[go: up one dir, main page]

CN102376826B - Semiconductor optoelectronic element and manufacturing method thereof - Google Patents

Semiconductor optoelectronic element and manufacturing method thereof Download PDF

Info

Publication number
CN102376826B
CN102376826B CN201010249195.5A CN201010249195A CN102376826B CN 102376826 B CN102376826 B CN 102376826B CN 201010249195 A CN201010249195 A CN 201010249195A CN 102376826 B CN102376826 B CN 102376826B
Authority
CN
China
Prior art keywords
semiconductor
substrate
epitaxial stack
layer
stack unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010249195.5A
Other languages
Chinese (zh)
Other versions
CN102376826A (en
Inventor
王心盈
陈怡名
徐子杰
陈吉兴
张湘苓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to CN201410319735.0A priority Critical patent/CN104091862B/en
Priority to CN201010249195.5A priority patent/CN102376826B/en
Publication of CN102376826A publication Critical patent/CN102376826A/en
Application granted granted Critical
Publication of CN102376826B publication Critical patent/CN102376826B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Led Devices (AREA)

Abstract

The invention provides a semiconductor photoelectric element and a manufacturing method thereof. The semiconductor photoelectric element comprises an operation substrate; the semiconductor epitaxial lamination unit is arranged on the operating substrate; the semiconductor epitaxial laminated unit comprises a first semiconductor material layer with a first conductive characteristic and arranged on the operation substrate, and a second semiconductor material layer with a second conductive characteristic and arranged on the first semiconductor material layer; the transparent conducting layer is arranged on the second semiconductor material layer, comprises a first surface, a direct contact part, a second surface and a direct contact corresponding part, is arranged on the first surface, is in direct contact with the second semiconductor material layer, is substantially parallel to the first surface, and is arranged on the second surface opposite to the direct contact part; the first electrode is arranged on the operation substrate and is electrically connected with the semiconductor epitaxial lamination layer through the transparent conducting layer; the first electrode and the transparent conductive layer are electrically connected with each other through the direct contact part and the area outside the direct contact corresponding part.

Description

半导体光电元件及其制作方法Semiconductor optoelectronic element and manufacturing method thereof

技术领域 technical field

本发明涉及一种半导体光电元件及其制作方法,尤其是涉及一种转移设置于承载操作基板上的半导体光电元件以及此半导体光电元件的制作方法。The invention relates to a semiconductor optoelectronic element and a manufacturing method thereof, in particular to a semiconductor optoelectronic element transferred and arranged on a carrying operation substrate and a manufacturing method of the semiconductor optoelectronic element.

背景技术 Background technique

随着科技日新月异,半导体光电元件在信息的传输以及能量的转换上有极大的贡献。以系统的运用为例,例如光纤通讯、光学储存及军事系统等,半导体光电元件皆能有所发挥。以能量的转换方式进行区分,半导体光电元件一般可分为三类:将电能转换为光的发射,如发光二极管及激光二极管;将光的信号转换为电的信号,如光检测器;将光的辐射能转换为电能,如太阳能电池。With the rapid development of science and technology, semiconductor optoelectronic components have made great contributions to the transmission of information and the conversion of energy. Taking the application of systems as an example, such as optical fiber communication, optical storage and military systems, etc., semiconductor optoelectronic components can all play a role. Divided by the way of energy conversion, semiconductor optoelectronic components can generally be divided into three categories: converting electrical energy into light emission, such as light-emitting diodes and laser diodes; converting light signals into electrical signals, such as photodetectors; The radiant energy is converted into electrical energy, such as solar cells.

在半导体光电元件之中,生长基板扮演着非常重要的角色。形成半导体光电元件所必要的半导体外延结构皆生长于基板之上,并通过基板产生支持的作用。因此,选择一个适合的生长基板,往往成为决定半导体光电元件中元件生长品质的重要因素。In semiconductor optoelectronic devices, the growth substrate plays a very important role. The necessary semiconductor epitaxial structures for forming semiconductor optoelectronic devices are all grown on the substrate, and are supported by the substrate. Therefore, selecting a suitable growth substrate often becomes an important factor in determining the growth quality of semiconductor optoelectronic components.

然而,有时一个好的元件生长基板并不一定是一个好的元件承载基板。以发光二极管为例,在已知的红光元件工艺中,为了提升元件的生长品质,会选择晶格常数与半导体外延结构较为接近但不透明的GaAs基板作为生长基板。然而,对于以放光为操作目的的发光二极管元件而言,在操作过程之中,不透明的生长基板却会造成元件的发光效率下降。However, sometimes a good component growth substrate is not necessarily a good component carrier substrate. Taking light-emitting diodes as an example, in the known process of red light components, in order to improve the growth quality of the components, a GaAs substrate whose lattice constant is close to that of the semiconductor epitaxial structure but is opaque is selected as the growth substrate. However, for the light-emitting diode device whose operation purpose is to emit light, the opaque growth substrate will cause the luminous efficiency of the device to decrease during the operation process.

为了满足半导体光电元件对于生长基板与承载基板不同需求条件的要求,基板的转移技术于是因应而生。亦即,半导体外延结构先于生长基板上进行生长,再将生长完成的半导体外延结构转移至承载基板,以方便后续的元件操作进行。在半导体外延结构与承载基板结合之后,原有生长基板的移除则成为此转移技术的关键之一。In order to meet the different requirements of semiconductor optoelectronic components for growth substrates and carrier substrates, substrate transfer technology has emerged accordingly. That is, the semiconductor epitaxial structure is grown on the growth substrate first, and then the grown semiconductor epitaxial structure is transferred to the carrier substrate to facilitate subsequent device operations. After the semiconductor epitaxial structure is combined with the carrier substrate, the removal of the original growth substrate becomes one of the keys of this transfer technology.

已知生长基板的移除方式主要包括将原有的生长基板以蚀刻液蚀刻溶解,以物理方式切割磨除,或事先在生长基板与半导体外延结构之间生成牺牲层,再通过蚀刻去除牺牲层的方式将生长基板与半导体分离等。然而,不论是以蚀刻液溶解基板或是以物理性切割方式磨除基板,对原有的生长基板而言,都是一种破坏。生长基板无法再利用,在强调环保及节能的现代,无疑是一种材料的浪费。然而,若是使用牺牲层结构进行分离时,对于半导体光电元件而言,如何进行有效地选择性转移,则是目前研究的方向之一。The known removal methods of the growth substrate mainly include etching and dissolving the original growth substrate with an etching solution, cutting and grinding off the original growth substrate in a physical way, or generating a sacrificial layer between the growth substrate and the semiconductor epitaxial structure in advance, and then removing the sacrificial layer by etching The way to separate the growth substrate from the semiconductor, etc. However, whether the substrate is dissolved by etching solution or the substrate is removed by physical cutting, it is a kind of damage to the original growth substrate. The growth substrate cannot be reused. In the modern world that emphasizes environmental protection and energy saving, it is undoubtedly a waste of materials. However, if a sacrificial layer structure is used for separation, how to effectively perform selective transfer for semiconductor photoelectric elements is one of the current research directions.

发明内容 Contents of the invention

为了有效地选择性转移半导体光电元件,本发明提供一种半导体光电元件及其制作方法,尤其是关于一种转移设置于操作基板上的半导体光电元件以及此半导体光电元件的制作方法。In order to selectively transfer semiconductor optoelectronic elements efficiently, the present invention provides a semiconductor optoelectronic element and its manufacturing method, especially a semiconductor optoelectronic element transferred on an operating substrate and a manufacturing method of the semiconductor optoelectronic element.

本发明的实施例提供一种半导体光电元件,包括:操作基板;半导体外延叠层单元,设置于操作基板上,包括设置于操作基板上,具有第一导电特性的第一半导体材料层、以及设置于第一半导体材料层上,具有第二导电特性的第二半导体材料层;透明导电层,设置于第二半导体材料层上,透明导电层包括第一表面、直接接触部,设置于第一表面并与第二半导体材料层直接接触、第二表面,实质平行第一表面、直接接触对应部,设置于第二表面相对于直接接触部;以及第一电极,设置于操作基板上,通过透明导电层与半导体外延叠层单元电性连结;其中,第一电极与透明导电层通过直接接触部与直接接触对应部之外的区域相互电性连结。An embodiment of the present invention provides a semiconductor optoelectronic element, comprising: an operating substrate; a semiconductor epitaxial stack unit disposed on the operating substrate, including a first semiconductor material layer having a first conductive characteristic disposed on the operating substrate, and an On the first semiconductor material layer, a second semiconductor material layer with second conductive properties; a transparent conductive layer, disposed on the second semiconductor material layer, the transparent conductive layer includes a first surface and a direct contact portion, disposed on the first surface And in direct contact with the second semiconductor material layer, the second surface is substantially parallel to the first surface, and directly contacts the corresponding part, and is arranged on the second surface opposite to the direct contact part; and the first electrode is arranged on the operation substrate, through transparent conduction The layer is electrically connected with the semiconductor epitaxial stack unit; wherein, the first electrode and the transparent conductive layer are electrically connected to each other through the direct contact part and the area other than the direct contact corresponding part.

依照本发明的实施例,半导体外延叠层单元还包括发光层,设置于第一半导体材料层与第二半导体材料层之间。According to an embodiment of the present invention, the semiconductor epitaxial stack unit further includes a light emitting layer disposed between the first semiconductor material layer and the second semiconductor material layer.

依照本发明的实施例,其中,半导体光电元件为发光二极管。According to an embodiment of the present invention, wherein the semiconductor optoelectronic element is a light emitting diode.

依照本发明的实施例,还包括第二电极,设置于操作基板与半导体外延叠层单元之间或操作基板相对于半导体外延叠层单元的相反侧。According to an embodiment of the present invention, it further includes a second electrode disposed between the operation substrate and the semiconductor epitaxial stack unit or on the opposite side of the operation substrate to the semiconductor epitaxial stack unit.

依照本发明的实施例,其中,透明导电层的透光度大于90%。According to an embodiment of the present invention, the light transmittance of the transparent conductive layer is greater than 90%.

依照本发明的实施例,其中,半导体光电元件为太阳能电池。According to an embodiment of the present invention, wherein the semiconductor photoelectric element is a solar cell.

依照本发明的实施例,其中,透明导电层材料选自于由氧化铟锡、氧化镉锡、氧化锌、氧化铟、氧化锡、氧化铜铝、氧化铜镓、氧化锶铜、氧化铝锌、氧化锌镓以及上述材料的任意组合所组成的族群。According to an embodiment of the present invention, wherein the material of the transparent conductive layer is selected from indium tin oxide, cadmium tin oxide, zinc oxide, indium oxide, tin oxide, copper aluminum oxide, copper gallium oxide, strontium copper oxide, aluminum zinc oxide, A group consisting of zinc gallium oxide and any combination of the above materials.

依照本发明的实施例,还包括多个金属导线,自第一电极延伸至透明导电层的直接接触对应部。According to an embodiment of the present invention, it further includes a plurality of metal wires extending from the first electrode to directly contacting corresponding portions of the transparent conductive layer.

依照本发明的实施例,其中上述金属导线具有宽度小于20μm。According to an embodiment of the present invention, wherein the metal wire has a width less than 20 μm.

依照本发明的实施例,其中第一电极与上述金属导线为不同材料。According to an embodiment of the present invention, the first electrode and the metal wire are made of different materials.

依照本发明的实施例,其中第一电极的材料是由钛、铝、金、铬、镍、锗或上述材料的任意合金所构成的单层或多层金属结构。According to an embodiment of the present invention, the material of the first electrode is a single-layer or multi-layer metal structure composed of titanium, aluminum, gold, chromium, nickel, germanium or any alloy thereof.

依照本发明的实施例,其中操作基板还具有粗糙表面朝向半导体外延叠层单元,粗糙表面包括至少一突起(Protrusion)和/或至少一凹洞(Cavity)。According to an embodiment of the present invention, the handle substrate further has a rough surface facing the semiconductor epitaxial stack unit, and the rough surface includes at least one protrusion and/or at least one cavity.

本发明的另一实施例提供一种半导体光电元件的制作方法,包括提供生长基板;形成牺牲层于生长基板上;形成半导体外延叠层于牺牲层上;分隔半导体外延叠层为多个半导体外延叠层单元并裸露出半导体外延叠层单元下的牺牲层;形成图案化光致抗蚀剂,覆盖部分半导体外延叠层单元及部分裸露的牺牲层;移除未被图案化光致抗蚀剂覆盖的牺牲层;提供转移结构,将下方牺牲层被移除的半导体外延叠层单元转移至转移结构上;提供操作基板,具有多个电极区域与多个外延区域,电极区域与外延区域以特定距离相隔;转移转移结构上的半导体外延叠层单元至操作基板的外延区域上;以及形成多个第一电极于操作基板的电极区域上,第一电极并与被转移的半导体外延叠层单元电性连结。Another embodiment of the present invention provides a method for manufacturing a semiconductor optoelectronic element, including providing a growth substrate; forming a sacrificial layer on the growth substrate; forming a semiconductor epitaxial stack on the sacrificial layer; separating the semiconductor epitaxial stack into a plurality of semiconductor epitaxial stacks Stack the unit and expose the sacrificial layer under the semiconductor epitaxial stack unit; form a patterned photoresist to cover part of the semiconductor epitaxial stack unit and part of the exposed sacrificial layer; remove the unpatterned photoresist Covering the sacrificial layer; providing a transfer structure to transfer the semiconductor epitaxial stack unit with the lower sacrificial layer removed to the transfer structure; providing an operation substrate with a plurality of electrode regions and a plurality of epitaxial regions, the electrode regions and the epitaxial regions are specified The distance is separated; the semiconductor epitaxial stack unit on the transfer structure is transferred to the epitaxial region of the operation substrate; and a plurality of first electrodes are formed on the electrode region of the operation substrate, and the first electrodes are electrically connected to the transferred semiconductor epitaxial stack unit. sexual connection.

依照本发明的另一实施例,其中生长基板的材料选自于由蓝宝石(Al2O3)、硅(Si)、碳化硅(SiC)、氮化镓(GaN)以及砷化镓(GaAs)所组成的族群。According to another embodiment of the present invention, the material of the growth substrate is selected from sapphire (Al 2 O 3 ), silicon (Si), silicon carbide (SiC), gallium nitride (GaN) and gallium arsenide (GaAs) composed of ethnic groups.

依照本发明的另一实施例,其中生长基板的材料选自于由PCB基板及FR4基板所组成的族群。According to another embodiment of the present invention, the material of the growth substrate is selected from the group consisting of PCB substrate and FR4 substrate.

依照本发明的另一实施例,其中转移结构主要是由有机高分子材料所组成。According to another embodiment of the present invention, the transfer structure is mainly composed of organic polymer materials.

依照本发明的另一实施例,还包括形成粘着层于操作基板与半导体外延叠层单元之间,粘着层的材料选自于有机高分子材料、金属材料以及金属合金所组成的族群。According to another embodiment of the present invention, it further includes forming an adhesive layer between the operation substrate and the semiconductor epitaxial stack unit, the material of the adhesive layer is selected from the group consisting of organic polymer materials, metal materials and metal alloys.

依照本发明的另一实施例,其中半导体外延叠层单元为发光二极管外延叠层区域和/或太阳能电池外延叠层区域。According to another embodiment of the present invention, wherein the semiconductor epitaxial stack unit is a light emitting diode epitaxial stack area and/or a solar cell epitaxial stack area.

依照本发明的另一实施例,还包括粗糙化操作基板的表面,使表面包括至少一突起和/或至少一凹洞。According to another embodiment of the present invention, the method further includes roughening the surface of the operation substrate, so that the surface includes at least one protrusion and/or at least one concave hole.

依照本发明的另一实施例,其中操作基板的材料选自于由蓝宝石(Al2O3)、硅(Si)、碳化硅(SiC)、氮化铝(AlN)、氮化镓(GaN)以及砷化镓(GaAs)所组成的族群。According to another embodiment of the present invention, the material of the operating substrate is selected from sapphire (Al 2 O 3 ), silicon (Si), silicon carbide (SiC), aluminum nitride (AlN), gallium nitride (GaN) and the group consisting of gallium arsenide (GaAs).

依照本发明的另一实施例,还包括形成至少一个第二电极于半导体外延叠层单元与操作基板之间或操作基板相对于半导体外延叠层单元的相反侧。According to another embodiment of the present invention, it further includes forming at least one second electrode between the semiconductor epitaxial stack unit and the handle substrate or the side of the handle substrate opposite to the semiconductor epitaxial stack unit.

依照本发明的另一实施例,其中转移结构具有转移表面,表面具有粘着性和/或对应于下方牺牲层被移除的半导体外延叠层单元的至少一突起。According to another embodiment of the present invention, wherein the transfer structure has a transfer surface having adhesiveness and/or at least one protrusion corresponding to the semiconductor epitaxial stack unit from which the underlying sacrificial layer is removed.

本发明的又一实施例提供一种发光二极管元件结构,包括操作基板,具有表面,包括多个第一外延区域以及多个第二外延区域;多个第一发光二极管外延叠层单元设置于第一外延区域上,可放射第一主放射波长,其中任一第一发光二极管外延叠层单元平行操作基板的表面的第一边,且第一边的延长线具有实质相互平行的第一延长方向;多个第二发光二极管外延叠层单元设置于第二外延区域上,可放射第二主放射波长,其中任一第二发光二极管外延叠层单元具有相对应于第一边的第二边,且第二边的延长线具有实质相互平行的第二延长方向;以及第一方向,平行操作基板的表面,其中,第一延长方向与第一方向具有夹角θ1,第二延长方向与第一方向具有夹角θ2,且θ1不等于θ2Another embodiment of the present invention provides a light emitting diode element structure, including an operation substrate, having a surface, including a plurality of first epitaxial regions and a plurality of second epitaxial regions; a plurality of first light emitting diode epitaxial stacked units are arranged on the first On an epitaxial region, the first main emission wavelength can be radiated, wherein any one of the first light-emitting diode epitaxial stacked units is parallel to the first side of the surface of the operating substrate, and the extension lines of the first side have a first extension direction that is substantially parallel to each other a plurality of second light-emitting diode epitaxial stacked units are arranged on the second epitaxial region, and can emit the second main emission wavelength, wherein any second light-emitting diode epitaxial stacked unit has a second side corresponding to the first side, And the extension lines of the second sides have second extension directions that are substantially parallel to each other; and the first direction is parallel to the surface of the operation substrate, wherein the first extension direction and the first direction have an included angle θ 1 , and the second extension direction and the first direction One direction has an included angle θ 2 , and θ 1 is not equal to θ 2 .

依照本发明的又一实施例,其中第一主放射波长介于600nm至650nm之间。According to yet another embodiment of the present invention, wherein the first dominant emission wavelength is between 600 nm and 650 nm.

依照本发明的又一实施例,其中第一主放射波长介于510nm至550nm之间。According to yet another embodiment of the present invention, wherein the first dominant emission wavelength is between 510 nm and 550 nm.

依照本发明的又一实施例,其中第一主放射波长介于390nm至440nm之间。According to yet another embodiment of the present invention, wherein the first dominant emission wavelength is between 390 nm and 440 nm.

依照本发明的又一实施例,其中第一主放射波长不等于第二主放射波长。According to yet another embodiment of the present invention, wherein the first main emission wavelength is not equal to the second main emission wavelength.

依照本发明的又一实施例,其中任一第一发光二极管外延叠层单元及任一第二发光二极管外延叠层单元还包括半导体外延叠层,设置于操作基板的表面上,半导体外延叠层包括设置于操作基板的表面上,具有第一导电特性的第一半导体材料层;设置于第一半导体材料层上,具有第二导电特性的第二半导体材料层;以及发光层,设置于第一半导体材料层与第二半导体材料层之间。According to yet another embodiment of the present invention, any one of the first light-emitting diode epitaxial stack unit and any second light-emitting diode epitaxial stack unit further includes a semiconductor epitaxial stack disposed on the surface of the operating substrate, and the semiconductor epitaxial stack It includes a first semiconductor material layer with a first conductive characteristic arranged on the surface of the operation substrate; a second semiconductor material layer with a second conductive characteristic arranged on the first semiconductor material layer; and a light emitting layer arranged on the first semiconductor material layer. Between the semiconductor material layer and the second semiconductor material layer.

依照本发明的又一实施例,其中任一第一发光二极管外延叠层单元和/或任一第二发光二极管外延叠层单元还包括第一电极,设置于半导体外延叠层单元相对应于操作基板的相反侧、半导体外延叠层单元与操作基板的表面之间、或操作基板相对于半导体外延叠层单元的相反侧。According to yet another embodiment of the present invention, any one of the first light-emitting diode epitaxial stack units and/or any second light-emitting diode epitaxial stack units further include a first electrode disposed on the semiconductor epitaxial stack unit corresponding to the operation The opposite side of the substrate, between the surface of the semiconductor epitaxial stack unit and the handle substrate, or the opposite side of the handle substrate to the semiconductor epitaxial stack unit.

附图说明 Description of drawings

图1A为示意图,显示半导体光电元件制作方法第一步骤的侧视示意图;1A is a schematic diagram showing a schematic side view of the first step of the semiconductor optoelectronic device manufacturing method;

图1B为示意图,显示半导体光电元件制作方法第一步骤的俯视示意图;1B is a schematic diagram showing a schematic top view of the first step of the semiconductor optoelectronic device manufacturing method;

图1C为示意图,显示依俯视图1B的C-C’线段切割的侧视示意图;Fig. 1C is a schematic diagram showing a schematic side view cut according to the C-C' line segment of top view 1B;

图2为示意图,显示多彩显示装置俯视示意图;FIG. 2 is a schematic diagram showing a schematic top view of a colorful display device;

图3A为示意图,显示半导体光电元件制作方法第二步骤的俯视示意图;3A is a schematic diagram showing a schematic top view of the second step of the semiconductor optoelectronic device manufacturing method;

图3B为示意图,显示依俯视图3A的B-B’线段切割的第二步骤侧视示意图;Fig. 3B is a schematic diagram showing a side view of the second step of cutting according to the B-B' line segment of the plan view 3A;

图3C为示意图,显示半导体光电元件制作方法的第三步骤部分侧视示意图;3C is a schematic diagram showing a partial side view of the third step of the semiconductor optoelectronic device manufacturing method;

图4A为示意图,显示半导体光电元件制作方法的第四步骤部分侧视示意图;FIG. 4A is a schematic diagram showing a partial side view of the fourth step of the semiconductor optoelectronic device manufacturing method;

图4B为示意图,显示半导体光电元件制作方法的第四步骤的选择性步骤侧视示意图;4B is a schematic diagram showing a schematic side view of an optional step in the fourth step of the semiconductor optoelectronic device manufacturing method;

图4C为示意图,显示半导体光电元件制作方法的第四步骤的选择性步骤侧视示意图;4C is a schematic diagram showing a schematic side view of an optional step in the fourth step of the semiconductor optoelectronic device manufacturing method;

图4D为示意图,显示半导体光电元件制作方法的第四步骤的选择性步骤侧视示意图;4D is a schematic diagram showing a schematic side view of an optional step in the fourth step of the semiconductor optoelectronic device manufacturing method;

图4E为示意图,显示半导体光电元件制作方法的第四步骤的选择性步骤侧视示意图;4E is a schematic diagram showing a schematic side view of an optional step in the fourth step of the semiconductor optoelectronic device manufacturing method;

图5A为示意图,显示半导体光电元件制作方法第五步骤的俯视示意图;5A is a schematic diagram showing a schematic top view of the fifth step of the semiconductor optoelectronic device manufacturing method;

图5B为示意图,显示依俯视图5A的B-B’线段切割的第五步骤侧视示意图;Fig. 5B is a schematic diagram showing a side view schematic diagram of the fifth step of cutting according to the B-B' line segment of the plan view 5A;

图6为示意图,显示半导体光电元件制作方法第六步骤的俯视示意图;6 is a schematic diagram showing a schematic top view of the sixth step of the semiconductor optoelectronic device manufacturing method;

图7A为示意图,显示依本发明另一实施例所示的半导体光电元件结构侧视示意图;7A is a schematic diagram showing a schematic side view of the structure of a semiconductor photoelectric element according to another embodiment of the present invention;

图7B为示意图,显示依侧视图7A的半导体外延叠层单元4部分的侧视示意图;7B is a schematic diagram showing a schematic side view of a portion of the semiconductor epitaxial stack unit 4 according to the side view 7A;

图7C为示意图,显示依侧视图7A的半导体外延叠层单元4与透明导电层16部分的立体示意图;7C is a schematic diagram showing a perspective view of the semiconductor epitaxial stack unit 4 and the transparent conductive layer 16 according to the side view 7A;

图8为示意图,显示依本发明另一实施例所示的半导体光电元件结构侧视示意图;Fig. 8 is a schematic diagram showing a schematic side view of the structure of a semiconductor photoelectric element according to another embodiment of the present invention;

图9A为示意图,显示依本发明另一实施例所示的发光二极管元件结构侧视示意图;FIG. 9A is a schematic diagram showing a side view of a structure of a light emitting diode element according to another embodiment of the present invention;

图9B为示意图,显示依侧视图9A的半导体外延叠层单元部分的侧视示意图;9B is a schematic diagram showing a schematic side view of the semiconductor epitaxial stack unit part according to the side view 9A;

图10为示意图,显示依本发明另一实施例所示的发光二极管元件结构侧视示意图。FIG. 10 is a schematic diagram showing a side view of the structure of a light emitting diode device according to another embodiment of the present invention.

附图标记说明Explanation of reference signs

1:生长基板;1: growth substrate;

2:牺牲层;2: sacrificial layer;

2’:牺牲层侧壁;2': Sacrificial layer side wall;

3:半导体外延叠层;3: Semiconductor epitaxy stack;

4:半导体外延叠层单元;4: Semiconductor epitaxy stack unit;

4’:第一半导体外延叠层单元;4': the first semiconductor epitaxial stack unit;

4”:第二半导体外延叠层单元;4": the second semiconductor epitaxial stack unit;

5:图案化光致抗蚀剂层;5: patterning photoresist layer;

6、6”:转移结构;6, 6": transfer structure;

6’:转移表面;6': transfer surface;

7:操作基板;7: Operating the substrate;

7”:操作基板表面;7": operation substrate surface;

8:电极区域;8: electrode area;

9:外延区域;9: extension area;

10:粘着层;10: Adhesive layer;

11:第一电极;11: the first electrode;

12:金属导线;12: metal wire;

13:第一半导体材料层;13: a first semiconductor material layer;

14:第二半导体材料层;14: a second semiconductor material layer;

15:发光层;15: luminous layer;

16:透明导电层;16: transparent conductive layer;

16’:第一表面;16': first surface;

16”:第二表面;16": second surface;

17:绝缘层;17: insulating layer;

18:直接接触部;18: direct contact part;

18’:直接接触对应部;18': direct contact with the corresponding part;

19:第一外延区域;19: the first epitaxial region;

20、30:半导体光电元件;20, 30: semiconductor optoelectronic components;

21:第二外延区域;21: the second epitaxial region;

22:第一发光二极管外延叠层单元;22: the first light-emitting diode epitaxial stack unit;

23:第二发光二极管外延叠层单元;23: the second light-emitting diode epitaxial stack unit;

24:第一方向;24: first direction;

25、27:第一边;25, 27: the first side;

26:第一延长方向;26: first extension direction;

28:第二延长方向;28: second extension direction;

40、50:发光二极管结构;40, 50: LED structure;

61:转移表面的突起;61: protrusions on the transfer surface;

62:转移表面的突起;62: protrusions on the transfer surface;

71:操作基板的下表面;71: operate the lower surface of the substrate;

101:红光半导体外延叠层单元;101: Red light semiconductor epitaxial stack unit;

102:绿光半导体外延叠层单元;102: Green light semiconductor epitaxial stack unit;

103:蓝光半导体外延叠层单元。103: Blu-ray semiconductor epitaxial stack unit.

具体实施方式 Detailed ways

请参照图1,图1为依据本发明实施例的半导体光电元件的制作方法。首先,根据侧视图1A,先提供生长基板1,并形成牺牲层2于生长基板1之上,再形成半导体外延叠层3于牺牲层2之上。其中,生长基板1的材料例如可选自于由蓝宝石(Al2O3)、硅(Si)、碳化硅(SiC)、氮化镓(GaN)以及砷化镓(GaAs)所组成的族群,而牺牲层2的材料例如可为砷化铝(AlAs)、铝化镓砷(AlGaAs)、以及氧化锌(ZnO),而半导体外延叠层3例如可以为发光二极管外延叠层和/或太阳能电池外延叠层。接着,请分别同时参照俯视图1B及侧视图1C,以已知的制作方式,例如为干蚀刻、湿蚀刻或激光切割等方式分隔半导体外延叠层为多个半导体外延叠层单元4。分隔后,如图1C所示,裸露出多个半导体外延叠层单元4下的牺牲层2的侧壁2’。同样地,半导体外延叠层单元4例如可以为发光二极管外延叠层区域和/或太阳能电池外延叠层区域。Please refer to FIG. 1 . FIG. 1 is a manufacturing method of a semiconductor optoelectronic device according to an embodiment of the present invention. First, according to the side view 1A, a growth substrate 1 is firstly provided, and a sacrificial layer 2 is formed on the growth substrate 1 , and then a semiconductor epitaxial stack 3 is formed on the sacrificial layer 2 . Wherein, the material of the growth substrate 1 can be selected from the group consisting of sapphire (Al 2 O 3 ), silicon (Si), silicon carbide (SiC), gallium nitride (GaN) and gallium arsenide (GaAs), for example, The material of the sacrificial layer 2 can be, for example, aluminum arsenide (AlAs), gallium arsenide (AlGaAs), and zinc oxide (ZnO), and the semiconductor epitaxial stack 3 can be, for example, a light emitting diode epitaxial stack and/or a solar cell epitaxial stack. Next, please refer to the top view 1B and the side view 1C respectively, and divide the semiconductor epitaxial stack into a plurality of semiconductor epitaxial stack units 4 by known manufacturing methods, such as dry etching, wet etching or laser cutting. After separation, as shown in FIG. 1C , the sidewalls 2 ′ of the sacrificial layer 2 under the plurality of semiconductor epitaxial stacked units 4 are exposed. Likewise, the semiconductor epitaxial stack unit 4 may be, for example, a light emitting diode epitaxial stack area and/or a solar cell epitaxial stack area.

以上述的方式于生长基板1上形成多个半导体外延叠层单元4的结构之后,半导体外延叠层单元4将依据后续工艺或应用需求选择性地将半导体外延叠层单元转移至操作基板上。以图2为例,显示分别由红光半导体外延叠层单元101、绿光半导体外延叠层单元102、以及蓝光半导体外延叠层单元103所组成的多彩显示装置。为配合此多彩显示装置,当生长基板上的多个半导体外延叠层单元4放射红光波长时,依据多彩显示装置上红光半导体外延叠层单元101的配置,半导体外延叠层单元4将交错地由生长基板1上被选择性地转移至操作基板,即多彩显示装置上。After forming a plurality of semiconductor epitaxial stacked units 4 on the growth substrate 1 in the above manner, the semiconductor epitaxial stacked units 4 will selectively transfer the semiconductor epitaxial stacked units to the operating substrate according to subsequent processes or application requirements. Taking FIG. 2 as an example, it shows a multicolor display device composed of a red semiconductor epitaxial stack unit 101 , a green semiconductor epitaxial stack unit 102 , and a blue semiconductor epitaxial stack unit 103 . In order to cooperate with this colorful display device, when multiple semiconductor epitaxial stacked units 4 on the growth substrate radiate red wavelengths, according to the configuration of the red semiconductor epitaxial stacked units 101 on the colorful display device, the semiconductor epitaxial stacked units 4 will alternate The ground is selectively transferred from the growth substrate 1 to the operation substrate, that is, the multi-color display device.

转移的工艺如接下来图3A至3C所述,需要被转移的第二半导体外延叠层单元4”和不需要转移的第一半导体外延叠层单元4’透过不同的光致抗蚀剂覆盖方式依后续的步骤达到可进行选择性转移的效果。为了选择性地转移特定部分的半导体外延叠层单元4,如俯视图3A及俯视图3A中B-B’线段的侧视图3B所示,以图案化的光致抗蚀剂层5覆盖部分半导体外延叠层单元4:对于无须转移的第一半导体外延叠层单元4’,以完全覆盖的方式包覆住包含半导体外延叠层的表面以及其下裸露的牺牲层侧壁2’;对于需要被转移的第二半导体外延叠层单元4”,则覆盖部分达到简单固定的效果,并裸露出牺牲层侧壁2’。然后,使用已知的蚀刻技术,例如湿蚀刻,利用蚀刻液经由裸露出的牺牲层侧壁2’去除第二半导体外延叠层单元4”之下的牺牲层2。在此步骤之后,部分半导体外延叠层单元4下方的牺牲层2被选择性地移除,如侧视图3C所示,图中表示俯视图3A中线段B-B’经由移除步骤后部分牺牲层2被移除的结果。The transfer process is as described in FIGS. 3A to 3C . The second semiconductor epitaxial stack unit 4 ″ that needs to be transferred and the first semiconductor epitaxial stack unit 4 ′ that does not need to be transferred are covered by different photoresists. The method can reach the effect of selective transfer according to the subsequent steps. In order to selectively transfer the semiconductor epitaxial stack unit 4 of a specific part, as shown in the side view 3B of the BB' line segment in the top view 3A and the top view 3A, pattern Thinned photoresist layer 5 covers part of the semiconductor epitaxial stack unit 4: for the first semiconductor epitaxial stack unit 4' that does not need to be transferred, it covers the surface containing the semiconductor epitaxial stack and its lower surface in a completely covered manner Exposed sidewalls 2' of the sacrificial layer; for the second semiconductor epitaxial stacked unit 4" to be transferred, the covering part achieves the effect of simple fixation and exposes the sidewalls 2' of the sacrificial layer. Then, use a known etching technique, such as wet etching, to remove the sacrificial layer 2 under the second semiconductor epitaxial stack unit 4" through the exposed sacrificial layer sidewall 2' with an etching solution. After this step, part of the semiconductor The sacrificial layer 2 below the epitaxial stack unit 4 is selectively removed, as shown in side view 3C, which shows the result of part of the sacrificial layer 2 being removed after the removal step on line segment BB' in top view 3A.

透过此种方式,当生长基板上所有的半导体外延叠层单元4皆被移除后,原有的生长基板由于并未遭受破坏,将可透过一般的清洗过程后,再度回收使用。In this way, when all the semiconductor epitaxial stacked units 4 on the growth substrate are removed, the original growth substrate can be reused after going through the normal cleaning process because it has not been damaged.

除此之外,亦可以使用湿氧蚀刻的方式,通过加入高温高湿的氧气,氧化牺牲层2材料,使牺牲层2材料本身体积膨胀,减少牺牲层2与半导体外延叠层单元4彼此间的粘着性(图未示),并可使半导体外延叠层单元4与牺牲层2主动分离。待两者相互分离后,再以蚀刻液去除材留在半导体外延叠层单元4表面的部分被氧化的牺牲层2。In addition, wet oxygen etching can also be used to oxidize the material of the sacrificial layer 2 by adding high-temperature and high-humidity oxygen, so that the volume of the material of the sacrificial layer 2 itself expands, reducing the distance between the sacrificial layer 2 and the semiconductor epitaxial stack unit 4. Adhesion (not shown in the figure), and can actively separate the semiconductor epitaxial stack unit 4 from the sacrificial layer 2 . After the two are separated from each other, the partially oxidized sacrificial layer 2 remaining on the surface of the semiconductor epitaxial stack unit 4 is removed with an etching solution.

为了有效地选择性转移下方牺牲层2被移除的部分半导体外延叠层单元,即第二半导体外延叠层单元4”,使用转移结构6进行转移程序。转移结构6的材料主要是由有机高分子材料所组成,例如为发泡胶或PI胶带(tape)。转移结构6具有朝向半导体外延叠层单元4的转移表面6’,其中转移表面6’可为具有粘着性的表面或包括至少一个与须转移的第二半导体外延叠层单元4”相对应的突起61。透过转移表面6’的粘着力或通过累积在转移表面突起61与第二半导体外延叠层单元4”表面之间的电荷所产生的静电吸引力,可选择性地对第二半导体外延叠层单元4”进行吸附作用,而将第二半导体外延叠层单元4”转移至转移结构6上,如图4A所示。In order to effectively and selectively transfer the part of the semiconductor epitaxial stack unit removed from the lower sacrificial layer 2, that is, the second semiconductor epitaxial stack unit 4″, the transfer process is performed using the transfer structure 6. The material of the transfer structure 6 is mainly made of organic high Composed of molecular materials, such as foam glue or PI adhesive tape (tape). The transfer structure 6 has a transfer surface 6' towards the semiconductor epitaxial stack unit 4, wherein the transfer surface 6' can be an adhesive surface or include at least one The protrusion 61 corresponding to the second semiconductor epitaxial stack unit 4" to be transferred. Through the adhesive force of the transfer surface 6' or by the electrostatic attraction generated by the charge accumulated between the transfer surface protrusion 61 and the surface of the second semiconductor epitaxial stack unit 4", the second semiconductor epitaxial stack can be selectively The unit 4" is adsorbed, and the second semiconductor epitaxial stack unit 4" is transferred to the transfer structure 6, as shown in FIG. 4A.

此外,被转移至转移结构6的第二半导体外延叠层4”上仍然附着有部分图案化光致抗蚀剂层5。因此,为了去除图案化光致抗蚀剂层5或依结构设计需求需要将第二半导体外延叠层单元4”上下倒置地设置于操作基板上时,可以选择性地进行二次转移技术。即,如图4B至4D所示,当第二半导体外延叠层单元4”被转移至转移结构6后,原先覆盖在部分第二半导体外延叠层单元4”上表面的图案化光致抗蚀剂层5仍附着在第二半导体外延叠层单元4”与转移结构6未被移除。此时,可先将转移结构6上的第二半导体外延叠层单元4”转移至第二转移结构6”,以光致抗蚀剂去除液去除仍附着于第二半导体外延叠层单元4”的图案化光致抗蚀剂层5后,再进行二次转移将第二转移结构6”上的第二半导体外延叠层单元4”转移至操作基板7上。相似地,第二转移结构6”的材料主要是由有机高分子材料所组成,例如为发泡胶或PI胶带。第二转移结构6”具有朝向转移的半导体外延叠层单元4”的转移表面,其中转移表面可为具有粘着性的表面或包括至少一个与须转移的第二半导体外延叠层单元4”相对应的突起62。透过第二转移结构6”表面的粘着力或累积在转移表面的突起62与第二半导体外延叠层单元4”表面之间的电荷所产生的静电吸引力,选择性地对第二半导体外延叠层单元4”再次进行吸附作用,将第二半导体外延叠层单元4”转移至第二转移结构6”上。In addition, part of the patterned photoresist layer 5 is still attached to the second semiconductor epitaxial stack 4" transferred to the transfer structure 6. Therefore, in order to remove the patterned photoresist layer 5 or according to the structural design requirements When it is necessary to place the second semiconductor epitaxial stack unit 4" upside down on the handle substrate, the secondary transfer technique can be selectively performed. That is, as shown in FIGS. 4B to 4D, when the second semiconductor epitaxial stack unit 4" is transferred to the transfer structure 6, the patterned photoresist that originally covered part of the upper surface of the second semiconductor epitaxial stack unit 4" The agent layer 5 is still attached to the second semiconductor epitaxial stack unit 4" and the transfer structure 6 has not been removed. At this time, the second semiconductor epitaxial stack unit 4" on the transfer structure 6 can be transferred to the second transfer structure 6", after removing the patterned photoresist layer 5 still attached to the second semiconductor epitaxial stack unit 4" with a photoresist remover, a second transfer is performed to transfer the second transfer structure 6". The second semiconductor epitaxial stack unit 4 ″ is transferred onto the handle substrate 7 . Similarly, the material of the second transfer structure 6" is mainly composed of organic polymer materials, such as styrofoam or PI tape. The second transfer structure 6" has a transfer surface facing the transferred semiconductor epitaxial stack unit 4" , wherein the transfer surface may be an adhesive surface or include at least one protrusion 62 corresponding to the second semiconductor epitaxial stack unit 4" to be transferred. Through the adhesive force on the surface of the second transfer structure 6" or the electrostatic attraction generated by the charge accumulated between the protrusion 62 on the transfer surface and the surface of the second semiconductor epitaxial stack unit 4", selectively to the second semiconductor epitaxial The stacked unit 4" is adsorbed again to transfer the second semiconductor epitaxial stacked unit 4" to the second transfer structure 6".

最后,如图4E所示,再将第二半导体外延单元4”由第二转移结构6”转移至操作基板7上。当然,若只进行一次转移步骤时,第二半导体外延单元4”亦可以相似的方式直接由转移结构6转移至操作基板7上。Finally, as shown in FIG. 4E , the second semiconductor epitaxial unit 4 ″ is transferred from the second transfer structure 6 ″ to the operation substrate 7 . Of course, if only one transfer step is performed, the second semiconductor epitaxial unit 4 ″ can also be directly transferred from the transfer structure 6 to the operation substrate 7 in a similar manner.

如图5A所示,操作基板7上具有多个电极区域8及多个外延区域9,其中,电极区域8与外延区域9以一定的距离相隔,而操作基板7的材料可例如为蓝宝石(Al2O3)、硅(Si)、碳化硅(SiC)、氮化镓(GaN)、砷化镓(GaAs)或氮化铝(AlN)。或者,操作基板7为PCB基板或FR4基板。FR4基板为玻璃布基板,是由玻璃布浸以环氧酚醛树脂等材料经高温高压热压而成的板状层压制品。将置于转移结构6(或是第二转移结构6”)上的多个第二半导体外延叠层单元4”转移至操作基板7上,其方式例如为形成粘着层10于操作基板7与第二半导体外延叠层单元4”之间,通过加热的方式对操作基板7与第二半导体外延叠层单元4”进行粘着。因为加热的作用,同时可使第二半导体外延叠层单元4”与转移结构6(6”)之间的吸附力下降(转移表面6’的粘着性因加热而降低),再加上粘着层10对第二半导体外延叠层单元4”与操作基板7的吸附力,可以将第二半导体外延叠层单元4”自转移结构6(6”)上转移至操作基板7。其中,粘着层10的材料可以为有机高分子材料、金属材料或金属合金材料。此外,为了增加元件的出光效率或其他目的,还可以选择性地在操作基板7的表面7”进行粗糙化,使表面7”包括至少一突起(图未示)和/或至少一凹洞(图未示)。如图5A中B-B’线段侧视图5B所示,选择性地转移部分第二半导体外延叠层单元4”于操作基板7的外延区域9上,并与电极区域8以特定距离相隔。As shown in FIG. 5A , there are a plurality of electrode regions 8 and a plurality of epitaxial regions 9 on the operating substrate 7, wherein the electrode regions 8 and the epitaxial regions 9 are separated by a certain distance, and the material of the operating substrate 7 can be, for example, sapphire (Al 2 O 3 ), silicon (Si), silicon carbide (SiC), gallium nitride (GaN), gallium arsenide (GaAs), or aluminum nitride (AlN). Alternatively, the operation substrate 7 is a PCB substrate or an FR4 substrate. The FR4 substrate is a glass cloth substrate, which is a plate-shaped laminated product made of glass cloth impregnated with epoxy phenolic resin and other materials and subjected to high temperature and high pressure hot pressing. A plurality of second semiconductor epitaxial stacked units 4" placed on the transfer structure 6 (or the second transfer structure 6") is transferred to the operation substrate 7 by, for example, forming an adhesive layer 10 on the operation substrate 7 and the first operation substrate. Between the two semiconductor epitaxial stack units 4", the operation substrate 7 is adhered to the second semiconductor epitaxial stack unit 4" by means of heating. Because of the effect of heating, the adsorption force between the second semiconductor epitaxial stack unit 4 "and the transfer structure 6 (6 ") can be reduced (the adhesiveness of the transfer surface 6' is reduced due to heating), and the adhesive layer 10 The adsorption force of the second semiconductor epitaxial stack unit 4 ″ and the handling substrate 7 can transfer the second semiconductor epitaxial stack unit 4 ″ from the transfer structure 6 (6 ″) to the handling substrate 7. Wherein, the adhesive layer 10 The material can be an organic polymer material, a metal material or a metal alloy material. In addition, in order to increase the light extraction efficiency of the element or other purposes, it is also possible to selectively roughen the surface 7" of the operating substrate 7, so that the surface 7" includes At least one protrusion (not shown) and/or at least one cavity (not shown).As shown in BB' line segment side view 5B among Fig. 5A, selectively transfer part of the second semiconductor epitaxial stack unit 4 " It is on the epitaxial region 9 of the operation substrate 7 and is separated from the electrode region 8 by a specific distance.

最后,如图6所示,在操作基板7的电极区域8形成第一电极11,第一电极11并通过自其本体延伸的金属导线12或透过其他导电介质,例如为氧化铟锡、氧化镉锡、氧化锌、氧化铟、氧化锡、氧化铜铝、氧化铜镓、氧化锶铜、氧化铝锌、氧化锌镓或上述材料的任意组合等的透明导电材料与转移并设置在相对应外延区域9的第二半导体外延叠层单元4”各自电性连结。Finally, as shown in FIG. 6, a first electrode 11 is formed on the electrode region 8 of the operation substrate 7, and the first electrode 11 passes through a metal wire 12 extending from its body or through other conductive media, such as indium tin oxide, oxide Transparent conductive materials such as cadmium tin, zinc oxide, indium oxide, tin oxide, copper aluminum oxide, copper gallium oxide, strontium copper oxide, aluminum zinc oxide, zinc gallium oxide or any combination of the above materials are transferred and arranged in the corresponding epitaxial The second semiconductor epitaxial stack units 4" in the region 9 are electrically connected to each other.

此外,为达到元件导电的目的,制作步骤中还可包括形成第二电极(图未示)于第二半导体外延叠层单元4”与操作基板7之间或操作基板7相对于第二半导体外延叠层单元4”的相反侧。In addition, in order to achieve the purpose of conducting the element, the manufacturing step may also include forming a second electrode (not shown) between the second semiconductor epitaxial stack unit 4" and the operation substrate 7 or between the operation substrate 7 and the second semiconductor epitaxial stack. Opposite side of layer unit 4".

请参照图7A及图8,显示为依据本发明精神上述的制作方式所制作的单一半导体光电元件20及半导体光电元件30的侧视图。半导体光电元件20及30例如可以为太阳能电池或发光二极管。Please refer to FIG. 7A and FIG. 8 , which are side views of a single semiconductor optoelectronic device 20 and a semiconductor optoelectronic device 30 manufactured according to the above manufacturing method according to the spirit of the present invention. The semiconductor optoelectronic elements 20 and 30 can be, for example, solar cells or light emitting diodes.

如图7A至图7C所示,半导体光电元件20包含操作基板7,半导体外延叠层单元4设置于操作基板7之上。接着,放大半导体外延叠层单元4如图7B所示,半导体外延叠层单元4包含设置于操作基板7之上,具有第一导电特性的第一半导体材料层13,例如为p型半导体材料层,以及设置于第一半导体材料层13之上,具有第二导电特性的第二半导体材料层14,例如为n型半导体材料层。当半导体光电元件20及30为发光二极管元件时,半导体外延叠层单元4则又可包含发光层15,设置于第一半导体材料层13与第二半导体材料层14之间。As shown in FIGS. 7A to 7C , the semiconductor photoelectric element 20 includes an operating substrate 7 , and the semiconductor epitaxial stack unit 4 is disposed on the operating substrate 7 . Next, enlarge the semiconductor epitaxial stack unit 4, as shown in FIG. 7B, the semiconductor epitaxial stack unit 4 includes a first semiconductor material layer 13 with a first conductivity characteristic, such as a p-type semiconductor material layer, disposed on the operation substrate 7 , and disposed on the first semiconductor material layer 13, the second semiconductor material layer 14 having a second conductivity characteristic is, for example, an n-type semiconductor material layer. When the semiconductor optoelectronic elements 20 and 30 are light emitting diode elements, the semiconductor epitaxial stack unit 4 may further include a light emitting layer 15 disposed between the first semiconductor material layer 13 and the second semiconductor material layer 14 .

参考图7A,在半导体光电元件20之中还包含透明导电层16,设置于操作基板7之上。透明导电层16包含第一表面16’以及大致平行第一表面的第二表面16”。在第一表面16’上,第二半导体材料层14与透明导电层16有部分直接接触,定义为一个直接接触部18。在第二表面16”相对于第一表面16’直接接触部的位置则称为直接接触对应部18’,放大如图7C所示。请注意,图7C中为清楚表示透明导电层16与半导体外延叠层单元4中第二半导体材料层14两者接触的相对位置,故稍微分隔两者,但两者实质上为相互接触。其中,透明导电层16的材料可为氧化铟锡、氧化镉锡、氧化锌、氧化铟、氧化锡、氧化铜铝、氧化铜镓、氧化锶铜、氧化铝锌、氧化锌镓或上述材料的任意组合。为了增加元件出光或吸光的效率,在优选的情况下,覆盖于半导体外延叠层单元4之上的透明导电层16透光效率应大于90%。Referring to FIG. 7A , the semiconductor optoelectronic element 20 also includes a transparent conductive layer 16 disposed on the operating substrate 7 . The transparent conductive layer 16 includes a first surface 16' and a second surface 16" substantially parallel to the first surface. On the first surface 16', the second semiconductor material layer 14 is partially in direct contact with the transparent conductive layer 16, defined as a Direct contact portion 18. The position of the direct contact portion of the second surface 16" relative to the first surface 16' is referred to as a direct contact corresponding portion 18', as shown in enlarged view in FIG. 7C. Please note that FIG. 7C clearly shows the relative position where the transparent conductive layer 16 is in contact with the second semiconductor material layer 14 in the semiconductor epitaxial stack unit 4 , so the two are slightly separated, but they are substantially in contact with each other. Wherein, the material of the transparent conductive layer 16 can be indium tin oxide, cadmium tin oxide, zinc oxide, indium oxide, tin oxide, copper aluminum oxide, copper gallium oxide, strontium copper oxide, aluminum zinc oxide, zinc gallium oxide or the above materials random combination. In order to increase the light-emitting or light-absorbing efficiency of the element, in a preferred situation, the light transmission efficiency of the transparent conductive layer 16 covering the semiconductor epitaxial stack unit 4 should be greater than 90%.

继续参考图7A,为达成元件与外界的电性连结,在本实施例之中,在操作基板7之上,还包含有一个第一电极11设置在透明导电层16上直接接触部18与直接接触对应部18’之外的区域,通过透明导电层16与半导体外延叠层单元4进行电性连结。透过这样的设计,由于半导体外延叠层单元4上方覆盖的为透明的材料,半导体光电元件20不论是出光或吸光的效率都可以获得大幅的提升。值得注意的是,为了增加元件结构的稳固与效率,在半导体外延叠层单元4的部分表面还可以选择性的以绝缘材料层17进行保护,绝缘材料可例如以为常见的氧化硅或氮化硅材料。此外,如上述制作方法中所述,在本结构中,半导体外延叠层单元4与操作基板7之间还可选择性的设置一层粘着层10以达到相互粘着的效果。Continuing to refer to FIG. 7A , in order to achieve the electrical connection between the element and the outside world, in this embodiment, on the operation substrate 7 , there is also a first electrode 11 arranged on the transparent conductive layer 16 and the direct contact portion 18 and the direct contact portion 18 Areas other than the contact corresponding portion 18 ′ are electrically connected to the semiconductor epitaxial stack unit 4 through the transparent conductive layer 16 . Through such a design, since the semiconductor epitaxial stack unit 4 is covered with a transparent material, the efficiency of the semiconductor photoelectric element 20 in terms of light output or light absorption can be greatly improved. It is worth noting that, in order to increase the stability and efficiency of the device structure, part of the surface of the semiconductor epitaxial stack unit 4 can also be selectively protected with an insulating material layer 17. The insulating material can be, for example, common silicon oxide or silicon nitride. Material. In addition, as described in the above manufacturing method, in this structure, an adhesive layer 10 can also be optionally provided between the semiconductor epitaxial stack unit 4 and the handle substrate 7 to achieve the effect of mutual adhesion.

接着参照图8,图8为根据本发明精神所制作的另一半导体光电元件30。在此实施例中,与前一实施例相似的结构则不再赘述。不同的是,本实施例中,半导体光电元件30上的第一电极11还包括多个金属导线12自第一电极延伸至直接接触对应部18’,通过金属较低的电阻值特性增加元件的导电效率,其俯视图可以一并参照图6。其中,第一电极11的材料可以由钛、铝、金、铬、镍、锗或上述的任意合金所构成的单层或多层金属结构,金属导线12优选为具有宽度小于20μm,而金属导线12亦可以选择性地与第一电极11由不同材料所制成。Referring next to FIG. 8 , FIG. 8 is another semiconductor optoelectronic device 30 fabricated according to the spirit of the present invention. In this embodiment, the structure similar to that of the previous embodiment will not be repeated. The difference is that in this embodiment, the first electrode 11 on the semiconductor optoelectronic element 30 also includes a plurality of metal wires 12 extending from the first electrode to directly contact the corresponding portion 18', which increases the resistance of the element through the lower resistance of the metal. For the conductivity efficiency, its top view can be referred to FIG. 6 together. Wherein, the material of the first electrode 11 can be a single-layer or multi-layer metal structure composed of titanium, aluminum, gold, chromium, nickel, germanium, or any of the above-mentioned alloys. The metal wire 12 preferably has a width less than 20 μm, and the metal wire 12 can also be selectively made of different materials from the first electrode 11 .

此外,为达到元件导电的目的,结构中还可包括形成第二电极(图未示)于半导体外延叠层单元4与操作基板7之间或操作基板7相对于半导体外延叠层单元4的相反侧,即操作基板的下表面71。为了增加元件的出光效率或其他目的,在操作基板7的表面亦可以包括有至少一突起(图未示)和/或至少一凹洞(图未示)的粗糙化结构。In addition, in order to achieve the purpose of element conduction, the structure may also include forming a second electrode (not shown) between the semiconductor epitaxial stack unit 4 and the operation substrate 7 or the operation substrate 7 on the opposite side to the semiconductor epitaxial stack unit 4 , that is, the lower surface 71 of the operating substrate. In order to increase the light extraction efficiency of the device or other purposes, the surface of the operating substrate 7 may also include a roughened structure with at least one protrusion (not shown) and/or at least one concave hole (not shown).

图9A所示为依据本发明精神所制作的一种发光二极管结构40。在结构40中,包括操作基板7,操作基板7具有表面7”,表面上包括多个第一外延区域19与多个第二外延区域21。每一个外延区域中,皆包括一个上述的半导体光电元件(在此为发光二极管元件)。也就是说,在每一个外延区域上,皆包括一个发光二极管外延叠层单元。值得注意的是,在第一外延区域19上所包括的是放射第一主放射波长的第一发光二极管外延叠层单元22,在本实施例中第一主放射波长为放射红光,波长介于600nm至650nm之间。当然,根据不同的需求,第一主放射波长或可以为绿光,波长介于510nm至550nm之间,或可以为蓝光,波长介于390nm至440nm之间;而在第二外延区域21上所包括的是放射第二主放射波长的第二发光二极管外延叠层单元23,在本实施例中第二主放射波长为放射绿光,波长介于510nm至550nm之间。由实施例中可知,第一主放射波长可不等于第二主放射波长。FIG. 9A shows an LED structure 40 fabricated according to the spirit of the present invention. In the structure 40, the operation substrate 7 is included, and the operation substrate 7 has a surface 7 ", and the surface includes a plurality of first epitaxial regions 19 and a plurality of second epitaxial regions 21. Each of the epitaxial regions includes one of the above-mentioned semiconductor photoelectric Components (light-emitting diode elements here). That is to say, each epitaxial region includes a light-emitting diode epitaxial stacked unit. It is worth noting that the first epitaxial region 19 includes the first The first light-emitting diode epitaxial stack unit 22 of the main emission wavelength, in this embodiment, the first main emission wavelength is to emit red light, and the wavelength is between 600nm and 650nm. Of course, according to different requirements, the first main emission wavelength Or it can be green light, the wavelength is between 510nm and 550nm, or it can be blue light, the wavelength is between 390nm and 440nm; and the second epitaxial region 21 includes the second main emission wavelength. Light-emitting diode epitaxial stack unit 23, in the present embodiment, the second main emission wavelength is to emit green light, and the wavelength is between 510nm and 550nm. As can be seen from the embodiment, the first main emission wavelength may not be equal to the second main emission wavelength .

通过上述实施例所介绍的半导体光电元件的制作方式,即使在单一操作基板上包含有两种(如本结构40)或以上不同的外延叠层单元(在此为具有不同主放射波长的发光二极管外延叠层单元),可以容易地依据需求经过一次的转移,即可选择性自生长基板上转移多个生长于单一相同生长基板上不同位置但可放射相同主放射波长的发光二极管外延叠层单元至操作基板上。因此,以图9A的结构40为例,仅需要两次的转移动作,即第一次自生长红光发光二极管元件的生长基板转移红光外延叠层单元,第二次自生长绿光发光二极管元件的生长基板转移绿光外延叠层单元,即可完成操作基板上所有外延叠层单元设置的初步结构,而不需以人工选取或机器手臂夹取等方式一单元一单元地转移,可缩短工艺的时间。Through the manufacturing method of the semiconductor optoelectronic element described in the above-mentioned embodiments, even if there are two (such as this structure 40) or more different epitaxial stacked units (here, light-emitting diodes with different main emission wavelengths) on a single operation substrate Epitaxial stacked units) can be easily transferred according to the needs once, and can selectively transfer multiple light-emitting diode epitaxial stacked units grown on a single same growth substrate at different positions but emitting the same main emission wavelength from the growth substrate to the operating board. Therefore, taking the structure 40 in FIG. 9A as an example, only two transfer operations are required, that is, the first transfer of the red epitaxial stack unit from the growth substrate for growing the red light emitting diode element, and the second transfer of the green light emitting diode from the growth substrate. By transferring the green light epitaxial stacking unit from the growth substrate of the component, the preliminary structure of all the epitaxial stacking units on the operating substrate can be completed, without the need for manual selection or robotic arm clamping, etc. to transfer unit by unit, which can shorten Craft time.

同样的,请参考图9B,在发光二极管结构40之中,每一个发光二极管外延叠层单元22及23分别包含具有第一导电特性的第一半导体材料层13,例如为p型半导体材料层,设置于第一半导体材料层13之上,具有第二导电特性的第二半导体材料层14,例如为n型半导体材料层,以及发光层15,设置于第一半导体材料层13与第二半导体材料层14之间。Similarly, please refer to FIG. 9B, in the LED structure 40, each of the LED epitaxial stack units 22 and 23 respectively includes a first semiconductor material layer 13 having a first conductivity characteristic, such as a p-type semiconductor material layer, Arranged on the first semiconductor material layer 13, the second semiconductor material layer 14 having a second conductivity characteristic, such as an n-type semiconductor material layer, and the light emitting layer 15 are arranged on the first semiconductor material layer 13 and the second semiconductor material layer. Between layers 14.

此外,如同上述的实施例所述,为达到元件导电的目的,在结构40中,每一个第一发光二极管外延叠层单元22和/或第二发光二极管外延叠层单元23还可包括一个第一电极(图未示)设置于半导体外延叠层单元相对于操作基板7的相反侧,在本实施例,即为设置在半导体外延叠层单元之上;或是设置于半导体外延叠层单元与操作基板7的表面7”之间;或是操作基板7相对于半导体外延叠层单元的相反侧,即操作基板的下表面。为了增加元件的出光效率或其他目的,在操作基板7的表面亦可以包括有至少一突起(图未示)和/或至少一凹洞(图未示)的粗糙化结构。In addition, as described in the above-mentioned embodiments, in order to achieve the purpose of element conduction, in the structure 40, each first light-emitting diode epitaxial stack unit 22 and/or the second light-emitting diode epitaxial stack unit 23 may further include a first An electrode (not shown) is disposed on the opposite side of the semiconductor epitaxial stack unit relative to the operation substrate 7, in this embodiment, it is disposed on the semiconductor epitaxial stack unit; or disposed on the semiconductor epitaxial stack unit and between the surface 7" of the operation substrate 7; or the opposite side of the operation substrate 7 relative to the semiconductor epitaxial stack unit, that is, the lower surface of the operation substrate. In order to increase the light extraction efficiency of the element or other purposes, the surface of the operation substrate 7 is also A roughened structure having at least one protrusion (not shown) and/or at least one cavity (not shown) may be included.

值得注意的是,每一次进行转移工艺的时候,操作基板7与转移结构6(6”)之间会有产生对位误差的可能性。因此,进行选择性转移工艺的发光二极管结构将可能发生如图10的情况。以发光二极管结构50为例,定义第一方向24平行操作基板7的表面7”,由于放射第一主放射波长的第一发光二极管外延叠层单元22是在同一次转移工艺中一起转移到操作基板7上,因此,会产生转移结构本身的角度偏移间接影响附着在转移结构上所有的第一发光二极管外延叠层单元22一起产生相同的对位角度偏移的情况。相同地,放射第二主放射波长的第二发光二极管外延叠层单元23是在同一次转移工艺中一起转移到操作基板7上,因此,也会有一起产生相同的对位角度偏移的情况。以其中一个第一发光二极管外延叠层单元22为例,具有任一一个平行于操作基板7表面7”的第一边25。对每一个第一发光二极管外延叠层单元22的第一边25作延长线,会发现所有的延长线会具有实质平行的第一延长方向26。相同地,以其中任一个第二发光二极管外延叠层单元23为例,会具有一个相对应于第一发光二极管外延叠层单元22平行于操作基板7表面7”的第一边27。对每一个第二发光二极管外延叠层单元23的第一边27作延长线,会发现所有的延长线具有实质平行的第二延长方向28。由于两次转移所产生的对位角度偏移不尽相同,因此,以原本定义的第一方向24为基准,第一延长方向26与第一方向24会产生夹角θ1,而第二延长方向28与第一方向24会产生另一夹角θ2,而且θ1不等于θ2。本实施例中,θ1约等于70度而θ2约等于90度。It is worth noting that every time the transfer process is performed, there is a possibility of alignment errors between the operation substrate 7 and the transfer structure 6 (6"). Therefore, the light-emitting diode structure that undergoes the selective transfer process will likely occur Situation as shown in Fig. 10. Taking light emitting diode structure 50 as an example, defining first direction 24 to operate parallel to the surface 7 of substrate 7", because the first light emitting diode epitaxial stacked unit 22 that radiates the first main emission wavelength is transferred at the same time During the process, they are transferred to the operation substrate 7 together. Therefore, the angle deviation of the transfer structure itself will indirectly affect the situation that all the first light-emitting diode epitaxial stacked units 22 attached to the transfer structure produce the same alignment angle deviation together. . Similarly, the second light-emitting diode epitaxial stack unit 23 emitting the second main emission wavelength is transferred to the handle substrate 7 together in the same transfer process, so the same alignment angle offset may also be generated together . Taking one of the first light-emitting diode epitaxial stack units 22 as an example, there is any first side 25 parallel to the surface 7" of the operating substrate 7. For each first side of the first light-emitting diode epitaxial stack unit 22 25 as an extension line, it will be found that all the extension lines will have a substantially parallel first extension direction 26. Similarly, taking any one of the second light-emitting diode epitaxial stacked unit 23 as an example, there will be a corresponding to the first light-emitting The diode epitaxial stack unit 22 is parallel to the first side 27 of the surface 7 ″ of the operating substrate 7 . By drawing extension lines from the first side 27 of each second LED epitaxial stack unit 23 , it can be found that all the extension lines have second extension directions 28 that are substantially parallel. Since the alignment angle offsets produced by the two transfers are not the same, based on the originally defined first direction 24, the first extension direction 26 and the first direction 24 will form an angle θ 1 , while the second extension Another included angle θ 2 is formed between the direction 28 and the first direction 24 , and θ 1 is not equal to θ 2 . In this embodiment, θ 1 is approximately equal to 70 degrees and θ 2 is approximately equal to 90 degrees.

通过以上的说明,可了解本发明所揭示的一种半导体光电元件的转移制作方法除了完整地保留半导体光电元件的生长基板,可以重复使用之外,并且可以以具有选择性地方式单次转移多个半导体光电元件单元于操作基板上,简化工艺。这种方式,对于发展中的多色发光元件或是多色显示器的制作,具有节省成本以及缩短工艺时间的良好功效。Through the above description, it can be understood that the method for transferring semiconductor optoelectronic elements disclosed in the present invention can not only keep the growth substrate of semiconductor optoelectronic elements intact and can be reused, but also can selectively transfer multiple A semiconductor optoelectronic element unit is placed on the operation substrate, which simplifies the process. This method has the good effect of saving costs and shortening the process time for the manufacture of multi-color light-emitting elements or multi-color displays under development.

本发明所列举的各实施例仅用以说明本发明,并非用以限制本发明的范围。任何人对本发明所作的任何显而易知的修饰或变更皆不脱离本发明的精神与范围。The various embodiments listed in the present invention are only used to illustrate the present invention, and are not intended to limit the scope of the present invention. Any obvious modifications or changes made by anyone to the present invention will not depart from the spirit and scope of the present invention.

Claims (10)

1.一种半导体光电元件,包括:1. A semiconductor optoelectronic element, comprising: 操作基板;Operating the substrate; 半导体外延叠层单元,设置于该操作基板上,该半导体外延叠层单元包括:The semiconductor epitaxial stack unit is arranged on the operation substrate, and the semiconductor epitaxial stack unit includes: 设置于该操作基板上、具有第一导电特性的第一半导体材料层;和a first semiconductor material layer having a first conductivity characteristic disposed on the handle substrate; and 设置于该第一半导体材料层上、具有第二导电特性的第二半导体材料层;a second semiconductor material layer having a second conductivity characteristic disposed on the first semiconductor material layer; 透明导电层,设置于该第二半导体材料层上,该透明导电层包括:A transparent conductive layer disposed on the second semiconductor material layer, the transparent conductive layer comprising: 第一表面,具有直接接触部与该第二半导体材料层直接接触;a first surface having a direct contact portion in direct contact with the second layer of semiconductor material; 第二表面,实质平行该第一表面,具有直接接触对应部,该直接接触对应部相对于该直接接触部;以及a second surface, substantially parallel to the first surface, having a direct contact counterpart opposite to the direct contact portion; and 第一电极,设置于该操作基板上,通过该透明导电层与该半导体外延叠层单元电性连结,其中该第一电极与该透明导电层通过该直接接触部与该直接接触对应部之外的区域相互电性连结,并且该第一电极设置在该直接接触部与该直接接触对应部之外的区域。The first electrode is arranged on the operation substrate and is electrically connected to the semiconductor epitaxial stack unit through the transparent conductive layer, wherein the first electrode and the transparent conductive layer pass through the direct contact portion and the direct contact corresponding portion The areas of the two are electrically connected to each other, and the first electrode is disposed in an area other than the direct contact portion and the direct contact corresponding portion. 2.如权利要求1所述的半导体光电元件,其中该半导体外延叠层单元还包括发光层,设置于该第一半导体材料层与该第二半导体材料层之间。2. The semiconductor optoelectronic device according to claim 1, wherein the semiconductor epitaxial stack unit further comprises a light emitting layer disposed between the first semiconductor material layer and the second semiconductor material layer. 3.如权利要求1所述的半导体光电元件,还包括第二电极,设置于该操作基板与该半导体外延叠层单元之间或该操作基板相对于该半导体外延叠层单元的相反侧。3. The semiconductor optoelectronic device according to claim 1, further comprising a second electrode disposed between the operation substrate and the semiconductor epitaxial stack unit or on an opposite side of the operation substrate to the semiconductor epitaxial stack unit. 4.如权利要求1所述的半导体光电元件,其中该透明导电层的透光度大于90%。4. The semiconductor optoelectronic device as claimed in claim 1, wherein the light transmittance of the transparent conductive layer is greater than 90%. 5.如权利要求1所述的半导体光电元件,其中该半导体光电元件为太阳能电池或发光二极管。5. The semiconductor optoelectronic device according to claim 1, wherein the semiconductor optoelectronic device is a solar cell or a light emitting diode. 6.如权利要求1所述的半导体光电元件,其中该透明导电层材料选自于由氧化铟锡、氧化镉锡、氧化锌、氧化铟、氧化锡、氧化铜铝、氧化铜镓、氧化锶铜、氧化铝锌、氧化锌镓以及上述材料的任意组合所组成的族群。6. The semiconductor photoelectric element as claimed in claim 1, wherein the transparent conductive layer material is selected from the group consisting of indium tin oxide, cadmium tin oxide, zinc oxide, indium oxide, tin oxide, copper aluminum oxide, copper gallium oxide, strontium oxide A group consisting of copper, aluminum zinc oxide, zinc gallium oxide, and any combination of the above materials. 7.如权利要求1所述的半导体光电元件,还包括多个金属导线,自该第一电极延伸至该透明导电层的该直接接触对应部。7. The semiconductor optoelectronic device as claimed in claim 1, further comprising a plurality of metal wires extending from the first electrode to the directly contacting corresponding portion of the transparent conductive layer. 8.如权利要求7所述的半导体光电元件,其中该金属导线具有宽度小于20μm,和/或该多个金属导线的材料与该第一电极不同。8. The semiconductor optoelectronic device as claimed in claim 7, wherein the metal wire has a width less than 20 μm, and/or the material of the plurality of metal wires is different from that of the first electrode. 9.如权利要求1所述的半导体光电元件,其中该第一电极的材料是由钛、铝、金、铬、镍、锗或上述的任意合金所构成的单层或多层金属结构。9. The semiconductor optoelectronic device as claimed in claim 1, wherein the material of the first electrode is a single-layer or multi-layer metal structure composed of titanium, aluminum, gold, chromium, nickel, germanium or any alloy thereof. 10.如权利要求1所述的半导体光电元件,其中该操作基板还具有粗糙表面,该粗糙表面包括至少一突起和/或至少一凹洞。10. The semiconductor optoelectronic device as claimed in claim 1, wherein the operating substrate further has a rough surface, and the rough surface comprises at least one protrusion and/or at least one concave hole.
CN201010249195.5A 2010-08-06 2010-08-06 Semiconductor optoelectronic element and manufacturing method thereof Active CN102376826B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410319735.0A CN104091862B (en) 2010-08-06 2010-08-06 Semiconductor optoelectronic element and manufacturing method thereof
CN201010249195.5A CN102376826B (en) 2010-08-06 2010-08-06 Semiconductor optoelectronic element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010249195.5A CN102376826B (en) 2010-08-06 2010-08-06 Semiconductor optoelectronic element and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410319735.0A Division CN104091862B (en) 2010-08-06 2010-08-06 Semiconductor optoelectronic element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN102376826A CN102376826A (en) 2012-03-14
CN102376826B true CN102376826B (en) 2014-08-06

Family

ID=45795122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010249195.5A Active CN102376826B (en) 2010-08-06 2010-08-06 Semiconductor optoelectronic element and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN102376826B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108447855B (en) 2012-11-12 2020-11-24 晶元光电股份有限公司 Manufacturing method of semiconductor optoelectronic element
CN104157548A (en) * 2013-05-14 2014-11-19 北儒精密股份有限公司 Manufacturing method of flexible light-transmitting substrate
TWI549170B (en) * 2013-07-29 2016-09-11 晶元光電股份有限公司 Method of selectively transferring semiconductor devices
CN107068665B (en) * 2017-04-18 2019-02-05 天津三安光电有限公司 Miniature light-emitting diode device and method of making the same
CN109923683B (en) * 2017-09-15 2022-04-05 厦门市三安光电科技有限公司 Miniature light-emitting diode and method of making the same
CN115312637B (en) * 2022-10-11 2022-12-16 罗化芯显示科技开发(江苏)有限公司 A kind of Micro-LED display device and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973375A (en) * 2004-03-29 2007-05-30 J.P.瑟塞尔联合公司 Method of separating layers of material using laser beam
CN101075649A (en) * 2006-05-18 2007-11-21 洲磊科技股份有限公司 Method of making light emitting diodes
CN101465402A (en) * 2008-07-11 2009-06-24 厦门市三安光电科技有限公司 Manufacturing method of thin film LED chip device based on seamless plane bonding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973375A (en) * 2004-03-29 2007-05-30 J.P.瑟塞尔联合公司 Method of separating layers of material using laser beam
CN101075649A (en) * 2006-05-18 2007-11-21 洲磊科技股份有限公司 Method of making light emitting diodes
CN101465402A (en) * 2008-07-11 2009-06-24 厦门市三安光电科技有限公司 Manufacturing method of thin film LED chip device based on seamless plane bonding

Also Published As

Publication number Publication date
CN102376826A (en) 2012-03-14

Similar Documents

Publication Publication Date Title
TWI557934B (en) Semiconductor optoelectronic component
CN103811593B (en) Method for manufacturing semiconductor photoelectric element
TWI427829B (en) Semiconductor photoelectric element and manufacturing method thereof
US10553747B2 (en) Method of selectively transferring semiconductor device
US9455242B2 (en) Semiconductor optoelectronic device
CN102376826B (en) Semiconductor optoelectronic element and manufacturing method thereof
CN110676355B (en) Method of making a light-emitting element
TWI590302B (en) Semiconductor light emitting device and method of fabricating the same
CN104091862B (en) Semiconductor optoelectronic element and manufacturing method thereof
TWI603390B (en) Method of selectively transferring semiconductor devices
TWI536603B (en) A semiconductor optoelectronic device and the method of manufacturing the same
JP2017175134A (en) Method for selectively transferring semiconductor elements
TW201742128A (en) A semiconductor device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant