CN102374124B - Apparatus and method for operation of a wind turbine - Google Patents
Apparatus and method for operation of a wind turbine Download PDFInfo
- Publication number
- CN102374124B CN102374124B CN201110238090.4A CN201110238090A CN102374124B CN 102374124 B CN102374124 B CN 102374124B CN 201110238090 A CN201110238090 A CN 201110238090A CN 102374124 B CN102374124 B CN 102374124B
- Authority
- CN
- China
- Prior art keywords
- wind turbine
- rotor
- variable
- speed
- actual value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0244—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/101—Purpose of the control system to control rotational speed (n)
- F05B2270/1011—Purpose of the control system to control rotational speed (n) to prevent overspeed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/32—Wind speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/327—Rotor or generator speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/334—Vibration measurements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
本发明涉及用于风力涡轮机的运行的设备和方法。提供了一种用于运行风力涡轮机(10)的方法。风力涡轮机(10)包括转子(18),转子包括至少一个转子叶片(22)和联接到该至少一个转子叶片(22)上的变桨驱动系统(68)。变桨驱动系统(68)适于使转子叶片(22)变桨。该方法包括:确定指示风力涡轮机(10)的超速状态的第一变量的实际值;确定风力涡轮机(10)的与第一变量的相对于时间的变化率相关的第二变量的实际值;以及至少根据第一变量和第二变量的所确定的实际值来估计风力涡轮机(10)的超速状态的出现。变桨驱动系统(68)基于估计的结果来使该至少一个转子叶片(22)变桨,以便以空气动力学的方式制动转子(18)。
The invention relates to a device and a method for the operation of a wind turbine. A method for operating a wind turbine (10) is provided. A wind turbine (10) includes a rotor (18) including at least one rotor blade (22) and a pitch drive system (68) coupled to the at least one rotor blade (22). A pitch drive system (68) is adapted to pitch the rotor blades (22). The method comprises: determining an actual value of a first variable indicative of an overspeed condition of the wind turbine (10); determining an actual value of a second variable of the wind turbine (10) related to a rate of change of the first variable with respect to time; and Occurrence of an overspeed condition of the wind turbine (10) is estimated based on at least the determined actual values of the first variable and the second variable. A pitch drive system (68) pitches the at least one rotor blade (22) based on the estimated result to aerodynamically brake the rotor (18).
Description
技术领域 technical field
本文中描述的主题大体涉及用于运行风力涡轮机的方法和系统,并且更具体而言,涉及用于运行用于风力涡轮机的控制组件的方法和系统。The subject matter described herein relates generally to methods and systems for operating a wind turbine, and more particularly, to methods and systems for operating a control assembly for a wind turbine.
背景技术 Background technique
至少一些已知的风力涡轮机包括塔架和安装在塔架上的机舱。转子可旋转地安装到机舱上,并且通过转子轴联接到发电机上。在典型的风力涡轮机中,多个叶片从转子延伸。叶片以使得经过叶片的风使转子转动且使转子轴旋转的方式定向,从而驱动发电机来产生电力。At least some known wind turbines include a tower and a nacelle mounted on the tower. A rotor is rotatably mounted to the nacelle and is coupled to the generator by a rotor shaft. In a typical wind turbine, a plurality of blades extend from the rotor. The blades are oriented in such a way that wind passing over the blades turns the rotor and rotates the rotor shaft, driving a generator to generate electricity.
至少一些已知的风力涡轮机由控制系统运行。此外,用于风力涡轮机的至少一些已知的控制系统通过转子叶片绕着变桨轴线的旋转来实现其变桨控制。也就是说,这些控制系统设计成通过设置叶片的相对于空气流的角(即,使叶片变桨)来调整风力涡轮机的转子速度。使叶片变桨以降低转子速度一般会导致作用在风力涡轮机的构件中的一些(例如叶片、转子或风机塔架)上的载荷的增加。At least some known wind turbines are operated by a control system. Furthermore, at least some known control systems for wind turbines achieve their pitch control through rotation of the rotor blades about a pitch axis. That is, these control systems are designed to adjust the rotor speed of the wind turbine by setting the angle of the blades relative to the air flow (ie, pitching the blades). Pitching the blades to reduce rotor speed generally results in increased loads acting on some of the components of the wind turbine, such as the blades, the rotor, or the wind turbine tower.
一般而言,撞击在转子叶片上的风的速度的增加会导致转子速度的增加。在某些状况(例如风力涡轮机的区域中的大风)下,转子速度可最终超过对应于风力涡轮机的最大允许速度的阈值(即超速)。In general, an increase in the speed of the wind impinging on the rotor blades results in an increase in the rotor speed. Under certain conditions, such as high winds in the area of the wind turbine, the rotor speed may eventually exceed a threshold corresponding to the maximum allowed speed of the wind turbine (ie overspeed).
实现变桨控制的至少一些已知的控制系统设计成通过确定转子速度的实际值来监测转子速度,以及只要转子速度的实际值一超过风力涡轮机的最大允许速度就通过增大叶片的桨距角来以空气动力学的方式降低转子速度(即,对转子制动)。在此情形下,通过使叶片变桨来降低转子速度可导致作用在风力涡轮机的构件上的载荷的特别显著的增加。一般而言,这种显著的载荷增加会不利地影响涡轮的运行寿命。在至少一些已知的变桨控制系统中,变桨控制器驱动转子速度回到风力涡轮机的最大允许速度以下。这些变桨控制系统中的至少一些设计成只要转子速度一处于风力涡轮机的最大允许速度以下就减小桨距角,以维持高的转子速度,但使转子速度处于风力涡轮机的安全边界内(即,在风力涡轮机的最大允许速度以下)。At least some known control systems that implement pitch control are designed to monitor the rotor speed by determining the actual value of the rotor speed, and to increase the pitch angle of the blades whenever the actual value of the rotor speed exceeds the maximum allowable speed of the wind turbine. to aerodynamically slow down the rotor (ie, brake the rotor). In this case, reducing the rotor speed by pitching the blades may lead to a particularly significant increase in the loads acting on components of the wind turbine. Generally, such significant load increases can adversely affect the operating life of the turbine. In at least some known pitch control systems, a pitch controller drives the rotor speed back below the maximum allowable speed of the wind turbine. At least some of these pitch control systems are designed to reduce the pitch angle as soon as the rotor speed is below the maximum allowable speed of the wind turbine, in order to maintain a high rotor speed, but keep the rotor speed within the safety boundaries of the wind turbine (i.e. , below the maximum allowable speed of the wind turbine).
在通过已知的控制系统来调整的这样的超速事件中,桨距角的增大和后面的减小一般会导致有交变力作用在塔架上。在一些情况下,这些交变力可激发塔架的共振模式,并且导致塔架的共振。当振动超过最大允许极限时,塔架的这种共振可能需要使风力涡轮机停机。停机事件一般意味着风力涡轮机的产生功率的容量的损失。In such overspeed events, regulated by known control systems, the increase and subsequent decrease of the pitch angle generally results in alternating forces acting on the tower. In some cases, these alternating forces can excite resonant modes of the tower and cause the tower to resonate. Such resonance of the tower may require shutdown of the wind turbine when the vibration exceeds the maximum allowable limit. A shutdown event generally means a loss of the wind turbine's capacity to generate power.
因此,提供能够实现这样的变桨控制的方法和/或设备是合乎需要的:该变桨控制避免了在风力涡轮机构件上有高载荷,以及/或者减小了风力涡轮机的由于风力涡轮机的超速状态而引起的停机的风险。Accordingly, it would be desirable to provide methods and/or apparatus that enable pitch control that avoids high loads on wind turbine components and/or reduces wind turbine stress due to wind turbine Risk of downtime due to overspeed conditions.
发明内容 Contents of the invention
本文中描述的实施例包括一种控制组件,其根据风力涡轮机的多个变量的实际值来估计风力(涡轮机)的超速状态的出现,并且基于估计的结果来使至少一个转子叶片变桨。通过估计超速状态的出现,本文中描述的实施例使得转子叶片能够平滑地变桨。因此,该变桨典型地导致转子平滑地制动。因而,典型地减小了作用在风力涡轮机构件上的瞬态载荷,并且典型地延长了风力涡轮机的运行寿命。此外,这种平滑的变桨典型地减小了风力涡轮机的共振和风力涡轮机的停机的风险。具体而言,根据至少一个实施例,以使得风力涡轮机的第一变量(例如转子速度)不超过指示风力涡轮机的超速状态的阈值的方式使转子叶片变桨。Embodiments described herein include a control assembly that estimates the occurrence of an overspeed condition of the wind (turbine) from actual values of a plurality of variables of the wind turbine, and pitches at least one rotor blade based on the estimated result. Embodiments described herein enable smooth pitching of rotor blades by estimating the occurrence of an overspeed condition. Thus, this pitching typically results in smooth braking of the rotor. Thus, transient loads on wind turbine components are typically reduced and the operating life of the wind turbine is typically extended. Furthermore, such smooth pitching typically reduces wind turbine resonance and the risk of wind turbine downtime. Specifically, according to at least one embodiment, the rotor blades are pitched in such a way that a first variable of the wind turbine, eg rotor speed, does not exceed a threshold value indicative of an overspeed condition of the wind turbine.
在一个方面,提供了一种用于运行风力涡轮机的方法。风力涡轮机包括转子,转子包括至少一个转子叶片和联接到该至少一个转子叶片上的变桨驱动系统。变桨驱动系统适于使该至少一个转子叶片变桨。该方法包括:确定指示风力涡轮机的超速状态的第一变量的实际值;确定风力涡轮机的与第一变量的相对于时间的变化率相关的第二变量的实际值;以及,至少根据第一变量和第二变量的所确定的实际值来估计风力涡轮机的超速状态的出现。变桨驱动系统基于估计的结果来使该至少一个转子叶片变桨,以便以空气动力学的方式对转子制动。在本公开的某些实施例中,第一变量在其超过阈值时指示风力涡轮机的超速状态。In one aspect, a method for operating a wind turbine is provided. A wind turbine includes a rotor including at least one rotor blade and a pitch drive system coupled to the at least one rotor blade. The pitch drive system is adapted to pitch the at least one rotor blade. The method comprises: determining an actual value of a first variable indicative of an overspeed condition of the wind turbine; determining an actual value of a second variable of the wind turbine related to a rate of change of the first variable with respect to time; and, based at least on the first variable and the determined actual value of the second variable to estimate the occurrence of an overspeed condition of the wind turbine. A pitch drive system pitches the at least one rotor blade based on the estimated result in order to aerodynamically brake the rotor. In certain embodiments of the present disclosure, the first variable indicates an overspeed condition of the wind turbine when it exceeds a threshold value.
在另一方面,提供了一种用于风力涡轮机的控制组件。风力涡轮机包括转子,转子包括至少一个转子叶片。控制组件包括联接到该至少一个转子叶片上的变桨驱动系统,变桨驱动系统适于使该至少一个转子叶片变桨。风力涡轮机进一步包括通讯地联接(即以可通讯的方式联接)到变桨驱动系统上的控制系统。控制系统构造成:确定指示风力涡轮机的超速状态的第一变量的实际值;确定风力涡轮机的与第一变量的相对于时间的变化率相关的第二变量的实际值;以及,至少根据第一变量和第二变量的所确定的实际值来估计风力涡轮机的超速状态的出现。控制系统构造成基于估计的结果以这样的方式控制变桨驱动系统:即,使得控制变桨驱动系统使至少一个转子叶片变桨,以便以空气动力学的方式对转子制动。In another aspect, a control assembly for a wind turbine is provided. A wind turbine includes a rotor including at least one rotor blade. The control assembly includes a pitch drive system coupled to the at least one rotor blade, the pitch drive system being adapted to pitch the at least one rotor blade. The wind turbine further includes a control system communicatively coupled (ie, communicatively coupled) to the pitch drive system. The control system is configured to: determine an actual value of a first variable indicative of an overspeed condition of the wind turbine; determine an actual value of a second variable of the wind turbine related to a rate of change of the first variable with respect to time; and, at least based on the first The determined actual values of the variable and the second variable are used to estimate the occurrence of an overspeed condition of the wind turbine. The control system is configured to control the pitch drive system based on the estimated result in such a way that the pitch drive system is controlled to pitch at least one rotor blade in order to aerodynamically brake the rotor.
在又一方面,提供了一种用于运行风力涡轮机的方法。风力涡轮机包括转子,转子包括至少一个转子叶片和联接到该至少一个转子叶片上的变桨驱动系统,变桨驱动系统适于使该至少一个转子叶片变桨。该方法包括:确定与转子的转速成正比的基准速度的实际值;确定基准速度的相对于时间的变化率的实际值;以及,评价基准速度的所确定的实际值和基准速度的相对于时间的变化率,以识别风力涡轮机的超速状态。当在评价中识别到风力涡轮机的超速状态时,变桨驱动系统使该至少一个转子叶片旋转。In yet another aspect, a method for operating a wind turbine is provided. A wind turbine includes a rotor including at least one rotor blade and a pitch drive system coupled to the at least one rotor blade, the pitch drive system being adapted to pitch the at least one rotor blade. The method includes: determining an actual value of a reference speed proportional to the rotational speed of the rotor; determining an actual value of a rate of change of the reference speed with respect to time; and, evaluating the determined actual value of the reference speed and the rate of change of the reference speed with respect to time rate of change to identify wind turbine overspeed conditions. When an overspeed condition of the wind turbine is identified in the evaluation, the pitch drive system rotates the at least one rotor blade.
根据从属权利要求、描述和附图,本发明的另外的方面、优点和特征是显而易见的。Further aspects, advantages and features of the invention are apparent from the dependent claims, the description and the figures.
附图说明 Description of drawings
在说明书的剩余部分中(包括参照附图)更加具体地阐述了对本领域的普通技术人员作出的完整和能够实施的公开,包括其最佳模式,其中:A complete and enabling disclosure, including the best mode thereof, is set forth more particularly to those of ordinary skill in the art in the remainder of the specification, including reference to the accompanying drawings, in which:
图1是示例性风力涡轮机的透视图;Figure 1 is a perspective view of an exemplary wind turbine;
图2是图1中显示的风力涡轮机的一部分的放大的截面图;Figure 2 is an enlarged cross-sectional view of a portion of the wind turbine shown in Figure 1;
图3是图1中的风力涡轮机的示例性控制组件的方框图;3 is a block diagram of an exemplary control assembly of the wind turbine in FIG. 1;
图4是图1中的风力涡轮机的控制组件的示例性控制系统的方框图;4 is a block diagram of an exemplary control system of a control assembly of the wind turbine in FIG. 1;
图5是示出了用于运行图1中的风力涡轮机的示例性方法的流程图;FIG. 5 is a flowchart illustrating an exemplary method for operating the wind turbine in FIG. 1;
图6是示出了用于运行图1中的风力涡轮机的另一个示例性方法的流程图;以及,FIG. 6 is a flowchart illustrating another exemplary method for operating the wind turbine in FIG. 1; and,
图7是与至少一些已知的风力涡轮机的响应相比的、图1中的风力涡轮机的对所识别的超速状态的响应的示意性图形表示。Fig. 7 is a schematic graphical representation of the response of the wind turbine in Fig. 1 to an identified overspeed condition as compared to the response of at least some known wind turbines.
部件列表:Parts list:
10风力涡轮机10 wind turbines
12塔架12 towers
14支承系统14 support system
16机舱16 cabins
18转子18 rotors
20可旋转的毂20 rotatable hub
22转子叶片22 rotor blades
24叶根部分24 leaf root part
26载荷传递区域26 load transfer area
28方向28 directions
30旋转轴线30 axis of rotation
32桨距调节系统32 pitch adjustment system
34变桨轴线34 pitch axis
36控制系统36 control system
38偏航轴线38 yaw axis
40处理器40 processors
42发电机42 Generators
44转子轴44 rotor shaft
46齿轮箱46 gear box
48高速轴48 high speed shaft
50联接件50 connectors
52支承件52 supports
54支承件54 supports
56偏航驱动机构56 Yaw drive mechanism
58气象杆58 weather pole
60前支承轴承60 front support bearing
62后支承轴承62 rear support bearing
64传动系64 drive train
66变桨组件66 pitch components
68变桨驱动系统68 pitch drive system
70速度传感器70 speed sensor
72变桨轴承72 pitch bearing
74变桨驱动马达74 pitch drive motor
76变桨传动齿轮箱76 pitch transmission gearbox
78变桨传动小齿轮78 pitch drive pinion
82线缆82 cables
84发电机84 generators
86腔体86 cavities
88内表面88 inner surface
90外表面90 outer surface
92控制组件92 control components
94传感器系统94 sensor system
116纵向轴线116 longitudinal axis
500示例性方法500 exemplary methods
502确定步骤502 determination steps
504确定步骤504 determination steps
506评价步骤506 evaluation steps
508识别步骤508 identification steps
510旋转步骤510 spin steps
600示例性方法600 exemplary methods
602确定步骤602 Confirmation step
604确定步骤604 determination step
606评价步骤606 evaluation steps
608识别步骤608 identification steps
610旋转步骤610 rotation steps
702线Line 702
703预先确定的转子速度703 Predetermined rotor speed
704线704 line
具体实施方式 Detailed ways
现在将对多个实施例作出详细参照,在各个图中示出了实施例的一个或多个实例。各个实例是以阐述的方式提供的而不意图作为限制。例如,作为一个实施例的一部分示出或描述的特征可用在其它实施例上或结合其它实施例来使用,以产生另外的其它的实施例。意图本公开包括这样的修改和变型。Reference will now be made in detail to various embodiments, one or more examples of which are shown in the various figures. Each example is provided by way of illustration and not intended as a limitation. For example, features illustrated or described as part of one embodiment can be used on or in conjunction with other embodiments to yield still other embodiments. It is intended that the present disclosure includes such modifications and variations.
根据本文中描述的实施例,风力涡轮机基于对该风力涡轮机的超速状态的出现的估计的结果来运行用于使转子叶片旋转的变桨驱动系统。该估计是以风力涡轮机的多个值的所确定的实际值为基础的。这些变量中的至少一个(称为第一变量)指示风力涡轮机的超速状态。例如,第一变量可为转子速度,当它超过风力涡轮机的最大允许速度(即超速)时它指示风力涡轮机的超速。备选地,第一变量可为风力涡轮机的功率输出、一个或多个转子叶片的弯曲度、风力涡轮机的环境中的风速,或当其超过阈值时指示风力涡轮机的超速状态的任何其它变量。典型地,风力涡轮机的第一变量是与转子速度单调相关的变量。这些变量中的至少另一个变量(称为第二变量)与第一变量的相对于时间的变化率相关。在上面的实例中,第二变量可为转子加速度。典型地,第二变量与转子旋转加速度单调相关。根据至少一些实施例,该估计可以风力涡轮机的另外的变量为基础。在上面的实例中,第一变量(例如转子速度)的二阶导数、三阶导数或甚至更高阶导数可用于该估计。According to embodiments described herein, a wind turbine operates a pitch drive system for rotating a rotor blade based on a result of an estimation of the occurrence of an overspeed condition of the wind turbine. The estimate is based on determined actual values of a plurality of values of the wind turbine. At least one of these variables, referred to as the first variable, is indicative of an overspeed condition of the wind turbine. For example, the first variable may be the rotor speed, which indicates an overspeed of the wind turbine when it exceeds the maximum allowed speed of the wind turbine (ie overspeed). Alternatively, the first variable may be the power output of the wind turbine, the curvature of one or more rotor blades, the wind speed in the environment of the wind turbine, or any other variable indicative of an overspeed condition of the wind turbine when it exceeds a threshold. Typically, the first variable of a wind turbine is a variable that is monotonically related to the rotor speed. At least one other of these variables, referred to as a second variable, is related to the rate of change of the first variable with respect to time. In the example above, the second variable may be rotor acceleration. Typically, the second variable is monotonically related to the rotational acceleration of the rotor. According to at least some embodiments, the estimate may be based on additional variables of the wind turbine. In the above example, the second, third or even higher order derivatives of the first variable (eg rotor speed) may be used for this estimation.
根据某些实施例,当估计的结果是超速状态会在预先确定的时间内出现时,变桨驱动系统使转子叶片旋转,以便以空气动力学的方式对转子制动。例如,该估计可包括基于第一变量和第二变量的所确定的实际值来计算在预先确定的时间段内的转子速度的值(即未来转子速度),以及比较所识别的未来转子速度与典型地对应于风力涡轮机的最大允许速度的预先确定的转子速度值。在此实例中,如果所识别的未来转子速度超过预先确定的转子速度,则估计的结果是超速状态会在该时间段内出现,并且随后变桨驱动系统使转子叶片或多个转子叶片变桨,以便以空气动力学的方式对转子制动。According to some embodiments, the pitch drive system rotates the rotor blades to aerodynamically brake the rotor when it is estimated that an overspeed condition will occur within a predetermined time. For example, the estimating may include calculating a value for the rotor speed (ie, the future rotor speed) over a predetermined period of time based on the determined actual values of the first variable and the second variable, and comparing the identified future rotor speed with A predetermined rotor speed value typically corresponding to the maximum allowed speed of the wind turbine. In this example, if the identified future rotor speed exceeds a predetermined rotor speed, it is estimated that an overspeed condition will occur within that time period, and the pitch drive system then pitches the rotor blade or blades , in order to aerodynamically brake the rotor.
本文中描述的实施例提供了使得变桨组件能够使转子叶片平滑地绕着变桨轴线旋转(即,使转子叶片平滑地变桨)的风力涡轮机。具体而言,本文中描述的实施例有利于在风力涡轮机处于超速状态之前执行变桨。此外,根据某些实施例,以使得不出现所估计的超速状态的方式执行变桨。Embodiments described herein provide a wind turbine that enables a pitch assembly to smoothly rotate a rotor blade about a pitch axis (ie, smoothly pitch the rotor blade). In particular, embodiments described herein facilitate performing pitching before the wind turbine is in an overspeed condition. Furthermore, according to some embodiments, the pitching is performed in such a way that the estimated overspeed condition does not occur.
因此,本文中描述的实施例典型地有利于减小在风力涡轮机的构件中的空气动力学载荷,这典型地会延长风力涡轮机的运行寿命。此外,根据本文中描述的实施例的风力涡轮机典型地有利于避免超速所导致的停机。因此,本文中描述的实施例典型地有利于增加风力涡轮机的产生功率的容量。如本文中所用,用语“超速状态”指的是其中风力涡轮机的转子以这样的转速旋转的风力涡轮机的状态:在该转速处,可发生对转子的潜在的损害,包括对风力涡轮机的转子叶片或其它构件(例如联接到转子上的发电机)的损害。Accordingly, embodiments described herein typically facilitate reducing aerodynamic loads in components of a wind turbine, which typically increases the operational lifetime of the wind turbine. Furthermore, wind turbines according to embodiments described herein typically facilitate avoiding overspeed-induced shutdowns. Accordingly, embodiments described herein typically facilitate increasing the power generating capacity of a wind turbine. As used herein, the term "overspeed condition" refers to a condition of a wind turbine in which the rotor of the wind turbine rotates at a speed at which potential damage to the rotor, including to the rotor blades of the wind turbine, can occur or other components such as generators coupled to the rotor.
如本文中所用,用语风力涡轮机的变量意图表示与风力涡轮机有关的、随着时间而变化的量值。风力涡轮机的变量的一些实例是转子速度(即转子的旋转速率)、转子加速度(例如转子旋转加速度或轴向加速度)、转子叶片的弯曲度或风力涡轮机的功率输出,例如形成风力涡轮机的一部分的发电机的功率输出。As used herein, the term variable of a wind turbine is intended to mean a quantity related to a wind turbine that varies over time. Some examples of variables of a wind turbine are rotor speed (i.e. the rate of rotation of the rotor), rotor acceleration (e.g. rotor rotational or axial acceleration), the curvature of the rotor blades or the power output of the wind turbine, e.g. The power output of the generator.
如本文中所用,用语风力涡轮机的变量的实际值意图表示风力涡轮机实际采用的变量的值。例如,可根据通过传感器获得的转子速度的直接度量来确定转子速度的实际值。备选地,可通过基于另一个变量(例如但不限于,转子轴的转速或通过齿轮系统联接到转子轴上的高速轴的转速)的实测值而估计风力涡轮机的变量来确定转子速度的实际值。例如,转子加速度的实际值可对应于通过联接到转子上的传感器获得的加速度的直接度量。备选地,转子加速度的实际值可对应于转子速度的实际值的相对于时间的变化率,该变化率可根据转子速度值的时间序列来推知。可通过使得风力涡轮机能够如本文中描述的那样运行的任何适当的方法来确定风力涡轮机的这样的变量。As used herein, the term actual value of a variable of the wind turbine is intended to mean the value of the variable actually employed by the wind turbine. For example, the actual value of the rotor speed may be determined from direct measurements of the rotor speed obtained by sensors. Alternatively, the actual rotor speed may be determined by estimating a variable of the wind turbine based on a measured value of another variable such as, but not limited to, the rotational speed of the rotor shaft or a high speed shaft coupled to the rotor shaft through a gear system. value. For example, the actual value of the rotor acceleration may correspond to a direct measure of the acceleration obtained by a sensor coupled to the rotor. Alternatively, the actual value of the rotor acceleration may correspond to a rate of change of the actual value of the rotor speed with respect to time, which rate may be deduced from the time series of rotor speed values. Such variables of the wind turbine may be determined by any suitable method that enables the wind turbine to operate as described herein.
如本文中所用,用语“叶片”意图表示在相对于周围的流体运动时会提供反作用力的任何装置。如本文中所用,用语“风力涡轮机”意图表示从风能中产生旋转能且更具体而言将风的动能转换成机械能的任何装置。如本文中所用,用语“风力发电机”意图表示用从风能中产生的旋转能来产生电功率且更具体而言将从风的动能中转换的机械能转换成电功率的任何风力涡轮机。As used herein, the term "vane" is intended to mean any device that provides a reaction force when in motion relative to the surrounding fluid. As used herein, the term "wind turbine" is intended to mean any device that generates rotational energy from wind energy, and more specifically converts kinetic energy of wind into mechanical energy. As used herein, the term "wind generator" is intended to mean any wind turbine that uses rotational energy generated from wind energy to generate electrical power, and more specifically converts mechanical energy converted from kinetic energy of the wind into electrical power.
在附图的以下描述内,相同的参考标号表示相同的构件。大体上,仅描述了关于单独的实施例的差异。In the following description of the drawings, the same reference numerals refer to the same components. In general, only differences with respect to individual embodiments are described.
图1是示例性风力涡轮机10的透视图。在该示例性实施例中,风力涡轮机10是水平轴风力涡轮机。备选地,风力涡轮机10可为竖直轴风力涡轮机。在该示例性实施例中,风力涡轮机10包括从支承系统14延伸的塔架12、安装在塔架12上的机舱16,以及联接到机舱16上的转子18。转子18包括可旋转的毂20,以及联接到毂20上且从毂20向外延伸的至少一个转子叶片22。在该示例性实施例中,转子18具有三个转子叶片22。在备选实施例中,转子18包括超过或不到三个转子叶片22,例如一个或四个叶片。在该示例性实施例中,塔架12由管状钢制成,以将腔体(未在图1中显示)限定在支承系统14和机舱16之间。在一个备选实施例中,塔架12为具有任何适当的高度的任何适当类型的塔架。FIG. 1 is a perspective view of an exemplary wind turbine 10 . In the exemplary embodiment, wind turbine 10 is a horizontal axis wind turbine. Alternatively, wind turbine 10 may be a vertical axis wind turbine. In the exemplary embodiment, wind turbine 10 includes a tower 12 extending from a support system 14 , a nacelle 16 mounted on tower 12 , and a rotor 18 coupled to nacelle 16 . Rotor 18 includes a rotatable hub 20 and at least one rotor blade 22 coupled to and extending outwardly from hub 20 . In the exemplary embodiment, rotor 18 has three rotor blades 22 . In alternative embodiments, rotor 18 includes more or less than three rotor blades 22 , such as one or four blades. In the exemplary embodiment, tower 12 is fabricated from tubular steel to define a cavity (not shown in FIG. 1 ) between support system 14 and nacelle 16 . In an alternate embodiment, tower 12 is any suitable type of tower having any suitable height.
转子叶片22在毂20的周围间隔开,以有利于使转子18旋转,以使得动能能够从风中转变成可用的机械能,以及随后转变成电能。通过将叶根部分24在多个载荷传递区域26处联接到毂20上来将转子叶片22匹配到毂20上。载荷传递区域26具有毂载荷传递区域和叶片载荷传递区域(两者均未在图1中显示)。对转子叶片22引起的载荷通过载荷传递区域26传递给毂20。Rotor blades 22 are spaced about hub 20 to facilitate rotating rotor 18 to enable the conversion of kinetic energy from the wind into usable mechanical energy, and subsequently electrical energy. Rotor blade 22 is mated to hub 20 by coupling blade root portion 24 to hub 20 at a plurality of load transfer regions 26 . The load transfer area 26 has a hub load transfer area and a blade load transfer area (both not shown in FIG. 1 ). Loads induced on rotor blade 22 are transferred to hub 20 via load transfer region 26 .
在一个实施例中,转子叶片22具有范围为约15米(m)至约91米的长度。备选地,转子叶片22可具有使得风力涡轮机10能够如本文中描述的那样起作用的任何适当的长度。例如,叶片长度的其它非限制性实例包括10m或更少、20m、37m或大于91m的长度。在风从方向28冲击转子叶片22时,转子18绕着旋转轴线30旋转。在转子叶片22旋转且经受离心力时,转子叶片22还会经受多种力和力矩。因而,转子叶片22可从中性或非偏转位置偏转和/或旋转到偏转位置。In one embodiment, rotor blade 22 has a length ranging from about 15 meters (m) to about 91 meters. Alternatively, rotor blades 22 may have any suitable length that enables wind turbine 10 to function as described herein. For example, other non-limiting examples of blade lengths include lengths of 10 m or less, 20 m, 37 m, or greater than 91 m. As wind strikes rotor blades 22 from a direction 28 , rotor 18 rotates about an axis of rotation 30 . As rotor blades 22 rotate and experience centrifugal forces, rotor blades 22 are also subjected to various forces and moments. Thus, rotor blades 22 may deflect and/or rotate from a neutral or non-deflected position to a deflected position.
此外,转子叶片22的桨距角或叶片桨距(即确定转子叶片22的相对于风的方向28的投影的角)可由桨距调节系统32改变,以通过调节至少一个转子叶片22的相对于风矢量的旋转位置来控制风力涡轮机10产生的载荷和功率。在备选实施例中,仅转子叶片22的一部分的桨距角由桨距调节系统32改变。在图1中显示了转子叶片22的变桨轴线34。在风力涡轮机10的运行期间,桨距调节系统32可改变转子叶片22的叶片桨距,使得转子叶片22以这样的方式运动到顺桨位置:使得至少一个转子叶片22的相对于风矢量的投影提供将朝向风矢量定向的转子叶片22的最小的表面面积,这有利于降低转子18的转速以及/或者有利于转子18的失速。Furthermore, the pitch angle or blade pitch of the rotor blades 22 (ie, the angle determining the projection of the rotor blades 22 with respect to the direction 28 of the wind) can be varied by the pitch adjustment system 32 to adjust the pitch of at least one rotor blade 22 relative to The rotational position of the wind vector controls the load and power produced by wind turbine 10 . In an alternative embodiment, the pitch angle of only a portion of rotor blades 22 is varied by pitch adjustment system 32 . The pitch axis 34 of the rotor blade 22 is shown in FIG. 1 . During operation of wind turbine 10, pitch adjustment system 32 may vary the blade pitch of rotor blades 22 such that rotor blades 22 move to a feathered position in such a way that the projection of at least one rotor blade 22 with respect to the wind vector Providing a minimum surface area of rotor blades 22 that will be oriented towards the wind vector facilitates reducing the rotational speed of rotor 18 and/or facilitates stalling of rotor 18 .
在该示例性实施例中,各个转子叶片22的叶片桨距由控制系统36单独地控制。备选地,所有转子叶片22的叶片桨距可由控制系统36同时控制。另外,在该示例性实施例中,在方向28改变时,可绕着偏航轴线38控制机舱16的偏航方向,以相对于方向28定位转子叶片22。In the exemplary embodiment, the blade pitch of each rotor blade 22 is individually controlled by control system 36 . Alternatively, the blade pitch of all rotor blades 22 may be controlled by control system 36 simultaneously. Additionally, in the exemplary embodiment, the yaw direction of nacelle 16 may be controlled about yaw axis 38 to position rotor blades 22 relative to direction 28 as direction 28 changes.
在该示例性实施例中,控制系统36显示为集中在机舱16内。备选地,控制系统36可为在风力涡轮机10各处、在支承系统14上、在风场内和/或在远程控制中心处的分布式系统。控制系统36包括构造成执行本文中描述的方法和/或步骤的处理器40。另外,本文中描述的其它构件中的许多构件包括处理器。如本文中所用,用语“处理器”不限于在本领域称为计算机的集成电路,而是宽泛地指控制器、微控制器、微计算机、可编程逻辑控制器(PLC)、专用集成电路和其它可编程电路,并且这些用语在本文中可互换地使用。应当理解,处理器和/或控制系统可还包括存储器、输入通道和/或输出通道。In the exemplary embodiment, control system 36 is shown centralized within nacelle 16 . Alternatively, control system 36 may be a distributed system throughout wind turbine 10 , on support system 14 , within the wind farm, and/or at a remote control center. Control system 36 includes a processor 40 configured to perform the methods and/or steps described herein. Additionally, many of the other components described herein include processors. As used herein, the term "processor" is not limited to integrated circuits known in the art as computers, but broadly refers to controllers, microcontrollers, microcomputers, programmable logic controllers (PLCs), application-specific integrated circuits, and other programmable circuits, and these terms are used interchangeably herein. It should be understood that the processor and/or control system may also include memory, input channels, and/or output channels.
在本文中描述的实施例中,存储器可包括(不限于)计算机可读介质(例如随机存取存储器(RAM)),以及计算机可读非易失性介质,例如闪存。备选地,还可使用磁盘、压缩光盘只读存储器(CD-ROM)、磁光盘(MOD)和/或数字多功能光盘(DVD)。而且,在本文中描述的实施例中,输入通道包括(不限于)传感器和/或与操作员界面相关联的计算机外围设备,例如鼠标和键盘。另外,在该示例性实施例中,输出通道可包括(不限于)控制装置、操作员界面监视器和/或显示器。In embodiments described herein, memory may include, without limitation, computer-readable media such as random access memory (RAM), as well as computer-readable non-volatile media such as flash memory. Alternatively, a magnetic disk, compact disk read only memory (CD-ROM), magneto-optical disk (MOD) and/or digital versatile disk (DVD) may also be used. Also, in the embodiments described herein, input channels include, without limitation, sensors and/or computer peripherals associated with an operator interface, such as a mouse and keyboard. Additionally, in the exemplary embodiment, an output channel may include, without limitation, a control device, an operator interface monitor, and/or a display.
本文中描述的处理器会处理从多个电气装置和电子装置(可包括(不限于)传感器、促动器、压缩机、控制系统和/或监测装置)传输的信息。这样的处理器可在物理上位于例如控制系统、传感器、监测装置、桌上型计算机、膝上型计算机、可编程逻辑控制器(PLC)机柜和/或分布式控制系统(DCS)机柜中。RAM和存储装置存储和传递将由处理器(一个或多个)执行的信息和指令。RAM和存储装置也可用来存储临时变量、静态(即不变的)信息和指令或其它中间信息,以及在处理器(一个或多个)执行指令期间把它们提供给处理器。被执行的指令可包括(不限于)风力涡轮机控制系统控制命令。指令序列的执行不限于硬件电路和软件指令的任何特定的组合。The processors described herein process information transmitted from a number of electrical and electronic devices, which may include, but are not limited to, sensors, actuators, compressors, control systems, and/or monitoring devices. Such processors may be physically located in, for example, control systems, sensors, monitoring devices, desktop computers, laptop computers, programmable logic controller (PLC) cabinets, and/or distributed control system (DCS) cabinets. RAM and storage devices store and transfer information and instructions to be executed by the processor(s). RAM and storage devices can also be used to store and provide temporary variables, static (ie, non-changing) information and instructions or other intermediate information to the processor(s) during execution of instructions. The executed instructions may include, but are not limited to, wind turbine control system control commands. The execution of sequences of instructions is not limited to any specific combination of hardware circuitry and software instructions.
图2是风力涡轮机10的一部分的放大的截面图。在该示例性实施例中,风力涡轮机10包括机舱16和可旋转地联接到机舱16上的毂20。更具体而言,毂20通过转子轴44(有时称为或者主轴或者低速轴)、齿轮箱46、高速轴48和联接件50可旋转地联接到定位在机舱16内的发电机42上。在该示例性实施例中,转子轴44设置成与纵向轴线116同轴。转子轴44的旋转会可旋转地驱动齿轮箱46,齿轮箱46随后驱动高速轴48。高速轴48用联接件50来可旋转地驱动发电机42,并且高速轴48的旋转有利于发电机42产生电功率。齿轮箱46和发电机42由支承件52和支承件54支承。在该示例性实施例中,齿轮箱46使用双路径几何来驱动高速轴48。备选地,转子轴44用联接件50来直接联接到发电机42上。FIG. 2 is an enlarged cross-sectional view of a portion of wind turbine 10 . In the exemplary embodiment, wind turbine 10 includes nacelle 16 and hub 20 rotatably coupled to nacelle 16 . More specifically, hub 20 is rotatably coupled to generator 42 positioned within nacelle 16 via rotor shaft 44 (sometimes referred to as either a main shaft or low speed shaft), gearbox 46 , high speed shaft 48 and coupling 50 . In the exemplary embodiment, rotor shaft 44 is disposed coaxially with longitudinal axis 116 . Rotation of rotor shaft 44 rotatably drives gearbox 46 , which in turn drives high speed shaft 48 . High speed shaft 48 rotatably drives generator 42 with coupling 50 , and rotation of high speed shaft 48 facilitates generation of electrical power by generator 42 . Gearbox 46 and generator 42 are supported by supports 52 and 54 . In the exemplary embodiment, gearbox 46 drives high speed shaft 48 using a dual path geometry. Alternatively, rotor shaft 44 is coupled directly to generator 42 with coupling 50 .
在该示例性实施例中,机舱16还包括偏航驱动机构56,偏航驱动机构56可用来使机舱16和毂20在偏航轴线38(显示在图1中)上旋转,以控制转子叶片22的相对于风的方向28的投影。机舱16还包括至少一个气象杆58,该至少一个气象杆58包括风向标和风力计(均未在图2中显示)。杆58将可包括风向和/或风速的信息提供给控制系统36。在该示例性实施例中,机舱16还包括主前支承轴承60和主后支承轴承62。In the exemplary embodiment, nacelle 16 also includes yaw drive mechanism 56 that may be used to rotate nacelle 16 and hub 20 on yaw axis 38 (shown in FIG. 1 ) to control the rotor blades. The projection of 22 relative to the direction of the wind 28 . Nacelle 16 also includes at least one weather mast 58 that includes a wind vane and anemometer (neither shown in FIG. 2 ). Mast 58 provides information to control system 36 which may include wind direction and/or wind speed. In the exemplary embodiment, nacelle 16 also includes main front support bearings 60 and main rear support bearings 62 .
前支承轴承60和后支承轴承62有利于转子轴44的径向支承和对准。前支承轴承60在毂20的附近联接到转子轴44上。后支承轴承62在齿轮箱46和/或发电机42的附近定位在转子轴44上。备选地,机舱16包括使得风力涡轮机10能够如本文中公开的那样起作用的任何数量的支承轴承。转子轴44、发电机42、齿轮箱46、高速轴48、联接件50和任何相关联的紧固件、支承件和/或固定装置(包括但不限于支承件52和/或支承件54、前支承轴承60、后支承轴承62)有时称为传动系64。Front support bearing 60 and rear support bearing 62 facilitate radial support and alignment of rotor shaft 44 . Front support bearing 60 is coupled to rotor shaft 44 in the vicinity of hub 20 . Aft support bearing 62 is positioned on rotor shaft 44 in the vicinity of gearbox 46 and/or generator 42 . Alternatively, nacelle 16 includes any number of support bearings that enable wind turbine 10 to function as disclosed herein. rotor shaft 44, generator 42, gearbox 46, high speed shaft 48, coupling 50 and any associated fasteners, supports and/or fixtures (including but not limited to supports 52 and/or supports 54, Front support bearing 60, rear support bearing 62) are sometimes referred to as drive train 64.
在该示例性实施例中,毂20包括变桨组件66。变桨组件66包括一个或多个变桨驱动系统68。在该示例性实施例中,机舱16包括传感器系统,传感器系统可包括用于感测风力涡轮机10的至少一个变量(例如至少一个转子叶片22的速度或加速度)的至少一个传感器,例如速度传感器70。典型地,如下面所详述,传感器系统中的该至少一个传感器通讯地联接到控制系统36上。典型地,各个变桨驱动系统68联接到相应的转子叶片22(在图1中显示)上,以沿着变桨轴线34调控相关联的转子叶片22的叶片桨距。在图2中显示了三个变桨驱动系统68中的仅一个。In the exemplary embodiment, hub 20 includes pitch assembly 66 . Pitch assembly 66 includes one or more pitch drive systems 68 . In the exemplary embodiment, nacelle 16 includes a sensor system that may include at least one sensor, such as speed sensor 70 , for sensing at least one variable of wind turbine 10 , such as the speed or acceleration of at least one rotor blade 22 . . Typically, the at least one sensor of the sensor system is communicatively coupled to the control system 36, as described in more detail below. Typically, each pitch drive system 68 is coupled to a respective rotor blade 22 (shown in FIG. 1 ) to adjust the blade pitch of the associated rotor blade 22 along the pitch axis 34 . Only one of the three pitch drive systems 68 is shown in FIG. 2 .
在该示例性实施例中,变桨组件66包括至少一个变桨轴承72,该至少一个变桨轴承72联接到毂20上且联接到相应的转子叶片22(显示在图1中)上,以使相应的转子叶片22绕着变桨轴线34旋转。变桨驱动系统68包括变桨驱动马达74、变桨传动齿轮箱76和变桨传动小齿轮78。变桨驱动马达74以使得该变桨驱动马达74对变桨传动齿轮箱76施加机械力的方式联接到变桨传动齿轮箱76上。变桨传动齿轮箱76以使得该变桨传动齿轮箱76使变桨传动小齿轮78旋转的方式联接到变桨传动小齿轮78上。变桨轴承72以使得变桨传动小齿轮78的旋转引起变桨轴承72的旋转的方式联接到变桨传动小齿轮78上。更具体而言,在该示例性实施例中,变桨传动小齿轮78联接到变桨轴承72上,使得变桨传动齿轮箱76的旋转使变桨轴承72和转子叶片22绕着变桨轴线34旋转,以改变叶片22的叶片桨距。In the exemplary embodiment, pitch assembly 66 includes at least one pitch bearing 72 coupled to hub 20 and to a corresponding rotor blade 22 (shown in FIG. 1 ) for The respective rotor blade 22 is rotated about a pitch axis 34 . Pitch drive system 68 includes pitch drive motor 74 , pitch drive gearbox 76 and pitch drive pinion 78 . Pitch drive motor 74 is coupled to pitch transfer gearbox 76 in such a manner that pitch drive motor 74 exerts a mechanical force on pitch transfer gearbox 76 . Pitch transfer gearbox 76 is coupled to pitch transfer pinion 78 in such a manner that pitch transfer gearbox 76 rotates pitch transfer pinion 78 . Pitch bearing 72 is coupled to pitch drive pinion 78 in such a manner that rotation of pitch drive pinion 78 causes rotation of pitch bearing 72 . More specifically, in the exemplary embodiment, pitch drive pinion 78 is coupled to pitch bearing 72 such that rotation of pitch drive gearbox 76 causes pitch bearing 72 and rotor blades 22 to rotate about the pitch axis. 34 rotates to change the blade pitch of the blades 22.
在该示例性实施例中,变桨驱动系统68联接到控制系统36上,以在接收来自控制系统36的一个或多个信号之后调节转子叶片22的叶片桨距。变桨驱动马达74为由电功率和/或液压系统驱动的、使得变桨组件66能够如本文中描述的那样起作用的任何适当的马达。备选地,变桨组件66可包括任何适当的结构、构造、布置和/或构件,例如但不限于液压缸、弹簧和/或伺服机构。此外,变桨组件66可通过任何适当的手段驱动,例如但不限于液压流体和/或机械动力,例如但不限于引起的弹簧力和/或电磁力。在某些实施例中,变桨驱动马达74由从毂20的旋转惯量中抽取的能量和/或对风力涡轮机10的构件供应能量的存储能量源(未显示)驱动。In the exemplary embodiment, pitch drive system 68 is coupled to control system 36 to adjust the blade pitch of rotor blades 22 upon receiving one or more signals from control system 36 . Pitch drive motor 74 is any suitable motor driven by electrical power and/or a hydraulic system that enables pitch assembly 66 to function as described herein. Alternatively, pitch assembly 66 may include any suitable structure, configuration, arrangement, and/or components, such as, but not limited to, hydraulic cylinders, springs, and/or servo mechanisms. Additionally, pitch assembly 66 may be actuated by any suitable means, such as, but not limited to, hydraulic fluid and/or mechanical power, such as, but not limited to induced spring force and/or electromagnetic force. In certain embodiments, pitch drive motor 74 is driven by energy extracted from the rotational inertia of hub 20 and/or a stored energy source (not shown) that supplies energy to components of wind turbine 10 .
图3是示例性控制组件92的方框图。在该示例性实施例中,控制组件92包括变桨驱动系统68、控制系统36和传感器系统94。控制组件92可包括使得该控制组件92能够如本文中描述的那样起作用的任何另外的适当的装置。根据某些实施例,变桨驱动系统68联接到至少一个转子叶片22上,以使转子叶片绕着变桨轴线34旋转。在该示例性实施例中,变桨驱动系统68对应于上面描述的变桨驱动系统。变桨驱动系统68通讯地联接到控制系统36上,使得变桨驱动系统68能够在接收来自控制系统36的一个或多个信号之后调节转子叶片22的叶片桨距。FIG. 3 is a block diagram of an exemplary control assembly 92 . In the exemplary embodiment, control assembly 92 includes pitch drive system 68 , control system 36 and sensor system 94 . Control assembly 92 may include any other suitable device that enables control assembly 92 to function as described herein. According to certain embodiments, pitch drive system 68 is coupled to at least one rotor blade 22 to rotate the rotor blade about pitch axis 34 . In the exemplary embodiment, pitch drive system 68 corresponds to the pitch drive system described above. Pitch drive system 68 is communicatively coupled to control system 36 such that pitch drive system 68 can adjust the blade pitch of rotor blades 22 upon receiving one or more signals from control system 36 .
根据某些实施例,控制系统36通讯地联接到变桨驱动系统68上,并且构造成至少根据风力涡轮机10的第一变量和第二变量的所确定的实际值来估计超速状态的出现。在该示例性实施例中,控制系统36通过传感器系统94来确定实际值。According to certain embodiments, control system 36 is communicatively coupled to pitch drive system 68 and is configured to estimate the occurrence of an overspeed condition based on at least determined actual values of the first variable and the second variable of wind turbine 10 . In the exemplary embodiment, control system 36 determines the actual value via sensor system 94 .
根据某些实施例,第一变量与转子18的转速单调相关,以及/或者第二变量与转子18的旋转加速度单调相关。如本文中所用,用语单调相关指示在风力涡轮机的两个变量之间的暗示它们的相关的增大和减小的关系。例如,如上面所阐述的那样,风力涡轮机10可包括通过齿轮箱46联接到转子轴44上的高速轴48。在这些实施例中,高速轴48的转速典型地与转子速度成正比。因此,如本文中所用,认为高速轴48的转速与转子速度单调相关。作为另一个实例,在该示例性实施例中,风力涡轮机10包括用于产生电功率输出的发电机42。电功率输出典型地与转子速度的立方成比例。因此,如本文中所用,认为功率输出与转子速度单调相关。According to some embodiments, the first variable is monotonically related to the rotational speed of the rotor 18 and/or the second variable is monotonically related to the rotational acceleration of the rotor 18 . As used herein, the term monotonic correlation indicates an increasing and decreasing relationship between two variables of a wind turbine implying their correlation. For example, as set forth above, wind turbine 10 may include a high speed shaft 48 coupled to rotor shaft 44 through gearbox 46 . In these embodiments, the rotational speed of the high speed shaft 48 is typically directly proportional to the rotor speed. Therefore, as used herein, the rotational speed of the high speed shaft 48 is considered to be monotonically related to the rotor speed. As another example, in the exemplary embodiment, wind turbine 10 includes generator 42 for generating an electrical power output. Electrical power output is typically proportional to the cube of the rotor speed. Therefore, as used herein, power output is considered to be monotonically related to rotor speed.
根据至少一些实施例,控制系统36通过传感器系统94来确定第一变量的实际值,并且通过所确定的第一变量的值来确定第二变量的实际值。例如,控制系统36可构造成通过计算第一变量的相对于时间的变化率来确定第二变量的实际值。具体而言,控制系统36可通过传感器系统94来确定转子速度(即在此情况下的第一变量)的实际值,并且可通过计算转子速度的值的相对于时间的变化率来确定转子旋转加速度(即在此情况下的第二变量)的实际值。According to at least some embodiments, control system 36 determines the actual value of the first variable via sensor system 94 and determines the actual value of the second variable via the determined value of the first variable. For example, control system 36 may be configured to determine the actual value of the second variable by calculating the rate of change of the first variable with respect to time. Specifically, the control system 36 may determine the actual value of the rotor speed (ie, the first variable in this case) through the sensor system 94 and may determine the rotor rotation by calculating the rate of change of the value of the rotor speed with respect to time. The actual value of the acceleration (ie the second variable in this case).
根据某些实施例,变桨驱动系统68构造成基于控制系统36执行的估计的结果来使转子叶片22旋转。例如,当控制系统36基于所确定的实际值而识别到风力涡轮机10将进入超速状态时,转子叶片22被旋转。在该示例性实施例中,控制系统36与变桨驱动系统68通讯,以发信号表示将出现超速状态。当变桨驱动系统68接收超速状态出现信号时,它使转子叶片22朝向顺桨位置旋转,以降低转子速度(即,以空气动力学的方式对转子18制动)。According to certain embodiments, pitch drive system 68 is configured to rotate rotor blades 22 based on the results of the estimations performed by control system 36 . For example, rotor blades 22 are rotated when control system 36 identifies, based on the determined actual values, that wind turbine 10 is about to enter an overspeed condition. In the exemplary embodiment, control system 36 communicates with pitch drive system 68 to signal that an overspeed condition will occur. When pitch drive system 68 receives a signal that an overspeed condition is present, it rotates rotor blades 22 toward a feathered position to reduce rotor speed (ie, aerodynamically brake rotor 18 ).
根据某些实施例,传感器系统94包括用于测量风力涡轮机10的一个或多个变量的实际值的一个或多个传感器。具体而言,传感器系统94通讯地联接到控制系统36上,典型地以对控制系统36提供变量的实测值。基于接收到的实测值,控制系统36典型地确定风力涡轮机10的一个或多个变量的实际值。根据实施例中的至少一些,传感器系统36构造成测量风力涡轮机10的第一变量和/或第二变量(例如转子速度和转子加速度)的实际值中的至少一个。According to certain embodiments, sensor system 94 includes one or more sensors for measuring actual values of one or more variables of wind turbine 10 . In particular, sensor system 94 is communicatively coupled to control system 36 , typically to provide control system 36 with measured values of variables. Based on the received measured values, control system 36 typically determines actual values for one or more variables of wind turbine 10 . According to at least some of the embodiments, sensor system 36 is configured to measure at least one of actual values of a first variable and/or a second variable of wind turbine 10 , such as rotor speed and rotor acceleration.
根据某些实施例,传感器系统94适于联接到风力涡轮机10的可旋转部分(该可旋转部分连接到转子18上),以通过测量可旋转部分的转速来建立风力涡轮机的第一变量或第二变量的实际值。在该示例性实施例中,传感器系统94包括用于感测转子速度的速度传感器70。具体而言,在该示例性实施例中,速度传感器70联接到转子轴44上,以测量其转速。根据某些实施例,速度传感器70包括构造成记录转子轴44的旋转的接近传感器,使得速度传感器70测量转子轴44的转速。转子轴44的转速对应于转子速度。在备选实施例中,传感器系统94可包括适于测量风力涡轮机10的另一个变量的传感器,例如联接到高速轴48上以测量其转速的速度传感器。在备选实施例中,传感器系统94可包括适于测量风力涡轮机10的多个变量的传感器(例如,联接到高速轴48上以测量高速轴48的转速的速度传感器,以及联接到转子18上以测量转子加速度的加速度传感器)的任何布置。According to certain embodiments, the sensor system 94 is adapted to be coupled to a rotatable part of the wind turbine 10, which is connected to the rotor 18, to establish a first variable or a second variable of the wind turbine by measuring the rotational speed of the rotatable part. The actual value of the two variables. In the exemplary embodiment, sensor system 94 includes speed sensor 70 for sensing rotor speed. Specifically, in the exemplary embodiment, speed sensor 70 is coupled to rotor shaft 44 to measure its rotational speed. According to certain embodiments, speed sensor 70 includes a proximity sensor configured to register rotation of rotor shaft 44 such that speed sensor 70 measures a rotational speed of rotor shaft 44 . The rotational speed of the rotor shaft 44 corresponds to the rotor speed. In alternative embodiments, sensor system 94 may include a sensor adapted to measure another variable of wind turbine 10 , such as a speed sensor coupled to high speed shaft 48 to measure its rotational speed. In alternative embodiments, sensor system 94 may include sensors adapted to measure a number of variables of wind turbine 10 (e.g., a speed sensor coupled to high speed shaft 48 to measure the rotational speed of high speed shaft 48, and a speed sensor coupled to rotor 18 Any arrangement of accelerometers to measure rotor acceleration).
大体上,传感器系统94可包括提供风力涡轮机10的适于帮助估计超速状态的出现的变量的度量的任何适当的传感器。例如,传感器系统94可包括联接到风力涡轮机10的发电机部分(例如发电机42的输出)上的传感器,以通过测量发电机部分的功率输出和/或其相对于时间的变化率来建立第一变量的实际值或第二变量的实际值中的至少一个。In general, sensor system 94 may include any suitable sensor that provides measurements of variables of wind turbine 10 suitable to assist in estimating the occurrence of an overspeed condition. For example, sensor system 94 may include sensors coupled to the generator portion of wind turbine 10 (e.g., the output of generator 42) to establish a first-order value by measuring the power output of the generator portion and/or its rate of change with respect to time. At least one of the actual value of a variable or the actual value of a second variable.
根据实施例中的至少一些,传感器系统94可构造成测量靠近风力涡轮机10的区域中的风速的实际值。在该示例性实施例中,杆58形成传感器系统94的一部分,并且将风速和风向数据提供给控制系统36。在这些实施例中,控制系统36构造成进一步基于所确定的风速的实际值来识别超速状态是典型的。因此,控制系统36可通过考虑风速的实际值以估计风力涡轮机10的超速状态的出现来识别风力涡轮机的超速状态。According to at least some of the embodiments, sensor system 94 may be configured to measure actual values of wind speed in an area proximate to wind turbine 10 . In the exemplary embodiment, pole 58 forms part of sensor system 94 and provides wind speed and direction data to control system 36 . In these embodiments, it is typical for the control system 36 to be configured to identify an overspeed condition based further on the determined actual value of the wind speed. Accordingly, control system 36 may identify an overspeed condition of wind turbine 10 by considering the actual value of the wind speed to estimate the occurrence of an overspeed condition of wind turbine 10 .
根据某些实施例,传感器系统94构造成测量转子叶片22的弯曲度的实际值。在这些实施例中,传感器系统94可包括使得能够确定转子叶片22的弯曲度的任何适当的传感器,例如应变仪传感器或光学应变传感器。According to certain embodiments, the sensor system 94 is configured to measure an actual value of the curvature of the rotor blade 22 . In these embodiments, sensor system 94 may include any suitable sensor that enables determination of the curvature of rotor blade 22 , such as a strain gauge sensor or an optical strain sensor.
根据某些实施例,传感器系统94构造成测量转子18的沿垂直于毂20的纵向轴线的方向的加速度(即与重力相关的加速度)。在这样的实施例中,传感器系统94典型地包括安装在转子叶片22中的一个处或附近的一个或多个加速度传感器(未显示),以帮助感测转子18的沿垂直于毂20的纵向轴线的第一方向的第一加速度和转子18的沿垂直于第一方向和毂20的纵向轴线两者的方向的第二加速度矢量。在这样的实施例中,使用加速度的实测值或多个实测值以及风力涡轮机10的另一个变量的至少一个实际值来估计超速状态的出现。According to certain embodiments, sensor system 94 is configured to measure acceleration of rotor 18 in a direction perpendicular to the longitudinal axis of hub 20 (ie, acceleration related to gravity). In such embodiments, sensor system 94 typically includes one or more acceleration sensors (not shown) mounted at or near one of rotor blades 22 to facilitate sensing the longitudinal direction of rotor 18 perpendicular to hub 20 . A first acceleration in a first direction of the axis and a second acceleration vector of the rotor 18 in a direction perpendicular to both the first direction and the longitudinal axis of the hub 20 . In such an embodiment, the occurrence of an overspeed condition is estimated using the measured value or values of acceleration and at least one actual value of another variable of wind turbine 10 .
在该示例性实施例中,控制系统94根据实测转速来确定风力涡轮机的第一变量的实际值。在某些实施例中,直接根据至少一个实测值来确定实际值。在其它实施例中,根据另一个变量的至少一个实测值来获得第一变量的实际值。例如,在一些实施例中,第一变量对应于转子速度,并且控制系统36通过根据高速轴48的转速的度量而获得转子速度来确定该转子速度。在这些实施例中,控制系统36典型地考虑了齿轮比,以根据高速轴48的实测转速来获得转子速度的实际值。在该示例性实施例中,控制系统36根据转子速度的实测值的相对于时间的变化率来确定第二变量的实际值。备选地,控制系统36直接根据传感器系统94提供的转子加速度的度量来确定第二变量的实际值。如上面所阐述,控制系统36评价第一变量和第二变量的所确定的实际值,以估计风力涡轮机10的超速状态的出现。In the exemplary embodiment, control system 94 determines the actual value of the first variable for the wind turbine based on the measured rotational speed. In some embodiments, the actual value is determined directly from at least one measured value. In other embodiments, the actual value of the first variable is obtained from at least one measured value of another variable. For example, in some embodiments, the first variable corresponds to rotor speed, and control system 36 determines the rotor speed by obtaining the rotor speed from a measure of the rotational speed of high speed shaft 48 . In these embodiments, control system 36 typically takes into account gear ratios to obtain an actual value for rotor speed based on the measured rotational speed of high speed shaft 48 . In the exemplary embodiment, control system 36 determines the actual value of the second variable based on the rate of change of the measured value of rotor speed with respect to time. Alternatively, control system 36 determines the actual value of the second variable directly from the measure of rotor acceleration provided by sensor system 94 . As explained above, the control system 36 evaluates the determined actual values of the first variable and the second variable to estimate the occurrence of an overspeed condition of the wind turbine 10 .
图4是形成图1的风力涡轮机10的控制组件的一部分的示例性控制系统36的方框图。在该示例性实施例中,控制系统36包括控制器102、存储器104和通讯模块106。控制系统36可包括使得控制系统36能够如本文中描述的那样起作用的任何适当的装置。在该示例性实施例中,通讯模块106包括有利于使得控制器102能够与传感器系统94通讯的传感器接口108。在一个实施例中,传感器接口108包括将传感器产生的模拟电压信号转换成控制器102可使用的多比特数字信号的模拟/数字转换器。在备选实施例中,通讯模块106可包括有利于将信号传输给位于风力涡轮机上的任何装置(例如位于转子轴44处、或在转子18内或外部和/或远离转子18的装置)以及/或者接收来自该装置的信号的任何适当的有线和/或无线通讯装置。在该示例性实施例中,存储器104可包括任何适当的存储装置,包括但不限于,闪存、电可擦除可编程存储器、只读存储器(ROM)、可移动介质和/或其它易失性和非易失性存储装置。在一个实施例中,可执行指令(即软件指令)存储在存储器104中,以便于控制器102在控制变桨驱动系统68时使用,如下面所描述。FIG. 4 is a block diagram of an exemplary control system 36 forming part of the control assembly of wind turbine 10 of FIG. 1 . In the exemplary embodiment, control system 36 includes controller 102 , memory 104 and communication module 106 . Control system 36 may include any suitable device that enables control system 36 to function as described herein. In the exemplary embodiment, communication module 106 includes sensor interface 108 that facilitates enabling controller 102 to communicate with sensor system 94 . In one embodiment, sensor interface 108 includes an analog/digital converter that converts an analog voltage signal generated by the sensor into a multi-bit digital signal usable by controller 102 . In alternative embodiments, the communication module 106 may include any device that facilitates transmission of signals to any device located on the wind turbine (e.g., at the rotor shaft 44, or within or external to and/or remote from the rotor 18) and and/or any suitable wired and/or wireless communication device that receives signals from the device. In the exemplary embodiment, memory 104 may comprise any suitable storage device including, but not limited to, flash memory, electrically erasable programmable memory, read-only memory (ROM), removable media, and/or other volatile and non-volatile storage devices. In one embodiment, executable instructions (ie, software instructions) are stored in memory 104 for use by controller 102 in controlling pitch drive system 68 as described below.
在该示例性实施例中,控制器102是包括任何适当的基于处理器或基于微处理器的系统(例如计算机系统)的实时控制器,基于处理器或基于微处理器的系统包括微控制器、精简指令集电路(RISC)、专用集成电路(ASIC)、逻辑电路和/或能够执行本文中描述的功能的任何其它电路或处理器。在一个实施例中,控制器102可为包括只读存储器(ROM)和/或随机存取存储器(RAM)的微处理器,诸如例如,具有2MbitROM和64Kbit RAM的32bit微计算机。如本文中所用,用语“实时”指的是在输入的变化影响输出之后非常短的时间段出现的输出,该时间段为可基于输出的重要性和/或处理输入以产生输出的系统的能力所选择的设计参数。In the exemplary embodiment, controller 102 is a real-time controller comprising any suitable processor-based or microprocessor-based system, such as a computer system, including a microcontroller , a reduced instruction set circuit (RISC), an application specific integrated circuit (ASIC), a logic circuit, and/or any other circuit or processor capable of performing the functions described herein. In one embodiment, the controller 102 may be a microprocessor including read only memory (ROM) and/or random access memory (RAM), such as, for example, a 32bit microcomputer with 2Mbit ROM and 64Kbit RAM. As used herein, the term "real-time" refers to an output occurring a very short period of time after a change in an input affects the output, which may be based on the importance of the output and/or the ability of the system to process the input to produce the output The selected design parameters.
在该示例性实施例中,传感器系统94的传感器(例如速度传感器70)联接到转子轴44上,以帮助测量转子18的转速。传感器系统94可包括安装在风力涡轮机10上的这样的任何适当的位置处的传感器:该位置使得传感器能够测量风力涡轮机10的变量,例如转子18的转速,或与其成正比的转速,例如高速轴48的转速。In the exemplary embodiment, sensors of sensor system 94 , such as speed sensor 70 , are coupled to rotor shaft 44 to facilitate measuring the rotational speed of rotor 18 . Sensor system 94 may include sensors mounted on wind turbine 10 at any suitable location that enables the sensors to measure a variable of wind turbine 10, such as the rotational speed of rotor 18, or a rotational speed proportional thereto, such as a high speed shaft 48 rpm.
根据某些实施例,控制器102编程为确定指示风力涡轮机10的超速状态的第一变量的实际值。在该示例性实施例中,传感器系统94的传感器通过通讯模块106的传感器接口108经过任何适当的有线和/或无线通讯介质而通讯地联接到控制器102上,以帮助使得传感器能够将信号传输给控制器102和/或接收来自控制器102的信号。在该示例性实施例中,速度传感器70持续地测量转子18的转速的实际值,并且速度传感器70持续地、实时地将指示转子速度的实测的实际值的信号传输给控制器102。在一个实施例中,控制器102可编程为持续地接收和监测速度传感器70传输的信号。在一个备选实施例中,控制器102可不持续地接收和/或监测速度传感器70传输的信号,而是相反,可编程为以预先确定的时间间隔反复地请求来自速度传感器70的信号。在某些实施例中,控制器102和/或速度传感器70可以任何适当的时间间隔将信号传输给彼此以及/或者接收来自彼此的信号。传感器系统94的备选的或额外的传感器以相似的方式与控制器102通讯,以将风力涡轮机10的变量的实测的实际值传输给控制器102。According to some embodiments, the controller 102 is programmed to determine an actual value of the first variable indicative of an overspeed condition of the wind turbine 10 . In the exemplary embodiment, the sensors of sensor system 94 are communicatively coupled to controller 102 via sensor interface 108 of communication module 106 via any suitable wired and/or wireless communication medium to facilitate enabling the sensors to transmit signals to and/or receive signals from the controller 102 . In the exemplary embodiment, speed sensor 70 continuously measures the actual value of the rotational speed of rotor 18 and speed sensor 70 continuously and in real time transmits a signal indicative of the measured actual value of rotor speed to controller 102 . In one embodiment, the controller 102 is programmed to continuously receive and monitor the signal transmitted by the speed sensor 70 . In an alternative embodiment, the controller 102 may not continuously receive and/or monitor signals transmitted by the speed sensor 70, but instead be programmed to repeatedly request signals from the speed sensor 70 at predetermined time intervals. In some embodiments, controller 102 and/or speed sensor 70 may transmit signals to and/or receive signals from each other at any suitable time interval. Alternative or additional sensors of sensor system 94 communicate with controller 102 in a similar manner to transmit measured actual values of variables of wind turbine 10 to controller 102 .
根据某些实施例,控制器102编程为确定风力涡轮机10的与第一变量的相对于时间的变化率相关的第二变量的实际值。典型地,第二变量以这样的方式与第一变量的相对于时间的变化率相关:即,使得第二变量的变化伴随着时间变率(time rate)的变化,并且时间变率的变化通常与第二变量的变化并行。在该示例性实施例中,控制器102编程为根据转子速度的实测的实际值来确定转子18的转速的相对于时间的变化率。照这样,示例性控制器102根据第一变量(即在此情况下为转子18的转速)的相对于时间的变化率来确定风力涡轮机10的第二变量(在此情况下为转子18的旋转加速度)的实际值。在其它备选实施例中,控制器102可根据形成传感器系统94的一部分的传感器测量的数据来确定风力涡轮机的第二变量的实际值。例如,控制器102可根据形成传感器系统18的一部分的加速度传感器测量的数据来确定旋转加速度的实际值。在其它备选实施例中,控制器102可根据风力涡轮机的其它变量(例如但不限于高速轴48的转速或风力涡轮机10的功率输出)的相对于时间的变化率来确定风力涡轮机的第二变量(例如转子加速度)的实际值。According to some embodiments, the controller 102 is programmed to determine the actual value of the second variable of the wind turbine 10 related to the rate of change of the first variable with respect to time. Typically, the second variable is related to the rate of change of the first variable with respect to time in such a way that changes in the second variable are accompanied by changes in the time rate, and changes in the time rate are usually Parallel to changes in the second variable. In the exemplary embodiment, controller 102 is programmed to determine the rate of change of the rotational speed of rotor 18 with respect to time based on the measured actual value of the rotor speed. In this manner, the example controller 102 determines a second variable (in this case, the rotation of the rotor 18 ) of the wind turbine 10 based on the rate of change of the first variable (ie, in this case, the rotational speed of the rotor 18 ) with respect to time. Acceleration) the actual value. In other alternative embodiments, the controller 102 may determine the actual value of the second variable for the wind turbine from data measured by sensors forming part of the sensor system 94 . For example, the controller 102 may determine the actual value of the rotational acceleration from data measured by an acceleration sensor forming part of the sensor system 18 . In other alternative embodiments, the controller 102 may determine the second rate of change of the wind turbine based on the rate of change with respect to time of other variables of the wind turbine, such as, but not limited to, the rotational speed of the high speed shaft 48 or the power output of the wind turbine 10 . Actual value of a variable (eg rotor acceleration).
在示例性风力涡轮机10的运行期间,控制器102编程为接收对应于风力涡轮机的至少一个变量的实际值的信号,例如速度传感器70提供的实测数据,并且控制器102编程为使风力涡轮机的变量的值与各个信号相关联,以确定该变量的至少一个实际值。例如,控制器102可编程为使转子18的转速的值与来自速度传感器70的信号相关联,以确定转子18的转速的实际值。根据一些实施例,控制器102编程为使风力涡轮机的第二变量的值与来自传感器系统94的传感器的信号相关联。例如,控制器102可编程为使转子18的旋转加速度的值与加速度传感器的信号相关联,以确定转子18的加速度的实际值。During operation of exemplary wind turbine 10, controller 102 is programmed to receive a signal corresponding to an actual value of at least one variable of the wind turbine, such as measured data provided by speed sensor 70, and controller 102 is programmed to cause the wind turbine variable The value of is associated with each signal to determine at least one actual value of the variable. For example, the controller 102 may be programmed to correlate the value of the rotational speed of the rotor 18 with the signal from the speed sensor 70 to determine the actual value of the rotational speed of the rotor 18 . According to some embodiments, the controller 102 is programmed to correlate the value of the second variable of the wind turbine with the signal from the sensor of the sensor system 94 . For example, the controller 102 can be programmed to correlate the value of the rotational acceleration of the rotor 18 with the signal of the acceleration sensor to determine the actual value of the acceleration of the rotor 18 .
在该示例性实施例中,控制器102编程为将表示超速状态(即转子18的超速状况)的数据存储在存储器104中。例如,控制器102可存储风力涡轮机的最大允许速度。在该速度处,认为转子18处于超速状况。在另一个实施例中,控制器102存储使风力涡轮机10的第一变量和第二变量的值与超速的出现相关联的查找表。例如,这种查找表可使导致风力涡轮机10的超速状况在预先确定的时间段内出现的转子速度和转子加速度的值相关。In the exemplary embodiment, controller 102 is programmed to store data in memory 104 indicative of an overspeed condition (ie, an overspeed condition of rotor 18 ). For example, controller 102 may store the maximum allowable speed of the wind turbine. At this speed, the rotor 18 is considered to be in an overspeed condition. In another embodiment, the controller 102 stores a look-up table that correlates values of the first variable and the second variable of the wind turbine 10 with the occurrence of overspeed. For example, such a lookup table may correlate rotor speed and rotor acceleration values that cause an overspeed condition of wind turbine 10 to occur within a predetermined period of time.
根据某些实施例,控制器102编程为至少根据第一变量和第二变量的所确定的实际值来估计风力涡轮机10的超速状态的出现。具体而言,根据某些实施例,在确定风力涡轮机10的第一变量和第二变量的实际值之后,控制器102编程为评价这些值,以针对识别风力涡轮机10的超速状态来进行估计。在该示例性实施例中,控制器102编程为评价转子速度和转子加速度的所确定的值中的至少一个,以识别风力涡轮机10的超速状态的出现。如本文中所用,用语“识别超速状态”意图表示这样的过程:该过程用于推断当前超速状态的出现或估计超速状态会在预先确定的时间段内出现,或用于识别风力涡轮机的变量的可导致超速状况在预先确定的时间段内出现的值。According to some embodiments, the controller 102 is programmed to estimate the occurrence of an overspeed condition of the wind turbine 10 from at least the determined actual values of the first variable and the second variable. Specifically, according to certain embodiments, after determining the actual values of the first variable and the second variable of the wind turbine 10 , the controller 102 is programmed to evaluate these values for estimation with respect to identifying an overspeed condition of the wind turbine 10 . In the exemplary embodiment, controller 102 is programmed to evaluate at least one of the determined values of rotor speed and rotor acceleration to identify the occurrence of an overspeed condition of wind turbine 10 . As used herein, the term "identifying an overspeed condition" is intended to mean a process for inferring the occurrence of a current overspeed condition or estimating that an overspeed condition will occur within a predetermined period of time, or for identifying a variable of a wind turbine A value that causes an overspeed condition to occur for a predetermined period of time.
根据某些实施例,控制器102编程为基于风力涡轮机10的第一变量和第二变量的所确定的实际值来识别未来转子速度,以及典型地,比较所识别的未来转子速度与预先确定的转子速度值,以估计超速状态的出现。According to some embodiments, the controller 102 is programmed to identify a future rotor speed based on determined actual values of the first variable and the second variable of the wind turbine 10, and typically compares the identified future rotor speed to a predetermined Rotor speed value to estimate the presence of an overspeed condition.
在一个实施例中,为了评价第一变量和第二变量的所确定的实际值以便识别超速状态,控制器102编程为持续地将第一变量和第二变量的实际值输入有利于识别超速状态的数学模型中。根据至少一些实施例,控制器102编程为基于第一变量和第二变量的所确定的实际值来识别未来转子速度。例如,在一个实施例中,控制器102编程为将转子速度的实际值vi和转子加速度的实际值ai输入到公式vi+aiT中,以识别将在预先确定的时间段T内出现的未来转子速度。在一个实施例中,预先确定的时间段T的范围为约0.1秒至5秒,或更具体而言,0.5秒至4秒,或者进一步更具体而言,1秒至3秒。在一个实施例中,预先确定的时间段T的范围为约1秒至3秒。备选地,预先确定的时间段T可为使得控制器102能够充分地识别未来转子速度的任何适当的时间段。根据这些实施例中的至少一些,控制器102进一步编程为比较所识别的未来转子速度与预先确定的转子速度值,以识别风力涡轮机10的超速状态。In one embodiment, to evaluate the determined actual values of the first variable and the second variable to identify an overspeed condition, the controller 102 is programmed to continuously input the actual values of the first variable and the second variable to facilitate identification of the overspeed condition in the mathematical model. According to at least some embodiments, controller 102 is programmed to identify a future rotor speed based on the determined actual values of the first variable and the second variable. For example, in one embodiment, the controller 102 is programmed to input the actual value v i of the rotor speed and the actual value a i of the rotor acceleration a i into the formula v i + a i T to identify the time period T The future rotor speed occurring in . In one embodiment, the predetermined time period T ranges from about 0.1 second to 5 seconds, or more specifically, 0.5 second to 4 seconds, or even more specifically, 1 second to 3 seconds. In one embodiment, the predetermined time period T ranges from about 1 second to 3 seconds. Alternatively, predetermined time period T may be any suitable time period that enables controller 102 to adequately identify future rotor speeds. According to at least some of these embodiments, controller 102 is further programmed to compare the identified future rotor speed to a predetermined rotor speed value to identify an overspeed condition of wind turbine 10 .
典型地,预先确定的转子速度的值对应于风力涡轮机的最大允许速度,通过评价风力涡轮机10的具体特性来预先确定该最大允许速度。典型地,通过考虑叶尖的物理特性来预先确定最大允许速度。具体而言,最大允许速度对应于这样的转子速度:在该速度处,转子叶片22的外部上的速度(即边缘速度)不超过在70m/s至110m/s之间的或更具体而言在80m/s至100m/s之间(例如90m/s)的速度。在某些实施例中,通过考虑风力涡轮机的某些构件(例如转子轴承)上的由转子18的旋转所导致的最大允许载荷或作用在塔架12或机舱16上的最大允许载荷来预先确定风力涡轮机10的最大允许速度。在某些实施例中,通过考虑风力涡轮机10的最大允许噪音产生来预先确定最大允许速度。在某些实施例中,最大允许速度可改变,这取决于风力涡轮机10经受的特定的状况。例如,根据在近海风力涡轮机中实现的某些实施例,考虑了撞击在风力涡轮机10上的海浪的量值(即力)或功率密度和/或频率,以确定在特定时间的最大允许速度。Typically, the predetermined rotor speed value corresponds to a maximum allowable speed of the wind turbine, which is predetermined by evaluating specific characteristics of the wind turbine 10 . Typically, the maximum allowable speed is predetermined by taking into account the physical properties of the blade tip. In particular, the maximum allowable speed corresponds to the rotor speed at which the speed on the outer portion of the rotor blade 22 (i.e. the edge speed) does not exceed a speed between 70 m/s and 110 m/s or more specifically A speed between 80m/s and 100m/s (eg 90m/s). In some embodiments, it is predetermined by considering the maximum allowable loads on certain components of the wind turbine (such as rotor bearings) caused by the rotation of the rotor 18 or acting on the tower 12 or nacelle 16 The maximum allowable speed of the wind turbine 10 . In some embodiments, the maximum allowable speed is predetermined by taking into account the maximum allowable noise generation of wind turbine 10 . In some embodiments, the maximum allowable speed may vary depending on the particular conditions wind turbine 10 is experiencing. For example, according to some embodiments implemented in offshore wind turbines, the magnitude (ie force) or power density and/or frequency of ocean waves impinging on wind turbine 10 is considered to determine the maximum allowable speed at a particular time.
备选地,可使用使得风力控制器102能够如本文中描述的那样识别超速状态的任何适当的数学模型。这种适当的数学模型可为将上面提到的与重力相关的加速度及其相对于时间的变化率作为输入的模型。备选地,这种适当的数学模型可为将风速和其相对于时间的变化率作为额外的输入的模型。典型地,该数学模型将对应于风力涡轮机10的某个量值的水平及其相对于时间的变化率的变量的组合作为输入。根据某些实施例,在控制器102中实现了将风力涡轮机10的不止两个变量作为输入的数学模型,以识别转子速度的未来值。例如,这种数学模型可将转子速度的二阶导数、三阶导数或甚至更高阶导数作为输入,以便以精确的方式识别转子值的未来值。典型地,这种数学模型以提供转子速度的在一段时间之后的未来值的近似值的有限泰勒级数为基础。在另一个实例中,在控制器102中实现了将功率输出和转子加速度作为输入的数学模型,以识别转子速度的未来值。Alternatively, any suitable mathematical model that enables wind controller 102 to identify an overspeed condition as described herein may be used. Such a suitable mathematical model may be a model that takes as input the above-mentioned acceleration related to gravity and its rate of change with respect to time. Alternatively, such a suitable mathematical model may be a model that takes as additional inputs the wind speed and its rate of change with respect to time. Typically, the mathematical model takes as input a combination of variables corresponding to the level of a certain magnitude of the wind turbine 10 and its rate of change with respect to time. According to some embodiments, a mathematical model taking as input more than two variables of wind turbine 10 is implemented in controller 102 to identify future values of rotor speed. For example, such a mathematical model may take as input the second, third or even higher order derivatives of the rotor speed in order to identify future values of the rotor values in an accurate manner. Typically, such mathematical models are based on finite Taylor series that provide an approximation of the future value of the rotor speed over a period of time. In another example, a mathematical model that takes power output and rotor acceleration as inputs is implemented in controller 102 to identify future values of rotor speed.
根据某些实施例,控制器102编程为基于风力涡轮机的第一变量和第二变量的所确定的实际值来识别用于到达预先确定的转子速度值的时间段,以及典型地,比较所识别的时间段与预先确定的时间段。在一个实施例中,控制器102编程为根据数学模型、基于第一变量和第二变量的所确定的实际值来推知用于到达预先确定的转子速度值的时间段,以及比较所识别的时间段与预先确定的时间段。例如,控制器102可通过借助于将转子速度的实际值vi和转子加速度的实际值ai输入到公式(V-vi)ai中而确定到达风力涡轮机10的最大允许速度所需要的时间,来估计超速V的出现。如果所确定的时间段低于预先确定的时间段,则控制器102识别到超速状态的出现,并且对应地发信号给用于使转子叶片22旋转的变桨驱动系统68。典型地,预先确定的时间段的范围为约0.1秒至5秒,或更具体而言,0.5秒至4秒,或进一步更具体而言,1秒至3秒。According to some embodiments, the controller 102 is programmed to identify a time period for reaching a predetermined rotor speed value based on the determined actual values of the first variable and the second variable of the wind turbine, and typically compare the identified time period and a predetermined time period. In one embodiment, the controller 102 is programmed to infer the time period for reaching the predetermined rotor speed value based on the determined actual values of the first variable and the second variable according to a mathematical model, and compare the identified times to period and a predetermined time period. For example, the controller 102 may determine the time required to reach the maximum allowable speed of the wind turbine 10 by inputting the actual value v i of the rotor speed and the actual value a i of the rotor acceleration a i into the formula (Vv i ) a i , to estimate the occurrence of overspeed V. If the determined time period is below the predetermined time period, the controller 102 recognizes the occurrence of an overspeed condition and accordingly signals the pitch drive system 68 for rotating the rotor blades 22 . Typically, the predetermined time period ranges from about 0.1 seconds to 5 seconds, or, more specifically, 0.5 seconds to 4 seconds, or, even more specifically, 1 second to 3 seconds.
根据某些实施例,控制器102编程为通过这样来估计风力涡轮机的超速状态的出现:即,只要指示风力涡轮机10的超速状态的第一变量的值一超过预先确定的值就起动逻辑算法。例如,根据某些实施例,当转子速度超过在最大允许转子速度的85%-95%之间(例如90%)的值时,起动该逻辑。备选地,当风力涡轮机10的功率输出超过在最大允许功率输出的85%-95%之间(例如90%)的值时,起动该逻辑。备选地,当风力涡轮机10的环境中的风速超过在8m/s-12m/s之间(例如10m/s)的值时,起动该逻辑。一旦起动该逻辑且只要第一变量超过预先确定的值,则控制器102就通过计算第一变量的未来值(该值将在预先确定的时间段内出现)来估计超速状态的出现。典型地,预先确定的时间段的范围为约0.1秒至5秒,或更具体而言,0.5秒至4秒,或进一步更具体而言,1秒至3秒。According to some embodiments, the controller 102 is programmed to estimate the occurrence of an overspeed condition of the wind turbine by initiating the logic algorithm as soon as the value of the first variable indicative of the overspeed condition of the wind turbine 10 exceeds a predetermined value. For example, according to some embodiments, the logic is activated when the rotor speed exceeds a value between 85%-95% (eg, 90%) of the maximum allowed rotor speed. Alternatively, the logic is activated when the power output of the wind turbine 10 exceeds a value between 85%-95% (eg 90%) of the maximum allowed power output. Alternatively, the logic is activated when the wind speed in the environment of the wind turbine 10 exceeds a value between 8m/s-12m/s, eg 10m/s. Once the logic is activated and as long as the first variable exceeds the predetermined value, the controller 102 estimates the occurrence of an overspeed condition by calculating a future value of the first variable that will occur within the predetermined time period. Typically, the predetermined time period ranges from about 0.1 seconds to 5 seconds, or, more specifically, 0.5 seconds to 4 seconds, or, even more specifically, 1 second to 3 seconds.
根据某些实施例,控制器102编程为通过比较风力涡轮机10的第一变量和第二变量的所确定的实际值与一列预先确定的值来验证这些值(第一变量和第二变量的所确定的实际值),以估计风力涡轮机10的超速状态的出现。在一个实施例中,控制器102可存储包含风力涡轮机10的第一变量和第二变量的一列预先确定的值的查找表,以识别这些值的哪个组合会在某个时间段内导致超速状态。具体而言,控制器102可存储包含转子速度和转子加速度的预先确定的值的查找表。通过验证查找表中的转子速度和转子加速度的实际值,控制器102可估计风力涡轮机10的超速状态的出现。具体而言,查找表可通过实际值的某些组合来指示控制器102发信号给变桨驱动系统68,以使转子叶片22变桨,以便以空气动力学的方式对转子18制动。According to some embodiments, the controller 102 is programmed to verify the determined actual values of the first variable and the second variable of the wind turbine 10 by comparing these values with a list of predetermined values (the determined values of the first variable and the second variable determined actual value) to estimate the occurrence of an overspeed condition of the wind turbine 10. In one embodiment, the controller 102 may store a look-up table containing a list of predetermined values for the first variable and the second variable of the wind turbine 10 to identify which combination of these values will result in an overspeed condition within a certain period of time . Specifically, controller 102 may store a look-up table containing predetermined values for rotor speed and rotor acceleration. By verifying the actual values of rotor speed and rotor acceleration in the lookup tables, controller 102 can estimate the occurrence of an overspeed condition of wind turbine 10 . Specifically, the lookup table may instruct controller 102 to signal pitch drive system 68 to pitch rotor blades 22 to aerodynamically brake rotor 18 through certain combinations of actual values.
典型地通过考虑风力涡轮机动态特性和风力涡轮机10的最大允许参数(例如但不限于作用在某些构件(例如塔架12、机舱16或风力涡轮机10中的轴承)上的载荷以及噪音产生)的恰当的建模来预先确定上面提到的查找表。备选地,通过使得风力控制器102能够如本文中描述的那样估计超速状态的出现的任何适当的方法来预先确定该表。在备选实施例中,基于使其它变量(例如功率输出和转子加速度,或转子速度和功率输出的相对于时间的变化率)的值相关的表来执行评价。根据某些实施例,查找表将风力涡轮机的三个或更多个变量或与其相关联的其它参数(例如但不限于风速)作为输入。根据某些实施例,在控制器102中实现了查找表和将风力涡轮机10的至少一个变量作为输入的数学模型,以估计超速状态的出现。Typically by considering wind turbine dynamics and maximum allowable parameters of wind turbine 10 such as but not limited to loads acting on certain components such as tower 12, nacelle 16 or bearings in wind turbine 10 and noise generation Appropriate modeling to predetermine the lookup tables mentioned above. Alternatively, the table is predetermined by any suitable method that enables wind controller 102 to estimate the occurrence of an overspeed condition as described herein. In an alternative embodiment, the evaluation is performed based on a table relating values of other variables such as power output and rotor acceleration, or rotor speed and rate of change of power output with respect to time. According to certain embodiments, the look-up table takes as input three or more variables of the wind turbine or other parameters associated therewith such as, but not limited to, wind speed. According to some embodiments, a look-up table and a mathematical model having as input at least one variable of the wind turbine 10 are implemented in the controller 102 to estimate the occurrence of an overspeed condition.
根据某些实施例,控制器102进一步基于风速的所确定的实际值来估计,以识别风力涡轮机10的超速状态。例如,控制器102可将转子速度、转子加速度和风速的实际值输入到适当的数学模型中,以识别风力涡轮机的超速。照这样,有利于控制器102以精确和可靠的方式估计超速状态的出现。在关于近海风力涡轮机的另一个实例中,考虑了撞击在风力涡轮机10上的海浪的幅度(即力)或功率密度和/或频率,以估计风力涡轮机10的超速的出现。According to some embodiments, the controller 102 further estimates based on the determined actual value of the wind speed to identify an overspeed condition of the wind turbine 10 . For example, controller 102 may input actual values of rotor speed, rotor acceleration, and wind speed into an appropriate mathematical model to identify wind turbine overspeed. In this manner, the controller 102 is facilitated in estimating the occurrence of an overspeed condition in an accurate and reliable manner. In another example regarding offshore wind turbines, the magnitude (ie force) or power density and/or frequency of ocean waves impinging on wind turbine 10 is considered to estimate the occurrence of overspeeding of wind turbine 10 .
根据某些实施例,控制器102基于转子叶片22的弯曲度、风力涡轮机10的功率输出和/或风力涡轮机10的与转子的转速成正比的转速中的至少一个来识别超速状态。根据某些实施例,控制器102进一步基于这些变量中的至少一个的变化率来进行评价。According to some embodiments, controller 102 identifies an overspeed condition based on at least one of the curvature of rotor blades 22 , the power output of wind turbine 10 , and/or the rotational speed of wind turbine 10 that is proportional to the rotational speed of the rotor. According to some embodiments, controller 102 further bases the evaluation on the rate of change of at least one of these variables.
在该示例性实施例中,控制器102进一步编程为在控制器102肯定地估计到超速状态的出现时控制至少一个变桨驱动系统68,以便以空气动力学的方式对转子18制动。在一个实施例中,控制器102编程为基于第一变量和第二变量的所确定的实际值来识别未来转子速度,比较所识别的未来转子速度与预先确定的转子速度值以识别风力涡轮机10的超速状态,以及在所识别的未来转子速度处于或超过预先确定的转子速度值时控制变桨驱动系统68。在一个实施例中,控制器102构造成响应于所识别的未来超速状态的出现而控制变桨驱动系统68,以便使转子叶片22运动到顺桨位置,使得减慢转子18的旋转。In the exemplary embodiment, controller 102 is further programmed to control at least one pitch drive system 68 to aerodynamically brake rotor 18 when controller 102 affirmatively estimates the occurrence of an overspeed condition. In one embodiment, the controller 102 is programmed to identify a future rotor speed based on the determined actual values of the first variable and the second variable, compare the identified future rotor speed to a predetermined rotor speed value to identify the wind turbine 10 and controlling pitch drive system 68 when the identified future rotor speed is at or above a predetermined rotor speed value. In one embodiment, controller 102 is configured to control pitch drive system 68 to move rotor blades 22 to a feathered position such that rotation of rotor 18 is slowed in response to the identified occurrence of a future overspeed condition.
根据某些实施例,变桨驱动系统68使转子叶片22以一变桨速率变桨,至少基于第一变量和/或第二变量的至少一个所确定的实际值来确定该变桨速率。在该示例性实施例中,控制器102确定用于控制至少一个变桨驱动系统68的变桨速率。控制器102可基于转子速度和转子加速度的所确定的实际值来确定变桨速率。典型地,通过考虑两个变量的实际值,与其中仅考虑实际的转子速度的情形相比,叶片22以更低的变桨速率变桨。因此,这些实施例有利于响应于风力涡轮机10的可导致超速状态的状况而使转子叶片22平滑地变桨。变桨速率越高,风力涡轮机10的被激发的共振频率的数量就越高。因此,这些实施例有利于在变桨期间仅激发少量的共振频率,并且因此变桨所导致的塔架振动典型地保持较低。According to some embodiments, pitch drive system 68 pitches rotor blades 22 at a pitch rate determined based at least on a determined actual value of at least one of the first variable and/or the second variable. In the exemplary embodiment, controller 102 determines a pitch rate for controlling at least one pitch drive system 68 . Controller 102 may determine the pitch rate based on the determined actual values of rotor speed and rotor acceleration. Typically, by considering the actual values of both variables, the blades 22 are pitched at a lower pitch rate than would be the case where only the actual rotor speed is considered. Accordingly, these embodiments facilitate smooth pitching of rotor blades 22 in response to conditions of wind turbine 10 that may result in an overspeed condition. The higher the pitch rate, the higher the number of excited resonant frequencies of wind turbine 10 . Accordingly, these embodiments facilitate the excitation of only a small number of resonant frequencies during pitching, and thus pitch-induced tower vibrations typically remain low.
根据某些实施例,控制器102通过考虑预先确定的最大转子制动速率来确定变桨速率。典型地,变桨驱动系统68以使得转子18的制动不超过预先确定的最大转子制动速率的方式使转子叶片22旋转。在一个实施例中,通过考虑预先确定的最大载荷(例如但不限于转子轴承、塔架12或机舱16的最大预先确定的载荷)来确定变桨速率。典型地,在此实施例中,变桨驱动系统68以使得作用在风力涡轮机10上的载荷不超过预先确定的最大载荷的方式使转子叶片22旋转。例如,控制器102可确定作用在风力涡轮机10的某些构件上的载荷的实际值,例如但不限于在转子轴承、塔架12或机舱16上的载荷,以及确定以使得载荷不超过预先确定的最大载荷的方式实现以空气动力学的方式对转子18制动的变桨速率。在某些实施例中,变桨驱动系统68以使得风力涡轮机10的第一变量(例如转子速度)不超过阈值(例如上面提到的最大允许转子速度)的方式使转子叶片22旋转。According to some embodiments, the controller 102 determines the pitch rate by taking into account a predetermined maximum rotor braking rate. Typically, pitch drive system 68 rotates rotor blades 22 in such a manner that braking of rotor 18 does not exceed a predetermined maximum rotor braking rate. In one embodiment, the pitch rate is determined by considering a predetermined maximum load, such as, but not limited to, a maximum predetermined load of the rotor bearings, tower 12 or nacelle 16 . Typically, in this embodiment, pitch drive system 68 rotates rotor blades 22 in such a manner that the load on wind turbine 10 does not exceed a predetermined maximum load. For example, controller 102 may determine actual values of loads acting on certain components of wind turbine 10, such as, but not limited to, loads on rotor bearings, tower 12, or nacelle 16, and determine such that the loads do not exceed a predetermined The pitch rate that aerodynamically brakes the rotor 18 is achieved in the manner of the maximum load. In certain embodiments, pitch drive system 68 rotates rotor blades 22 in such a manner that a first variable (eg, rotor speed) of wind turbine 10 does not exceed a threshold (eg, the above-mentioned maximum allowable rotor speed).
图5是示出了用于运行图1中的风力涡轮机10的示例性方法500的流程图。在该示例性实施例中,方法500包括确定502指示风力涡轮机10的超速状态的第一变量的实际值。典型地,第一变量与转子18的转速单调相关。例如,第一变量对应于转子速度、转子叶片22的弯曲度、风力涡轮机10的功率输出或风力涡轮机10的转速(该转速与转子的转速成正比,例如高速轴48的速度或发电机42的速度)。备选地,第一变量可对应于上面提到的与重力相关的加速度。示例性方法500进一步包括确定风力涡轮机10的与第一变量的相对于时间的变化率相关的第二变量的实际值。典型地,第二变量与转子18的旋转加速度单调相关。FIG. 5 is a flowchart illustrating an example method 500 for operating wind turbine 10 in FIG. 1 . In the exemplary embodiment, method 500 includes determining 502 an actual value of a first variable indicative of an overspeed condition of wind turbine 10 . Typically, the first variable is monotonically related to the rotational speed of the rotor 18 . For example, the first variable corresponds to the rotor speed, the curvature of the rotor blades 22, the power output of the wind turbine 10, or the rotational speed of the wind turbine 10 (which is directly proportional to the rotational speed of the rotor, such as the speed of the high speed shaft 48 or the speed of the generator 42). speed). Alternatively, the first variable may correspond to the above mentioned acceleration related to gravity. Exemplary method 500 further includes determining an actual value of wind turbine 10 for a second variable related to the rate of change of the first variable with respect to time. Typically, the second variable is monotonically related to the rotational acceleration of the rotor 18 .
示例性方法500进一步包括至少根据第一变量和第二变量的所确定的实际值来估计506风力涡轮机10的超速状态的出现。根据一些实施例,估计506包括基于第一变量和第二变量的所确定的实际值来识别未来转子速度,以及可选地,比较所识别的未来转子速度与预先确定的转子速度值,以识别风力涡轮机10的超速状态。根据一些实施例,估计506包括基于第一变量和第二变量的所确定的实际值来识别用于到达预先确定的转子速度值的时间段,以及比较所识别的时间段与预先确定的时间段。根据某些实施例,估计506包括通过比较第一变量和第二变量的所确定的实际值与一列预先确定的值来验证这些值(第一变量和第二变量的所确定的实际值)。因此,有利于估计超速状态的出现。Exemplary method 500 further includes estimating 506 the occurrence of an overspeed condition of wind turbine 10 based on at least the determined actual values of the first variable and the second variable. According to some embodiments, estimating 506 includes identifying a future rotor speed based on determined actual values of the first variable and the second variable, and optionally comparing the identified future rotor speed with a predetermined rotor speed value to identify Overspeed condition of wind turbine 10 . According to some embodiments, estimating 506 includes identifying a time period for reaching a predetermined rotor speed value based on the determined actual values of the first variable and the second variable, and comparing the identified time period to the predetermined time period . According to some embodiments, estimating 506 includes validating the determined actual values of the first variable and the second variable by comparing these values (determined actual values of the first variable and the second variable) with a list of predetermined values. Therefore, it is advantageous to estimate the occurrence of the overspeed state.
示例性方法500进一步包括基于估计的结果508来使转子叶片22变桨510,以便以空气动力学的方式对转子18制动。典型地,当估计的结果508是超速状态会在预先确定的时间内出现时,使转子叶片22旋转。根据某些实施例,当识别到超速状态时,变桨驱动系统68使转子叶片22旋转。具体而言,典型的是,只要在估计中一识别超速状态的出现或超速状态的出现具有对应于预先确定的时间的延迟,变桨驱动系统68就使转子叶片22变桨。Exemplary method 500 further includes pitching 510 rotor blades 22 based on estimated results 508 to aerodynamically brake rotor 18 . Typically, rotor blades 22 are rotated when it is estimated 508 that an overspeed condition will occur within a predetermined time. According to certain embodiments, pitch drive system 68 rotates rotor blades 22 when an overspeed condition is identified. Specifically, pitch drive system 68 typically pitches rotor blades 22 as soon as the occurrence of an overspeed condition is identified in the estimate or with a delay corresponding to a predetermined time.
图6是示出了运行图1中的风力涡轮机的另一个示例性方法600的流程图。在该示例性实施例中,方法600包括确定602与转子的转速成正比的基准速度的实际值。典型地,基准速度对应于转子速度、高速轴48的转速或风力涡轮机10的联接到转子18上的可旋转部分的速度。典型地,基准速度在其超过阈值时指示风力涡轮机10的超速状态。典型地,阈值速度对应于基准速度的最大允许速度。示例性方法600进一步包括确定604基准速度的相对于时间的变化率的实际值。典型地,此变化率对应于转子18的加速度。示例性方法600进一步包括评价606基准速度的所确定的实际值和基准速度的相对于时间的变化率,以识别风力涡轮机的超速状态。示例性方法600进一步包括基于评价606的结果来识别608超速状态。当识别到超速状态时,在步骤610中,变桨驱动系统68使转子叶片22旋转。FIG. 6 is a flowchart illustrating another exemplary method 600 of operating the wind turbine in FIG. 1 . In the exemplary embodiment, method 600 includes determining 602 an actual value of a reference speed that is proportional to a rotational speed of the rotor. Typically, the reference speed corresponds to the rotor speed, the rotational speed of the high speed shaft 48 , or the speed of a rotatable portion of the wind turbine 10 coupled to the rotor 18 . Typically, the reference speed indicates an overspeed condition of the wind turbine 10 when it exceeds a threshold. Typically, the threshold speed corresponds to the maximum allowed speed of the reference speed. Exemplary method 600 further includes determining 604 an actual value of the rate of change of the reference speed with respect to time. Typically, this rate of change corresponds to the acceleration of the rotor 18 . Exemplary method 600 further includes evaluating 606 the determined actual value of the reference speed and the rate of change of the reference speed with respect to time to identify an overspeed condition of the wind turbine. Exemplary method 600 further includes identifying 608 an overspeed condition based on the results of evaluating 606 . When an overspeed condition is identified, pitch drive system 68 rotates rotor blades 22 in step 610 .
图7是对图1中的风力涡轮机的所识别的超速状态的响应相比于对由于风速的提高所导致的已知的风力涡轮机的超速的响应的示意性图形表示。具体而言,曲线图显示了在大约13秒的时间段期间(即对应于曲线图的水平轴)的风力涡轮机的响应。曲线图A显示了典型地导致转子速度的增加的风速700的时间序列曲线图。在曲线图A中以米每秒的单位(m/s)显示了风速。在曲线图B中显示了至少一个已知的风力涡轮机(线702)的由风速700所导致的转子速度的增大,而在曲线图C中显示了根据上面的示例性实施例的风力涡轮机(线706)的由风速700所导致的转子速度的增大。在两个曲线图中以转每分的单位(l/m)显示了转子速度。在已知的风力涡轮机中,转子速度702在时间t1处超过对应于转子超速的预先确定的转子速度值703。在已知的风力涡轮机中,只要转子速度702一超过预先确定的值703(即在时间t1处),就改变叶片角(线704)以降低转子速度。7 is a schematic graphical representation of the response to an identified overspeed condition of the wind turbine in FIG. 1 as compared to a known overspeed of the wind turbine due to an increase in wind speed. Specifically, the graph shows the response of the wind turbine during a time period of approximately 13 seconds (ie, corresponding to the horizontal axis of the graph). Graph A shows a time series graph of wind speed 700 that typically results in an increase in rotor speed. In graph A the wind speed is shown in meters per second (m/s). In graph B the increase in rotor speed caused by wind speed 700 is shown for at least one known wind turbine (line 702 ), while in graph C a wind turbine according to the above exemplary embodiment is shown ( The increase in rotor speed caused by wind speed 700, line 706). The rotor speed is shown in revolutions per minute (l/m) in both graphs. In known wind turbines, the rotor speed 702 at time t1 exceeds a predetermined rotor speed value 703 corresponding to rotor overspeed. In known wind turbines, as soon as the rotor speed 702 exceeds a predetermined value 703 (ie at time t1 ), the blade angle is changed (line 704 ) to reduce the rotor speed.
如在图7的曲线图C中显示的那样,在该示例性实施例中,当风力涡轮机的控制器基于上面提到的估计识别到超速状态时,改变叶片角(线708),以降低转子速度。具体而言,示例性风力涡轮机在时间t1′(在t1之前的时间常数)处基于转子速度和转子加速度的实际值估计到风力涡轮机的未来超速状态会在某个时间内出现。在该示例性实施例中,变桨驱动系统68在时间t1′处使转子叶片22旋转。也就是说,在该示例性实施例中,风力涡轮机在转子速度706将到达对应于转子超速的预先确定的值703之前开始变桨。因此,该示例性实施例中的控制器102识别到未来超速状态的出现,并且在风力涡轮机进入所估计的超速状态之前作出反应。因此,示例性风力涡轮机能够比已知的风力涡轮机执行更平滑的变桨,以便响应于能够导致风力涡轮机的超速状态的风速的增加而降低转子速度。因此,与已知的风力涡轮机相比,示例性风力涡轮机的变桨导致转子的更平滑的制动,并且因此减小了作用在风力涡轮机构件上的瞬态载荷。As shown in graph C of FIG. 7 , in the exemplary embodiment, when the controller of the wind turbine identifies an overspeed condition based on the above-mentioned estimates, the blade angle is changed (line 708 ) to lower the rotor speed. speed. Specifically, the exemplary wind turbine estimates at time t1 ′ (a time constant prior to t1 ) that a future overspeed condition of the wind turbine will occur within a certain time based on actual values of rotor speed and rotor acceleration. In the exemplary embodiment, pitch drive system 68 rotates rotor blade 22 at time t1 ′. That is, in the exemplary embodiment, the wind turbine begins pitching before rotor speed 706 will reach predetermined value 703 corresponding to rotor overspeed. Accordingly, controller 102 in the exemplary embodiment recognizes the occurrence of a future overspeed condition and reacts before the wind turbine enters the estimated overspeed condition. Accordingly, the exemplary wind turbine is able to perform a smoother pitch than known wind turbines to reduce rotor speed in response to an increase in wind speed that could result in an overspeed condition of the wind turbine. Thus, pitching of the exemplary wind turbine results in smoother braking of the rotor and thus reduces transient loads on wind turbine components compared to known wind turbines.
大体上,使风力涡轮机中的叶片变桨以降低转子速度意味着逆着风拉动风力涡轮机(即它导致风力塔架朝向风偏转)。这个拉动典型地随变桨速率而增大。曲线图D显示了响应在曲线图B中的已知的风力涡轮机的叶片角704的变化的塔架偏转710,以及响应在曲线图C中的示例性实施例的叶片角708的变化的塔架偏转712。在时间t1和时间t2期间逆着风拉动已知的风力涡轮机,而在时间t1′和时间t2′期间逆着风拉动示例性实施例中的风力涡轮机。因为以更低的变桨速率来对示例性实施例中的风力涡轮机执行变桨,所以风机塔架的对应的偏转低于已知的风力涡轮机。在时间t2处,已知的风力涡轮机的转子速度702降低回到预先确定的值703以下,并且沿相反的方向改变叶片角704,以使转子速度保持尽可能地高。因此,在时间t2和时间t3之间,已知的风力涡轮机中的风机塔架相对于风被推动,如通过塔架偏转710所显示的那样。In general, pitching the blades in a wind turbine to reduce rotor speed means pulling the wind turbine against the wind (ie it causes the wind tower to deflect towards the wind). This pull typically increases with pitch rate. Graph D shows the tower deflection 710 in response to a change in blade angle 704 of the known wind turbine in graph B, and the tower deflection 710 in response to a change in blade angle 708 of the exemplary embodiment in graph C. Deflect 712. The known wind turbine is pulled against the wind during time t1 and time t2, while the wind turbine in the exemplary embodiment is pulled against the wind during time t1' and time t2'. Because the wind turbine in the exemplary embodiment is pitched at a lower pitch rate, the corresponding deflection of the wind turbine tower is lower than known wind turbines. At time t2, the rotor speed 702 of the known wind turbine is reduced back below the predetermined value 703 and the blade angle is changed 704 in the opposite direction to keep the rotor speed as high as possible. Thus, between time t2 and time t3 , the wind turbine tower in the known wind turbine is pushed relative to the wind, as shown by tower deflection 710 .
已知的风力涡轮机中的这个拉动和推动会激发塔架的共振频率,如在曲线图D中通过塔架偏转710所显示的那样。在曲线图D中以毫重力(milligravity)的单位(1g=9.81m/s2)显示了塔架振动。大体上,已知的风力涡轮机的这种共振需要使风力涡轮机停机。与此相反,由于在示例性风力涡轮机中有更低的变桨速率,所以对应的塔架偏转712比已知的风力涡轮机中的更低。在此实例中,塔架偏转712不会导致塔架的共振。因此,在此实例中,当识别到超速状态时,示例性风力涡轮机的变桨不需要使它停机。此外,与已知的风力涡轮机相比,显著地减小了在变桨期间作用在示例性风力涡轮机上的载荷。This pulling and pushing in known wind turbines excites the resonant frequency of the tower, as shown in graph D by tower deflection 710 . In graph D the tower vibration is shown in units of milligravity (1 g = 9.81 m/s 2 ). Generally, such resonances of known wind turbines require shutting down the wind turbine. In contrast, due to the lower pitch rate in the exemplary wind turbine, the corresponding tower deflection 712 is lower than in known wind turbines. In this example, tower deflection 712 does not cause resonance of the tower. Thus, in this example, pitching the exemplary wind turbine need not shut it down when an overspeed condition is identified. Furthermore, the loads acting on the exemplary wind turbine during pitching are significantly reduced compared to known wind turbines.
上面详细地描述了用于运行风力涡轮机的系统和方法的示例性实施例。系统和方法不限于本文中描述的具体实施例,而是相反,系统的构件和/或方法的步骤可单独地以及与本文中描述的其它构件和/或步骤分开来使用。例如,方法可评价通过传感器确定的变量的值以及使用将第一变量和其它动态变量(例如风速)作为输入的适当的数学模型来确定的另一个变量的值,并且不限于仅对本文中描述的风力涡轮机系统实践。相反,该示例性实施例可结合许多其它转子叶片应用来实现和使用。Exemplary embodiments of systems and methods for operating a wind turbine are described above in detail. The systems and methods are not limited to the particular embodiments described herein, but rather, components of the systems and/or steps of the methods may be used individually and separately from other components and/or steps described herein. For example, the method may evaluate the value of a variable determined by a sensor and the value of another variable determined using a suitable mathematical model that takes as input the first variable and other dynamic variables (such as wind speed), and is not limited to only those described herein. wind turbine system practice. Rather, the exemplary embodiment may be implemented and used in conjunction with many other rotor blade applications.
此书面描述使用了实例来公开本发明,包括最佳模式,并且还使得本领域的任何技术人员能够实践本发明,包括制造和使用任何装置或系统,以及执行任何结合的方法。虽然已经在前述内容中公开了多种具体实施例,但是本领域技术人员将认可,权利要求的精神和范围允许有同等有效的修改。特别地,上面描述的实施例的相互非排它性特征可彼此结合。本发明的可授予专利的范围由权利要求限定,并且可包括本领域技术人员想到的其它实例。如果这样的其它实例具有不异于权利要求的字面语言的结构元素,或如果它们包括与权利要求的字面语言无实质性差异的等效结构元素,则这样的其它实例意图处于权利要求的范围内。This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. While various specific embodiments have been disclosed in the foregoing description, those skilled in the art will recognize that the spirit and scope of the claims allow for equally effective modifications. In particular, mutually non-exclusive features of the embodiments described above may be combined with each other. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims .
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/856767 | 2010-08-16 | ||
US12/856,767 US8210811B2 (en) | 2010-08-16 | 2010-08-16 | Apparatus and method for operation of a wind turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102374124A CN102374124A (en) | 2012-03-14 |
CN102374124B true CN102374124B (en) | 2015-06-17 |
Family
ID=44143116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110238090.4A Active CN102374124B (en) | 2010-08-16 | 2011-08-12 | Apparatus and method for operation of a wind turbine |
Country Status (4)
Country | Link |
---|---|
US (1) | US8210811B2 (en) |
CN (1) | CN102374124B (en) |
DE (1) | DE102011052666A1 (en) |
DK (1) | DK178157B1 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2404059B1 (en) * | 2009-03-02 | 2013-10-23 | Suzlon Energy GmbH | Method for monitoring wind turbines |
DE102009057062A1 (en) * | 2009-12-04 | 2011-06-09 | Nordex Energy Gmbh | Method for operating a variable speed wind turbine and such a wind turbine |
EP2365215B1 (en) * | 2010-03-10 | 2012-12-12 | Siemens Aktiengesellschaft | Rotational speed control of a wind turbine based on rotor acceleration |
ES2668476T3 (en) * | 2012-04-23 | 2018-05-18 | Vestas Wind Systems A/S | A method for controlling a wind turbine during shutdown |
ES2491015B1 (en) * | 2012-09-28 | 2015-09-17 | Acciona Windpower, S.A. | METHOD OF AIRCRAFT CONTROL |
EP2746885A1 (en) * | 2012-12-18 | 2014-06-25 | Alstom Wind, S.L.U. | Method of monitoring the condition of a wind turbine |
US10001108B2 (en) * | 2013-01-09 | 2018-06-19 | General Electric Company | Method and apparatus for operating a wind turbine with a variable speed limit that may be above or below a predetermined speed limit depending on whether there is an estimated detrimental overspeed state |
EP2767709B1 (en) * | 2013-02-14 | 2017-04-26 | Siemens Aktiengesellschaft | Wind turbine control method and system |
EP2886856B1 (en) * | 2013-12-20 | 2019-10-02 | Siemens Gamesa Renewable Energy A/S | Detecting a pitch angle adjustment fault |
DE102013227055A1 (en) * | 2013-12-23 | 2015-06-25 | Robert Bosch Gmbh | Method for determining a rotational angle position and / or a rotational speed |
US10100812B2 (en) * | 2014-06-30 | 2018-10-16 | General Electric Company | Methods and systems to operate a wind turbine system |
US9920744B2 (en) * | 2015-05-04 | 2018-03-20 | General Electric Company | System and method for detecting rotor asymmetry |
GB2538750B (en) * | 2015-05-27 | 2020-08-12 | Ecotricity Group Ltd | Method of determining a wind speed and a braking torque of a wind turbine |
ES2940902T3 (en) * | 2015-05-27 | 2023-05-12 | Siemens Gamesa Renewable Energy As | Tilt system lock arrangement |
US10316822B2 (en) | 2016-11-01 | 2019-06-11 | General Electric Company | System and method for improved overspeed monitoring of a wind turbine operating at reduced rotor speeds |
US10634121B2 (en) | 2017-06-15 | 2020-04-28 | General Electric Company | Variable rated speed control in partial load operation of a wind turbine |
CN107131100A (en) * | 2017-06-20 | 2017-09-05 | 浙江运达风电股份有限公司 | A kind of speed-changing oar-changing Wind turbines fitful wind control method |
US11473564B2 (en) * | 2018-01-18 | 2022-10-18 | General Electric Company | System and method for monitoring a wind turbine pitch bearing |
CN112005009B (en) * | 2018-04-29 | 2024-04-19 | 通用电气可再生能源西班牙有限公司 | System and method for improved overspeed monitoring of a wind turbine operating at a reduced rotor speed |
CN110761945B (en) * | 2018-07-27 | 2020-11-03 | 北京金风科创风电设备有限公司 | Wind turbine blade stall control method and device |
US11274654B2 (en) * | 2018-10-25 | 2022-03-15 | General Electric Company | System and method for application of a brake for a wind turbine |
CN109458295B (en) * | 2018-12-29 | 2023-10-20 | 北京金风科创风电设备有限公司 | Variable pitch control method and device of wind generating set, electronic equipment and medium |
US11261844B2 (en) * | 2019-02-28 | 2022-03-01 | General Electric Company | System and method for predicting wind turbine shutdowns due to excessive vibration |
EP3741990A1 (en) * | 2019-05-20 | 2020-11-25 | Siemens Gamesa Renewable Energy A/S | Device and method for controlling a wind turbine based on a change element |
CN113969871B (en) * | 2020-07-23 | 2023-06-16 | 新疆金风科技股份有限公司 | Early warning method and early warning device for toothed belt of pitch system |
EP3961028A1 (en) | 2020-08-28 | 2022-03-02 | Siemens Gamesa Renewable Energy A/S | Reduction of a pitch bearing damage |
US11199175B1 (en) | 2020-11-09 | 2021-12-14 | General Electric Company | Method and system for determining and tracking the top pivot point of a wind turbine tower |
CN112922777A (en) * | 2021-02-22 | 2021-06-08 | 华电电力科学研究院有限公司 | Wind turbine generator overspeed manual/automatic emergency yawing method |
US11703033B2 (en) | 2021-04-13 | 2023-07-18 | General Electric Company | Method and system for determining yaw heading of a wind turbine |
US11536250B1 (en) | 2021-08-16 | 2022-12-27 | General Electric Company | System and method for controlling a wind turbine |
CN113606085A (en) * | 2021-08-23 | 2021-11-05 | 哈电风能有限公司 | Yaw control method, controller and system based on failure condition of variable pitch system |
US12066010B2 (en) | 2022-04-04 | 2024-08-20 | Ge Infrastructure Technology Llc | Method and system for determining and tracking wind turbine tower deflection |
EP4375502A1 (en) * | 2022-11-25 | 2024-05-29 | Wobben Properties GmbH | Method for controlling a wind turbine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7095131B2 (en) * | 1997-08-08 | 2006-08-22 | General Electric Company | Variable speed wind turbine generator |
CN1860317A (en) * | 2003-09-30 | 2006-11-08 | 日立建机株式会社 | Traveling control device of hydraulically driven vehicle and hydraulically driven vehicle |
US7271571B2 (en) * | 2004-10-15 | 2007-09-18 | General Electric Company | Anti-islanding protection systems for synchronous machine based distributed generators |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6420795B1 (en) * | 1998-08-08 | 2002-07-16 | Zond Energy Systems, Inc. | Variable speed wind turbine generator |
US7317260B2 (en) * | 2004-05-11 | 2008-01-08 | Clipper Windpower Technology, Inc. | Wind flow estimation and tracking using tower dynamics |
US7121795B2 (en) * | 2004-06-30 | 2006-10-17 | General Electric Company | Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed |
JP4468751B2 (en) * | 2004-06-30 | 2010-05-26 | 富士重工業株式会社 | Horizontal axis wind turbine and its standby method |
US7822560B2 (en) * | 2004-12-23 | 2010-10-26 | General Electric Company | Methods and apparatuses for wind turbine fatigue load measurement and assessment |
WO2006129509A1 (en) * | 2005-05-31 | 2006-12-07 | Fuji Jukogyo Kabushiki Kaisha | Horizontal axis windmill |
US7476985B2 (en) * | 2005-07-22 | 2009-01-13 | Gamesa Innovation & Technology, S.L. | Method of operating a wind turbine |
WO2007089136A2 (en) * | 2006-02-03 | 2007-08-09 | Pantheon Bv | Wind turbine tower vibration damping |
DE602006019634D1 (en) * | 2006-03-15 | 2011-02-24 | Siemens Ag | Wind turbine and method for determining at least one rotation parameter of a wind turbine rotor |
GB2458400B (en) * | 2007-05-04 | 2010-02-17 | Insensys Ltd | Wind turbine monitoring |
US20100060001A1 (en) * | 2008-07-31 | 2010-03-11 | Mariah Power, Inc. | Wind turbine safety system and methods |
US7972112B2 (en) * | 2009-10-29 | 2011-07-05 | General Electric Company | Systems and methods for determining the angular position of a wind turbine rotor |
US8303251B2 (en) * | 2009-10-29 | 2012-11-06 | General Electric Company | Systems and methods for assembling a pitch assembly for use in a wind turbine |
US8070439B2 (en) * | 2009-10-29 | 2011-12-06 | General Electric Company | Systems and methods for testing a wind turbine pitch control system |
US7755210B2 (en) * | 2009-12-04 | 2010-07-13 | General Electric Company | System and method for controlling wind turbine actuation |
-
2010
- 2010-08-16 US US12/856,767 patent/US8210811B2/en active Active
-
2011
- 2011-08-09 DK DK201170439A patent/DK178157B1/en active
- 2011-08-12 CN CN201110238090.4A patent/CN102374124B/en active Active
- 2011-08-12 DE DE102011052666A patent/DE102011052666A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7095131B2 (en) * | 1997-08-08 | 2006-08-22 | General Electric Company | Variable speed wind turbine generator |
CN1860317A (en) * | 2003-09-30 | 2006-11-08 | 日立建机株式会社 | Traveling control device of hydraulically driven vehicle and hydraulically driven vehicle |
US7271571B2 (en) * | 2004-10-15 | 2007-09-18 | General Electric Company | Anti-islanding protection systems for synchronous machine based distributed generators |
Also Published As
Publication number | Publication date |
---|---|
US20110142620A1 (en) | 2011-06-16 |
DK178157B1 (en) | 2015-07-06 |
US8210811B2 (en) | 2012-07-03 |
DE102011052666A1 (en) | 2012-02-16 |
DK201170439A (en) | 2012-02-17 |
CN102374124A (en) | 2012-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102374124B (en) | Apparatus and method for operation of a wind turbine | |
EP3056726B1 (en) | System and method for operating a wind turbine based on rotor blade margin | |
EP3218600B1 (en) | System and method for estimating rotor blade loads of a wind turbine | |
CN102022265B (en) | System and methods for determining a cut-out limit for a wind turbine | |
CN204099126U (en) | For the system of load reducing to act on wind turbine in response to instantaneous wind condition | |
CN102032108B (en) | Method and system for controlling wind turbine | |
CN106795857B (en) | Method of improving the balance of a rotor in a wind turbine and wind turbine system | |
US10337495B2 (en) | System and method for reducing vortex-induced tower vibrations of a wind turbine | |
US9920742B2 (en) | Dynamic cut-in wind speed for wind turbines | |
EP2570657B1 (en) | Wind turbine sound management | |
CN102052244B (en) | Systems and methods for assembling pitch assembly for use in wind turbine | |
EP2559897A2 (en) | Method and system for detecting an unusual operational condition of a wind turbine | |
US11098698B2 (en) | System and method for auto-calibrating a load sensor system of a wind turbine | |
EP2754888B1 (en) | Method and apparatus for operating a wind turbine | |
EP3415752A1 (en) | Variable rated speed control in partial load operation of a wind turbine | |
US11608811B2 (en) | System and method for mitigating loads acting on a rotor blade of a wind turbine | |
CN115263676A (en) | System and method for slip detection and surface health monitoring in a slip coupling of a rotating shaft | |
EP3699421B1 (en) | Method of dynamically adjusting a rate of change of a rotor speed set point during wind turbine shutdown | |
EP4467805A1 (en) | Detecting rotor imbalance in a wind turbine | |
JP2025056729A (en) | Method for estimating the values of wind turbine operating parameters | |
CN116696661A (en) | Vibration in wind turbines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240104 Address after: Barcelona, Spain Patentee after: Ge renewable energy Spain Ltd. Address before: New York, United States Patentee before: General Electric Co. |
|
TR01 | Transfer of patent right |