CN102347695A - Series resonant converter - Google Patents
Series resonant converter Download PDFInfo
- Publication number
- CN102347695A CN102347695A CN2011100309990A CN201110030999A CN102347695A CN 102347695 A CN102347695 A CN 102347695A CN 2011100309990 A CN2011100309990 A CN 2011100309990A CN 201110030999 A CN201110030999 A CN 201110030999A CN 102347695 A CN102347695 A CN 102347695A
- Authority
- CN
- China
- Prior art keywords
- voltage
- capacitor
- current
- resistor
- switches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明通过向变压器的次级绕组添加额外的电容器以在开关单元接通时快速增大变压器的初级绕组的谐振电流来提供可减少开关损耗、同时改善效率的高效串联谐振转换器。串联谐振转换器可满足开关单元接通时的零电压和零电流开关条件,以及开关单元关断时的零电压开关条件,由此大大减少开关损耗。此外,有可能通过在次级绕组上的次级电容器充电时快速增大谐振电流来改善转换器效率。
The present invention provides a high-efficiency series resonant converter that can reduce switching losses while improving efficiency by adding an extra capacitor to the secondary winding of the transformer to quickly increase the resonant current of the primary winding of the transformer when the switching unit is turned on. The series resonant converter can satisfy the zero-voltage and zero-current switching conditions when the switching unit is turned on, and the zero-voltage switching condition when the switching unit is turned off, thereby greatly reducing switching losses. Furthermore, it is possible to improve the converter efficiency by rapidly increasing the resonant current while charging the secondary capacitor on the secondary winding.
Description
技术领域 technical field
本发明涉及串联谐振转换器,尤其涉及通过改善谐振电流波形来提供减小的开关损耗和增大的效率的高效串联谐振转换器。The present invention relates to series resonant converters, and more particularly to high efficiency series resonant converters that provide reduced switching losses and increased efficiency by improving the resonant current waveform.
背景技术 Background technique
直流-直流转换器是用于将直流(DC)源从一个电压电平转换到另一个电压电平的电子电路。通常,直流-直流转换器将直流电压转换成交流(AC)电压,通过变压器升高或者降低该交流电压,且将经升高或降低的交流电压转换成直流电压。A DC-DC converter is an electronic circuit used to convert a direct current (DC) source from one voltage level to another. Generally, a DC-DC converter converts a DC voltage into an Alternating Current (AC) voltage, steps up or down the AC voltage through a transformer, and converts the boosted or down AC voltage into a DC voltage.
串联谐振转换器(SRC)是直流-直流转换器的一个示例。A series resonant converter (SRC) is an example of a DC-DC converter.
图1是常规SRC的电路图。该SRC使用由电感器Lr和电容器Cr生成的谐振,且呈现良好的转换效率。FIG. 1 is a circuit diagram of a conventional SRC. This SRC uses the resonance generated by the inductor Lr and the capacitor Cr, and exhibits good conversion efficiency.
参考图1,该SRC包括开关单元20、LC谐振电路30、变压器TX、桥式整流器40、以及门驱动器51。开关单元20包括多个开关S 1-S4以通过交变直流电压将来自输入电压源10的直流电压改变成交流电压。该LC谐振电路30连接到开关单元20,且包括彼此串联连接的谐振电感器Lr和谐振电容器Cr。LC谐振电路30使用由谐振电感器Lr和谐振电容器Cr生成的谐振来改变来自开关单元20的交流电压的频率特性。变压器TX将初级电压,即来自LC谐振电路30的交流电压转换成次级电压。桥式整流器40将次级交流电压转换成直流电压。门驱动器51控制开关单元20以控制负载电流的振幅和形状。Referring to FIG. 1 , the SRC includes a
SRC还包括对来自桥式整流器40的直流电压进行滤波且将经滤波的直流电压施加到负载60的电容器C0。The SRC also includes a capacitor C 0 that filters the DC voltage from the
SRC是使用以全桥结构互连的诸如绝缘栅双极型晶体管(IGBT)或者金属氧化物半导体场效应晶体管(MOSFET)的四个半导体开关S1-S4来实现的全桥脉宽调制(PWM)转换器。开关S1-S4并联连接至反并联二极管D1-D4,且与缓冲电容器CS1-CS4并联。SRC is a full-bridge pulse-width modulation (PWM) implemented using four semiconductor switches S1-S4, such as insulated-gate bipolar transistors (IGBTs) or metal-oxide-semiconductor field-effect transistors (MOSFETs), interconnected in a full-bridge configuration. converter. Switches S1-S4 are connected in parallel to anti-parallel diodes D1-D4, and in parallel with snubber capacitors CS1-CS4.
开关单元20通过在门驱动器51的控制下同步接通或者关断一对开关S1和S4、或者另一对开关S2和S3来将直流电压转换成交流电压。交流电压通过LC谐振电路30传输到变压器TX的次级绕组TX2。The
LC谐振电路30包括谐振电感器Lr和谐振电容器Cr,它们在开关S 1和S2的接触节点与开关S3和S4的另一接触节点之间串联连接到变压器TX的初级绕组TX1。该LC谐振电路30在谐振电感器Lr和谐振电容器Cr中存储能量以及输出能量。The
该变压器TX通过次级绕组TX2输出来自LC谐振电路30的能量。次级绕组TX2中的感生电压按次级绕组TX2中的匝数的数量和初级绕组TX1中的匝数的数量的比率确定。The transformer TX outputs energy from the
包括四个整流二极管RD1-RD4的桥式整流器40将从次级绕组TX2输出的感生交流电压转换成直流电压。该直流电压通过电容器C0来进行滤波,且然后输出到负载60。A
该门驱动器51在SRC的驱动以及功率转换过程期间使开关S1-S4接通和关断。门驱动器51接收脉冲电压信号作为输入且生成驱动信号,即选通信号以使开关S1-S4接通和关断。The
在半导体开关S1-S4的开关操作期间,随各开关中的预定延迟和梯度改变电压和电流。因此,当开关S1-S4接通或关断时,可存在电压和电流可同步施加到开关的段,即电压和电流部分交迭的段。在该段中,可发生对应于电压和电流的乘积V×I的开关损耗。During switching operation of the semiconductor switches S1-S4, the voltage and current vary with predetermined delays and gradients in each switch. Thus, when the switches S1-S4 are turned on or off, there may be segments where voltage and current may be applied to the switches synchronously, ie, segments where the voltage and current partially overlap. In this section, switching loss corresponding to the product V×I of voltage and current may occur.
举例而言,当IGBT截止时,在IGBT两端完全施加电压之后尾电流可继续流动,从而造成严重的开关损耗。For example, when an IGBT is turned off, tail current can continue to flow after the voltage is fully applied across the IGBT, causing severe switching losses.
开关损耗降低转换器的效率且造成开关变热。此外,开关损耗与开关的开关频率成比例地增大,从而限制开关的最大开关频率。Switching losses reduce the efficiency of the converter and cause the switches to heat up. Furthermore, switching losses increase in proportion to the switching frequency of the switch, thereby limiting the maximum switching frequency of the switch.
为了减少开关损耗,已提出诸如零电压开关(ZVS)、零电流开关(ZCS)、以及零电压零电流(ZVZCS)的各种开关机制。In order to reduce switching losses, various switching mechanisms such as zero voltage switching (ZVS), zero current switching (ZCS), and zero voltage zero current (ZVZCS) have been proposed.
为了实现ZVS、ZCS和ZVZCS以减少开关损耗,如图1所示,提供负载谐振转换器,其通过将电感器Lr和电容器Cr连接到变压器TX的初级绕组TX1来使用LC谐振。LC谐振可允许转换器生成满足零电压和零电流条件的电压和电流波形。此外,LC谐振电路可允许负载电压和负载电流振荡,由此实现ZVS、ZVC或者ZVZCS。In order to realize ZVS, ZCS and ZVZCS to reduce switching loss, as shown in FIG. 1 , a load resonant converter is provided which uses LC resonance by connecting an inductor Lr and a capacitor Cr to the primary winding TX1 of the transformer TX. LC resonance allows the converter to generate voltage and current waveforms that satisfy the zero voltage and zero current conditions. In addition, the LC resonance circuit can allow the load voltage and load current to oscillate, thereby realizing ZVS, ZVC or ZVZCS.
图2是描绘取决于负载谐振转换器中的开关频率fs的谐振电流iL特性的曲线图。负载谐振转换器的开关操作取决于开关频率可分为两个模式,即非连续传导模式(DCM)和连续传导模式(CCM)。在DCM中,在开关频率fs比电感器和电容器的谐振频率fr低的段中执行开关操作。在CCM中,在开关频率fs比谐振频率fr高的段中执行开关操作。Fig. 2 is a graph depicting the characteristics of the resonant current i L depending on the switching frequency fs in the load resonant converter. The switching operation of a load resonant converter can be classified into two modes, discontinuous conduction mode (DCM) and continuous conduction mode (CCM), depending on the switching frequency. In DCM, the switching operation is performed in a section where the switching frequency fs is lower than the resonance frequency fr of the inductor and capacitor. In CCM, switching operation is performed in a section where the switching frequency fs is higher than the resonance frequency fr.
图3a和3b是描绘由常规负载谐振转换器中的LC谐振造成的典型电压和电流波形的曲线图(为了方便起见,示出半桥结构)。图3a示出DCM中的谐振波形,而图3b示出CCM中的谐振波形。电流iL指示电感器电流且电压vC指示电容器电压。Figures 3a and 3b are graphs depicting typical voltage and current waveforms resulting from LC resonance in a conventional load resonant converter (half bridge configuration shown for convenience). Figure 3a shows the resonance waveform in DCM, while Figure 3b shows the resonance waveform in CCM. Current i L indicates the inductor current and voltage v C indicates the capacitor voltage.
参考图3a,在DCM中的开关频率fs比谐振频率fr低的一个周期期间,当全桥结构的一对开关接通以允许电流流动时,电流在电感器Lr中积聚。积聚的电能被传递到电容器Cr,由此增大电容器电压vC。积聚在电感器Lr中的电能完全耗散之后,电容器的极性翻转,从而造成电流iL反方向流动。然后一对开关关断。因此,出现其中没有电流流动的不连续段。Referring to Fig. 3a, during one period in which the switching frequency fs in DCM is lower than the resonant frequency fr, when a pair of switches of the full bridge structure is turned on to allow current to flow, current builds up in the inductor Lr. The accumulated electrical energy is transferred to the capacitor Cr, thereby increasing the capacitor voltage v C . After the energy accumulated in the inductor Lr is completely dissipated, the polarity of the capacitor is reversed, causing the current i L to flow in the opposite direction. Then a pair of switches are turned off. Therefore, a discontinuous section occurs in which no current flows.
在该不连续段中,当另一对开关接通时在反方向上施加电压vC和电流iL。相应地,因为存在其中电流不连续流动的不连续段,所以可执行零电流接通开关。In this discontinuous segment, voltage v C and current i L are applied in opposite directions when the other pair of switches is turned on. Accordingly, since there is a discontinuous section in which current flows discontinuously, zero-current turn-on switching can be performed.
参考图3b,在CCM中的开关频率fs比谐振频率fr高的一个周期期间,当一对开关接通时电感器电流iL增大,且然后电容器电压vC增大时电感器电流iL减小。当一对开关关断时电流不再流动。当另一对开关接通时(即,零电流接通开关),以反方向施加电压。结果,当电压开始下降时在反方向上施加电流。这样,完成了一个开关周期。即,电流在一个周期期间连续流动。Referring to Figure 3b, during one cycle in CCM where the switching frequency fs is higher than the resonant frequency fr, the inductor current i L increases when a pair of switches are turned on, and then the capacitor voltage v increases when the inductor current i L decrease. Current no longer flows when a pair of switches is turned off. When the other pair of switches is on (ie, zero current turns on the switches), the voltage is applied in the opposite direction. As a result, current is applied in the opposite direction when the voltage starts to drop. In this way, one switching cycle is completed. That is, current flows continuously during one cycle.
在该两个模式中,通过脉冲频率调制(PFM)来控制输出电流。在DCM中,较高的频率造成输出电流的增大。在CCM中,较低的频率造成谐振电流的增大,由此增大全波整流之后输出的负载电流。In both modes, the output current is controlled by pulse frequency modulation (PFM). In DCM, higher frequencies cause an increase in output current. In CCM, a lower frequency causes an increase in the resonant current, thereby increasing the output load current after full-wave rectification.
在CCM中,当在相同频率操作条件下接通开关以将接近方波的波形赋予谐振电流时谐振电流iL急剧增大时,该谐振电流可具有增大的有效值。结果,转换器可呈现改善的效率。In CCM, when the resonance current i L increases sharply when the switch is turned on to impart a waveform close to a square wave to the resonance current under the same frequency operation condition, the resonance current may have an increased effective value. As a result, the converter can exhibit improved efficiency.
因此,需要用于在CCM中快速增大谐振电流iL以获得具有效率改善的转换器的技术。Therefore, there is a need for techniques for quickly increasing the resonant current i L in CCM to obtain a converter with improved efficiency.
发明内容 Contents of the invention
本发明构想成解决以上所述的现有技术的问题,且本发明的一方面通过改善连续传导模式中开关操作中的谐振电流波形来提供能够减少开关损耗和改善效率的高效串联谐振转换器。The present invention is conceived to solve the problems of the prior art described above, and an aspect of the present invention provides a high-efficiency series resonant converter capable of reducing switching loss and improving efficiency by improving the resonance current waveform in switching operation in continuous conduction mode.
根据本发明的一个方面,高效串联谐振转换器包括:包括多个开关的开关单元,用于通过交变直流电压将直流(DC)电压转换成交流(AC)电压;LC谐振电路,其包括串联连接的谐振电感器和谐振电容器,连接到开关单元,且使用由谐振电感器和谐振电容器生成的谐振来转换传输自开关单元的交流电压的频率特性;包括初级绕组和次级绕组的变压器,该初级绕组连接到LC谐振电路,且次级绕组中的感生电压与次级绕组中匝数的数量和初级绕组中匝数的数量的比率成比例;次级电容器,其连接到变压器的次级绕组且与变压器并联;包括多个整流二极管的全桥整流器,用于将在次级绕组中感生的交流电压转换成直流电压;以及门驱动器,其检测连接到开关的反并联二极管的导通,且当反并联二极管导通时输出导通选通信号以接通开关。According to an aspect of the present invention, a high-efficiency series resonant converter includes: a switching unit including a plurality of switches for converting a direct current (DC) voltage into an alternating current (AC) voltage by an alternating direct current voltage; an LC resonant circuit comprising a series a resonant inductor and a resonant capacitor connected, connected to the switching unit, and converting frequency characteristics of an AC voltage transmitted from the switching unit using resonance generated by the resonant inductor and the resonant capacitor; a transformer including a primary winding and a secondary winding, the The primary winding is connected to the LC resonant circuit, and the induced voltage in the secondary winding is proportional to the ratio of the number of turns in the secondary winding to the number of turns in the primary winding; the secondary capacitor, which is connected to the secondary of the transformer winding and connected in parallel with the transformer; a full-bridge rectifier including multiple rectifying diodes to convert the AC voltage induced in the secondary winding to DC voltage; and a gate driver that detects the conduction of the anti-parallel diodes connected to the switch , and output a conduction gating signal to turn on the switch when the antiparallel diode is conducting.
次级电容器可具有比谐振电容器小的电容。The secondary capacitor may have a smaller capacitance than the resonant capacitor.
次级电容器可具有比由整流二极管和负载组成的电路低的阻抗,且用在次级绕组中感生的负载电流充电的次级电容器可造成LC谐振电路的谐振电流快速增大。The secondary capacitor may have a lower impedance than the circuit consisting of the rectifying diode and the load, and charging the secondary capacitor with the load current induced in the secondary winding may cause the resonant current of the LC resonant circuit to increase rapidly.
门驱动器可包括:连接到向其输入脉冲电压信号的输入端的第一电阻器;并联连接到输入端处的第一电阻器且用通过输入端施加的导通脉冲电压充电的电容器;包括源极、栅极和漏极的半导体开关,源极、栅极和漏极分别连接到输入端、电容器的输出节点和连接到开关单元的开关的输出端的栅极节点;在半导体开关的漏极和输出端的栅极节点之间连接的第三电阻器;以及通过第一电阻器和电容器连接到输入端以形成传导路径的第四电阻器。The gate driver may include: a first resistor connected to an input terminal to which a pulse voltage signal is input; a capacitor connected in parallel to the first resistor at the input terminal and charged with the turn-on pulse voltage applied through the input terminal; including a source , gate and drain of the semiconductor switch, the source, gate and drain are respectively connected to the input terminal, the output node of the capacitor and the gate node connected to the output terminal of the switch of the switching unit; at the drain and output of the semiconductor switch a third resistor connected between the gate node of the terminal; and a fourth resistor connected to the input terminal through the first resistor and capacitor to form a conduction path.
该第二电阻器可具有比第四电阻器大的电阻。The second resistor may have a greater resistance than the fourth resistor.
附图简述Brief description of the drawings
根据结合所附附图给出的示例性实施例的以下描述,本发明的以上和其它方面、特征以及优点将变得显而易见,其中:The above and other aspects, features and advantages of the present invention will become apparent from the following description of exemplary embodiments given in conjunction with the accompanying drawings, in which:
图1是常规串联谐振转换器的电路图;Figure 1 is a circuit diagram of a conventional series resonant converter;
图2是描绘取决于负载谐振转换器中的开关频率的谐振电流特性的曲线图;2 is a graph depicting a resonant current characteristic depending on a switching frequency in a load resonant converter;
图3a和3b是描绘由常规负载谐振转换器中的LC谐振造成的典型电压和电流波形的曲线图;Figures 3a and 3b are graphs depicting typical voltage and current waveforms caused by LC resonance in a conventional load resonant converter;
图4是根据本发明一示例性实施例的串联谐振转换器的电路图;4 is a circuit diagram of a series resonant converter according to an exemplary embodiment of the present invention;
图5是描绘根据本发明一示例性实施例的串联谐振转换器中的连续传导模式的电压和电流波形的曲线图;5 is a graph depicting voltage and current waveforms for continuous conduction mode in a series resonant converter according to an exemplary embodiment of the present invention;
图6是描绘示例性串联谐振转换器和常规串联谐振转换器中的连续传导模式的电压和电流波形的比较性曲线图;6 is a comparative graph depicting voltage and current waveforms for continuous conduction mode in an exemplary series resonant converter and a conventional series resonant converter;
图7-14是示出根据本发明一示例性实施例的串联谐振转换器中各模式的操作的电路图;7-14 are circuit diagrams illustrating operations in various modes in a series resonant converter according to an exemplary embodiment of the present invention;
图15是根据本发明一示例性实施例的串联谐振转换器的门驱动器的电路图;15 is a circuit diagram of a gate driver of a series resonant converter according to an exemplary embodiment of the present invention;
图16示出作为对图15所示的门驱动器的输入信号的脉冲电压信号;Fig. 16 shows the pulse voltage signal as the input signal to the gate driver shown in Fig. 15;
图17示出作为来自图15所示的门驱动器的输出信号的选通信号;FIG. 17 shows a gate signal as an output signal from the gate driver shown in FIG. 15;
图18是描绘示例性串联谐振转换器的谐振电流和选通信号相对于时间的曲线图;以及18 is a graph depicting resonant current and gating signal versus time for an exemplary series resonant converter; and
图19-22是示出根据本发明一示例性实施例的门驱动器中各模式的操作的电路图。19-22 are circuit diagrams illustrating operations of respective modes in a gate driver according to an exemplary embodiment of the present invention.
具体实施方式 Detailed ways
现在将参考附图对发明的示例性实施例进行具体描述。Exemplary embodiments of the invention will now be described in detail with reference to the accompanying drawings.
本发明通过改善谐振电流波形来提供能够减少开关损耗同时改善效率的串联谐振转换器。更具体而言,根据本发明一示例性实施例的串联谐振转换器可通过添加至变压器的次级绕组的电容器改善连续传导模式的开关操作中的谐振电流波形来减少开关损耗和改善效率。The present invention provides a series resonant converter capable of reducing switching loss while improving efficiency by improving the resonance current waveform. More specifically, a series resonant converter according to an exemplary embodiment of the present invention may reduce switching loss and improve efficiency by improving a resonant current waveform in switching operation in continuous conduction mode through a capacitor added to a secondary winding of a transformer.
图4是根据本发明一示例性实施例的串联谐振转换器(SRC)的电路图。FIG. 4 is a circuit diagram of a series resonant converter (SRC) according to an exemplary embodiment of the present invention.
参考图4,该SRC包括开关单元20、LC谐振电路30、变压器TX、电容器C2、桥式整流器40、以及门驱动器51。开关单元20包括多个开关S1-S4,该多个开关S1-S4用于通过交变直流电压将来自输入电压源10的直流(DC)电压转换成交流(AC)电压。LC谐振电路30使用LC谐振以变换来自开关单元20的交流电压的频率特性。变压器TX将初级电压,即来自LC谐振电路30的交流电压转换成次级电压。电容器C2连接到变压器TX的次级绕组TX2,且与变压器TX并联。桥式整流器40将在变压器TX的次级绕组TX2中感生的交流电压转换成直流电压。门驱动器51控制开关单元20以控制负载电流的振幅和形状。Referring to FIG. 4 , the SRC includes a
该SRC具有的结构类似于常规SRC的结构。即,开关单元20包括诸如IGBT或者MOSFET的四个半导体开关S1-S4,其以全桥结构连接;反并联二极管D1-D4并联连接到开关S1-S4;且缓冲电容器CS1-CS4并联连接到二极管D1-D4。This SRC has a structure similar to that of a conventional SRC. That is, the switching
此外,以类似于常规SRC结构的结构来实现该SRC。即,开关单元20中的一对开关S1和S4或者另一对开关S2和S3在门驱动器51的驱动信号(选通信号)下同步接通或者关断,以将直流电压转换成交流电压,且该交流电压通过LC谐振电路30传输到变压器TX的初级绕组TX1;LC谐振电路30包括谐振电感器Lr和谐振电容器Cr,在开关S1和S2的接触节点与开关S3和S4的另一接触节点之间它们串联连接到变压器TX的初级绕组TX1以减少开关损耗;变压器TX将初级电压转换成变压器TX的次级绕组TX2两端的次级电压;包括整流二极管RD1-RD4的桥式整流器40将次级绕组TX2两端的感生交流电压转换成直流电压;且该经整流的直流电压由电容器C0来进行滤波,然后输出到负载60。Furthermore, the SRC is implemented in a structure similar to that of a conventional SRC. That is, a pair of switches S1 and S4 or another pair of switches S2 and S3 in the
但是在该实施例中,SRC还包括另一电容器C2,该电容器C2在次级绕组TX2上并联连接到变压器TX。该次级电容器C2允许SRC产生改善的谐振电流波形,由此减小开关损耗同时改善SRC的效率。In this embodiment, however, the SRC also comprises a further capacitor C2 connected in parallel across the secondary winding TX2 to the transformer TX. The secondary capacitor C2 allows the SRC to generate an improved resonant current waveform, thereby reducing switching losses while improving the efficiency of the SRC.
对于以下所述的各模式的操作而言,次级电容器C2具有比谐振电容器Cr小的电容。举例而言,次级电容器C2可具有是谐振电容器Cr的电容(例如3μF)的1/20~1/5的电容(例如0.3μF)。For the operation of each mode described below, the secondary capacitor C2 has a smaller capacitance than the resonance capacitor Cr. For example, the secondary capacitor C2 may have a capacitance (eg, 0.3 μF) of 1/20˜1/5 of that of the resonant capacitor Cr (eg, 3 μF).
所添加的次级电容器C2可使SCR具有比整流二极管RD1-RD4和负载60的组合低的阻抗。The added secondary capacitor C2 can make the SCR have a lower impedance than the combination of rectifier diodes RD1 - RD4 and
将参考附图描述包括次级电容器C2的SRC的各模式中的操作。The operation in each mode of the SRC including the secondary capacitor C2 will be described with reference to the drawings.
图5是描绘根据本发明一示例性实施例的SRC中的连续传导模式(CCM)的电压Vc和电流IL波形的曲线图。图6是描绘示例性SRC和常规SRC中的CCM的电压Vc和电流IL波形的比较性曲线图。5 is a graph depicting voltage Vc and current IL waveforms in a continuous conduction mode (CCM) in an SRC according to an exemplary embodiment of the present invention. 6 is a comparative graph depicting voltage Vc and current IL waveforms of CCM in an exemplary SRC and a conventional SRC.
参考图5,IL表示谐振电感器电流,VC表示谐振电容器电压,模式1的初始点指示全桥开关S1-S4中的一对开关S1和S4接通的时刻,t2指示一对开关S1和S4关断的时刻,t4指示另一对开关S2和S3接通的时刻,且t7指示一对开关S2和S3关断的时刻。Referring to Fig. 5, I L represents the resonant inductor current, V C represents the resonant capacitor voltage, the initial point of
图7-14是示出SRC在各模式中的操作的电路图。7-14 are circuit diagrams illustrating the operation of the SRC in various modes.
模式1:接通开关S1和S4且对次级电容器充电(参考图5的模式1Mode 1: Switches S1 and S4 are turned on and the secondary capacitor is charged (see Figure 5 for
当开关S1和S4接通时,来自输入电压源10的谐振电流流过开关S1、谐振电感器Lr、变压器TX的初级绕组TX1、谐振电容器Cr、以及开关S4。谐振电流即电感器电流IL如模式1所示地流动,同时电容器电压Vc升高。从初级绕组TX1感生的次级绕组TX2上的负载电流对具有低电容的并联连接到变压器TX的次级电容器C2充电。电容器C2的添加使得SRC具有比整流二极管RD1-RD4和负载60的组合低的阻抗。此外,次级电容器C2使谐振电流即感生电流IL快速增大,如图5和图6所示。When the switches S1 and S4 are turned on, the resonance current from the
模式2:向负载施加电流(参考图5的模式2和图8)Mode 2: Apply current to the load (refer to
当次级电容器C2在模式1中用次级绕组TX2上的负载电流完全充电且变得等于次级绕组TX2两端的电压时,负载电流通过整流二极管RD1和RD4流向负载60。When the secondary capacitor C2 is fully charged with the load current on the secondary winding TX2 in
模式3:开关S1和S4关断且电流续流(参考图5的模式3和图9)Mode 3: Switches S1 and S4 are off and the current freewheels (refer to
当开关S1和S4在模式2中通过移除选通信号关断时,归因于缓冲电容器CS1和CS4开关S1和S4各自两端的电压缓慢上升,且与开关S2和S3并联连接的在先前模式中已充电的缓冲电容器CS2和CS3放电。缓冲电容器CS1和CS4用通过谐振电感器Lr流动的电感器电流IL充电,且同时续流电感器电流IL。在模式3中,缓冲电容器CS2和CS3放电,且同时缓冲电容器CS1和CS4充电。当缓冲电容器CS1和CS4两端的电压变得等于电压源Vdc时,缓冲电容器CS2和CS3完全放电,从而造成开关S1和S4关断。在谐振电感器Lr和谐振电容器Cr中积聚的能量允许负载电流继续流向负载60。When switches S1 and S4 are turned off in
模式4:反并联二极管D2和D3的导通(参考图5的模式4和图10)Mode 4: Conduction of anti-parallel diodes D2 and D3 (refer to
因为在模式3中开关S1和S4关断,所以流过谐振电感器Lr的续流电流流过与开关S2和S3连接的反并联二极管D2和D3,且因此通过电压源急剧减小。开关S2和S3两端的电压则逼近零。相应地,其中电流通过反并联二极管D2和D3续流的零电压段中,即其中反并联二极管D2和D3接通或者正偏压的零电压段中导通选通信号的施加允许开关S2和S3的零电压开关。Since switches S1 and S4 are off in
模式5:开关S2和S3的零电压和零电流的接通开关(参考图5的模Mode 5: On-switching with zero voltage and zero current for switches S2 and S3 (refer to the model 式5和图11)Equation 5 and Figure 11)
在模式3中流过反并联二极管D2和D3的续流电流通过电压源急剧减小至零。然后,电压源允许电流在反方向上流动,且通过开关S2和S3流向谐振电感器Lr的谐振电流IL在反方向上流动。在模式1和模式2中充电的次级电容器C2快速放电。由在与模式1中的电流相反的方向上流过初级绕组TX1的初级电流所感生的次级绕组TX2上的负载电流在与模式1中的电流相反的方向上流过次级电容器C2。相应地,次级电容器C2由负载电流重新充电,从而造成谐振电流即电感器电流IL快速增大,如图5和图6所示。即,当反并联二极管D2和D3导通时(即,开关两端的电压为零)施加导通选通信号,且当电流的极性改变时,以零电流状态开关开关S2和S3。其结果为,实现零电压和零电流开关条件,由此最小化开关损耗。In
模式6:向负载施加电流(参考图5的模式6和图12)Mode 6: Apply current to the load (refer to
除了当开关S2和S3接通时电感器电流IL在反方向上流过谐振电感器Lr和谐振电容器Cr之外,模式6和模式2相同。当次级电容器C2完全由次级绕组TX2上的负载电流充电且电压等于次级绕组TX2上的次级电压时,负载电流通过整流二极管RD2和RD3流向负载60。
模式7:开关S2和S3关断且电流续流(参考图5的模式7和图13)Mode 7: Switches S2 and S3 are off and the current freewheels (refer to Mode 7 and Figure 13 in Figure 5)
除了电感器电流IL在反方向上流过谐振电感器Lr和谐振电容器Cr且开关S2和S3关断之外,模式7和模式3相同。具体而言,在模式7中,开关S2和S3两端的电压通过缓冲电容器CS2和CS3缓慢增大,且已在先前模式中充电的缓冲电容器CS1和CS4放电。在此时,流过谐振电感器Lr的电感器电流向缓冲电容器CS2和CS3充电且被续流。当缓冲电容器CS2和CS3两端的电压变得等于电压源Vdc时,缓冲电容器CS1和CS4完全放电,且开关S2和S3关断。在谐振电感器Lr和谐振电容器Cr中积聚的能量允许负载电流继续流向负载60。Mode 7 is the same as
模式8:反并联二极管D1和D4的导通(参考图5的模式8和图14)Mode 8: Conduction of anti-parallel diodes D1 and D4 (refer to
除了电感器电流IL在反方向上流过谐振电感器Lr和谐振电容器Cr且连接到开关S1和S4的反并联二极管D1和D4导通之外,模式8和模式4相同。
已在一个开关周期期间描述了八个模式。在模式8之后,电感器电流IL的极性改变,且重复进行其中开关S1和S4接通且次级电容器C2充电的模式1(参考图7)。模式1之后,也重复进行模式2-模式8。Eight modes have been described during one switching cycle. After
在模式8之后恢复模式1时,当反并联二极管D1和D4导通时(即,当开关S1和S4两端的电压为零时)施加导通选通信号。当电流的极性改变时,以零电流状态切换开关S1和S4。因此,满足零电压和零电流开关条件,由此最小化开关损耗。When
由此,因为向变压器TX的次级绕组TX2添加了比LC谐振电路单元30中的谐振电容器Cr的电容小的次级电容器C2,所以在初始级中电流流过次级电容器C2而非负载60且初级绕组TX1上的谐振电流IL快速增大,从而产生梯形电流波形,如图5所示。相应地,如图6所示,在相同频率下,该谐振电流IL可具有比具有正弦波形的常规谐振电流更大的有效值。Thus, since the secondary capacitor C2 smaller than the capacitance of the resonance capacitor Cr in the LC
换言之,如图6所示,因为SRC允许谐振电流比常规SRC更快地增大,所以谐振电流的有效值在相同开关频率下增大阴影面积的量(‘A+C-B’),由此改善效率。In other words, as shown in Figure 6, because the SRC allows the resonant current to increase faster than a conventional SRC, the effective value of the resonant current increases at the same switching frequency by the amount ('A+C-B') of the shaded area, given by This improves efficiency.
增大面积‘C’的电感器能量允许缓冲电容器CS1-CS4具有是常规电容器电容的10倍的电容,由此实现零电压关断条件。The increased inductor energy of area 'C' allows snubber capacitors CS1-CS4 to have a
相应地,由于在相同频率下可得到更大有效电流值,因此有可能改善该SRC的效率。此外,有可能通过降低在相同负载电流条件下的谐振电流IL的最大值来减少传导损耗。Accordingly, it is possible to improve the efficiency of the SRC since a larger effective current value is available at the same frequency. In addition, it is possible to reduce the conduction loss by reducing the maximum value of the resonance current I L under the same load current condition.
此外,通过次级电容器C2快速增大的电感器电流IL允许存储在电感器Lr中的能量增大。因此,有可能显著增大连接到开关S1-S4两端的缓冲电容器CS1-CS4的电容,由此减少开关S1-S4关断时的开关损耗。In addition, the rapidly increasing inductor current I L through the secondary capacitor C2 allows the energy stored in the inductor Lr to increase. Therefore, it is possible to significantly increase the capacitance of the snubber capacitors CS1-CS4 connected across the switches S1-S4, thereby reducing switching losses when the switches S1-S4 are turned off.
相应地,执行用于在开关S1-S4接通时将开关S1-S4各自两端的电压保持在零的零电压开关,由此减少开关损耗。Accordingly, zero-voltage switching for maintaining the voltage across each of the switches S1-S4 at zero when the switches S1-S4 are turned on is performed, thereby reducing switching loss.
在常规SRC中,因为在零电压和零电流条件下接通开关S1-S4,而开关S1-S4没有在零电压和零电流条件下关断,所以发生开关损耗。但是,在示例性SRC中,开关S1-S4在零电压条件下关断以及接通。In a conventional SRC, since the switches S1-S4 are turned on under zero voltage and zero current conditions, and the switches S1-S4 are not turned off under zero voltage and zero current conditions, switching losses occur. However, in an exemplary SRC, switches S1-S4 are turned off and turned on under zero voltage conditions.
另一方面,当反并联二极管D1-D4导通时,不容易准确地接通开关S1-S4以使可满足开关S1-S4的零电流和零电压的条件。On the other hand, when the anti-parallel diodes D1-D4 are turned on, it is not easy to turn on the switches S1-S4 accurately so that the conditions of zero current and zero voltage of the switches S1-S4 can be satisfied.
在具有宽负载范围的应用中,因为开关S1-S4各自的关断和二极管D1-D4各自的导通之间的周期取决于负载条件而变化,所以难以估计何时施加导通选通信号。In applications with a wide load range, it is difficult to estimate when the turn-on gating signal is applied because the period between the respective turn-off of the switches S1-S4 and the turn-on of the respective diodes D1-D4 varies depending on the load conditions.
在一个实施例中,当开关S1-S4两端的电压逼近零时,门驱动器在二极管D1-D4导通时自动地施加导通选通信号。In one embodiment, the gate driver automatically applies the turn-on gating signal when the diodes D1-D4 conduct when the voltage across the switches S1-S4 approaches zero.
门驱动器允许在宽操作范围中执行零电压和零电流接通开关,且还提供用于稳定操作的寂静时间补偿。The gate drivers allow zero voltage and zero current turn-on switching over a wide operating range and also provide dead time compensation for stable operation.
图15是根据本发明一示例性实施例的SRC中的门驱动器的电路图。FIG. 15 is a circuit diagram of a gate driver in an SRC according to an exemplary embodiment of the present invention.
参考图15,门驱动器51包括第一电阻器R11、电容器C11、半导体开关、第二电阻器R12、第三电阻器R13、以及第四电阻器R14。第一电阻器R11连接到输入端52,脉冲电压信号输入至该输入端52。电容器C11并联连接到输入端52处的第一电阻器R11,且用通过输入端52和53施加的导通脉冲电压来充电。该半导体开关包括源极、栅极和漏极,该源极、栅极和漏极分别连接到输入端51、电容器C11的输出节点以及连接到开关单元20的开关S1-S4的输出端的栅极节点55。第二电阻器R12连接在第一电阻器R11和输出端的集电极节点54之间。第三电阻器R13连接在半导体开关的漏极和输出端的栅极节点55之间。第四电阻器R14通过第一电阻器R11和电容器C11连接到输入端52以形成传导路径。Referring to FIG. 15, the
门驱动器51还包括第一二极管D11、第二二极管D12、以及第六电阻器R16。该第一二极管D11在第二电阻器R12和输出端的集电极节点54之间串联连接到第二电阻器R12。第二二极管D12置于在输入端53和输出端56之间的支路电路中。第六电阻器R16连接到第五电阻器R15和第三电阻器R13以在它们之间形成传导路径。The
在由此配置的电路中,作为输入信号向输入端52和53施加具有(+)和(-)极性的脉冲电压信号以生成选通信号。图16示出通过输入端施加的脉冲电压信号的示例。In the circuit thus configured, a pulse voltage signal having (+) and (-) polarity is applied as an input signal to the
门驱动器51的输出端上的栅极节点55、集电极节点54、以及发射极节点56分别连接到开关S1-S4的栅极、集电极和发射极。
半导体开关可使用金属氧化物半导体场效应晶体管(MOSFET)来实现。当半导体通过向门驱动器51的输入端52和53施加正导通脉冲电压且通过对电容器C11充电来接通时,该导通选通信号通过第三电阻器R13和输出端的栅极节点55提供以接通开关单元20的开关S1-S4(下文中称作主开关)。Semiconductor switches may be implemented using Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). When the semiconductor is turned on by applying a positive turn-on pulse voltage to the
另一方面,当向门驱动器51的输入端52和53施加负导通脉冲电压时MOSFET关断,其中电流流过其内建体二极管,从而将主开关S1-S4关断。On the other hand, when a negative turn-on pulse voltage is applied to the
门驱动器51检测连接到主开关S1-S4的反并联二极管D1-D4的导通(即,主开关的零电压状态),且当反并联二极管D1-D4导通时提供导通选通信号以接通主开关S1-S4。因此,实现主开关S1-S4的零电压接通开关。The
此外,第二电阻器R12和第四电阻器R14串联连接到第一电阻器R11,以使流过第一电阻器R11的电流可流过第二电阻器R12和第四电阻器R14中的一个。该第二电阻器R12可具有比第四电阻器R14大的电阻。In addition, the second resistor R12 and the fourth resistor R14 are connected in series to the first resistor R11, so that the current flowing through the first resistor R11 can flow through one of the second resistor R12 and the fourth resistor R14 . The second resistor R12 may have a larger resistance than the fourth resistor R14.
如下文中所述,当在由电容器C11设定的最大寂静时间之前实现主开关S1-S4的零电压条件时(即,当连接到主开关S1-S4的反并联二极管D1-D4导通时),流过第四电阻器R14的电流可流过电阻器R12,从而接通MOSFET。As described below, when the zero voltage condition of the main switches S1-S4 is achieved before the maximum dead time set by capacitor C11 (i.e. when the anti-parallel diodes D1-D4 connected to the main switches S1-S4 conduct) , the current flowing through the fourth resistor R14 may flow through the resistor R12, thereby turning on the MOSFET.
将描述各模式中门驱动器的操作。The operation of the gate driver in each mode will be described.
参考图15,门驱动器15的输入端通过变压器TX11连接以便施加脉冲电压。当向变压器TX11的初级绕组施加作为输入信号的脉冲电压信号以控制主开关S1-S4时,次级绕组上的从初级绕组感生的次级脉冲电压信号造成门驱动器51产生信号以使主开关S1-S4接通或关断。Referring to FIG. 15, the input terminal of the gate driver 15 is connected through a transformer TX11 to apply a pulse voltage. When a pulsed voltage signal is applied as an input signal to the primary winding of transformer TX11 to control the main switches S1-S4, the secondary pulsed voltage signal on the secondary winding induced from the primary winding causes the
在各操作模式中,施加(+)和(-)电压的输入端52和53在不提及变压器的情况下将称作引脚_1(引脚_1)和引脚_2(引脚_2)。In each mode of operation, the
图17示出当将图16所示的脉冲电压信号用作输入信号时从图15所示的门驱动器输出的选通信号。图18是描绘谐振电流和SRC的选通信号相对于时间的曲线图。图19-22是示出根据本发明一示例性实施例的门驱动器在各模式中的操作的电路图。FIG. 17 shows a gate signal output from the gate driver shown in FIG. 15 when the pulse voltage signal shown in FIG. 16 is used as an input signal. FIG. 18 is a graph depicting the resonant current and the gating signal of the SRC versus time. 19-22 are circuit diagrams illustrating operations of a gate driver in respective modes according to an exemplary embodiment of the present invention.
(+)栅电压施加模式1:正脉冲电压的施加(参考图19)(+) Gate voltage application mode 1: Application of positive pulse voltage (refer to FIG. 19 )
当向门驱动器51的输入端施加正的栅电压时,如图16所示,引脚_1 52是正极端,引脚_2 53是负极端。因此,电流从引脚_1 52流过电容器C11、第一电阻器R11、和第四电阻器R14(高电阻),且电容器C11被充电。当电容器C11继续充电到P沟道MOSFET的导通电压时,MOSFET导通且电流通过MOSFET和第三电阻器R13流向第六电阻器R16,从而接通主开关S1-S4(参考图21)。该操作模式称作最大寂静时间模式。门驱动器51被配置成当在以下所述的最大寂静时间之前连接到主开关S1-S4的反并联二极管D1-D4导通时(即,当实现主开关的零电压条件时),MOSFET自动导通,由此接通主开关S1-S4。When a positive gate voltage is applied to the input terminal of the
(+)栅电压施加模式2:零电压检测模式以及主开关的零电压接通开(+) Gate voltage application mode 2: Zero-voltage detection mode and zero-voltage on-off of the main switch 关(参考图20和21)Off (Refer to Figures 20 and 21)
当在模式1中在电容器C11充电到导通MOSFET时的最大寂静时间之前反并联二极管D1-D4导通,且在主开关S1-S4的集电极和发射极之间的电压逼近零时,电流流过电容器C11、电阻器R11和电阻器R12(低电阻),如图20所示。在该时刻,不同于最大寂静时间模式,因为电流流过电阻器R12且电容器C11被快速充电,由此接通MOSFET。结果,参考图21,随着MOSFET导通,电流流过第三电阻器R13和第六电阻器R16,从而接通主开关S1-S4。换言之,当反并联二极管D1-D4在预定的最大寂静时间之前导通且主开关S1-S4两端的电压等于零时,主开关S1-S4无关于预定的最大寂静时间自动接通。相应地,因为门驱动器51在反并联二极管D1-D4导通时向转换器的开关单元20提供导通选通信号,所以在开关单元20中实现主开关S1-S4的零电压接通开关(参考转换器的模式5)。图17所示的在脉冲上升时生成选通信号的步骤指示由经充电的电容器C11造成的导通延迟。When the antiparallel diodes D1-D4 conduct in
(-)栅电压施加模式1:关断模式(-) Gate voltage application mode 1: Shutdown mode
该模式指示主开关S1-S4的关断。当图16所示的负栅电压施加到门驱动器51的输入端时,引脚_1 52和引脚_2 53分别为负极端和正极端。相应地,来自引脚_2 53的电流在没有延迟的情况下流过第六电阻器R16和MOSFET的体二极管,从而关断主开关S1-S4。This mode indicates switching off of the main switches S1-S4. When the negative gate voltage shown in FIG. 16 is applied to the input terminal of the
因此,当主开关S1-S4两端的电压逼近零且二极管D1-D4导通时,门驱动器51检测二极管D1-D4的导通且自动地施加栅导通信号。结果,有可能实现图4所示的SRC中的主开关S1-S4的零电压开关。Therefore, when the voltage across the main switches S1-S4 approaches zero and the diodes D1-D4 conduct, the
这样,因为向变压器的次级绕组添加了比LC谐振电路单元中的谐振电容器的电容小的次级电容器,所以在初始级中电流流过次级电容器而非负载且初级绕组上的谐振电流快速增大,从而生成梯形电流波形。因此,在相同频率下,该谐振电流可具有比具有正弦曲线波形的常规谐振电流更大的有效值。In this way, since a secondary capacitor smaller than the capacitance of the resonance capacitor in the LC resonance circuit unit is added to the secondary winding of the transformer, current flows through the secondary capacitor instead of the load in the initial stage and the resonance current on the primary winding is fast increases to generate a trapezoidal current waveform. Therefore, at the same frequency, this resonant current can have a larger effective value than a conventional resonant current with a sinusoidal waveform.
因此,归因于在相同开关频率下增大的有效电流,该SRC可呈现比常规SRC更高的效率。另外,增大的电感器能量允许缓冲电容器具有是常规电容器电容的10倍的电容,由此实现零电压关断条件。Therefore, the SRC can exhibit higher efficiency than a conventional SRC due to the increased effective current at the same switching frequency. Additionally, the increased inductor energy allows the snubber capacitor to have a
此外,在相同频率下的增大的有效电流值允许SRC呈现增大的效率。在相同负载电流条件下,最大谐振电流可被降低,由此减少传导损耗。Furthermore, the increased rms current value at the same frequency allows the SRC to exhibit increased efficiency. Under the same load current condition, the maximum resonance current can be reduced, thereby reducing conduction loss.
另外,通过次级电容器快速增大的电流增大在电感器中存储的能量。因此,有可能显著增大连接到开关的缓冲电容器的电容,从而减少开关关断时的开关损耗。Additionally, the rapidly increasing current through the secondary capacitor increases the energy stored in the inductor. Therefore, it is possible to significantly increase the capacitance of the snubber capacitor connected to the switch, thereby reducing switching losses when the switch is turned off.
相应地,当开关关断时,有可能实现允许各个开关两端的电压保持在零的零电压开关。结果,有可能减少开关损耗。Accordingly, it is possible to realize zero-voltage switching that allows the voltage across each switch to remain at zero when the switches are turned off. As a result, it is possible to reduce switching loss.
换言之,在常规SRC中,因为在零电压和零电流条线下开关S1-S4接通,而开关S1-S4没有在零电压和零电流条件下关断,因此当开关关断时发生开关损耗。但是,在示例性SRC中,开关S1-S4在零电压条件下执行关断以及接通。In other words, in a conventional SRC, since switches S1-S4 are turned on under zero voltage and zero current conditions, and switches S1-S4 are not turned off under zero voltage and zero current conditions, switching losses occur when the switches are turned off . However, in the exemplary SRC, the switches S1-S4 perform turning off and turning on under zero voltage conditions.
此外,门驱动器的操作简单。即,为了实现开关的零电流和零电压接通条件,当开关两端电压逼近零时门驱动器检测反并联二极管的导通,且当二极管导通时自动地施加栅导通信号。In addition, the operation of the gate drive is simple. That is, to achieve the zero current and zero voltage turn-on conditions of the switch, the gate driver detects the conduction of the anti-parallel diode when the voltage across the switch approaches zero, and automatically applies the gate turn-on signal when the diode conducts.
另外,该门驱动器允许在宽操作范围中执行零电压和零电流接通开关,且还提供用于稳定操作的寂静时间补偿。In addition, the gate driver allows zero voltage and zero current turn-on switching over a wide operating range and also provides dead time compensation for stable operation.
虽然已在本公开中描述了一些实施例,但对于本领域普通技术人员而言这些实施例仅仅作为示例给出,且可作出各种修改和改变而不背离本发明的精神和范围是显而易见的。相应地,本发明的范围应当仅由所附权利要求和其等效方案来限定。Although some embodiments have been described in this disclosure, it is given by way of example only, and it will be apparent to those skilled in the art that various modifications and changes can be made without departing from the spirit and scope of the invention. . Accordingly, the scope of the invention should be limited only by the appended claims and their equivalents.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100070290A KR101000561B1 (en) | 2010-07-21 | 2010-07-21 | Series resonant converter |
KR10-2010-0070290 | 2010-07-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102347695A true CN102347695A (en) | 2012-02-08 |
CN102347695B CN102347695B (en) | 2014-09-17 |
Family
ID=43512763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110030999.0A Expired - Fee Related CN102347695B (en) | 2010-07-21 | 2011-01-19 | High efficient series resonance converter |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101000561B1 (en) |
CN (1) | CN102347695B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105322812A (en) * | 2014-07-04 | 2016-02-10 | 现代自动车株式会社 | Pulse width modulation resonance converter and charger for vehicle using the same |
CN110582930A (en) * | 2017-03-31 | 2019-12-17 | 森特姆阿德泰尔运输公司 | Hybrid power battery |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101385979B1 (en) | 2012-11-26 | 2014-04-16 | 한국전기연구원 | Series resonant converter |
KR101721321B1 (en) * | 2015-01-28 | 2017-03-31 | 단국대학교 산학협력단 | Hybride type LED Power Supply |
KR102009200B1 (en) | 2016-07-04 | 2019-08-09 | 숭실대학교산학협력단 | Bidirectional Converter with Auxiliary LC Resonant Circuit and Operating Method thereof |
US10992233B2 (en) | 2017-01-31 | 2021-04-27 | Vestas Wind Systems A/S | Sub-resonant mode dual control of DC-DC converter with secondary-side resonant tank |
CN107528477A (en) * | 2017-08-08 | 2017-12-29 | 西南交通大学 | A kind of quasi-resonance soft switch double-transistor flyback DC/DC converters |
TWI745800B (en) * | 2018-12-21 | 2021-11-11 | 美商米沃奇電子工具公司 | Battery pack chargers, methods of controlling an operation of a battery pack charger, and charging circuits for a battery pack charger |
KR102393664B1 (en) | 2020-11-17 | 2022-05-02 | 한국전기연구원 | Inverter switch gate driver and inverter |
KR102674726B1 (en) * | 2022-09-06 | 2024-06-12 | 중앙대학교 산학협력단 | Gate driver and resonant converter |
KR20240047770A (en) | 2022-10-05 | 2024-04-12 | 한국전기연구원 | Resonant converter and inverter with soft switching function |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6580255B1 (en) * | 2002-02-12 | 2003-06-17 | Technical Witts, Inc. | Adaptive gate drivers for zero voltage switching power conversion circuits |
CN1438759A (en) * | 2002-02-15 | 2003-08-27 | 索尼株式会社 | Switch power-supply circuit |
CN1832316A (en) * | 2005-03-08 | 2006-09-13 | 索尼株式会社 | Switching power supply circuit |
CN1925300A (en) * | 2005-09-02 | 2007-03-07 | 索尼株式会社 | Switching power supply circuit |
CN1941593A (en) * | 2005-09-30 | 2007-04-04 | 索尼株式会社 | Switching power supply circuit |
CN101022246A (en) * | 2006-02-15 | 2007-08-22 | 索尼株式会社 | Switching power supply circuit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100577472B1 (en) | 2004-12-23 | 2006-05-10 | 재단법인 포항산업과학연구원 | Series resonant DC / DC converter with boost |
JP4640783B2 (en) | 2005-03-24 | 2011-03-02 | 新電元工業株式会社 | Series resonant converter |
-
2010
- 2010-07-21 KR KR1020100070290A patent/KR101000561B1/en active Active
-
2011
- 2011-01-19 CN CN201110030999.0A patent/CN102347695B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6580255B1 (en) * | 2002-02-12 | 2003-06-17 | Technical Witts, Inc. | Adaptive gate drivers for zero voltage switching power conversion circuits |
CN1438759A (en) * | 2002-02-15 | 2003-08-27 | 索尼株式会社 | Switch power-supply circuit |
CN1832316A (en) * | 2005-03-08 | 2006-09-13 | 索尼株式会社 | Switching power supply circuit |
CN1925300A (en) * | 2005-09-02 | 2007-03-07 | 索尼株式会社 | Switching power supply circuit |
CN1941593A (en) * | 2005-09-30 | 2007-04-04 | 索尼株式会社 | Switching power supply circuit |
CN101022246A (en) * | 2006-02-15 | 2007-08-22 | 索尼株式会社 | Switching power supply circuit |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105322812A (en) * | 2014-07-04 | 2016-02-10 | 现代自动车株式会社 | Pulse width modulation resonance converter and charger for vehicle using the same |
US10071637B2 (en) | 2014-07-04 | 2018-09-11 | Hyundai Motor Company | Pulse width modulation resonance converter and charger for vehicle using the same |
CN105322812B (en) * | 2014-07-04 | 2019-06-04 | 现代自动车株式会社 | Pulse width modulation resonant converter and charger for vehicle using the same |
CN110582930A (en) * | 2017-03-31 | 2019-12-17 | 森特姆阿德泰尔运输公司 | Hybrid power battery |
CN110582930B (en) * | 2017-03-31 | 2024-03-05 | 福赛动力公司 | Hybrid power battery |
Also Published As
Publication number | Publication date |
---|---|
CN102347695B (en) | 2014-09-17 |
KR101000561B1 (en) | 2010-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102347695B (en) | High efficient series resonance converter | |
CN102832826B (en) | Control circuit, conversion system and control method for power converter | |
US7957161B2 (en) | Power converters | |
CN101170277A (en) | DC-DC converter and its control method | |
CN107733234B (en) | Asymmetric control circuit suitable for resonant network semi-synchronous rectifier and control method thereof | |
CN110620512A (en) | Resonant converter and control method | |
CN107276443B (en) | Improved fixed frequency hysteresis loop current control method and circuit based on controlled soft switch | |
CN110034683B (en) | LLC converter modulation method capable of realizing natural bidirectional power flow | |
CN110649821B (en) | Bidirectional SCC type LLC resonant converter, circuit therein and control method | |
KR20180004675A (en) | Bidirectional Converter with Auxiliary LC Resonant Circuit and Operating Method thereof | |
Ghodke et al. | ZVZCS, dual, two-transistor forward DC-DC converter with peak voltage of Vin/2, high input and high power application | |
CN110224605B (en) | A full bridge conversion circuit | |
CN108900090B (en) | Resonant isolation converter with ultra-wide voltage regulation range | |
CN111835204A (en) | Zero-return power soft-switching modulation method and converter of resonant dual active bridge | |
CN110572041A (en) | A dual-side PWM plus phase-shift control method for dual-active full-bridge converters | |
TWI798055B (en) | Ac-dc power conversion system with zero voltage switching | |
Khodabakhsh et al. | A comparative study of conventional and T-type ZVS-PWM full-bridge converters | |
Wang et al. | Research on a novel interleaved flyback DC/DC converter | |
CN211266770U (en) | Zero-voltage switch's resonant power supply converting circuit and converter | |
Awasthi et al. | Simplified frequency-domain analysis of improved asymmetrical PWM technique for DC-DC resonant converters | |
CN109391125B (en) | Power switch system and method for judging whether complementary switch is in soft switch or hard switch state | |
CN113315384A (en) | Complementary active clamping soft switch push-pull converter and modulation method thereof | |
TWI430555B (en) | Class E DC - to - DC converter | |
Kulasekaran et al. | A 500 kHz, 3.3 kW boost PFC with low loss coupled auxiliary ZVT circuit | |
CN212677087U (en) | ZVS soft switch DC-DC full-bridge converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140917 Termination date: 20180119 |