CN102375146A - Method and system for simulating GPS (Global Positioning System) digital medium-frequency signal - Google Patents
Method and system for simulating GPS (Global Positioning System) digital medium-frequency signal Download PDFInfo
- Publication number
- CN102375146A CN102375146A CN2011102859209A CN201110285920A CN102375146A CN 102375146 A CN102375146 A CN 102375146A CN 2011102859209 A CN2011102859209 A CN 2011102859209A CN 201110285920 A CN201110285920 A CN 201110285920A CN 102375146 A CN102375146 A CN 102375146A
- Authority
- CN
- China
- Prior art keywords
- signal
- ephemeris
- information
- time
- satellite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明提供一种使用软件方法模拟GPS数字中频信号的方法及系统,方法包括:步骤一,读取用户按照规定格式编写的配置文件,提取系统配置参数,配置模拟的信号特征和系统工作所需输入;步骤二,提取RINEX文件头信息和所定义时间段内的全部卫星的星历数据组;步骤三,将步骤二中提取出的星历数据进行编码,形成二进制的导航电文码流;步骤四,将步骤三中得到的电文码流调制载波和扩频码,合成出中频数字信号数据。系统包括:信号生成模块、RINEX管理模块和辅助模块。本发明通过软件方法模拟GPS数字中频信号,作为GPS原型接收机系统及其子模块测试激励,简化了测试中信号收集的问题,并快速满足了测试人员对信号特征丰富性的需求。
The present invention provides a method and system for simulating GPS digital intermediate frequency signals using software methods. The method includes: Step 1: Read the configuration file written by the user according to the specified format, extract system configuration parameters, and configure the simulated signal characteristics and system work requirements. Input; step 2, extract the RINEX file header information and the ephemeris data groups of all satellites in the defined time period; step 3, encode the ephemeris data extracted in step 2 to form a binary navigation message code stream; step Fourth, the message code stream obtained in step three is modulated with a carrier wave and a spreading code to synthesize intermediate frequency digital signal data. The system includes: signal generation module, RINEX management module and auxiliary module. The invention uses a software method to simulate the GPS digital intermediate frequency signal as a test stimulus for the GPS prototype receiver system and its sub-modules, simplifies the problem of signal collection in the test, and quickly satisfies the needs of testers for the richness of signal features.
Description
技术领域 technical field
本发明涉及一种卫星导航领域的方法及系统,具体为一种使用软件方法模拟GPS数字中频信号的方法及系统。The invention relates to a method and a system in the field of satellite navigation, in particular to a method and a system for simulating GPS digital intermediate frequency signals using a software method.
背景技术 Background technique
功能完备的GPS接收机需要三个功能模块:第一个是射频接收模块,具体功能是通过天线接收GPS卫星发射的射频信号,再经过混频和滤波处理将射频信号变为频率较低的中频信号,最后经过ADC采样后成为数字信号交与基带处理模块处理;第二个是基带处理模块,负责对射频接收模块输出的数字信号进行捕获和跟踪,获取导航电文信息和各个卫星的传播时间信息;第三个是导航解算模块,负责将基带处理模块输出的信息经过一定的数学运算处理得到接收机的PVT(位置、速度、时间)信息,实现了GPS定位。A full-featured GPS receiver needs three functional modules: the first one is the radio frequency receiving module, the specific function is to receive the radio frequency signal transmitted by the GPS satellite through the antenna, and then convert the radio frequency signal into a lower frequency intermediate frequency through mixing and filtering The signal, after being sampled by the ADC, becomes a digital signal and is processed by the baseband processing module; the second one is the baseband processing module, which is responsible for capturing and tracking the digital signal output by the radio frequency receiving module, and obtaining the navigation message information and the propagation time information of each satellite ; The third is the navigation calculation module, which is responsible for processing the information output by the baseband processing module through certain mathematical operations to obtain the PVT (position, speed, time) information of the receiver, and realize GPS positioning.
因此,GPS接收机芯片在前期设计验证的过程中就需要有GPS信号源作为测试激励,并且设计验证人员需要掌握信号的一定先验信息,方能验证接收机的正确性和健壮性。一般采用的解决方案有两种。一种是建立真实的接收环境,即购买第三方的射频接收模块和自己的测试系统对接,通过实地信号接收和测量来获取测试统计结果,并需要一台参考接收机同时同地点同条件地运行,获取对比测试数据;另一种是搭建独立的射频接收和采样系统,该系统需要连接存储设备,把实地采集的信号以文件形式存储,作为测试激励。这两种解决方案的局限都在于环境成本较高,而且实验条件非常苛刻。对第一种方案来说,一方面实时的测试环境只能完成系统级测试,很难实现模块测试或者高层次模型测试,另一方面需要在户外进行,需要大量额外的人工成本和使用如机车、便携式电源等额外的辅助设备、工具。对于第二种方案来说,同样需要额外的人工和设备,并且存储的信号是没有先验知识的,需要额外的软件工具对其进行分析,掌握可靠的信息后才能用于测试,而测试结果的可靠性又依赖于对信号信息的挖掘是否正确。Therefore, the GPS receiver chip needs a GPS signal source as a test stimulus in the early design verification process, and the design and verification personnel need to master certain prior information of the signal in order to verify the correctness and robustness of the receiver. There are two commonly used solutions. One is to establish a real receiving environment, that is, purchase a third-party RF receiving module and connect it with your own test system, and obtain test statistical results through on-site signal reception and measurement, and require a reference receiver to operate at the same time at the same location and under the same conditions , to obtain comparative test data; the other is to build an independent radio frequency receiving and sampling system, which needs to be connected to a storage device to store the signals collected in the field in the form of a file as a test stimulus. Both solutions are limited by high environmental costs and very harsh experimental conditions. For the first solution, on the one hand, the real-time test environment can only complete system-level testing, and it is difficult to implement module testing or high-level model testing; on the other hand, it needs to be carried out outdoors, requiring a lot of extra labor costs and using vehicles , portable power supply and other additional auxiliary equipment and tools. For the second solution, additional labor and equipment are also required, and the stored signal has no prior knowledge, and additional software tools are needed to analyze it. Only when reliable information is available can it be used for testing, and the test results The reliability of the algorithm depends on whether the mining of signal information is correct.
发明内容 Contents of the invention
本发明针对上述技术中的缺点和不足,提出了一种基于通用计算机平台的软件方式实现的GPS中频数字信号模拟方法及系统。该方法使用真实星历数据,经过软件编码和模拟真实的载波与扩频码调制,并经过逆推运算调整不同卫星的信号到达接收机的时间差,合成出给定时间、地点和信噪比的可见卫星信号,以二进制文件形式存储,可随时用于测试激励。该系统模拟的为GPS导航接收机的射频模块中ADC的输出信号。软件方法保证了使用的便捷性和灵活性,信号可以随时生成并且满足任意的信号特征的需求。Aiming at the shortcomings and deficiencies in the above-mentioned technologies, the present invention proposes a method and system for simulating GPS intermediate-frequency digital signals realized by software based on a general-purpose computer platform. This method uses real ephemeris data, through software coding and simulation of real carrier and spread spectrum modulation, and through inverse calculation to adjust the time difference between the arrival of signals from different satellites at the receiver, and synthesize a given time, place and signal-to-noise ratio Visible satellite signals, stored as binary files, are ready for test stimulus. The system simulates the output signal of the ADC in the RF module of the GPS navigation receiver. The software method ensures the convenience and flexibility of use, and the signal can be generated at any time and meet the requirements of any signal characteristics.
根据本发明的一个方面,提出一种GPS数字中频信号的模拟方法,包括如下步骤:步骤一,读取用户按照规定格式编写的配置文件,提取系统配置参数,配置模拟的信号特征和系统工作所需输入;步骤二,提取RINEX文件头信息和所定义时间段内的全部卫星的星历数据组;步骤三,将步骤二中提取出的星历数据进行编码,形成二进制的导航电文码流;步骤四,将步骤三中得到的电文码流调制载波和扩频码,合成出中频数字信号数据。According to one aspect of the present invention, a method for simulating a GPS digital intermediate frequency signal is proposed, including the following steps:
根据本发明的另一个方面,还提供一种GPS数字中频信号的模拟系统,包括:信号生成模块、RINEX管理模块和辅助模块,其中,辅助模块主要包含的子模块有导航解算模块、时间系统管理模块、地理坐标转换模块、宏模块。According to another aspect of the present invention, there is also provided an analog system for GPS digital intermediate frequency signals, including: a signal generation module, a RINEX management module, and an auxiliary module, wherein the auxiliary module mainly includes submodules including a navigation calculation module, a time system Management module, geographic coordinate conversion module, macro module.
更为具体地,本发明是通过以下的技术方案实现的:More specifically, the present invention is achieved through the following technical solutions:
本发明涉及的基于通用计算机平台的软件GPS中频数字信号模拟方法,包括以下步骤:The software GPS intermediate frequency digital signal simulation method based on general computer platform that the present invention relates to comprises the following steps:
步骤一,读取用户按照规定格式编写的配置文件,提取系统配置参数,配置模拟的信号特征和系统工作所需输入。所述系统配置参数包括:Step 1: Read the configuration file written by the user according to the specified format, extract the system configuration parameters, and configure the simulated signal characteristics and input required for system work. The system configuration parameters include:
RINEX导航星历文件路径。RINEX是一种存储导航相关数据的通用文本文件格式,其中的一种导航星历文件用于存储一段时间内某观测站采集的卫星星历数据。星历数据用于计算卫星运行参数(速度、位置、钟差等)。从该格式文件提取星历、并且按照官方给定星历编码格式和规范进行编码,能够还原指定卫星在一定时间段内发射的导航数据流。 RINEX navigation ephemeris file path. RINEX is a common text file format for storing navigation-related data, and one of the navigation ephemeris files is used to store satellite ephemeris data collected by an observation station over a period of time. The ephemeris data is used to calculate satellite operating parameters (velocity, position, clock error, etc.). Extract the ephemeris from this format file, and encode it according to the officially given ephemeris encoding format and specification, which can restore the navigation data stream transmitted by the specified satellite within a certain period of time.
接收机位置、速度、加速度信息。这些参数用于配置接收机模型的运动状态。这些和运动状态相关的参数最终会作用到模拟出的GPS信号中。 Receiver position, velocity, acceleration information. These parameters are used to configure the motion state of the receiver model. These parameters related to the motion state will eventually be applied to the simulated GPS signal.
所模拟的信号的接收起始时刻、时间跨度、星历使用组数信息。 The reception start time, time span, and ephemeris of the simulated signal use group number information.
该步骤从配置文件读取以上列举的配置参数配置系统的各个模块,设定了系统当前的运行方式和数据的生成模式。This step reads the configuration parameters listed above from the configuration file to configure each module of the system, and sets the current operating mode and data generation mode of the system.
步骤二,检查RINEX导航星历文件有效性,提取RINEX星历文件头信息和所定义时间段内的全部卫星的星历数据。
所述RINEX星历文件头信息,包含:RINEX版本信息、观测站位置信息、信号接收时段信息、电离层校正模型参数、UTC时间信息等。其中较为重要的有:版本信息,决定了文件的格式;电离层校正模型参数和UTC时间信息,这些参数也存在于卫星播发的导航电文中,分别用于校正电离层延迟和在GPST时与UTC之间转换。任何一类信息在文件头中占据若干行,并用一个描述符(descriptor)区分。该步骤首先缓存RINEX文件的文件头,然后用户可根据需要通过特定的描述符在缓存中搜索相应的信息,在信号生成中使用。The RINEX ephemeris file header information includes: RINEX version information, observation station location information, signal receiving period information, ionospheric correction model parameters, UTC time information, etc. The more important ones are: version information, which determines the format of the file; ionospheric correction model parameters and UTC time information, these parameters also exist in the navigation message broadcast by the satellite, and are used to correct the ionospheric delay and UTC time in GPST respectively. Convert between. Any type of information occupies several lines in the file header and is distinguished by a descriptor. This step first caches the file header of the RINEX file, and then the user can search for the corresponding information in the cache through a specific descriptor as needed, and use it in signal generation.
步骤一中说明了星历的作用,它用来描述卫星轨道信息和卫星运动信息。GPS卫星以两个小时为周期更新播发的星历,保证这些信息的精度。制作RINEX文件的观测站会不间断地接收卫星信号,把一个时间段(例如一天)内所能观测到的全部卫星的多套星历按照时间顺序存储于一个RINEX导航星历文件中。The function of the ephemeris is explained in
该步骤在解析完RINEX文件头之后,把信号模拟时间段内的全部星历数据提取出来,存储于一个动态二维数组中构成星历数据组。所述星历数据组的类型为一个自定义结构体,该结构体存储一颗卫星的一套星历。之所以是动态数组,是因为当信号模拟的时间跨度中存在理论上的星历更新时,每颗卫星需要多套星历。该二维数组的每一行对应一颗GPS卫星,共32行,而每一列对应一套星历数据,不同列对应不同的时间段,列数则由。In this step, after parsing the RINEX file header, all the ephemeris data in the signal simulation time period are extracted and stored in a dynamic two-dimensional array to form an ephemeris data group. The type of the ephemeris data set is a self-defined structure, which stores a set of ephemeris of a satellite. The reason for the dynamic array is that when there are theoretical ephemeris updates in the time span of the signal simulation, multiple sets of ephemeris are required per satellite. Each row of the two-dimensional array corresponds to a GPS satellite, a total of 32 rows, and each column corresponds to a set of ephemeris data, different columns correspond to different time periods, and the number of columns is determined by .
该步骤根据信号起始时间和时间跨度的配置信息,在RINEX导航星历文件中搜寻对应于该时间段的全部卫星星历,并计算是否存在星历更新,总共更新几次。例如,当计算出需要生成的信号包含一次星历更新,则每颗卫星需提取两套时间上连续的星历,且和起始时间和长度的配置信息吻合。This step searches the RINEX navigation ephemeris file for all satellite ephemeris corresponding to the time period according to the configuration information of the signal start time and the time span, and calculates whether there is an ephemeris update, and a total of several updates. For example, when it is calculated that the signal to be generated contains an ephemeris update, each satellite needs to extract two sets of time-continuous ephemeris, which are consistent with the configuration information of the start time and length.
步骤三,将步骤二中提取出的星历数据进行编码形成二进制的导航电文码流。Step 3: Encode the ephemeris data extracted in
所述将步骤二中提取出的星历数据进行编码,形成二进制的导航电文码流,是指:根据所模拟的信号起始时刻和时间跨度,以及GPS官方文档对电文格式的规定,对每一颗卫星的星历进行编码,形成二进制的导航电文码流,同时计算出奇偶校验位,最后将每颗卫星的码流都存储于一个独立的文件中。导航电文为二进制格式,以30秒为一帧,步骤二中提取出的星历数据即对应一帧包含的信息。一帧包含5个子帧,编号从1到5,每个子帧包含300比特数据,所以每比特数据的宽度为20 ms。每颗卫星都从世界协调时间(UTC)的周日凌晨开始播送导航电文,从1号子帧到5号子帧不断循环,并以两小时为间隔进行更新。对所有卫星电文编码的算法相同,其流程如下:Encoding the ephemeris data extracted in
1.根据信号起始时刻的信息计算周内时TOW;1. Calculate the time of week TOW according to the information of the signal start time;
2.用TOW除以6得到的商对5取余,(余数+1)即为信号起始时刻所在子帧的子帧号k(理论上每颗卫星发射子帧的时间是同步的,以上计算的子帧号可作为所有卫星生成的导航电文码流的起始子帧);2. Take the remainder of the quotient obtained by dividing TOW by 6 to 5, (remainder + 1) is the subframe number k of the subframe at the starting moment of the signal (theoretically, the time for each satellite to transmit the subframe is synchronous, the above The calculated subframe number can be used as the starting subframe of the navigation message code stream generated by all satellites);
3.根据信号时间跨度n(单位为秒)计算每颗卫星需要生成的子帧数量:N = n/6+1;3. Calculate the number of subframes that each satellite needs to generate according to the signal time span n (in seconds): N = n/6+1;
4.对卫星p,需要生成的第i(0 i<N)个子帧的子帧号: 4. For satellite p, the i-th (0 The subframe number of i<N) subframes:
,若计算得sf为0, ; , if the calculated sf is 0, ;
根据该子帧对应的周内时itow计算应选取哪一个星历组中的星历数据:Calculate the ephemeris data in which ephemeris group should be selected according to the time of the week corresponding to the subframe:
找到所模拟的信号时间跨度内的2小时星历更新时刻,判断itow出现的时间段,判断应该选取的星历数据组。根据sf号子帧对应的子帧格式和所选星历数据组中卫星p的星历数据进行第i个子帧的编码;重复该步骤完成所有子帧的编码,得到卫星p的电文码流。Find the 2-hour ephemeris update time within the simulated signal time span, judge the time period when itow appears, and judge the ephemeris data group that should be selected. According to the subframe format corresponding to the sf subframe and the ephemeris data of satellite p in the selected ephemeris data group, the i-th subframe is encoded; repeat this step to complete the encoding of all subframes, and obtain the message code stream of satellite p.
步骤四,对导航电文调制载波和扩频码,合成出中频数字信号数据。本发明模拟GPS导航接收机射频模块中ADC的输出信号,该信号的特征为:1.数字信号,2.载波频率为范围在几兆到几十兆之间的中频,该中频认为是接收机射频模块将射频下变频得到。依据这两点特征,该步骤完成信号最后的模拟合成功能,核心思想是逐采样点地计算信号样值,即在每个采样点处计算此时刻天线所接收到的信号由哪几颗卫星的信号合成,分别是怎样的电文数值、扩频码相位和载波相位、频率,并考虑天线对信号进行降频时出现的频率折叠、ADC的量化阶数等因素,准确地模拟接收端的行为对信号的影响。其算法步骤如下:Step 4: Modulating the carrier wave and the spreading code for the navigation message, and synthesizing the intermediate frequency digital signal data. The present invention simulates the output signal of the ADC in the radio frequency module of the GPS navigation receiver, and the characteristics of the signal are: 1. digital signal, 2. the carrier frequency is an intermediate frequency ranging from several megabytes to tens of megabytes, and the intermediate frequency is considered to be the receiver The radio frequency module obtains by down-converting the radio frequency. According to these two features, this step completes the final analog synthesis function of the signal. The core idea is to calculate the signal sample value by sampling point, that is, to calculate at each sampling point which satellites the signal received by the antenna at this moment is from. Signal synthesis, what kind of message value, spread spectrum code phase and carrier phase, frequency, and considering factors such as frequency folding and ADC quantization order when the antenna down-converts the signal, accurately simulate the behavior of the receiving end on the signal Impact. The algorithm steps are as follows:
1.计算GPS扩频码序列。生成方式按照GPS官方接口文档的定义实现,生成的序列存于一个二维数组CA_Code中,其行向量代表一颗GPS卫星的CA码序列。CA码周期为1ms,包含1023个码片,因此行向量的长度为1023,存放CA码一个周期序列值。1. Calculate the GPS spreading code sequence. The generation method is implemented according to the definition of the official GPS interface document. The generated sequence is stored in a two-dimensional array CA_Code, and its row vector represents the CA code sequence of a GPS satellite. The period of the CA code is 1 ms and contains 1023 chips, so the length of the row vector is 1023, which stores a period sequence value of the CA code.
计算待生成的数字中频信号的样点数Nsample。计算方法是 。其中n为信号的时间跨度(单位为秒), 为采样率(单位为Hz)。 Calculate the sample number Nsample of the digital intermediate frequency signal to be generated. The calculation method is . where n is the time span of the signal (in seconds), is the sampling rate (in Hz).
当i小于Nsample时,开始计算第i(初始值为0)个采样点的值。进入步骤4。否则进入步骤6。When i is less than Nsample, start to calculate the value of the i-th (initial value is 0) sampling point. Go to step 4. Otherwise, go to
判断i是否对应于整毫秒的样点数。该算法在整毫秒处推算每颗卫星的信号的传播时间(信号从卫星天线到接收机天线),并假设在接下来的1毫秒内该传播时间不变,即接下来的1毫秒内到达接收机的信号的传播时间是不变的,这种假设保证了极小的误差,并且避免对每个采样点对应的各颗卫星信号的传播时间进行推算,在采样率为1兆以上的前提下,将算法效率提高了1000倍以上。若i为整毫秒的样点数,则对每一颗卫星(在全部32颗GPS卫星范围内)进行如下步骤1)到5)的计算,否则跳至步骤5:Determines whether i corresponds to the number of samples in whole milliseconds. The algorithm extrapolates the propagation time of the signal from each satellite (the signal travels from the satellite antenna to the receiver antenna) in whole milliseconds, and assumes that this propagation time is constant for the next 1 millisecond, i.e. arrives at the receiver in the next 1 millisecond The propagation time of the satellite signal is constant. This assumption ensures a very small error and avoids the estimation of the propagation time of each satellite signal corresponding to each sampling point. Under the premise that the sampling rate is more than 1 trillion , which increases the algorithm efficiency by more than 1000 times. If i is the number of samples in whole milliseconds, perform the following steps 1) to 5) for each satellite (within the range of all 32 GPS satellites), otherwise skip to step 5:
1)根据i找到当前时刻对应的卫星星历数据组,从中提取当前卫星p的星历,检查星历的有效性,无效则该卫星置为不可见,并跳至下一颗卫星重复步骤4的流程;1) According to i, find the satellite ephemeris data group corresponding to the current moment, extract the ephemeris of the current satellite p from it, and check the validity of the ephemeris. If it is invalid, the satellite will be invisible, and skip to the next satellite and repeat
2)依据GPS官方接口文档的说明计算当前时刻(和i对应)接收到的该卫星的信号在传播时间 秒之前的卫星钟差校正值clk和钟漂校正值clk_drift;传播时间 使用上一次整毫秒计算时得到的值,即暂时认为在过去的1ms内传播时间没有发生变化,在初始化时定义为0.07秒; 2) Calculate the propagation time of the satellite signal received at the current moment (corresponding to i) according to the description of the official GPS interface document Satellite clock correction value clk and clock drift correction value clk_drift before seconds; propagation time Use the value obtained in the last whole millisecond calculation, that is, temporarily consider that the propagation time has not changed in the past 1ms, and define it as 0.07 seconds during initialization;
3)计算当前时刻(和i对应)接收到的该卫星的信号的发射时刻,发射时刻 为信号起始时刻(周内时),ms为当前记录的毫秒数(单位为秒); 3) Calculate the launch time of the satellite signal received at the current moment (corresponding to i), and the launch time is the start time of the signal (in a week), ms is the number of milliseconds currently recorded (in seconds);
4)循环迭代计算当前计算的信号被发射的时刻的卫星PVT信息、卫星和接收机距离及其变化率信息。具体方法是:4) Loop and iteratively calculate the satellite PVT information, the distance between the satellite and the receiver and its change rate information at the time when the currently calculated signal is transmitted. The specific method is:
i.重新计算传播时间:i. Recalculate propagation time:
range为上一次进行步骤4时计算得到的卫星和接收机距离,LIGHTSPEED为光速;range is the distance between the satellite and the receiver calculated in
ii.重新计算信号发射时刻tow:ii. Recalculate the signal emission time tow:
; ;
iii.根据GPS官方接口文档定义的方法计算卫星在tow时刻的PVT信息;iii. Calculate the PVT information of the satellite at tow time according to the method defined in the official GPS interface document;
iv.在ECEF坐标系下计算在tow时刻卫星和接收机之间的距离range和距离变化率 ; iv. Calculate the distance range and distance change rate between the satellite and the receiver at tow time in the ECEF coordinate system ;
v.返回第i步重复这个过程,迭代4次得到精确的range、 和 。 v. Go back to step i and repeat this process, and iterate 4 times to get the exact range, and .
)计算在tow时刻的卫星仰角和方位角,若仰角大于0,则计算多普勒频移:) Calculate the satellite elevation angle and azimuth angle at tow time, if the elevation angle is greater than 0, then calculate the Doppler frequency shift:
其中WAVELENGTHL1为GPS L1信号载波波长。此处的负号是因为认为射频接收模块在下变频中将频谱做了反转,因此doppler的符号出现了反转;Where WAVELENGTHL1 is the GPS L1 signal carrier wavelength. The negative sign here is because it is believed that the RF receiving module inverts the frequency spectrum during down-conversion, so the sign of the doppler is inverted;
然后计算当前采样率下的载波相位步长:Then calculate the carrier phase step size at the current sampling rate:
其中IF为中频频率。Where IF is the intermediate frequency.
最后计算精确的传播时间:Finally calculate the exact travel time:
clk为第2)步计算出的卫星钟差。计算完毕后返回第1)步,进入对下一颗卫星在当前整毫秒时刻到达的信号的发射时刻和相应PVT信息。clk is the satellite clock error calculated in step 2). Return to step 1) after the calculation is complete, and enter the launch time and corresponding PVT information of the signal that the next satellite arrives at the current whole millisecond time.
若仰角小于0,则该颗卫星设置为不可见,跳过该步的其他运算,同样返回第1)步对下一颗卫星执行以上步骤。If the elevation angle is less than 0, the satellite is set to be invisible, skip other calculations in this step, and return to step 1) to execute the above steps for the next satellite.
对当前可见的每颗卫星的信号计算第i个采样点的值。卫星的可见性已经在步骤4中确定,并在下一次处理步骤4(即到达下一个整毫秒)之前保持不变。该步骤的算法步骤如下:Calculate the value of the i-th sample point for the signal of each currently visible satellite. The satellite's visibility has already been determined in
1)计算当前可见卫星q的第i个采样点对应的导航电文数值。其伪代码如下:1) Calculate the navigation message value corresponding to the i-th sampling point of the currently visible satellite q. Its pseudo code is as follows:
其中, 表示信号起始时刻所在子帧的起始时刻,则表示当前采样点距离该子帧起点的时间距离。计算的原因是,在步骤三中编码得到的每颗卫星的导航电文码流均以该子帧为起点,因此寻找当前采样点对应的电文数值也需以此为起点。设该子帧为 。 in, Indicates the start time of the subframe where the start time of the signal is located, then Indicates the time distance from the current sampling point to the start of the subframe. calculate The reason is that the navigation message code stream of each satellite encoded in
为一个二维数组,每一行对应一颗卫星的导航电文码流,该码流在步骤三中得到。一行中的每个元素在软件中为无符号整型,其低30位存放一个长度为30比特的导航字。以上伪代码找到当前采样点所在的码流中的第几个字的第几个比特,然后从中找出对应的电文数值 。 is a two-dimensional array, each row corresponds to the navigation message code stream of a satellite, and the code stream is obtained in
)计算当前可见卫星q的第i个采样点对应的扩频码和载波数值。其伪代码如下:) Calculate the spreading code and carrier value corresponding to the i-th sampling point of the currently visible satellite q. Its pseudo code is as follows:
由于CA码以1ms为周期,一周期包含1023个码片,该算法假设 起始对应的码相位为0,并且CA码的doppler效应忽略不计。因此codephase即为当前采样点对应的扩频码码相位。 Since the CA code has a cycle of 1ms and a cycle contains 1023 chips, the algorithm assumes The code phase corresponding to the start is 0, and the doppler effect of the CA code is negligible. Therefore, codephase is the code phase of the spreading code corresponding to the current sampling point.
为载波相位,其步长由第4步计算得到,并在1ms内保持不变。合成的数据data即为各颗卫星在当前采样点处的导航电文、CA码和载波数值的乘积之和。is the carrier phase, its step size is calculated in
)对data叠加高斯白噪声,其信噪比在步骤一中由用户配置。将data存入预先打开的二进制文件中。) superimpose Gaussian white noise on data, and its signal-to-noise ratio is configured by the user in
所有采样点计算完毕,退出步骤四,同时得到了GPS数字中频信号的文件。After all the sampling points are calculated,
本发明涉及的GPS数字中频信号模拟系统,包括信号生成模块、RINEX管理模块和辅助模块,其中辅助模块主要包含的子模块有导航解算模块、时间系统管理模块、地理坐标转换模块、宏模块。The GPS digital intermediate frequency signal simulation system involved in the present invention includes a signal generation module, a RINEX management module and an auxiliary module, wherein the auxiliary module mainly includes a navigation calculation module, a time system management module, a geographical coordinate conversion module, and a macro module.
所述信号生成模块提供以下功能的接口,包括:系统配置信息的提取;调用RINEX管理模块提取所需数量的星历数据组,该星历数据组对应所有GPS卫星在两小时有效期内的全部星历,而该星历组的组数由所模拟的信号的起始时间和时间跨度决定,在该时间跨度中出现多少次星历更新,则需提取相应数量的星历数据组;对星历数据进行编码和校验位添加,得到导航电文码流;对导航电文码流调制载波和扩频码;高斯噪声模拟;提供组合以上功能部件实现信号模拟的整体算法流程。Described signal generation module provides the interface of following function, comprises: the extraction of system configuration information; Call RINEX management module to extract the ephemeris data group of required quantity, this ephemeris data group corresponds to all satellites of all GPS satellites within two hours valid period ephemeris, and the group number of the ephemeris group is determined by the start time and time span of the simulated signal, how many ephemeris updates occur in the time span, it is necessary to extract the corresponding number of ephemeris data groups; for the ephemeris The data is coded and the check digit is added to obtain the code stream of the navigation message; the carrier wave and the spread spectrum code are modulated on the code stream of the navigation message; Gaussian noise simulation; the overall algorithm flow of combining the above functional components to realize the signal simulation is provided.
所述RINEX管理模块提供以下功能的接口,包括:获取用户配置的RINEX星历文件;解析文件名检查文件可用性和提取文件名包含的信息,包括基站名称缩写、信号采集时间;缓存RINEX星历文件的文件头数据;提取RINEX星历文件的文件头中的RINEX版本信息、基站位置信息、信号接收时段信息、电离层校正参数、UTC时间信息等;根据一个时间参考点提取一组星历数据,该功能模块由前述信号生成模块中提取星历数据组的接口反复调用,获取所需数量的星历数据组。Described RINEX management module provides the interface of following function, comprise: obtain the RINEX ephemeris file of user configuration; Analyze file name check file usability and extract the information that file name contains, comprise base station name abbreviation, signal collection time; Cache RINEX ephemeris file file header data; extract the RINEX version information, base station location information, signal receiving period information, ionospheric correction parameters, UTC time information, etc. in the file header of the RINEX ephemeris file; extract a set of ephemeris data according to a time reference point, This function module is repeatedly called by the interface for extracting ephemeris data groups in the aforementioned signal generation module to obtain the required number of ephemeris data groups.
所述导航解算模块提供以下功能的接口,包括:卫星钟差和钟漂的计算;卫星位置、速度信息的计算;卫星、接收机距离、距离变化率的计算;卫星相对于接收机的仰角和方位角的计算。The navigation solution module provides an interface for the following functions, including: calculation of satellite clock difference and clock drift; calculation of satellite position and velocity information; calculation of satellite, receiver distance, and distance change rate; satellite elevation angle relative to the receiver and azimuth calculations.
所述时间系统管理模块负责不同时间系统间的数据转换。The time system management module is responsible for data conversion between different time systems.
所述地理坐标转换模块负责不同地理坐标系统间坐标值的转换。The geographic coordinate conversion module is responsible for the conversion of coordinate values between different geographic coordinate systems.
所述宏模块负责完成系统的宏管理,包括全局常量的管理、自定义数学运算宏的管理。The macro module is responsible for the macro management of the system, including the management of global constants and the management of user-defined mathematical operation macros.
附图说明 Description of drawings
图1为本发明GPS数字中频信号模拟系统的输入输出示意图;Fig. 1 is the input and output schematic diagram of GPS digital intermediate frequency signal simulation system of the present invention;
图2为本发明的软件顶层流程图;Fig. 2 is a software top-level flowchart of the present invention;
图3为本发明系统输入配置文件格式的示意图;Fig. 3 is the schematic diagram of the input configuration file format of the system of the present invention;
图4为本发明RINEX文件头信息提取的过程示意图;Fig. 4 is the process schematic diagram that RINEX file header information of the present invention extracts;
图5为本发明卫星星历数据组提取的过程示意图;Fig. 5 is a schematic diagram of the process of satellite ephemeris data group extraction in the present invention;
图6为本发明的卫星电文码流生成过程的示意图;Fig. 6 is a schematic diagram of the satellite message code stream generation process of the present invention;
图7为本发明的信号合成过程的算法流程图;Fig. 7 is the algorithm flowchart of the signal synthesis process of the present invention;
图8为本发明的软件逻辑层次结构图。Fig. 8 is a diagram of the software logic hierarchy structure of the present invention.
具体实施方式 Detailed ways
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below in conjunction with the accompanying drawings: this embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following the described embodiment.
如图1所示,为根据本发明提供的系统的IO模式,所述系统的输入为用户按对生成的信号的需求和系统对配置文件的格式要求编写的配置文本文件,输出为存储数字中频信号的二进制文件。As shown in Figure 1, it is the IO mode of the system provided according to the present invention, the input of the system is the configuration text file written by the user according to the requirements of the generated signal and the format requirements of the system for the configuration file, and the output is stored digital intermediate frequency Signal binary.
如图2所示,为根据本发明提供的系统的软件顶层流程图。该图显示了本发明所提供的GPS数字中频信号模拟方法,包括以下具体步骤:As shown in FIG. 2 , it is a flow chart of the top layer of software of the system provided by the present invention. This figure has shown the GPS digital intermediate frequency signal simulation method provided by the present invention, comprises the following concrete steps:
步骤一,读取用户按照规定格式编写的配置文件,提取接收机位置、RINEX星历文件路径、信号时间信息等参数。Step 1: Read the configuration file written by the user according to the specified format, and extract parameters such as receiver location, RINEX ephemeris file path, and signal time information.
如图3所示为所述系统输入配置文件格式的示意图,可配置参数分为三类,用波浪号( )加大写英文字母标识,分别是接收机坐标信息、RINEX星历文件路径信息和时间信息。每组信息中的每个单元信息之间用空格区分。具体说明参见下表: As shown in Figure 3, it is a schematic diagram of the system input configuration file format. The configurable parameters are divided into three categories, and the tilde symbol ( ) are marked with capitalized English letters, which are receiver coordinate information, RINEX ephemeris file path information and time information. Each unit information in each group of information is separated by spaces. For details, see the table below:
表1 配置文件格式说明表Table 1 Configuration file format description table
步骤二,配置参数提取成功后,打开RINEX星历文件,将头信息进行缓冲,并根据需求提取出相应的数据。提取完毕后寻找所需组数的导航星历数据组,供后续的电文编码使用。Step 2: After the configuration parameters are successfully extracted, open the RINEX ephemeris file, buffer the header information, and extract the corresponding data according to the requirements. After the extraction is completed, find the required number of navigation ephemeris data groups for subsequent message encoding.
如图4所示,在本实施例中电离层延迟校正模型的参数存在于文件头的第三行和第四行中。在文件头缓冲于一个一维字符串数组中后,以换行符为结束符、行为单位进行搜索,在每个搜索单元中搜索和电离层校正模型参数对应的描述符(descriptor),找到后将该搜索单元提取出来放入一个临时数组,然后检查下一个搜索单元,如此反复直到文件头缓冲区的末尾。所有临时数组按先后顺序组成新的缓冲区,最后从该缓冲区中按照RINEX的官方格式提取出对应数据。As shown in FIG. 4 , in this embodiment, the parameters of the ionospheric delay correction model exist in the third and fourth lines of the file header. After the file header is buffered in a one-dimensional string array, the search is performed with the newline character as the end character and the line unit, and the descriptor (descriptor) corresponding to the ionospheric correction model parameters is searched in each search unit. The search unit is extracted and put into a temporary array, and then the next search unit is checked, and so on until the end of the file header buffer. All temporary arrays form a new buffer in sequence, and finally extract the corresponding data from the buffer in accordance with the official format of RINEX.
如图5所示,按照配置的信号起始时刻、时间跨度、更新的星历数据组数提取卫星星历。RINEX文件的正文部分按时间段存储每颗可见卫星的星历,该时间段长度为GPS卫星星历的更新周期——2小时。本实施例采用的RINEX文件存储了一天的星历,所以其正文分为12段。而所模拟的信号的起始时刻1点58分,时间跨度为330秒,因此出现了一次星历更新,需要提取两组星历数据组。搜索信号起始时刻所在的时间段,将该时间段和随后的一个时间段、共两组星历数据组提取出来,放入一个二维数组。该二维数组的每一列对应一个时间段的一组星历数据,列长度为GPS卫星总数;每一行对应于同一颗卫星,其数据结构包含标志位来标识该颗卫星的星历在对应时间段内是否有效(存在)。As shown in Figure 5, the satellite ephemeris is extracted according to the configured signal start time, time span, and number of updated ephemeris data sets. The body part of the RINEX file stores the ephemeris of each visible satellite by time period, and the length of this time period is the update period of the GPS satellite ephemeris—2 hours. The RINEX file that present embodiment adopts has stored the ephemeris of one day, so its text is divided into 12 sections. The simulated signal starts at 1:58 and has a time span of 330 seconds, so there is an ephemeris update, and two sets of ephemeris data need to be extracted. Search for the time period where the starting moment of the signal is located, extract this time period and a subsequent time period, a total of two sets of ephemeris data sets, and put them into a two-dimensional array. Each column of the two-dimensional array corresponds to a set of ephemeris data of a time period, and the length of the column is the total number of GPS satellites; each row corresponds to the same satellite, and its data structure contains flags to identify the ephemeris of the satellite at the corresponding time Whether the segment is valid (exists).
步骤三,计算信号的起始时刻对应的周内时,从该时刻开始、每隔6秒对当前子帧进行编码,直到完成不小于信号时长的帧数据。每颗卫星的电文码流存于一个文本文件中。Step 3: Calculate the time of week corresponding to the start time of the signal, and encode the current subframe every 6 seconds from this time until the frame data not less than the signal duration is completed. The message code stream of each satellite is stored in a text file.
如图6所示,将步骤一中配置的信号起始时刻换算到周内时TOW,在本实施例中为93520s,因GPS子帧长度为6s,所以从93516s开始对导航电文逐子帧编码。首先计算起始子帧的子帧号:As shown in Figure 6, the starting time of the signal configured in
则此后的子帧序列为 ; Then the subsequent subframe sequence is ;
同时需要生成的子帧总数为The total number of subframes that need to be generated at the same time is
即每颗卫星均需从2号子帧开始编码56个连续子帧。That is, each satellite needs to encode 56 consecutive subframes starting from the 2nd subframe.
对于卫星p的第i个子帧 ,其应该生成的子帧号 ,若sf等于0,则令其为5。 For the ith subframe of satellite p , which should generate the subframe number , if sf is equal to 0, let it be 5.
根据其对应的周内时计算应选取哪一个星历组。本实施例中信号时间跨度内的2小时整倍数时间出现于93600s。因此,计算第i个子帧存在的时间:Calculate which ephemeris group should be selected according to its corresponding week time. In this embodiment, the integral multiple times of 2 hours in the signal time span occur at 93600s. Therefore, to calculate how long the i-th subframe exists:
当it小于93600,则选取第一组星历组中卫星p的星历,否则选取第二组星历组中卫星p的星历。When it is less than 93600, select the ephemeris of satellite p in the first ephemeris group, otherwise select the ephemeris of satellite p in the second ephemeris group.
然后按照GPS电文格式对星历进行编码得到对应子帧的码流。Then encode the ephemeris according to the GPS message format to obtain the code stream of the corresponding subframe.
卫星p的所有子帧编码完成后,存入一个单独的文件。所有卫星均进行如上的步骤。After all subframes of satellite p are encoded, they are stored in a single file. All satellites carry out the above steps.
步骤四,对步骤三得到的导航电文调制载波和扩频码,合成出中频数字信号数据。
如图7所示,为该信号合成过程的算法流程图。As shown in FIG. 7 , it is an algorithm flow chart of the signal synthesis process.
计算GPS扩频码序列。生成方式按照GPS官方接口文档的定义实现,生成的序列存于一个二维数组 中,其行向量代表一颗GPS卫星的CA码序列。CA码周期为1ms,包含1023个码片,因此行向量的长度为1023,存放CA码一个周期序列值。 Calculate the GPS spreading code sequence. The generation method is implemented according to the definition of the official GPS interface document, and the generated sequence is stored in a two-dimensional array In , its row vector represents the CA code sequence of a GPS satellite. The period of the CA code is 1 ms and contains 1023 chips, so the length of the row vector is 1023, which stores a period sequence value of the CA code.
计算样点数 。其中5.714285e6为采样率。 Calculate the number of samples . Among them, 5.714285e6 is the sampling rate.
逐采样点计算样值。设临时变量i=0。当i小于Nsample时,计算第i个采样点的值。进入步骤4。否则进入步骤6。Calculate the sample value by sample point. Set temporary variable i=0. When i is less than Nsample, calculate the value of the i-th sample point. Go to step 4. Otherwise, go to
判断 是否为0,其中5714取1ms采样点数的约数。若i是否对应于整毫秒的样点数,则对全部GPS卫星进行如下1)到5)的步骤,否则跳过该步骤: judge Whether it is 0, where 5714 is the divisor of the number of 1ms sampling points. If i corresponds to the number of samples in whole milliseconds, then perform the following steps 1) to 5) for all GPS satellites, otherwise skip this step:
1)根据i找到当前时刻对应的卫星星历数据组,从中提取当前卫星p的星历,检查星历的有效性,无效则卫星p置为不可见,并跳至下一颗卫星重复步骤4的流程;1) Find the satellite ephemeris data group corresponding to the current moment according to i, extract the ephemeris of the current satellite p from it, check the validity of the ephemeris, if it is invalid, set the satellite p to invisible, and skip to the next satellite and repeat
2)依据GPS官方接口文档的说明计算当前时刻接收到的该卫星的信号在传播时间 秒之前的卫星钟差校正值clk和钟漂校正值;传播时间 使用上一次整毫秒计算时得到的值,即暂时认为在过去的1ms内传播时间没有发生变化,在初始化时定义为0.07秒; 2) Calculate the propagation time of the satellite signal received at the current moment according to the description of the official GPS interface document Satellite clock correction value clk and clock drift correction value before seconds ; propagation time Use the value obtained in the last whole millisecond calculation, that is, temporarily consider that the propagation time has not changed in the past 1ms, and define it as 0.07 seconds during initialization;
3)计算当前时刻(和i对应)接收到的该卫星的信号的发射时刻 ; 3) Calculate the launch time of the satellite signal received at the current moment (corresponding to i) ;
4)循环迭代计算当前计算的信号被发射的时刻的卫星PVT信息、卫星和接收机距离及其变化率信息。具体方法是:4) Loop and iteratively calculate the satellite PVT information, the distance between the satellite and the receiver and its change rate information at the time when the currently calculated signal is transmitted. The specific method is:
i.重新计算传播时间:i. Recalculate propagation time:
range为上一次进行步骤4时计算得到的卫星和接收机距离,LIGHTSPEED为光速。range is the distance between the satellite and the receiver calculated in
重新计算信号发射时刻tow:Recalculate the signal emission time tow:
iii.根据GPS官方接口文档定义的方法计算卫星在tow时刻的PVT信息;iii. Calculate the PVT information of the satellite at tow time according to the method defined in the official GPS interface document;
iv.在ECEF坐标系下计算在tow时刻卫星和接收机之间的距离range和距离变化率 ; iv. Calculate the distance range and distance change rate between the satellite and the receiver at tow time in the ECEF coordinate system ;
v.返回第i步重复这个过程,迭代4次得到精确的range、 和 。 v. Go back to step i and repeat this process, and iterate 4 times to get the exact range, and .
)计算在tow时刻的卫星仰角和方位角,若仰角大于0,则计算多普勒频移:) Calculate the satellite elevation angle and azimuth angle at tow time, if the elevation angle is greater than 0, then calculate the Doppler frequency shift:
其中WAVELENGTHL1为GPS L1信号载波波长。此处的负号是因为认为射频接收模块在下变频中将频谱做了反转,因此doppler的符号出现了反转;Where WAVELENGTHL1 is the GPS L1 signal carrier wavelength. The negative sign here is because it is believed that the RF receiving module inverts the frequency spectrum during down-conversion, so the sign of the doppler is inverted;
然后计算当前采样率下的载波相位步长:Then calculate the carrier phase step size at the current sampling rate:
其中IF为中频频率。Where IF is the intermediate frequency.
最后计算精确的传播时间:Finally calculate the exact travel time:
clk为第2)步计算出的卫星钟差。计算完毕后返回第1)步,进入对下一颗卫星在当前整毫秒时刻到达的信号的发射时刻和相应PVT信息。clk is the satellite clock error calculated in step 2). Return to step 1) after the calculation is complete, and enter the launch time and corresponding PVT information of the signal that the next satellite arrives at the current whole millisecond time.
若仰角小于0,则该颗卫星设置为不可见,跳过该步的其他运算,同样返回第1)步对下一颗卫星执行以上步骤。If the elevation angle is less than 0, the satellite is set to be invisible, skip other calculations in this step, and return to step 1) to execute the above steps for the next satellite.
对当前可见的每颗卫星的信号计算第i个采样点的值。卫星的可见性已经在步骤4中确定,并在下一次处理步骤4(即到达下一个整毫秒)之前保持不变。该步骤的算法步骤如下:Calculate the value of the i-th sample point for the signal of each currently visible satellite. The satellite's visibility has already been determined in
1)计算可见卫星q的第i个采样点对应的导航电文数值:1) Calculate the navigation message value corresponding to the i-th sampling point of the visible satellite q:
2)计算卫星q的第i个采样点对应的扩频码和载波数值。其伪代码如下:2) Calculate the spreading code and carrier value corresponding to the i-th sampling point of satellite q. Its pseudo code is as follows:
3)对data叠加高斯白噪声,其信噪比在步骤一中由用户配置。将data存入预先打开的二进制文件中。3) Gaussian white noise is superimposed on the data, and its signal-to-noise ratio is configured by the user in
所有采样点计算完毕,退出步骤四,同时得到了GPS数字中频信号的文件。After all the sampling points are calculated,
如图8所示,为本发明提供的GPS中频信号模拟系统的软件逻辑层次结构图,本发明的软件实现包括三个逻辑层次:信号生成模块、RINEX管理模块、辅助模块。As shown in FIG. 8 , it is a software logic hierarchical structure diagram of the GPS intermediate frequency signal simulation system provided by the present invention. The software implementation of the present invention includes three logical levels: a signal generation module, a RINEX management module, and an auxiliary module.
所述信号生成模块提供以下功能的接口,包括:系统配置信息的提取;调用RINEX管理模块提取所需数量的星历数据组,该星历数据组对应所有GPS卫星在两小时有效期内的全部星历,而该星历组的组数由所模拟的信号的起始时间和时间跨度决定,在该时间跨度中出现多少次星历更新,则需提取相应数量的星历数据组;对星历数据进行编码和校验位添加,得到导航电文码流;对导航电文码流调制载波和扩频码;高斯噪声模拟;提供组合以上功能部件实现信号模拟的整体算法流程。Described signal generation module provides the interface of following function, comprises: the extraction of system configuration information; Call RINEX management module to extract the ephemeris data group of required quantity, this ephemeris data group corresponds to all satellites of all GPS satellites within two hours valid period ephemeris, and the group number of the ephemeris group is determined by the start time and time span of the simulated signal, how many ephemeris updates occur in the time span, it is necessary to extract the corresponding number of ephemeris data groups; for the ephemeris The data is coded and the check digit is added to obtain the code stream of the navigation message; the carrier wave and the spread spectrum code are modulated on the code stream of the navigation message; Gaussian noise simulation; the overall algorithm flow of combining the above functional components to realize the signal simulation is provided.
所述RINEX管理模块提供以下功能的接口,包括:获取用户配置的RINEX星历文件;解析文件名检查文件可用性和提取文件名包含的信息,包括基站名称缩写、信号采集时间;缓存RINEX星历文件的文件头数据;提取RINEX星历文件的文件头中的RINEX版本信息、基站位置信息、信号接收时段信息、电离层校正参数、UTC时间信息等;根据一个时间参考点提取一组星历数据,该功能模块由前述信号生成模块中提取星历数据组的接口反复调用,获取所需数量的星历数据组。Described RINEX management module provides the interface of following function, comprise: obtain the RINEX ephemeris file of user configuration; Analyze file name check file usability and extract the information that file name contains, comprise base station name abbreviation, signal collection time; Cache RINEX ephemeris file file header data; extract the RINEX version information, base station location information, signal receiving period information, ionospheric correction parameters, UTC time information, etc. in the file header of the RINEX ephemeris file; extract a set of ephemeris data according to a time reference point, This function module is repeatedly called by the interface for extracting ephemeris data groups in the aforementioned signal generation module to obtain the required number of ephemeris data groups.
所述导航解算模块提供以下功能的接口,包括:卫星钟差和钟漂的计算;卫星位置、速度信息的计算;卫星、接收机距离、距离变化率的计算;卫星相对于接收机的仰角和方位角的计算。The navigation solution module provides an interface for the following functions, including: calculation of satellite clock difference and clock drift; calculation of satellite position and velocity information; calculation of satellite, receiver distance, and distance change rate; satellite elevation angle relative to the receiver and azimuth calculations.
所述时间系统管理模块负责不同时间系统间的数据转换。The time system management module is responsible for data conversion between different time systems.
所述地理坐标转换模块负责不同地理坐标系统间坐标值的转换。The geographic coordinate conversion module is responsible for the conversion of coordinate values between different geographic coordinate systems.
所述宏模块负责完成系统的宏管理,包括全局常量的管理、自定义数学运算宏的管理。The macro module is responsible for the macro management of the system, including the management of global constants and the management of user-defined mathematical operation macros.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102859209A CN102375146A (en) | 2011-09-23 | 2011-09-23 | Method and system for simulating GPS (Global Positioning System) digital medium-frequency signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102859209A CN102375146A (en) | 2011-09-23 | 2011-09-23 | Method and system for simulating GPS (Global Positioning System) digital medium-frequency signal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102375146A true CN102375146A (en) | 2012-03-14 |
Family
ID=45794025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011102859209A Pending CN102375146A (en) | 2011-09-23 | 2011-09-23 | Method and system for simulating GPS (Global Positioning System) digital medium-frequency signal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102375146A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104237913A (en) * | 2014-09-03 | 2014-12-24 | 北京一朴科技有限公司 | GNSS software receiver architecture system |
CN104459727A (en) * | 2014-11-24 | 2015-03-25 | 中国电子科技集团公司第二十研究所 | Satellite signal simulation generator applied to GPS communication system |
CN105911571A (en) * | 2016-05-06 | 2016-08-31 | 华东师范大学 | Simulation GPS signal method based on software definition radio |
CN106019332A (en) * | 2016-05-05 | 2016-10-12 | 华东师范大学 | Satellite positioning information generating method |
WO2018133629A1 (en) * | 2017-01-18 | 2018-07-26 | 中兴通讯股份有限公司 | Ephemeris updating method and apparatus, and mobile terminal |
CN109239750A (en) * | 2018-09-10 | 2019-01-18 | 贵州省水利水电勘测设计研究院 | Monitor the method, apparatus and electric terminal of orbit parameter |
CN111208536A (en) * | 2020-01-17 | 2020-05-29 | 西安电子科技大学 | Satellite navigation auxiliary positioning method |
CN112013875A (en) * | 2019-11-27 | 2020-12-01 | 中国科学院微小卫星创新研究院 | Real-time navigation signal generation device based on GPU |
CN115598673A (en) * | 2022-09-29 | 2023-01-13 | 同济大学(Cn) | IGS GNSS satellite clock error and orbit single-day adjacent product boundary deviation calculation method |
CN118260254A (en) * | 2024-05-30 | 2024-06-28 | 武汉大学 | GNSS water vapor chromatography input data method, device, equipment and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020053989A1 (en) * | 2000-09-19 | 2002-05-09 | Ching-Fang Lin | Method and system for anti-jamming simulation |
CN101118705A (en) * | 2007-09-06 | 2008-02-06 | 浙江大学 | Experimental device and method for simulating GPS satellite positioning |
CN101915929A (en) * | 2010-07-13 | 2010-12-15 | 武汉大学 | Compression and decompression method of GNSS observations based on sexagesimal system |
CN102147473A (en) * | 2010-12-17 | 2011-08-10 | 航天恒星科技有限公司 | Common-frequency multi-system satellite navigation signal generation system |
CN102176029A (en) * | 2010-12-31 | 2011-09-07 | 桂林电子科技大学 | Global positioning system (GPS) direct and multipath signal simulator and simulation method |
-
2011
- 2011-09-23 CN CN2011102859209A patent/CN102375146A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020053989A1 (en) * | 2000-09-19 | 2002-05-09 | Ching-Fang Lin | Method and system for anti-jamming simulation |
US6473034B2 (en) * | 2000-09-19 | 2002-10-29 | American Gnc Corp. | Method and system for anti-jamming simulation |
CN101118705A (en) * | 2007-09-06 | 2008-02-06 | 浙江大学 | Experimental device and method for simulating GPS satellite positioning |
CN101915929A (en) * | 2010-07-13 | 2010-12-15 | 武汉大学 | Compression and decompression method of GNSS observations based on sexagesimal system |
CN102147473A (en) * | 2010-12-17 | 2011-08-10 | 航天恒星科技有限公司 | Common-frequency multi-system satellite navigation signal generation system |
CN102176029A (en) * | 2010-12-31 | 2011-09-07 | 桂林电子科技大学 | Global positioning system (GPS) direct and multipath signal simulator and simulation method |
Non-Patent Citations (1)
Title |
---|
石阳等: "基于FPGA技术的GPS卫星数字中频信号模拟器设计", 《航天控制》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104237913A (en) * | 2014-09-03 | 2014-12-24 | 北京一朴科技有限公司 | GNSS software receiver architecture system |
CN104459727A (en) * | 2014-11-24 | 2015-03-25 | 中国电子科技集团公司第二十研究所 | Satellite signal simulation generator applied to GPS communication system |
CN106019332A (en) * | 2016-05-05 | 2016-10-12 | 华东师范大学 | Satellite positioning information generating method |
CN105911571A (en) * | 2016-05-06 | 2016-08-31 | 华东师范大学 | Simulation GPS signal method based on software definition radio |
WO2018133629A1 (en) * | 2017-01-18 | 2018-07-26 | 中兴通讯股份有限公司 | Ephemeris updating method and apparatus, and mobile terminal |
CN109239750B (en) * | 2018-09-10 | 2021-07-02 | 贵州省水利水电勘测设计研究院有限公司 | Method, device and electronic terminal for monitoring orbital parameters |
CN109239750A (en) * | 2018-09-10 | 2019-01-18 | 贵州省水利水电勘测设计研究院 | Monitor the method, apparatus and electric terminal of orbit parameter |
CN112013875A (en) * | 2019-11-27 | 2020-12-01 | 中国科学院微小卫星创新研究院 | Real-time navigation signal generation device based on GPU |
CN111208536A (en) * | 2020-01-17 | 2020-05-29 | 西安电子科技大学 | Satellite navigation auxiliary positioning method |
CN115598673A (en) * | 2022-09-29 | 2023-01-13 | 同济大学(Cn) | IGS GNSS satellite clock error and orbit single-day adjacent product boundary deviation calculation method |
CN115598673B (en) * | 2022-09-29 | 2023-10-24 | 同济大学 | Method for calculating deviation of adjacent product boundary of IGS GNSS satellite clock error and orbit single day |
CN118260254A (en) * | 2024-05-30 | 2024-06-28 | 武汉大学 | GNSS water vapor chromatography input data method, device, equipment and storage medium |
CN118260254B (en) * | 2024-05-30 | 2024-08-09 | 武汉大学 | GNSS water vapor chromatography input data method, device, equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102375146A (en) | Method and system for simulating GPS (Global Positioning System) digital medium-frequency signal | |
CN101033974B (en) | Navigation satellite signal generating system based on software | |
CN100409029C (en) | Interface for a GPS system | |
CN106405579B (en) | A kind of real-time satellite navigation simulation method and apparatus | |
CN103149579B (en) | Multisystem function is increased in conventional navigation satellite system receiver | |
CN102540228A (en) | High precision single point positioning system of single frequency global positioning system (GPS) and method | |
CN101946188A (en) | Handle the satellite radio signal that is received | |
CN109444923A (en) | A kind of Beidou three generations satellite-signal simulation system and analog signal generating method | |
CN103399329B (en) | GNSS receiver and intermediate frequency data processing method thereof | |
CN107918138A (en) | " cloud+end " comprehensive positioning terminal positioner and Differential positioning method | |
CN103278826B (en) | Beidou B1 frequency point intermediate frequency signal simulation method | |
CN103278822A (en) | HLA (High level architecture) platform-based performance evaluation system and method for satellite navigation and positioning system | |
CN109782314A (en) | GNSS satellite signal receives classification processing Simulation Experimental Platform | |
CN110531384A (en) | A kind of Galilean satellite signal imitation system and its analogy method | |
CN103792552A (en) | System and method for generating satellite navigation baseband signal | |
CN105242287B (en) | Satellite Navigation Software receiver and its air navigation aid based on GPU and IMU | |
CN103675862A (en) | Method for generating satellite-borne multi-frequency and multi-mode universal pseudo-codes with configurable relevant separation distances | |
CN201917664U (en) | CAPS satellite analog signal generator | |
CN105319563B (en) | The reception system and method for a kind of Big Dipper satellite signal | |
CN104730543A (en) | Data processing method for Beidou and GPS common frequency point real-time signal receiving and processing system | |
CN205809307U (en) | Beidou II and the live signal receiving processing system of the public frequency of GPS | |
CN202794536U (en) | Triple-modular satellite signal simulator | |
CN101614804A (en) | Bit synchronous method of gps navigation message data and device under the weak signal | |
CN106656257B (en) | Determine the method, apparatus and user terminal of the code phase of ranging code | |
CN209446772U (en) | A kind of Beidou three generations satellite-signal simulation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120314 |