CN102381844B - Method for modifying hollow glass microspheres by chemical precipitation process - Google Patents
Method for modifying hollow glass microspheres by chemical precipitation process Download PDFInfo
- Publication number
- CN102381844B CN102381844B CN 201110210571 CN201110210571A CN102381844B CN 102381844 B CN102381844 B CN 102381844B CN 201110210571 CN201110210571 CN 201110210571 CN 201110210571 A CN201110210571 A CN 201110210571A CN 102381844 B CN102381844 B CN 102381844B
- Authority
- CN
- China
- Prior art keywords
- hollow glass
- glass microspheres
- ferric
- chemical precipitation
- microspheres
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004005 microsphere Substances 0.000 title claims abstract description 71
- 239000011521 glass Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000009388 chemical precipitation Methods 0.000 title claims abstract description 12
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims abstract description 18
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims abstract description 18
- 229960002089 ferrous chloride Drugs 0.000 claims abstract description 16
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims abstract description 16
- 238000003756 stirring Methods 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 238000005238 degreasing Methods 0.000 claims abstract description 7
- 239000011324 bead Substances 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 229910052742 iron Inorganic materials 0.000 claims description 19
- 239000008367 deionised water Substances 0.000 claims description 15
- 229910021641 deionized water Inorganic materials 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 10
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 8
- 238000012986 modification Methods 0.000 claims description 7
- 230000004048 modification Effects 0.000 claims description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 6
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical group [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 3
- 239000004115 Sodium Silicate Substances 0.000 claims description 3
- 229910001447 ferric ion Inorganic materials 0.000 claims description 3
- -1 hydrogen Sodium oxide Chemical class 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- 239000001488 sodium phosphate Substances 0.000 claims description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 3
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 3
- 229910000406 trisodium phosphate Inorganic materials 0.000 claims description 3
- 235000019801 trisodium phosphate Nutrition 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 229910001948 sodium oxide Inorganic materials 0.000 claims 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract description 29
- 239000002245 particle Substances 0.000 abstract description 24
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 abstract description 16
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 9
- 230000005415 magnetization Effects 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Compounds Of Iron (AREA)
Abstract
本发明公开了采用化学沉淀法对空心玻璃微珠进行改性的方法,首先按照质量-体积浓度,称取10-20g/L的空心玻璃微珠加入到除油液中,在温度为80-100℃的条件下,搅拌,反应20-30min后对空心玻璃微珠进行过滤、水洗,在110℃条件下干燥1-2h;然后用氯化亚铁与三氯化铁在空心玻璃微珠表面包覆磁性纳米四氧化三铁颗粒薄膜。本发明方法,采用化学沉淀法在制备磁性纳米四氧化三铁颗粒的同时,直接在空心玻璃微珠表面包覆一层磁性纳米四氧化三铁颗粒薄膜,赋予空心玻璃微珠磁性能,该方法节省原材料,操作简便。测试结果表明,磁性纳米四氧化三铁改性后的空心玻璃微珠具有优异磁性和一定的结合牢度,可以满足实际需要。
The invention discloses a method for modifying hollow glass microspheres by using a chemical precipitation method. First, according to the mass-volume concentration, 10-20 g/L hollow glass microspheres are weighed and added to the degreasing liquid. Stir at 100°C, react for 20-30 minutes, filter and wash the hollow glass beads, and dry at 110°C for 1-2 hours; then use ferrous chloride and ferric chloride on the surface of the hollow glass beads Coated with magnetic nano ferric oxide particle film. The method of the present invention adopts the chemical precipitation method to directly coat a layer of magnetic nano-ferric oxide particle film on the surface of the hollow glass microspheres while preparing the magnetic nanometer ferric oxide particles, so as to endow the hollow glass microspheres with magnetic properties. It saves raw materials and is easy to operate. The test results show that the hollow glass microspheres modified by the magnetic nano ferroferric oxide have excellent magnetic properties and certain bonding fastness, which can meet the actual needs.
Description
技术领域 technical field
本发明属于功能无机非金属材料技术领域,涉及一种空心玻璃微珠的改性方法,具体涉及一种采用化学沉淀法对空心玻璃微珠进行改性的方法。The invention belongs to the technical field of functional inorganic non-metallic materials, and relates to a method for modifying hollow glass microspheres, in particular to a method for modifying hollow glass microspheres by chemical precipitation.
背景技术 Background technique
四氧化三铁(Fe3O4)是一种重要的尖晶石类铁氧体,具有许多不同于常规材料的光、电、声、热和磁等特性,是应用最为广泛的软磁性材料之一,常用作记录材料、颜料、磁流体材料,催化剂,磁性高分子微球和电子材料等,在生物技术领域和医学领域也有着很好的应用前景。目前,制备磁性纳米四氧化三铁颗粒方法主要有水热反应法、中和沉淀法、化学共沉淀法、沉淀氧化法和微波辐射法等,其中化学沉淀法具有环境友好、纯度高,制备出的纳米颗粒均匀、分散性好,不用高温灼烧,操作简单,易实现工业化生产等优点。空心玻璃微珠是一种尺寸微小的空心玻璃球体,具有质轻、低导热、抗压、高分散、隔音、电绝缘性和热稳定性好等优点,是近年来发展起来的一种用途广泛、性能优异的新型轻质材料。利用空心玻璃微珠质轻、中空的特点,对其进行表面改性处理,能够得到具有特殊性能(如吸波、反光、耐磨和催化等)的新材料。目前采用化学沉淀法对空心玻璃微珠包覆磁性纳米四氧化三铁颗粒薄膜的相关技术还没有。现有的改性方法主要有使用化学共沉淀法,在空心玻璃微珠表面包覆一层尖晶石型铁氧体或磁铅石型铁氧体,但工艺设备要求高,不易工业化实现。Iron tetroxide (Fe 3 O 4 ) is an important spinel-like ferrite, which has many optical, electrical, acoustic, thermal and magnetic properties different from conventional materials, and is the most widely used soft magnetic material One of them is often used as recording materials, pigments, magnetic fluid materials, catalysts, magnetic polymer microspheres and electronic materials, etc. It also has good application prospects in the fields of biotechnology and medicine. At present, the methods for preparing magnetic nano-ferric oxide particles mainly include hydrothermal reaction method, neutralization precipitation method, chemical co-precipitation method, precipitation oxidation method and microwave radiation method, among which the chemical precipitation method is environmentally friendly and has high purity. The nanoparticles are uniform, well-dispersed, do not need to be burned at high temperature, simple to operate, and easy to realize industrial production. Hollow glass microspheres are hollow glass spheres with a small size, which have the advantages of light weight, low thermal conductivity, compression resistance, high dispersion, sound insulation, electrical insulation and thermal stability, etc., and are developed in recent years. , A new lightweight material with excellent performance. Taking advantage of the light weight and hollow characteristics of hollow glass microspheres, the surface modification treatment can be used to obtain new materials with special properties (such as wave absorption, light reflection, wear resistance and catalysis, etc.). At present, there is no relevant technology for coating hollow glass microspheres with magnetic nano ferric oxide particle films by chemical precipitation. The existing modification methods mainly use the chemical co-precipitation method to coat a layer of spinel-type ferrite or magnetoplumbite-type ferrite on the surface of hollow glass microspheres. However, the requirements for process equipment are high and it is not easy to achieve industrialization.
发明内容 Contents of the invention
本发明的目的是提供一种采用化学沉淀法对空心玻璃微珠进行改性的方法,解决了现有改性方法得到的空心玻璃微珠不具有磁性或磁性较差的问题。The object of the present invention is to provide a method for modifying hollow glass microspheres by chemical precipitation, which solves the problem that the hollow glass microspheres obtained by the existing modification methods have no magnetic properties or poor magnetic properties.
本发明所采用的技术方案是,采用化学沉淀法对空心玻璃微珠进行改性的方法,具体按照以下步骤实施:The technical solution adopted in the present invention is to adopt the chemical precipitation method to modify the method for hollow glass microspheres, specifically according to the following steps:
步骤1:按照质量-体积浓度,称取10-20g/L的空心玻璃微珠加入到除油液中,在温度为80-100℃的条件下,搅拌,反应20-30min后对空心玻璃微珠进行过滤、水洗,在110℃条件下干燥1-2h;Step 1: According to the mass-volume concentration, weigh 10-20g/L hollow glass microspheres and add them to the degreasing liquid. The beads were filtered, washed with water, and dried at 110°C for 1-2 hours;
步骤2:按照总铁浓度为0.01-0.1mol/L,氯化亚铁与三氯化铁质量比为Fe2+:Fe3+=1:4-4:1称取氯化亚铁和三氯化铁,用去离子水溶解,得到二价铁和三价铁的混合溶液,然后将步骤1得到的空心玻璃微珠在温度为10-50℃的条件下浸渍在混合溶液1-10min,边搅拌边滴加质量浓度为28%的氨水溶液,保持pH值在9-11,以100-900r/min的速率恒温反应1-3h,待反应结束后分离过滤出空心玻璃微珠,分别用去离子水和无水乙醇反复洗涤,在60℃真空干燥箱中烘燥30-60min,完成空心玻璃微珠改性。Step 2: According to the total iron concentration of 0.01-0.1mol/L, the mass ratio of ferrous chloride to ferric chloride is Fe 2+ : Fe 3+ =1:4-4:1 and weigh ferrous chloride and ferric chloride Ferric chloride is dissolved in deionized water to obtain a mixed solution of ferrous iron and ferric iron, and then the hollow glass microspheres obtained in step 1 are immersed in the mixed solution for 1-10 minutes at a temperature of 10-50°C, Add dropwise ammonia solution with a mass concentration of 28% while stirring, keep the pH value at 9-11, react at a constant temperature at a rate of 100-900r/min for 1-3h, separate and filter the hollow glass microspheres after the reaction is completed, and use Repeated washing with deionized water and absolute ethanol, and drying in a vacuum oven at 60°C for 30-60min to complete the modification of the hollow glass microspheres.
本发明的特点还在于,The present invention is also characterized in that,
其中步骤1中的除油液,按照质量-体积浓度,由70g/L的氢氧化钠、25g/L的碳酸钠、25g/L的磷酸三钠和7.5g/L的硅酸钠溶于去离子水制备而成。Wherein the degreasing liquid in step 1, according to mass-volume concentration, is dissolved in the sodium silicate of the sodium hydroxide of 70g/L, the sodium carbonate of 25g/L, the trisodium phosphate of 25g/L and 7.5g/L Made from ionized water.
本发明的有益效果是,采用化学沉淀法在制备磁性纳米四氧化三铁颗粒的同时,直接在空心玻璃微珠表面包覆一层磁性纳米四氧化三铁颗粒薄膜,赋予空心玻璃微珠磁性能,通过控制反应温度和时间,二价铁和三价铁的用量比、总铁浓度等工艺参数,优化了整理工艺,该方法节省原材料,操作简便。测试结果表明,磁性纳米四氧化三铁改性后的空心玻璃微珠具有优异磁性和一定的结合牢度,可以满足实际需要。The beneficial effect of the present invention is that, while preparing magnetic nano-ferric oxide particles by chemical precipitation method, a layer of magnetic nano-ferric oxide particle film is directly coated on the surface of hollow glass microspheres to endow the hollow glass microspheres with magnetic properties. , by controlling the reaction temperature and time, the ratio of the amount of ferrous iron to ferric iron, the concentration of total iron and other process parameters, the finishing process is optimized. This method saves raw materials and is easy to operate. The test results show that the hollow glass microspheres modified by the magnetic nano ferroferric oxide have excellent magnetic properties and certain bonding fastness, which can meet the actual needs.
附图说明 Description of drawings
图1是空心玻璃微珠磁性纳米四氧化三铁改性前的扫描电镜照片;Fig. 1 is the scanning electron microscope photograph before hollow glass microsphere magnetic nano iron ferric oxide is modified;
图2是采用本发明方法对空心玻璃微珠包覆磁性纳米四氧化三铁改性后的扫描电镜照片;Fig. 2 is the scanning electron micrograph after adopting the method of the present invention to hollow glass microsphere coating magnetic nano iron ferric oxide modification;
图3是采用本发明方法对空心玻璃微珠包覆磁性纳米四氧化三铁改性后的X射线衍射谱图;Fig. 3 is the X-ray diffraction spectrogram after adopting the method of the present invention to hollow glass microspheres coating magnetic nano iron ferric oxide modification;
图4是采用本发明方法对空心玻璃微珠包覆磁性纳米四氧化三铁改性后的磁滞曲线。Fig. 4 is the hysteresis curve after the method of the present invention is used to modify the hollow glass microspheres coated with magnetic nano ferric oxide.
具体实施方式 Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明采用化学沉淀法对空心玻璃微珠进行改性的方法,具体按照以下步骤实施:The present invention adopts chemical precipitation method to carry out the method for modifying hollow glass microspheres, specifically implements according to the following steps:
步骤1:按照质量-体积浓度,称取70g/L的氢氧化钠、25g/L的碳酸钠、25g/L的磷酸三钠和7.5g/L的硅酸钠溶于去离子水中,得到除油液,加热至80-100℃;称取空心玻璃微珠10-20g,加入1L除油液中,采用机械搅拌方法使空心微珠在除油液中充分分散,反应20-30min后过滤、水洗,最后将过滤后的空心微珠在110℃条件下干燥1-2h。Step 1: according to mass-volume concentration, take the sodium hydroxide of 70g/L, the sodium carbonate of 25g/L, the trisodium phosphate of 25g/L and the sodium silicate of 7.5g/L and be dissolved in deionized water, obtain deionized water Oil solution, heated to 80-100°C; weigh 10-20g of hollow glass microspheres, add them to 1L degreasing solution, use mechanical stirring method to fully disperse the hollow microspheres in the degreasing solution, react for 20-30min, filter, Washing with water, and finally drying the filtered hollow microspheres at 110° C. for 1-2 hours.
步骤2:按照总铁浓度为0.01-0.1mol/L,氯化亚铁与三氯化铁质量比为Fe2+:Fe3+=1:4-4:1称取氯化亚铁和三氯化铁,用去离子水溶解,得到二价铁和三价铁的混合溶液,然后将步骤1得到的空心微珠浸渍在10-50℃的混合溶液中1-10min,边搅拌边缓慢滴加质量浓度为28%的氨水溶液,使溶液pH值在9-11,以100-900r/min速率恒温处理1-3h,待反应结束后分离过滤出空心玻璃微珠,用去离子水和无水乙醇多次洗涤,在60℃真空干燥箱中烘燥30-60min,即完成在空心玻璃微珠表面包覆磁性纳米四氧化三铁颗粒薄膜。Step 2: According to the total iron concentration of 0.01-0.1mol/L, the mass ratio of ferrous chloride to ferric chloride is Fe 2+ : Fe 3+ =1:4-4:1 and weigh ferrous chloride and ferric chloride Ferric chloride, dissolved in deionized water to obtain a mixed solution of ferrous iron and ferric iron, then soak the hollow microspheres obtained in step 1 in the mixed solution at 10-50°C for 1-10min, and slowly drop while stirring Add an ammonia solution with a mass concentration of 28%, so that the pH of the solution is 9-11, treat it at a constant temperature at a rate of 100-900r/min for 1-3h, separate and filter the hollow glass microspheres after the reaction is completed, and use deionized water and no After washing with water and ethanol for several times, drying in a vacuum oven at 60°C for 30-60 minutes, the hollow glass microspheres are coated with a thin film of magnetic nano ferric oxide particles.
图1和图2是空心玻璃微珠包覆磁性纳米四氧化三铁改性前、后的扫描电镜照片。可以看出,未改性的空心玻璃微珠表面十分洁净,没有其他物质附着,改性后的空心玻璃微珠表面包覆了一层薄膜状物质,还散布着一些细小的颗粒,高倍电镜照片表明该薄膜是由纳米级颗粒构成。图3是空心玻璃微珠包覆磁性纳米四氧化三铁改性后的X射线衍射谱图。可以看出,改性后的空心玻璃微珠表面包覆的纳米四氧化三铁颗粒具有立方反尖晶石结构,与标准图谱JCPDS中磁铁矿Fe3O4(No.19-0629)相一致。图4是改性后表面包覆纳米四氧化三铁空心微珠的磁滞曲线。测试结果表明,包覆纳米四氧化三铁的空心玻璃微珠具有超顺磁性。Figure 1 and Figure 2 are scanning electron micrographs before and after modification of hollow glass microspheres coated with magnetic nano iron ferric oxide. It can be seen that the surface of the unmodified hollow glass microspheres is very clean, and no other substances are attached. The surface of the modified hollow glass microspheres is covered with a layer of film-like substances, and some fine particles are also scattered. High-power electron microscope photos It shows that the film is composed of nanoscale particles. Fig. 3 is the X-ray diffraction spectrogram of hollow glass microspheres coated with magnetic nano iron ferric oxide modified. It can be seen that the nano-ferric oxide particles coated on the surface of the modified hollow glass microspheres have a cubic inverse spinel structure, which is in phase with the magnetite Fe 3 O 4 (No.19-0629) in the standard map JCPDS. unanimous. Fig. 4 is the hysteresis curve of the surface-coated nano ferric oxide hollow microspheres after modification. The test results show that the hollow glass microspheres coated with nano-ferric oxide have superparamagnetism.
用VSM多功能振动样品磁强计(美国Quantum Design公司)测定包覆纳米四氧化三铁空心玻璃微珠的磁滞回线,计算饱和磁化强度和剩余磁化强度。The hysteresis loop of the coated nano-Fe3O4 hollow glass microspheres was measured with a VSM multifunctional vibrating sample magnetometer (Quantum Design, USA), and the saturation magnetization and residual magnetization were calculated.
从原理方面说明本发明的有益效果所在:The beneficial effect of the present invention is explained from the principle aspect:
1.本发明通过控制总铁浓度,氯化亚铁与三氯化铁质量之比,溶液pH值,反应温度,反应时间和搅拌速度,使得包覆在空心玻璃微珠表面的四氧化三铁薄膜均匀,颗粒为纳米级,与空心玻璃微珠结合牢度好,具有一定的磁性。因为总铁浓度,氯化亚铁与三氯化铁质量之比,溶液pH值,反应温度和时间,搅拌速度都影响着四氧化三铁的磁性、纯度、晶化程度、形貌和粒子尺寸。当总铁浓度在0.01-0.1mol/L时,空心玻璃微珠表面可以包覆一定厚度的磁性纳米四氧化三铁颗粒薄膜,颗粒很少发生团聚现象,同时溶液中不会沉积太多的纳米颗粒,与空心玻璃微珠结合牢固;当小于0.01mol/L时,溶液中铁离子太少,空心微珠表面不会形成连续的薄膜,影响磁性能;当大于0.1mol/L时,铁离子浓度过大易造成浪费,空心玻璃微珠表面粘附的磁性纳米四氧化三铁颗粒薄膜太厚,附着牢度不好,使用过程中纳米颗粒易脱落。1. The present invention controls the total iron concentration, the mass ratio of ferrous chloride to ferric chloride, the pH value of the solution, the reaction temperature, the reaction time and the stirring speed, so that the iron ferric oxide film coated on the surface of the hollow glass microsphere is uniform. , the particles are nano-scale, good fastness to the hollow glass microspheres, and has a certain degree of magnetism. Because the total iron concentration, the ratio of ferrous chloride to ferric chloride mass, the pH value of the solution, the reaction temperature and time, and the stirring speed all affect the magnetic properties, purity, crystallization degree, morphology and particle size of ferric oxide . When the total iron concentration is 0.01-0.1mol/L, the surface of the hollow glass microspheres can be coated with a certain thickness of magnetic nano-ferric oxide particle film, and the particles rarely agglomerate, and at the same time, too much nano-particles will not be deposited in the solution. Particles are firmly combined with hollow glass microspheres; when it is less than 0.01mol/L, there are too few iron ions in the solution, and a continuous film will not be formed on the surface of hollow microspheres, which will affect the magnetic properties; when it is greater than 0.1mol/L, the concentration of iron ions If it is too large, it will easily cause waste. The magnetic nano-ferric oxide particle film adhered to the surface of the hollow glass microsphere is too thick, the adhesion fastness is not good, and the nano-particles are easy to fall off during use.
2.当氯化亚铁与三氯化铁质量之比在1:4-4:1时,空心玻璃微珠表面能够包覆一定厚度的薄膜,纳米颗粒与空心玻璃微珠结合牢固;当小于1:4时,三价铁离子用量太大,制备出含三价铁较多的杂质,磁性能很弱;当大于4:1时,三价铁离子用量太少,制备出含二价铁较多的杂质,磁性能也很弱。2. When the mass ratio of ferrous chloride to ferric chloride is 1:4-4:1, the surface of hollow glass microspheres can be coated with a certain thickness of film, and the nanoparticles and hollow glass microspheres are firmly combined; when it is less than 1: 4, the amount of ferric ions is too large, and impurities containing more ferric iron are prepared, and the magnetic properties are very weak; when it is greater than 4:1, the amount of ferric ions is too small, and impurities containing more ferrous iron are prepared. impurities, the magnetic properties are also very weak.
3.当反应温度控制在10-50℃时,能够生成磁性纳米四氧化三铁颗粒;当温度低于10℃时,磁性纳米四氧化三铁生长很慢;当高于50℃时生成的磁性纳米四氧化三铁颗粒很大。3. When the reaction temperature is controlled at 10-50°C, magnetic nano-ferric oxide particles can be produced; when the temperature is lower than 10°C, the growth of magnetic nano-ferric oxide is very slow; when the temperature is higher than 50°C, the magnetic nano-Fe4 Iron oxide particles are very large.
4.当溶液pH值控制在5-11时,能够生成纳米四氧化三铁颗粒;当pH值小于5时,生成的四氧化三铁颗粒没有磁性;当pH值大于11时,生成的四氧化三铁颗粒磁性很弱。4. When the pH value of the solution is controlled at 5-11, nanometer ferric oxide particles can be generated; when the pH value is less than 5, the generated ferric oxide particles have no magnetic properties; The particles are very weakly magnetic.
5.反应时间和搅拌速度主要影响四氧化三铁的晶化程度,晶体形貌和尺寸。当反应时间控制在1-3h时,可以在空心玻璃微珠表面生成磁性纳米四氧化三铁颗粒薄膜;当低于1h时,纳米四氧化三铁与空心玻璃微珠结合牢度较差,也影响磁性纳米四氧化三铁的晶化程度,磁性能不好;当大于3h时,生成的磁性纳米四氧化三铁颗粒会发生明显团聚,粒度明显增大,表面粗糙不平,颗粒容易脱落。5. Reaction time and stirring speed mainly affect the degree of crystallization, crystal morphology and size of Fe3O4. When the reaction time is controlled at 1-3h, the magnetic nano-ferric oxide particle film can be generated on the surface of the hollow glass microsphere; Affect the degree of crystallization of magnetic nano ferroferric oxide, and the magnetic properties are not good; when it is longer than 3 hours, the generated magnetic nano ferric ferric oxide particles will obviously agglomerate, the particle size will increase significantly, the surface will be rough and uneven, and the particles will easily fall off.
实施例1Example 1
称取空心玻璃微珠2g,加入100ml除油液中,在80℃条件下搅拌反应20min,然后过滤、水洗,将过滤后的空心微珠在110℃条件下干燥1h。称取一定量的氯化亚铁和三氯化铁,用去离子水溶解,控制总铁浓度为0.01mol/L,氯化亚铁与三氯化铁质量之比为1:4,添加预处理好的空心玻璃微珠,在10℃条件下处理1min,边搅拌边缓慢滴加浓度为28%的氨水,使溶液pH值为5,以100r/min速率恒温搅拌处理1h,待反应结束后分离过滤出空心微珠,用去离子水洗涤至中性,在60℃真空干燥箱中烘燥30min。Weigh 2 g of hollow glass microspheres, add them to 100 ml of oil-removing liquid, stir and react at 80°C for 20 minutes, then filter and wash with water, and dry the filtered hollow microspheres at 110°C for 1 hour. Weigh a certain amount of ferrous chloride and ferric chloride, dissolve them in deionized water, control the total iron concentration to 0.01mol/L, and the mass ratio of ferrous chloride to ferric chloride is 1:4, add pre- Treat the treated hollow glass microspheres at 10°C for 1 min, slowly add ammonia water with a concentration of 28% dropwise while stirring, so that the pH value of the solution is 5, and stir at a constant temperature of 100r/min for 1h. After the reaction is completed, The hollow microspheres were separated and filtered, washed with deionized water until neutral, and dried in a vacuum oven at 60°C for 30 minutes.
包覆磁性纳米四氧化三铁空心玻璃微珠的饱和磁化强度为12emu/g,剩余磁化强度为零。The saturation magnetization of the coated magnetic nano-ferric iron tetroxide hollow glass microspheres is 12emu/g, and the residual magnetization is zero.
实施例2Example 2
称取空心玻璃微珠1g,加入100ml除油液中,在100℃条件下搅拌反应30min,然后过滤、水洗,将过滤后的空心微珠在110℃条件下干燥2h。称取一定量的氯化亚铁和三氯化铁,用去离子水溶解,控制总铁浓度为0.1mol/L,氯化亚铁与三氯化铁质量之比为4:1,添加预处理好的空心玻璃微珠,在50℃条件下处理10min,边搅拌边缓慢滴加浓度为28%的氨水,使溶液pH值为11,以900r/min速率恒温处理3h,待反应结束后分离过滤出微珠,用去离子水洗涤至中性,在60℃真空干燥箱中烘燥60min。Weigh 1 g of hollow glass microspheres, add them to 100 ml of oil-removing liquid, stir and react at 100°C for 30 minutes, then filter and wash with water, and dry the filtered hollow microspheres at 110°C for 2 hours. Weigh a certain amount of ferrous chloride and ferric chloride, dissolve them in deionized water, control the total iron concentration to 0.1mol/L, and the mass ratio of ferrous chloride to ferric chloride is 4:1, add pre- Treat the treated hollow glass microspheres at 50°C for 10 minutes, slowly add ammonia water with a concentration of 28% while stirring, so that the pH of the solution is 11, treat at a constant temperature of 900r/min for 3 hours, and separate after the reaction is completed. The microbeads were filtered out, washed with deionized water until neutral, and dried in a vacuum oven at 60°C for 60 min.
包覆磁性纳米四氧化三铁空心玻璃微珠的饱和磁化强度为45emu/g,剩余磁化强度为零。The saturation magnetization of the coated magnetic nano-ferric iron tetroxide hollow glass microspheres is 45 emu/g, and the residual magnetization is zero.
实施例3Example 3
称取空心玻璃微珠1.5g,加入100ml除油液中,在95℃条件下搅拌反应25min,然后过滤、水洗,将过滤后的空心微珠在110℃条件下干燥1.5h。称取一定量的氯化亚铁和三氯化铁,用去离子水溶解,控制总铁浓度为0.05mol/L,氯化亚铁与三氯化铁质量之比为2:1,添加预处理好的空心玻璃微珠,在30℃条件下处理5min,边搅拌边缓慢滴加浓度为28%的氨水,使溶液pH值为9,以500r/min速率恒温处理2h,待反应结束后分离过滤出空心微珠,用去离子水洗涤至中性,在60℃真空干燥箱中烘燥40min。Weigh 1.5 g of hollow glass microspheres, add them to 100 ml of oil-removing liquid, stir and react at 95°C for 25 minutes, then filter and wash with water, and dry the filtered hollow microspheres at 110°C for 1.5h. Weigh a certain amount of ferrous chloride and ferric chloride, dissolve them in deionized water, control the total iron concentration to 0.05mol/L, and the mass ratio of ferrous chloride to ferric chloride is 2:1, add pre- Treat the treated hollow glass microspheres at 30°C for 5 minutes, slowly add ammonia water with a concentration of 28% dropwise while stirring, so that the pH value of the solution is 9, treat at a constant temperature of 500r/min for 2 hours, and separate after the reaction is completed. The hollow microspheres were filtered out, washed with deionized water until neutral, and dried in a vacuum oven at 60°C for 40 minutes.
包覆磁性纳米四氧化三铁空心玻璃微珠的饱和磁化强度为23emu/g,剩余磁化强度为零。The saturation magnetization of the coated magnetic nano-ferric iron tetroxide hollow glass microspheres is 23emu/g, and the residual magnetization is zero.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110210571 CN102381844B (en) | 2011-07-26 | 2011-07-26 | Method for modifying hollow glass microspheres by chemical precipitation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110210571 CN102381844B (en) | 2011-07-26 | 2011-07-26 | Method for modifying hollow glass microspheres by chemical precipitation process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102381844A CN102381844A (en) | 2012-03-21 |
CN102381844B true CN102381844B (en) | 2013-08-07 |
Family
ID=45821742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110210571 Expired - Fee Related CN102381844B (en) | 2011-07-26 | 2011-07-26 | Method for modifying hollow glass microspheres by chemical precipitation process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102381844B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103007957B (en) * | 2012-11-21 | 2014-11-05 | 嘉兴学院 | Method for preparing modified hollow glass beads with magnetism and photocatalytic activity |
CN102993781B (en) * | 2012-11-22 | 2014-05-21 | 嘉兴学院 | A kind of preparation method of magnetic nano iron ferric oxide modified hollow glass microspheres |
CN103043916B (en) * | 2012-11-29 | 2015-06-03 | 湖北大学 | A preparation method of hollow glass microspheres coated with nanometer Fe3O4 |
CN103214907A (en) * | 2013-03-14 | 2013-07-24 | 湖北大学 | Aqueous microwave absorbing anticorrosion protection paint and preparation method thereof |
CN103566977B (en) * | 2013-10-30 | 2015-09-30 | 西安工程大学 | A kind of dye-sensitized nano ferric oxide coated hollow glass micropearl method |
CN104069847B (en) * | 2014-04-10 | 2016-05-25 | 西安工程大学 | Rare-earth europium dopen Nano TiO2The preparation method of hollow glass micropearl |
CN103964707A (en) * | 2014-05-12 | 2014-08-06 | 中国科学院理化技术研究所 | Method for improving flowability of hollow glass bead powder |
CN105906968A (en) * | 2016-06-29 | 2016-08-31 | 合肥广能新材料科技有限公司 | Polystyrene composite thermal-insulation material and preparation method thereof |
CN106147072A (en) * | 2016-06-29 | 2016-11-23 | 合肥广能新材料科技有限公司 | Polyvinyl chloride wall body heat insulating material |
CN106433225A (en) * | 2016-09-22 | 2017-02-22 | 深圳大学 | Surface-coated modified hollow glass beads and preparation method thereof |
CN108299861B (en) * | 2018-01-18 | 2020-11-10 | 山西海诺科技股份有限公司 | Surface-coated nano Fe3O4Modified hollow glass bead and preparation method thereof |
CN111875907B (en) * | 2020-07-28 | 2022-05-17 | 于都海瑞密封防腐科技有限公司 | PTFE diaphragm doped with glass beads and preparation method thereof |
CN114058135A (en) * | 2021-12-07 | 2022-02-18 | 海信视像科技股份有限公司 | Composite ABS material with metal-free spraying effect, metal filler and preparation method |
CN114772988A (en) * | 2022-05-09 | 2022-07-22 | 许军 | Light fireproof thermal insulation mortar and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1562475A (en) * | 2004-03-16 | 2005-01-12 | 中国科学院山西煤炭化学研究所 | Fischer-Tropsch synthesis catalyzer of microsphere shaped ferro manganese and preparation method |
CN1600421A (en) * | 2003-09-22 | 2005-03-30 | 上海兖矿能源科技研发有限公司 | Micro sphere type catalyst of Fischer-Tropsch synthesis and preparation method |
EP1521308A1 (en) * | 2003-10-02 | 2005-04-06 | Scheuten Glasgroep | Ball or grain-shaped semiconductor element to be used in solar cells and method of production; method of production of a solar cell with said semiconductor element and solar cell |
CN101445674A (en) * | 2008-12-08 | 2009-06-03 | 温州大学 | Magnetic pearlescent pigment and preparation method thereof |
CN101612578A (en) * | 2008-06-24 | 2009-12-30 | 中国人民解放军63971部队 | Nano catalyst of a kind of eliminating formaldehyde at room temperature and preparation method thereof |
US7820017B2 (en) * | 2003-06-27 | 2010-10-26 | Saint-Gobain Glass France | Dielectric-layer-coated substrate and installation for production thereof |
-
2011
- 2011-07-26 CN CN 201110210571 patent/CN102381844B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7820017B2 (en) * | 2003-06-27 | 2010-10-26 | Saint-Gobain Glass France | Dielectric-layer-coated substrate and installation for production thereof |
CN1600421A (en) * | 2003-09-22 | 2005-03-30 | 上海兖矿能源科技研发有限公司 | Micro sphere type catalyst of Fischer-Tropsch synthesis and preparation method |
EP1521308A1 (en) * | 2003-10-02 | 2005-04-06 | Scheuten Glasgroep | Ball or grain-shaped semiconductor element to be used in solar cells and method of production; method of production of a solar cell with said semiconductor element and solar cell |
CN1562475A (en) * | 2004-03-16 | 2005-01-12 | 中国科学院山西煤炭化学研究所 | Fischer-Tropsch synthesis catalyzer of microsphere shaped ferro manganese and preparation method |
CN101612578A (en) * | 2008-06-24 | 2009-12-30 | 中国人民解放军63971部队 | Nano catalyst of a kind of eliminating formaldehyde at room temperature and preparation method thereof |
CN101445674A (en) * | 2008-12-08 | 2009-06-03 | 温州大学 | Magnetic pearlescent pigment and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102381844A (en) | 2012-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102381844B (en) | Method for modifying hollow glass microspheres by chemical precipitation process | |
CN109712769B (en) | A kind of MXene-magnetic metal composite material and preparation method thereof | |
CN103342982B (en) | Hollow spherical ferroferric oxide/graphene composite wave-absorbing material and preparation method thereof | |
CN101503579B (en) | Preparation of surface load magnetic alloy particle carbon nano-tube composite material | |
CN102258978B (en) | Preparation method of nano-Fe3O4-coated attapulgite magnetic composite adsorbent | |
CN102826613B (en) | Preparation method of graphene-based ferroferric oxide nano-composite material | |
CN102277727B (en) | Method for nanometer ferroferric oxide modification of chinlon fabric via hydrothermal process | |
CN1971780B (en) | Preparation method of carbon nanotube magnetic composite material coated with nanometer iron tetraoxide | |
CN103341643B (en) | The complex reducing agent liquid phase preparation process of coated with silver on surface shell conductive composite particle | |
CN105161246B (en) | A kind of nickel-zinc ferrite/polyacrylic acid nanocomposite material and preparation method thereof | |
CN109468684B (en) | A kind of preparation method of yttrium oxide nano-beam whiskers | |
CN102923785A (en) | Preparation method of CoFe2O4 magnetic nanometer material | |
Zhang et al. | Immobilization of α-Fe2O3 nanoparticles on PET fiber by low temperature hydrothermal method | |
CN109250724B (en) | Attapulgite@FeO one-dimensional magnetic nanocomposite and preparation method thereof | |
CN105148837B (en) | A kind of by core, ferroso-ferric oxide of CNT is composite of shell and preparation method thereof | |
CN107354500A (en) | A kind of glass fiber compound material of the grapheme modified claddings of nanoscale Fe3O4 and preparation method thereof | |
CN103432973B (en) | A kind of preparation method of graphene-ferric oxide nano-particle composite material | |
CN107265888A (en) | A kind of Fe3O4 of high magnetic permeability is grapheme modified/glass fiber compound material and preparation method thereof | |
CN102182054B (en) | Method for preparing magnetic nano ferroferric oxide particle thin film on surface of chinlon fabric | |
CN103043916B (en) | A preparation method of hollow glass microspheres coated with nanometer Fe3O4 | |
CN101767767A (en) | Ferroferric oxide and zinc oxide nuclear shell nano-rod for absorbing high-frequency electromagnetic waves and manufacturing method thereof | |
CN102129904A (en) | A kind of floating bead-based barium ferrite magnetic composite material and preparation method thereof | |
CN103803659B (en) | A kind of preparation method of ferric oxide hollow ball | |
CN102926187B (en) | Method for modifying polyester fabric by using magnetic nano iron trioxide | |
CN106312049B (en) | Fe/Fe2O3Electrochemical regulation and control method for thickness of shell layer of core/shell structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130807 Termination date: 20150726 |
|
EXPY | Termination of patent right or utility model |