium salt chamber of the electrodialysis device; use the iron phosphate ion sieve membrane as the cathode, and use the inert graphite in the lithium salt chamber as the anode, and apply a voltage of 0.5V across the electrodes , after maintaining at 25°C for 15 hours, the concentration of Li + in the brine chamber decreased to 358 mg/L, the concentration of Mg 2+ was about 17994 mg/L, and the adsorption capacity of Li + on iron phosphate ion sieve was about 28.4 mg/g, The adsorption capacity of Mg 2+ is about 1.2mg/g;
初始嵌锂结束后,将卤水室和锂盐室中的溶液分别排出,将嵌锂态磷酸铁离子筛膜置于锂盐室中,加入500mL浓度为20g/L的NaCl溶液;按照此实施例中相同的方法,将10gFePO4离子筛制作成未嵌锂的磷酸铁复合膜,将此复合膜置于卤水室,加入2L盐湖卤水,其主要成分及含量仍见上表;以未嵌锂的磷酸铁离子筛膜为阴极,以嵌锂态磷酸铁离子筛膜为阳极,在两电极间施加0.8V的电压,在pH为2、25℃下维持12h后,卤水室中的Li+浓度降低至345mg/L,Mg2+的浓度为约17995mg/L,磷酸铁离子筛对Li+的吸附量为31mg/g,对Mg2+的吸附量约为1mg/g;同时锂盐室中得到Li+浓度为561mg/L的富锂溶液。After the initial lithium intercalation is completed, the solutions in the brine chamber and the lithium salt chamber are discharged separately, the lithium intercalated ferric phosphate ion sieve membrane is placed in the lithium salt chamber, and 500 mL of NaCl solution with a concentration of 20 g/L is added; according to this example In the same method as above, 10g FePO 4 ion sieve was made into iron phosphate composite film without lithium intercalation, this composite film was placed in the brine chamber, and 2L salt lake brine was added, the main components and contents were still shown in the above table; The ferric phosphate ion sieve membrane is used as the cathode, and the lithium-intercalated iron phosphate ion sieve membrane is used as the anode. A voltage of 0.8V is applied between the two electrodes. After the pH is 2 and maintained at 25°C for 12 hours, the Li + concentration in the brine chamber decreases. to 345mg/L, the concentration of Mg 2+ is about 17995mg/L, the adsorption capacity of Li + on iron phosphate ion sieve is 31mg/g, and the adsorption capacity of Mg 2+ is about 1mg/g; A lithium-rich solution with a Li + concentration of 561mg/L.
实施例2Example 2
按90∶5∶5的重量比将9gFe0.99Mn0.01PO4、0.5g高纯石墨和0.5gPVDF混合均匀,将混合好的粉末加入到N-甲基吡咯烷酮(NMP)有机溶剂中研磨调浆,将浆状物喷涂或刷在涂钌钛网上,在真空条件下于110℃保温干燥10小时,冷却后得到磷酸铁离子筛复合膜。Mix 9gFe 0.99 Mn 0.01 PO 4 , 0.5g high-purity graphite and 0.5g PVDF uniformly according to the weight ratio of 90:5:5, add the mixed powder into N-methylpyrrolidone (NMP) organic solvent for grinding and slurrying, Spray or brush the slurry on the ruthenium-titanium mesh, heat and dry it at 110°C for 10 hours under vacuum conditions, and obtain the iron phosphate ion sieve composite membrane after cooling.
将磷酸铁复合膜置于卤水室中,加入2L盐湖卤水,卤水的成分及含量如下表所示:Put the iron phosphate composite film in the brine chamber, add 2L salt lake brine, the composition and content of the brine are shown in the following table:
将200mL浓度为50g/L的NaCl溶液加入到电渗析装置的锂盐室中;以磷酸铁离子筛膜为阴极,以锂盐室中的Pt电极为阳极,在电极两端施加1.0V的电压,在50℃下维持10h后,卤水室中Li+的浓度降低至55.1mg/L,Mg2+的浓度为1254mg/L,磷酸铁离子筛对Li+的吸附量为32.2mg/g,对Mg2+的吸附量为1.33mg/g。Add 200mL of NaCl solution with a concentration of 50g/L into the lithium salt chamber of the electrodialysis device; use the iron phosphate ion sieve membrane as the cathode, and use the Pt electrode in the lithium salt chamber as the anode, and apply a voltage of 1.0V across the electrodes , after maintaining at 50°C for 10 hours, the concentration of Li + in the brine chamber decreased to 55.1 mg/L, the concentration of Mg 2+ was 1254 mg/L, and the adsorption capacity of Li + on the ferric phosphate ion sieve was 32.2 mg/g. The adsorption amount of Mg 2+ was 1.33 mg/g.
初始嵌锂结束后,将卤水室和锂盐室中的溶液分别排出,将嵌锂态磷酸铁离子筛膜置于锂盐室中,加入500mL浓度为50g/L的NaCl溶液;按照此实施例中相同的方法,将9gFePO4离子筛制作成未嵌锂的磷酸铁复合膜,将此复合膜置于卤水室,加入2L盐湖卤水,其主要成分及含量见上表;以未嵌锂的磷酸铁离子筛膜为阴极,以嵌锂态磷酸铁离子筛膜为阳极,在两电极间施加1.5V的电压,在pH为7、50℃下进行电渗析,每隔1h取锂盐室中的溶液分析其中Li+的浓度,具体结果如图2所示;维持10h后,卤水室中的Li+浓度降低至55mg/L,Mg2+的浓度为约1254mg/L,磷酸铁离子筛对Li+的吸附量约为32.2mg/g,对Mg2+的吸附量约为1.33mg/g;同时锂盐室中得到Li+浓度为576mg/L的富锂溶液。After the initial lithium intercalation is completed, the solutions in the brine chamber and the lithium salt chamber are discharged respectively, the lithium intercalated iron phosphate ion sieve membrane is placed in the lithium salt chamber, and 500 mL of NaCl solution with a concentration of 50 g/L is added; according to this example In the same method as above, 9g FePO 4 ion sieve was made into iron phosphate composite membrane without intercalation of lithium, the composite membrane was placed in the brine chamber, and 2L salt lake brine was added, the main components and contents of which were shown in the table above; phosphoric acid without intercalation of lithium The iron ion sieve membrane is used as the cathode, and the lithium-intercalated iron phosphate ion sieve membrane is used as the anode. A voltage of 1.5V is applied between the two electrodes, and electrodialysis is carried out at a pH of 7 and 50°C. The concentration of Li + in the solution was analyzed, and the specific results are shown in Figure 2; after maintaining for 10 hours, the concentration of Li + in the brine chamber was reduced to 55mg/L, and the concentration of Mg2 + was about 1254mg/L. The adsorption capacity of + is about 32.2 mg/g, and the adsorption capacity of Mg 2+ is about 1.33 mg/g; at the same time, a lithium-rich solution with a Li + concentration of 576 mg/L is obtained in the lithium salt chamber.
实施例3Example 3
按实施例2的方法将3gFe0.98Co0.02PO4制成磷酸铁复合膜,将磷酸铁复合膜置于卤水室,加入500mL盐湖卤水,盐湖卤水的成分及含量如下表所示:According to the method of Example 2, 3gFe 0.98 Co 0.02 PO 4 was made into an iron phosphate composite membrane, the iron phosphate composite membrane was placed in the brine chamber, and 500mL of salt lake brine was added. The composition and content of the salt lake brine are shown in the following table:
将500mL浓度为50g/L的NaCl溶液加入锂盐室中,以磷酸铁复合膜为阴极,惰性石墨为阳极,施加2.0V的电压,在80℃下维持10h后,卤水室中Li+的浓度降低至268.4mg/L,Mg2+的浓度为17991mg/L,Fe0.98Co0.02PO4离子筛对Li+的吸附量为38.6mg/g,对Mg2+的吸附量为1.5mg/g。Add 500mL of NaCl solution with a concentration of 50g/L into the lithium salt chamber, use the iron phosphate composite film as the cathode, and inert graphite as the anode, apply a voltage of 2.0V, and maintain it at 80°C for 10h. The concentration of Li + in the brine chamber Reduced to 268.4mg/L, the concentration of Mg 2+ is 17991mg/L, the adsorption capacity of Fe 0.98 Co 0.02 PO 4 ion sieve to Li + is 38.6mg/g, and the adsorption capacity of Mg 2+ is 1.5mg/g.
按照此实施例中相同的方法,将3g Fe0.98Co0.02PO4离子筛制作成未嵌锂的磷酸铁复合膜。初始嵌锂结束后,将未嵌锂的磷酸铁复合膜置于卤水室中,加入500mL盐湖卤水,将嵌锂态离子筛置于锂盐室中,加入500mL浓度为50g/L的NaCl溶液,以嵌锂态离子筛为阳极,未嵌锂的离子筛为阴极,在电极间施加2.0V的电压,在pH为12、80℃下维持10h。电渗析结束后,卤水室中Li+的浓度降低至269.1mg/L,锂盐室得到富锂溶液中Li+的浓度为115mg/L。此电渗析过程结束后,嵌锂态离子筛和未嵌锂的离子筛的形态发生相互转化;保持两电极位置不变,将电渗析装置中的嵌锂后液排出,富锂溶液转移到储槽后重新加入到原卤水室中,将500mL盐湖卤水加入到新的卤水室(原锂盐室),在相同条件下进行第二次电渗析。第二次电渗析结束后,锂盐室富锂溶液中的Li+浓度达到229mg/L。According to the same method in this example, 3g of Fe 0.98 Co 0.02 PO 4 ion sieves were fabricated into iron phosphate composite membranes without intercalation of lithium. After the initial lithium intercalation is completed, place the non-intercalated iron phosphate composite membrane in the brine chamber, add 500mL of salt lake brine, place the lithium-intercalated ion sieve in the lithium salt chamber, add 500mL of NaCl solution with a concentration of 50g/L, The lithium-intercalated ion sieve was used as the anode, and the lithium-intercalated ion sieve was used as the cathode. A voltage of 2.0V was applied between the electrodes, and the pH was maintained at 12 and 80°C for 10h. After the electrodialysis, the concentration of Li + in the brine chamber was reduced to 269.1mg/L, and the concentration of Li + in the lithium-rich solution obtained in the lithium salt chamber was 115mg/L. After the electrodialysis process is over, the morphology of the lithium-intercalated ion sieve and the non-intercalated ion sieve are transformed into each other; keeping the positions of the two electrodes unchanged, the lithium-intercalated liquid in the electrodialysis device is discharged, and the lithium-rich solution is transferred to the storage After the tank, it was added to the original brine chamber again, and 500mL of salt lake brine was added to the new brine chamber (original lithium salt chamber), and the second electrodialysis was performed under the same conditions. After the second electrodialysis, the Li + concentration in the lithium-rich solution in the lithium salt chamber reached 229mg/L.
以此方式进行数个循环的嵌锂/脱嵌的电渗析过程,在第3次电渗析后,锂盐室中富锂溶液的Li+浓度为351mg/L,在第4次电渗析后富锂溶液Li+浓度增加至465mg/L;在相同条件下连续进行了10次电渗析,在第10次电渗析结束后,富锂溶液中Li+浓度达到1162mg/L,其具体的变化情况如图3所示;In this way, several cycles of lithium intercalation/deintercalation electrodialysis process are carried out. After the third electrodialysis, the Li + concentration of the lithium-rich solution in the lithium salt chamber is 351 mg/L, and after the fourth electrodialysis, the lithium-rich The concentration of Li + in the solution increased to 465 mg/L; 10 consecutive electrodialysis were performed under the same conditions. After the 10th electrodialysis, the Li + concentration in the lithium-rich solution reached 1162 mg/L. The specific changes are shown in the figure 3 shown;
实施例4Example 4
按实施例2的方法将10g MnO2制成离子筛复合膜,将MnO2复合膜置于卤水室中,加入1L盐湖卤水,盐湖卤水的成分及含量与实施例3一致;将石墨电极置于锂盐室中,加入500mL浓度为20g/L的NaCl溶液。以MnO2复合膜为阴极,石墨电极为阳极,施加1.2V的电压,在5℃下维持12h后,卤水室中Li+的浓度降低至286mg/L,Mg2+的浓度为17982mg/L,MnO2离子筛对Li+的吸附量为21.4mg/g,对Mg2+的吸附量为1.8mg/g。10g MnO2 is made into ion sieve composite membrane by the method of
按照此实施例中相同的方法,将10g MnO2离子筛制作成未嵌锂的MnO2复合膜。初始嵌锂结束后,将未嵌锂的磷酸铁复合膜置于卤水室中,加入1L盐湖卤水,将嵌锂态MnO2离子筛置于锂盐室中,加入500mL浓度为20g/L的NaCl溶液,以嵌锂态MnO2离子筛为阳极,未嵌锂的MnO2离子筛为阴极,在电极间施加1.2V的电压,在5℃下维持12h。电渗析结束后,卤水室中Li+的浓度降低至284.2mg/L,锂盐室得到富锂溶液中Li+的浓度为428.3mg/L。According to the same method in this embodiment, 10g MnO 2 ion sieves are made into non-lithium-intercalated MnO 2 composite membranes. After the initial lithium intercalation is completed, place the non-intercalated iron phosphate composite membrane in the brine chamber, add 1L of salt lake brine, place the lithium-intercalated MnO2 ion sieve in the lithium salt chamber, and add 500mL of NaCl with a concentration of 20g/L For the solution, the lithium-intercalated MnO 2 ion sieve was used as the anode, and the non-lithiated MnO 2 ion sieve was used as the cathode. A voltage of 1.2V was applied between the electrodes and maintained at 5°C for 12h. After the electrodialysis, the concentration of Li + in the brine chamber was reduced to 284.2 mg/L, and the concentration of Li + in the lithium-rich solution obtained in the lithium salt chamber was 428.3 mg/L.
电渗析结束后,嵌锂态离子筛和未嵌锂离子筛的形态发生相互转化;保持两电极位置不变,将电渗析装置中的嵌锂后液排出,500mL富锂溶液转移到储槽后重新加入到原卤水室中,将1L盐湖卤水加入到新的卤水室(原锂盐室),在相同条件下进行第二次电渗析。第二次电渗析结束后,卤水室中Li+的浓度降低至286.3mg/L,锂盐室得到的二次富锂溶液中Li+的浓度为855.1mg/L。After the end of electrodialysis, the morphology of the lithium-intercalated ion sieve and the non-intercalated lithium-ion sieve are mutually transformed; keep the positions of the two electrodes unchanged, discharge the lithium-intercalated liquid in the electrodialysis device, and transfer 500mL of lithium-rich solution to the storage tank Add it back into the original brine chamber, add 1L salt lake brine into the new brine chamber (original lithium salt chamber), and perform the second electrodialysis under the same conditions. After the second electrodialysis, the concentration of Li + in the brine chamber was reduced to 286.3 mg/L, and the concentration of Li + in the secondary lithium-rich solution obtained in the lithium salt chamber was 855.1 mg/L.
实施例5Example 5
按8∶1∶1的重量比将2gLi4Ti5O12、0.25g乙炔黑和0.25gPVDF混合均匀,将混合好的粉末加入到N-甲基吡咯烷酮(NMP)有机溶剂中研磨调浆,将浆状物涂在石墨纸上,在真空条件下于120℃保温干燥12小时,冷却后得到Li4Ti5O12离子筛复合膜;将Li4Ti5O12离子筛膜置于电渗析装置中的卤水室,加入1L盐湖卤水,卤水的成分及含量如下表所示:Mix 2gLi 4 Ti 5 O 12 , 0.25g acetylene black and 0.25g PVDF uniformly in a weight ratio of 8:1:1, add the mixed powder to N-methylpyrrolidone (NMP) organic solvent for grinding and slurrying, and The slurry was coated on graphite paper, and dried under vacuum at 120°C for 12 hours, and after cooling, a Li 4 Ti 5 O 12 ion sieve composite membrane was obtained; the Li 4 Ti 5 O 12 ion sieve membrane was placed in an electrodialysis device Add 1L of salt lake brine to the brine chamber in the middle of the tank. The composition and content of the brine are shown in the table below:
将石墨电极置于电渗析装置中的锂盐室,加入20g/L的NaCl溶液500ml;以石墨电极为阳极,Li4Ti5O12离子筛为阴极,在两电极间施加0.8V的电压,于25℃下维持10h后,卤水室中Li+的浓度降低至157.6mg/L,Mg2+的浓度基本上没有变化,Li4Ti5O12离子筛对Li+的吸附量为21.2mg/g。Place the graphite electrode in the lithium salt chamber of the electrodialysis device, add 500ml of 20g/L NaCl solution; use the graphite electrode as the anode, and the Li 4 Ti 5 O 12 ion sieve as the cathode, apply a voltage of 0.8V between the two electrodes, After maintaining at 25°C for 10 hours, the concentration of Li + in the brine chamber decreased to 157.6 mg/L, the concentration of Mg 2+ basically remained unchanged, and the adsorption capacity of Li + on Li 4 Ti 5 O 12 ion sieve was 21.2 mg/L g.
按照此实施例中相同的方法,将2g Li4Ti5O12离子筛制作成未嵌锂的离子筛复合膜。初始嵌锂结束后,将未嵌锂的Li4Ti5O12复合膜置于卤水室中,加入1L盐湖卤水,将嵌锂态离子筛膜置于锂盐室中,加入500mL浓度为20g/L的NaCl溶液,以嵌锂态Li4Ti5O12离子筛为阳极,未嵌锂的Li4Ti5O12离子筛为阴极,在电极间施加0.8V的电压,在pH为5、5℃下维持10h。电渗析结束后,卤水室中Li+的浓度降低至155.4mg/L,锂盐室得到富锂溶液中Li+的浓度为88.7mg/L。According to the same method in this example, 2 g of Li 4 Ti 5 O 12 ion sieves were fabricated into ion sieve composite membranes without intercalation of lithium. After the initial lithium intercalation, place the non-intercalated Li 4 Ti 5 O 12 composite membrane in the brine chamber, add 1L of salt lake brine, place the lithium intercalated ion sieve membrane in the lithium salt chamber, add 500mL of 20g/ L of NaCl solution, Li 4 Ti 5 O 12 ion sieve in lithium-intercalated state is used as anode, Li 4 Ti 5 O 12 ion sieve without lithium intercalation is used as cathode, and a voltage of 0.8V is applied between the electrodes. Maintain at ℃ for 10h. After the electrodialysis, the concentration of Li + in the brine chamber was reduced to 155.4mg/L, and the concentration of Li + in the lithium-rich solution obtained in the lithium salt chamber was 88.7mg/L.
实施例6Example 6
按8∶1∶1的重量比将4gLiFe0.99Mn0.01PO4/C、0.5g高纯石墨和0.5gPVDF混合均匀,加入N-甲基吡咯烷酮(NMP)有机溶剂研磨调成浆状流体,将浆状物涂覆在石墨纸上,在真空条件下,升温至110℃保温12小时,冷却后得到磷酸铁锂复合膜;以磷酸铁锂复合膜为阳极,以泡沫镍为阴极,置于1L浓度为30g/L的NaCl溶液中,在电极两端施加1.1V的电压10h,磷酸铁锂复合膜转化为磷酸铁离子筛;According to the weight ratio of 8:1:1, mix 4gLiFe 0.99 Mn 0.01 PO 4 /C, 0.5g high-purity graphite and 0.5g PVDF evenly, add N-methylpyrrolidone (NMP) organic solvent and grind to make a slurry fluid. coated on graphite paper, heated to 110°C for 12 hours under vacuum conditions, and obtained a lithium iron phosphate composite film after cooling; the lithium iron phosphate composite film was used as the anode and the nickel foam was used as the cathode, and placed in a concentration of 1L In the NaCl solution of 30g/L, a voltage of 1.1V is applied across the electrodes for 10h, and the lithium iron phosphate composite membrane is transformed into an iron phosphate ion sieve;
按此实施例中相同的方法将4gLiFe0.99Mn0.01PO4/C制作成磷酸铁锂复合膜,将磷酸铁锂复合膜置于电渗析装置的锂盐室中,加入30g/L的NaCl溶液500ml;将所得的磷酸铁离子筛置于卤水室中,加入1L盐湖卤水,卤水的成分及含量如下表所示:According to the same method in this example, 4gLiFe 0.99 Mn 0.01 PO 4 /C is made into a lithium iron phosphate composite membrane, and the lithium iron phosphate composite membrane is placed in the lithium salt chamber of the electrodialysis device, and 500ml of 30g/L NaCl solution is added The ferric phosphate ion sieve of gained is placed in the bittern chamber, adds 1L salt lake bittern, and the composition and content of bittern are shown in the following table:
以磷酸铁锂复合膜为阳极,磷酸铁离子筛为阴极,在pH为8、25℃下施加1.0V的电压,维持15h后,卤水室中Li+的浓度降低至66.5mg/L,Mg2+的浓度为1257mg/L,锂盐室中Li+的浓度为267.4mg/L。With the lithium iron phosphate composite membrane as the anode and the iron phosphate ion sieve as the cathode, a voltage of 1.0V was applied at a pH of 8 and 25°C. After maintaining for 15 hours, the concentration of Li + in the brine chamber decreased to 66.5mg/L, Mg 2 The concentration of + is 1257mg/L, and the concentration of Li + in the lithium salt chamber is 267.4mg/L.
实施例7Example 7
按8∶1∶1的重量比将2gLiFePO4/C、0.25g高纯石墨和0.25gPVDF混合均匀,加入N-甲基吡咯烷酮(NMP)有机溶剂研磨调成浆状流体,将浆状物涂覆在碳纤维布上,置于真空干燥箱中抽真空后,升温至110℃保温12小时,冷却后得到磷酸铁锂复合膜;以磷酸铁锂复合膜为阳极,以泡沫镍为阴极,置于1L浓度为20g/L的NaCl溶液中,在电极两端施加1.0V的电压12h,磷酸铁锂复合膜转化为磷酸铁离子筛;According to the weight ratio of 8:1:1, mix 2gLiFePO 4 /C, 0.25g high-purity graphite and 0.25g PVDF evenly, add N-methylpyrrolidone (NMP) organic solvent to grind into a slurry fluid, and coat the slurry Place the carbon fiber cloth on the carbon fiber cloth, put it in a vacuum drying oven, heat it up to 110°C for 12 hours, and obtain a lithium iron phosphate composite film after cooling; use the lithium iron phosphate composite film as the anode and nickel foam as the cathode, and place it in 1L In a NaCl solution with a concentration of 20g/L, a voltage of 1.0V is applied across the electrodes for 12h, and the lithium iron phosphate composite membrane is transformed into an iron phosphate ion sieve;
按此实施例中相同的方法将2gLiFePO4/C制作成磷酸铁锂复合膜,将磷酸铁锂复合膜置于电渗析装置的锂盐室中,加入50g/L的NaCl溶液1L;将所得的磷酸铁离子筛置于卤水室中,加入1L盐湖卤水,卤水的成分及含量如下表所示:According to the same method in this embodiment, 2gLiFePO 4 /C is made into a lithium iron phosphate composite membrane, and the lithium iron phosphate composite membrane is placed in the lithium salt chamber of the electrodialysis device, and 1L of NaCl solution of 50g/L is added; The iron phosphate ion sieve is placed in the brine chamber, and 1L of salt lake brine is added. The composition and content of the brine are shown in the following table:
以磷酸铁锂复合膜为阳极,磷酸铁离子筛为阴极,在pH为10、30℃下施加1.0V的电压,维持12h后,卤水室中Li+的浓度降低至442.3mg/L,锂盐室中Li+的浓度为57.8mg/L。电渗析结束后,电渗析结束后,嵌锂态离子筛和未嵌锂离子筛的形态发生相互转化;将上述两电极的位置调换,即将锂盐室中的磷酸铁锂复合膜转化所得的磷酸铁离子筛置于卤水室中作为阴极,将卤水室中的磷酸铁离子筛转化所得的嵌锂态离子筛置于锂盐室中作为阳极,在相同条件下进行电渗析;电渗析结束后,卤水室中Li+的浓度变为384.6mg/L,锂盐室中Li+的浓度升高至115.7mg/L。With the lithium iron phosphate composite membrane as the anode and the iron phosphate ion sieve as the cathode, a voltage of 1.0V was applied at a pH of 10 and 30°C. After maintaining for 12 hours, the concentration of Li + in the brine chamber decreased to 442.3mg/L, and the lithium salt The concentration of Li + in the chamber was 57.8 mg/L. After the end of the electrodialysis, the morphology of the lithium-intercalated ion sieve and the non-intercalated lithium-ion sieve are transformed into each other; the positions of the above two electrodes are exchanged, that is, the phosphoric acid obtained by converting the lithium iron phosphate composite membrane in the lithium salt chamber The iron ion sieve is placed in the brine chamber as the cathode, and the lithium-intercalated ion sieve obtained by converting the ferric phosphate ion sieve in the brine chamber is placed in the lithium salt chamber as the anode, and electrodialysis is carried out under the same conditions; after the electrodialysis is completed, The concentration of Li + in the brine compartment became 384.6 mg/L, and the concentration of Li + in the lithium salt compartment increased to 115.7 mg/L.
按此方式进行数次循环,在第6次电渗析结束后,卤水室中Li+的浓度变为153.5mg/L,锂盐室中Li+的浓度升高至346.8mg/L。Several cycles were carried out in this way. After the sixth electrodialysis, the concentration of Li + in the brine chamber became 153.5 mg/L, and the concentration of Li + in the lithium salt chamber increased to 346.8 mg/L.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101851286A CN102382984B (en) | 2011-07-04 | 2011-07-04 | Method for separating magnesium and lithium and enriching lithium from salt lake brine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101851286A CN102382984B (en) | 2011-07-04 | 2011-07-04 | Method for separating magnesium and lithium and enriching lithium from salt lake brine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102382984A true CN102382984A (en) | 2012-03-21 |
CN102382984B CN102382984B (en) | 2013-03-13 |
Family
ID=45822812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101851286A Active CN102382984B (en) | 2011-07-04 | 2011-07-04 | Method for separating magnesium and lithium and enriching lithium from salt lake brine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102382984B (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104577243A (en) * | 2014-11-24 | 2015-04-29 | 北京化工大学 | Method for recovering lithium resource from lithium-ion-containing solution by using lithium ion carrier |
CN104689858A (en) * | 2013-12-10 | 2015-06-10 | 上海空间电源研究所 | A kind of preparation method of lithium manganate ion sieve separation membrane |
CN105948081A (en) * | 2016-05-03 | 2016-09-21 | 大连理工大学 | A method for extracting lithium in brine by using hybrid capacitor |
CN106110890A (en) * | 2016-07-03 | 2016-11-16 | 温州大学 | The segregation apparatus of a kind of magnesium lithium ion and separation method thereof |
CN106435220A (en) * | 2016-09-06 | 2017-02-22 | 南京工业大学 | A method for reducing the ratio of magnesium to lithium in salt lake brine |
CN107201452A (en) * | 2017-04-13 | 2017-09-26 | 河北工业大学 | One kind is based on LiMn2O4The method that electrode material carries lithium from lithium-containing solution |
CN108060308A (en) * | 2017-12-12 | 2018-05-22 | 中南大学 | A kind of method and device of the separating Li from lithium-containing solution |
CN108149030A (en) * | 2017-11-15 | 2018-06-12 | 青海柴达木兴华锂盐有限公司 | A high-efficiency integrated lithium ion extraction equipment and extraction process |
CN108483591A (en) * | 2018-04-24 | 2018-09-04 | 浙江工业大学 | A method of extraction lithium ion |
CN109267086A (en) * | 2018-10-30 | 2019-01-25 | 吉首大学 | The device and method of magnesium/lithium separation and enriching lithium in a kind of salt lake bittern |
CN109487294A (en) * | 2018-10-31 | 2019-03-19 | 南京工业大学 | Method for extracting potassium from seawater or brine |
CN109485075A (en) * | 2017-10-29 | 2019-03-19 | 山东森久生物材料有限公司 | A method of battery-level lithium carbonate is produced using salt lake brine with high magnesium-lithium ratio |
CN109487081A (en) * | 2018-12-05 | 2019-03-19 | 天津科技大学 | Lithium unit and expanding unit and continuous operation method are mentioned using flowing electrode |
CN109593973A (en) * | 2018-12-29 | 2019-04-09 | 中喜(宁夏)新材料有限公司 | A kind of seawater or salt lake saline propose lithium technique |
CN109609977A (en) * | 2019-02-20 | 2019-04-12 | 长江师范学院 | Electrode structure for extracting lithium and its manufacturing method and application |
CN109706321A (en) * | 2019-02-28 | 2019-05-03 | 江南大学 | A method for selective electroadsorption of lithium ions from salt lake brine |
CN106170340B (en) * | 2012-09-19 | 2019-05-28 | 国家科学和技术研究委员会(Conicet) | It is low from aqueous solution to recycle lithium with influencing |
CN110139712A (en) * | 2016-11-14 | 2019-08-16 | 锂莱克解决方案公司 | It is extracted using the lithium that cladded type ion-exchange particles carry out |
CN111519209A (en) * | 2020-04-21 | 2020-08-11 | 华南理工大学 | Purification process suitable for treating lithium-containing mineral by sodium salt method |
CN111530290A (en) * | 2020-05-28 | 2020-08-14 | 青海东台吉乃尔锂资源股份有限公司 | Recovery processing and working device for electrode liquid of electrodialysis equipment |
CN111850593A (en) * | 2020-07-08 | 2020-10-30 | 石家庄嘉硕电子技术有限公司 | Lithium extraction automatic control system and control method |
CN113117635A (en) * | 2021-03-04 | 2021-07-16 | 广东省科学院稀有金属研究所 | Preparation method of titanium-based lithium ion sieve |
CN113856490A (en) * | 2021-10-11 | 2021-12-31 | 中南大学 | Preparation method of lithium ion sieve membrane and two-stage electrodialysis device |
CN115304045A (en) * | 2022-08-29 | 2022-11-08 | 西藏锂时代科技有限公司 | Application of lithium iron manganese phosphate as electrode material in brine electrochemical lithium extraction |
CN115386740A (en) * | 2022-08-30 | 2022-11-25 | 中南大学 | Method and device for extracting lithium from brine or seawater based on electrodialysis principle |
CN115624958A (en) * | 2022-09-23 | 2023-01-20 | 佛山(华南)新材料研究院 | Film for extracting lithium from salt lake brine, preparation method of film and lithium extraction method |
CN115786734A (en) * | 2022-11-25 | 2023-03-14 | 厦门紫金矿冶技术有限公司 | Method for recovering lithium from brine concentrated crystal salt |
CN115818801A (en) * | 2022-12-20 | 2023-03-21 | 中南大学 | Method for extracting lithium from salt lake brine |
CN116445731A (en) * | 2022-12-16 | 2023-07-18 | 南京大学 | A device, method and application for extracting lithium |
CN116529201A (en) * | 2023-03-02 | 2023-08-01 | 广东邦普循环科技有限公司 | A method for direct electrochemical deintercalation and extraction of lithium from salt lake brine |
WO2024182971A1 (en) * | 2023-03-06 | 2024-09-12 | 广东邦普循环科技有限公司 | Method for separating magnesium and lithium and extracting lithium from salt-lake brine by means of electrochemical deintercalation |
WO2024192617A1 (en) * | 2023-03-20 | 2024-09-26 | 广东邦普循环科技有限公司 | Lithium extraction device and lithium extraction method |
WO2024192749A1 (en) * | 2023-03-23 | 2024-09-26 | 广东邦普循环科技有限公司 | Capacitor-assisted device for extracting lithium from salt lake, and method for extracting lithium |
WO2024216574A1 (en) * | 2023-04-20 | 2024-10-24 | 广东邦普循环科技有限公司 | Modified lithium ion sieve, preparation method and use of modified lithium ion sieve in electrochemical lithium extraction |
WO2024216539A1 (en) * | 2023-04-19 | 2024-10-24 | 广东邦普循环科技有限公司 | Electrochemical deintercalation-based lithium extraction method |
WO2024234303A1 (en) * | 2023-05-16 | 2024-11-21 | 广东邦普循环科技有限公司 | Electrochemical deintercalation and intercalation-based lithium enrichment apparatus, and lithium extraction method thereof |
WO2024259612A1 (en) * | 2023-06-21 | 2024-12-26 | 广东邦普循环科技有限公司 | Electrochemical deintercalation-based lithium extraction method |
WO2024259636A1 (en) * | 2023-06-21 | 2024-12-26 | 广东邦普循环科技有限公司 | Method for extracting lithium from salt lake by means of electrochemical deintercalation |
WO2025000480A1 (en) * | 2023-06-30 | 2025-01-02 | 广东邦普循环科技有限公司 | Lithium extraction system and lithium extraction method |
WO2025000168A1 (en) * | 2023-06-26 | 2025-01-02 | 广东邦普循环科技有限公司 | Electrochemical directional circulation-based deintercalation and intercalation balance method and apparatus in lithium extraction, device, and medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57105206A (en) * | 1980-12-22 | 1982-06-30 | Ishikawajima Harima Heavy Ind Co Ltd | Method for removing silicon content from digested liquid of pulp |
CN1626443A (en) * | 2003-12-20 | 2005-06-15 | 中国科学院青海盐湖研究所 | Method for separating magnesium and concentrating lithium from brine in salt lake |
CN102049238A (en) * | 2010-11-19 | 2011-05-11 | 中南大学 | Ion sieve for selectively extracting lithium and application thereof |
CN202181336U (en) * | 2011-07-04 | 2012-04-04 | 中南大学 | Device for separating magnesium and lithium from salt lake brine and enriching lithium |
-
2011
- 2011-07-04 CN CN2011101851286A patent/CN102382984B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57105206A (en) * | 1980-12-22 | 1982-06-30 | Ishikawajima Harima Heavy Ind Co Ltd | Method for removing silicon content from digested liquid of pulp |
CN1626443A (en) * | 2003-12-20 | 2005-06-15 | 中国科学院青海盐湖研究所 | Method for separating magnesium and concentrating lithium from brine in salt lake |
CN102049238A (en) * | 2010-11-19 | 2011-05-11 | 中南大学 | Ion sieve for selectively extracting lithium and application thereof |
CN202181336U (en) * | 2011-07-04 | 2012-04-04 | 中南大学 | Device for separating magnesium and lithium from salt lake brine and enriching lithium |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106170340B (en) * | 2012-09-19 | 2019-05-28 | 国家科学和技术研究委员会(Conicet) | It is low from aqueous solution to recycle lithium with influencing |
CN104689858A (en) * | 2013-12-10 | 2015-06-10 | 上海空间电源研究所 | A kind of preparation method of lithium manganate ion sieve separation membrane |
CN104577243A (en) * | 2014-11-24 | 2015-04-29 | 北京化工大学 | Method for recovering lithium resource from lithium-ion-containing solution by using lithium ion carrier |
CN104577243B (en) * | 2014-11-24 | 2017-05-10 | 北京化工大学 | Method for recovering lithium resource from lithium-ion-containing solution by using lithium ion carrier |
CN105948081A (en) * | 2016-05-03 | 2016-09-21 | 大连理工大学 | A method for extracting lithium in brine by using hybrid capacitor |
CN106110890A (en) * | 2016-07-03 | 2016-11-16 | 温州大学 | The segregation apparatus of a kind of magnesium lithium ion and separation method thereof |
CN106110890B (en) * | 2016-07-03 | 2018-05-22 | 温州大学 | A kind of separator and its separation method of magnesium lithium ion |
CN106435220A (en) * | 2016-09-06 | 2017-02-22 | 南京工业大学 | A method for reducing the ratio of magnesium to lithium in salt lake brine |
CN110139712B (en) * | 2016-11-14 | 2023-08-15 | 锂莱克解决方案公司 | Lithium extraction using coated ion exchange particles |
CN110139712A (en) * | 2016-11-14 | 2019-08-16 | 锂莱克解决方案公司 | It is extracted using the lithium that cladded type ion-exchange particles carry out |
CN107201452A (en) * | 2017-04-13 | 2017-09-26 | 河北工业大学 | One kind is based on LiMn2O4The method that electrode material carries lithium from lithium-containing solution |
CN107201452B (en) * | 2017-04-13 | 2019-05-14 | 河北工业大学 | One kind being based on LiMn2O4The method that electrode material mentions lithium from lithium-containing solution |
CN109485075A (en) * | 2017-10-29 | 2019-03-19 | 山东森久生物材料有限公司 | A method of battery-level lithium carbonate is produced using salt lake brine with high magnesium-lithium ratio |
CN108149030A (en) * | 2017-11-15 | 2018-06-12 | 青海柴达木兴华锂盐有限公司 | A high-efficiency integrated lithium ion extraction equipment and extraction process |
CN108060308B (en) * | 2017-12-12 | 2020-01-03 | 中南大学 | Method and device for separating lithium from lithium-containing solution |
CN108060308A (en) * | 2017-12-12 | 2018-05-22 | 中南大学 | A kind of method and device of the separating Li from lithium-containing solution |
CN108483591A (en) * | 2018-04-24 | 2018-09-04 | 浙江工业大学 | A method of extraction lithium ion |
CN108483591B (en) * | 2018-04-24 | 2021-07-30 | 浙江工业大学 | A method of extracting lithium ions |
CN109267086A (en) * | 2018-10-30 | 2019-01-25 | 吉首大学 | The device and method of magnesium/lithium separation and enriching lithium in a kind of salt lake bittern |
CN109487294A (en) * | 2018-10-31 | 2019-03-19 | 南京工业大学 | Method for extracting potassium from seawater or brine |
CN109487081A (en) * | 2018-12-05 | 2019-03-19 | 天津科技大学 | Lithium unit and expanding unit and continuous operation method are mentioned using flowing electrode |
CN109487081B (en) * | 2018-12-05 | 2020-04-28 | 天津科技大学 | Lithium extraction unit and extended device and continuous operation method using flow electrode |
CN109593973A (en) * | 2018-12-29 | 2019-04-09 | 中喜(宁夏)新材料有限公司 | A kind of seawater or salt lake saline propose lithium technique |
CN109609977A (en) * | 2019-02-20 | 2019-04-12 | 长江师范学院 | Electrode structure for extracting lithium and its manufacturing method and application |
CN109706321A (en) * | 2019-02-28 | 2019-05-03 | 江南大学 | A method for selective electroadsorption of lithium ions from salt lake brine |
CN109706321B (en) * | 2019-02-28 | 2021-07-09 | 江南大学 | A method for selective electrosorption of lithium ions from salt lake brine |
CN111519209A (en) * | 2020-04-21 | 2020-08-11 | 华南理工大学 | Purification process suitable for treating lithium-containing mineral by sodium salt method |
CN111519209B (en) * | 2020-04-21 | 2021-08-10 | 华南理工大学 | Purification process suitable for treating lithium-containing mineral by sodium salt method |
CN111530290A (en) * | 2020-05-28 | 2020-08-14 | 青海东台吉乃尔锂资源股份有限公司 | Recovery processing and working device for electrode liquid of electrodialysis equipment |
CN111850593A (en) * | 2020-07-08 | 2020-10-30 | 石家庄嘉硕电子技术有限公司 | Lithium extraction automatic control system and control method |
CN111850593B (en) * | 2020-07-08 | 2021-03-16 | 石家庄嘉硕电子技术有限公司 | Lithium extraction automatic control system and control method |
CN113117635A (en) * | 2021-03-04 | 2021-07-16 | 广东省科学院稀有金属研究所 | Preparation method of titanium-based lithium ion sieve |
CN113856490A (en) * | 2021-10-11 | 2021-12-31 | 中南大学 | Preparation method of lithium ion sieve membrane and two-stage electrodialysis device |
CN115304045A (en) * | 2022-08-29 | 2022-11-08 | 西藏锂时代科技有限公司 | Application of lithium iron manganese phosphate as electrode material in brine electrochemical lithium extraction |
CN115386740A (en) * | 2022-08-30 | 2022-11-25 | 中南大学 | Method and device for extracting lithium from brine or seawater based on electrodialysis principle |
CN115624958A (en) * | 2022-09-23 | 2023-01-20 | 佛山(华南)新材料研究院 | Film for extracting lithium from salt lake brine, preparation method of film and lithium extraction method |
CN115624958B (en) * | 2022-09-23 | 2024-05-28 | 佛山(华南)新材料研究院 | Film for extracting lithium from salt lake brine, preparation method thereof and lithium extraction method |
CN115786734B (en) * | 2022-11-25 | 2023-12-08 | 厦门紫金矿冶技术有限公司 | Method for recovering lithium by concentrating crystalline salt of brine |
CN115786734A (en) * | 2022-11-25 | 2023-03-14 | 厦门紫金矿冶技术有限公司 | Method for recovering lithium from brine concentrated crystal salt |
CN116445731A (en) * | 2022-12-16 | 2023-07-18 | 南京大学 | A device, method and application for extracting lithium |
CN116445731B (en) * | 2022-12-16 | 2024-03-19 | 南京大学 | Device, method and use for extracting lithium |
CN115818801A (en) * | 2022-12-20 | 2023-03-21 | 中南大学 | Method for extracting lithium from salt lake brine |
CN116529201A (en) * | 2023-03-02 | 2023-08-01 | 广东邦普循环科技有限公司 | A method for direct electrochemical deintercalation and extraction of lithium from salt lake brine |
WO2024182971A1 (en) * | 2023-03-06 | 2024-09-12 | 广东邦普循环科技有限公司 | Method for separating magnesium and lithium and extracting lithium from salt-lake brine by means of electrochemical deintercalation |
WO2024192617A1 (en) * | 2023-03-20 | 2024-09-26 | 广东邦普循环科技有限公司 | Lithium extraction device and lithium extraction method |
WO2024192749A1 (en) * | 2023-03-23 | 2024-09-26 | 广东邦普循环科技有限公司 | Capacitor-assisted device for extracting lithium from salt lake, and method for extracting lithium |
WO2024216539A1 (en) * | 2023-04-19 | 2024-10-24 | 广东邦普循环科技有限公司 | Electrochemical deintercalation-based lithium extraction method |
WO2024216574A1 (en) * | 2023-04-20 | 2024-10-24 | 广东邦普循环科技有限公司 | Modified lithium ion sieve, preparation method and use of modified lithium ion sieve in electrochemical lithium extraction |
WO2024234303A1 (en) * | 2023-05-16 | 2024-11-21 | 广东邦普循环科技有限公司 | Electrochemical deintercalation and intercalation-based lithium enrichment apparatus, and lithium extraction method thereof |
WO2024259612A1 (en) * | 2023-06-21 | 2024-12-26 | 广东邦普循环科技有限公司 | Electrochemical deintercalation-based lithium extraction method |
WO2024259636A1 (en) * | 2023-06-21 | 2024-12-26 | 广东邦普循环科技有限公司 | Method for extracting lithium from salt lake by means of electrochemical deintercalation |
WO2025000168A1 (en) * | 2023-06-26 | 2025-01-02 | 广东邦普循环科技有限公司 | Electrochemical directional circulation-based deintercalation and intercalation balance method and apparatus in lithium extraction, device, and medium |
WO2025000480A1 (en) * | 2023-06-30 | 2025-01-02 | 广东邦普循环科技有限公司 | Lithium extraction system and lithium extraction method |
Also Published As
Publication number | Publication date |
---|---|
CN102382984B (en) | 2013-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102382984A (en) | Method and device for separating magnesium and lithium and enriching lithium from salt lake brine | |
Zhao et al. | Review on the electrochemical extraction of lithium from seawater/brine | |
CN202181336U (en) | Device for separating magnesium and lithium from salt lake brine and enriching lithium | |
Wu et al. | Lithium recovery using electrochemical technologies: Advances and challenges | |
US9062385B2 (en) | Method and device for extracting and enriching lithium | |
Calvo | Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling | |
Chen et al. | Dual-ions electrochemical deionization: a desalination generator | |
CN104577243B (en) | Method for recovering lithium resource from lithium-ion-containing solution by using lithium ion carrier | |
CN109267086B (en) | A device and method for magnesium/lithium separation and lithium enrichment in salt lake brine | |
CN102049237B (en) | Iron phosphate ion sieve for selectively extracting Li and application thereof | |
CN107201452A (en) | One kind is based on LiMn2O4The method that electrode material carries lithium from lithium-containing solution | |
CN102049238A (en) | Ion sieve for selectively extracting lithium and application thereof | |
CN109609977B (en) | Electrode structure for extracting lithium and its manufacturing method and application | |
CN115818801A (en) | Method for extracting lithium from salt lake brine | |
CN115418675A (en) | Electrochemical lithium extraction method | |
CN115287686B (en) | Salt lake lithium extraction device and lithium extraction method | |
CN108560019A (en) | A kind of continuous flow control asymmetry lithium-ion capacitance carries lithium device and puies forward lithium method | |
CN112299493B (en) | Ni-doped delta-MnO 2 Material preparation method and application thereof in potassium ion battery | |
CN116555564A (en) | Electrochemical lithium extraction electrode and electrochemical lithium extraction method | |
Yu et al. | Lithium manganate wrapped with ion-selective graphene coatings for thermally assisted lithium extraction from simulated seawater | |
Wang et al. | Electricity facilitates the lithium sorption from salt-lake brine by H3LiTi5O12 nanoparticles: kinetics, selectivity and mechanism | |
CN108666550A (en) | A kind of preparation method of the nickelic ternary anode material of lithium battery with concentration gradient | |
CN103498172B (en) | A kind of barium oxide for selective extraction lithium and application thereof | |
WO2024182971A1 (en) | Method for separating magnesium and lithium and extracting lithium from salt-lake brine by means of electrochemical deintercalation | |
CN116445731B (en) | Device, method and use for extracting lithium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20120321 Assignee: Shanghai Hua Dan Technology Development Co. Ltd. Assignor: Central South University Contract record no.: 2017430000029 Denomination of invention: Method and device for separating magnesium and lithium and enriching lithium from salt lake brine Granted publication date: 20130313 License type: Exclusive License Record date: 20171229 |