CN102344828B - Processing method of inferior residual oil - Google Patents
Processing method of inferior residual oil Download PDFInfo
- Publication number
- CN102344828B CN102344828B CN201010245832.1A CN201010245832A CN102344828B CN 102344828 B CN102344828 B CN 102344828B CN 201010245832 A CN201010245832 A CN 201010245832A CN 102344828 B CN102344828 B CN 102344828B
- Authority
- CN
- China
- Prior art keywords
- oil
- catalytic cracking
- residual oil
- hydrogenation
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003672 processing method Methods 0.000 title claims description 5
- 239000003921 oil Substances 0.000 claims abstract description 141
- 238000004523 catalytic cracking Methods 0.000 claims abstract description 92
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 89
- 239000000295 fuel oil Substances 0.000 claims abstract description 70
- 238000006243 chemical reaction Methods 0.000 claims abstract description 45
- 239000002994 raw material Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 27
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 18
- 238000005336 cracking Methods 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 238000010790 dilution Methods 0.000 claims abstract description 4
- 239000012895 dilution Substances 0.000 claims abstract description 4
- 239000003054 catalyst Substances 0.000 claims description 53
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 31
- 229910052739 hydrogen Inorganic materials 0.000 claims description 27
- 239000001257 hydrogen Substances 0.000 claims description 27
- 230000003197 catalytic effect Effects 0.000 claims description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims description 22
- 239000010457 zeolite Substances 0.000 claims description 19
- 229910021536 Zeolite Inorganic materials 0.000 claims description 16
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 16
- 239000011148 porous material Substances 0.000 claims description 16
- 239000003502 gasoline Substances 0.000 claims description 14
- 229910017052 cobalt Inorganic materials 0.000 claims description 13
- 239000010941 cobalt Substances 0.000 claims description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 13
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- 239000011733 molybdenum Substances 0.000 claims description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 239000010937 tungsten Substances 0.000 claims description 12
- 239000002283 diesel fuel Substances 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 11
- 239000003223 protective agent Substances 0.000 claims description 11
- 239000007791 liquid phase Substances 0.000 claims description 8
- 239000012071 phase Substances 0.000 claims description 8
- 239000000376 reactant Substances 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 239000011814 protection agent Substances 0.000 claims description 5
- 239000004927 clay Substances 0.000 claims description 4
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 238000004821 distillation Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 238000006317 isomerization reaction Methods 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000006276 transfer reaction Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 239000012535 impurity Substances 0.000 abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 abstract description 5
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 4
- 230000001737 promoting effect Effects 0.000 abstract description 3
- 239000000047 product Substances 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- YCOASTWZYJGKEK-UHFFFAOYSA-N [Co].[Ni].[W] Chemical compound [Co].[Ni].[W] YCOASTWZYJGKEK-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000011959 amorphous silica alumina Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- MOWMLACGTDMJRV-UHFFFAOYSA-N nickel tungsten Chemical group [Ni].[W] MOWMLACGTDMJRV-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- -1 rare earth hydrogen Chemical class 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
一种劣质渣油的加工方法。本发明是渣油加氢、催化裂化重油加氢和催化裂化的组合方法,加氢渣油作为催化裂化装置的原料,将催化裂化所得催化裂化重油分为两部分,一部分作为渣油原料的稀释油进入渣油加氢反应器,另一部分进行单独加氢,进入催化裂化重油加氢反应器。本发明既达到了降低渣油原料粘度,促进渣油加氢脱杂质反应的目的,同时也实现了催化裂化重油单独的加氢精制,避免了渣油中Ni、V等重金属,残炭值和沥青质的影响,可以使催化裂化重油中的多环芳烃大部分饱和,改善其裂解性能,显著提高了催化裂化装置液体收率。
A method for processing inferior residual oil. The present invention is a combined method of residual oil hydrogenation, catalytic cracking heavy oil hydrogenation and catalytic cracking. The hydrogenated residual oil is used as the raw material of the catalytic cracking unit, and the catalytic cracking heavy oil obtained by catalytic cracking is divided into two parts, and one part is used as the dilution of the residual oil raw material. The oil enters the residual oil hydrogenation reactor, and the other part undergoes separate hydrogenation and enters the catalytic cracking heavy oil hydrogenation reactor. The invention not only achieves the purpose of reducing the viscosity of residual oil raw materials and promoting the hydrogenation and de-impurity reaction of residual oil, but also realizes the separate hydrofining of catalytic cracking heavy oil, avoiding the heavy metals such as Ni and V in the residual oil, and the residual carbon value and The influence of asphaltenes can saturate most of the polycyclic aromatic hydrocarbons in the catalytic cracking heavy oil, improve its cracking performance, and significantly increase the liquid yield of the catalytic cracking unit.
Description
技术领域 technical field
本发明属于一种烃油的加工方法,具体地说是一种在存在氢的情况下精制烃油的方法与一种在不存在氢的情况下裂解烃油的方法的组合。The invention belongs to a method for processing hydrocarbon oil, in particular to a combination of a method for refining hydrocarbon oil in the presence of hydrogen and a method for cracking hydrocarbon oil in the absence of hydrogen.
背景技术 Background technique
石油是不可再生能源,我国进口原油正呈现迅猛增长趋势,而近几年来原油价格不断上升,因此开发更有效的渣油深度转化工艺,最大限度地利用宝贵的石油资源,不仅具有更高的经济效益,对我国能源安全也有重要意义。Petroleum is a non-renewable energy source. my country's imported crude oil is showing a rapid growth trend. In recent years, the price of crude oil has been rising. Benefits are also of great significance to my country's energy security.
渣油加氢和催化裂化技术的联合是能将渣油深度转化并做到清洁生产的渣油深加工技术。但传统的渣油加氢-催化裂化组合技术是单向组合,即渣油加氢后作为催化裂化原料,催化裂化重油在催化裂化装置中自身循环。该工艺的不足是:(1)对催化裂化,由于催化裂化重油含有大量多环芳烃,在催化裂化装置中自身循环导致轻油收率低,生焦量大,降低了RFCC装置的处理量及经济效益;(2)对渣油加氢装置,渣油加氢是扩散控制的反应,高粘度的渣油将降低扩散和反应性能,增加催化剂结焦失活倾向;但如果采用大量直馏蜡油来作为稀释油,则面临和生产乙烯原料的加氢裂化装置争原料的问题。The combination of residual oil hydrogenation and catalytic cracking technology is a residual oil deep processing technology that can deeply convert residual oil and achieve clean production. However, the traditional residual oil hydrogenation-catalytic cracking combination technology is a one-way combination, that is, the residual oil is used as a catalytic cracking raw material after hydrogenation, and the catalytic cracking heavy oil circulates itself in the catalytic cracking unit. The disadvantages of this process are: (1) for catalytic cracking, because catalytic cracking heavy oil contains a large amount of polycyclic aromatic hydrocarbons, the self-circulation in the catalytic cracking unit leads to low yield of light oil and large amount of coke, which reduces the processing capacity of RFCC unit and Economic benefits; (2) For residual oil hydrogenation units, residual oil hydrogenation is a diffusion-controlled reaction, and high-viscosity residual oil will reduce the diffusion and reaction performance, and increase the tendency of catalyst coking and deactivation; but if a large amount of straight-run wax oil is used If it is used as diluent oil, it faces the problem of competing for raw materials with the hydrocracking unit that produces ethylene raw materials.
CN1382776A公开了一种渣油加氢处理与重油催化裂化联合方法。该方法将渣油、油浆蒸出物、催化裂化重循环油、任选的馏分油一起进入加氢处理装置,在氢气和加氢催化剂的存在下进行加氢反应;反应所得的生成油蒸出汽柴油后,加氢渣油与任选的减压瓦斯油一起进入催化裂化装置,在裂化催化剂存在下进行裂化反应;反应所得重循环油进入渣油加氢装置。该方法在渣油加氢原料中掺入催化裂化重循环油,可以降低渣油的粘度,提高渣油体系的相溶性,因此能够促进渣油的加氢脱除杂质反应。对催化裂化,富含大量多环芳烃的催化裂化重循环油在渣油加氢装置中和渣油一起加氢后,可以提高其氢含量和饱和度,再回催化裂化装置进行裂化,轻质油收率提高,焦炭产率降低。CN1382776A discloses a combined method of residual oil hydrotreating and heavy oil catalytic cracking. In this method, residual oil, oil slurry distillate, catalytic cracking heavy cycle oil, and optional distillate oil are put into a hydrotreating unit together, and hydrogenation reaction is carried out in the presence of hydrogen and a hydrogenation catalyst; the resulting oil obtained from the reaction is distilled After gasoline and diesel are produced, the hydrogenated residual oil enters the catalytic cracking unit together with the optional vacuum gas oil, and undergoes cracking reaction in the presence of a cracking catalyst; the heavy cycle oil obtained from the reaction enters the residual oil hydrogenation unit. In the method, the catalytic cracking heavy cycle oil is mixed into the residual oil hydrogenation raw material, which can reduce the viscosity of the residual oil, improve the compatibility of the residual oil system, and thus can promote the hydrogenation and removal of impurities of the residual oil. For catalytic cracking, the catalytic cracking heavy cycle oil rich in a large amount of polycyclic aromatic hydrocarbons can be hydrogenated together with the residual oil in the residual oil hydrogenation unit to increase its hydrogen content and saturation, and then return to the catalytic cracking unit for cracking, light The oil yield increases and the coke yield decreases.
发明内容Contents of the invention
本发明的目的是在现有技术的基础上提供一种劣质渣油的加工方法,通过渣油加氢处理、催化裂化重油加氢和催化裂化相结合的方法,以使劣质渣油最大限度转化为轻油。The purpose of the present invention is to provide a processing method of inferior residual oil on the basis of the prior art, through the combination method of residual oil hydrotreating, catalytic cracking heavy oil hydrogenation and catalytic cracking, so as to convert inferior residual oil to the maximum extent For light oil.
现有技术中,已有将催化裂化重油循环至渣油加氢装置的技术方案。但是,本发明人通过研究发现,在渣油进料中掺入少量催化裂化重油可以降低渣油进料的粘度,促进渣油的杂质脱除反应。但随着催化裂化重油掺入比例的提高,当渣油加氢装置进料的粘度降低到一定程度之后,继续增加催化裂化重油的掺入比例,对渣油加氢脱杂质反应的促进作用将不再增加。同时由于渣油中含有大量的Ni、V等重金属,残炭值高、沥青质高,会严重影响催化裂化重油的加氢效果。因此本发明将将催化裂化重油分为两部分,一部分作为渣油原料的稀释油,另一部分进行单独加氢处理。这样既可以达到降低渣油原料粘度,促进渣油加氢脱杂质反应的目的,同时也可以实现催化裂化重油单独的加氢精制,避免渣油中Ni、V等重金属,残炭和沥青质的影响,改善催化裂化重油加氢的效果。In the prior art, there is a technical solution for recycling catalytic cracked heavy oil to a residual oil hydrogenation unit. However, the inventors have found through research that adding a small amount of catalytically cracked heavy oil into the residual oil feed can reduce the viscosity of the residual oil feed and promote the impurity removal reaction of the residual oil. However, with the increase of the blending ratio of catalytic cracking heavy oil, when the viscosity of the feedstock of the residual oil hydrogenation unit decreases to a certain level, the blending ratio of catalytic cracking heavy oil will continue to increase, and the promotion effect on the reaction of residual oil hydrogenation to remove impurities will be no longer increase. At the same time, because the residual oil contains a large amount of heavy metals such as Ni and V, the residual carbon value is high, and the asphaltene is high, which will seriously affect the hydrogenation effect of catalytic cracking heavy oil. Therefore, the present invention divides catalytic cracking heavy oil into two parts, one part is used as the dilution oil of residual oil raw material, and the other part is subjected to separate hydrotreating. In this way, the viscosity of residual oil raw materials can be reduced, and the purpose of promoting the hydrogenation and impurity removal reaction of residual oil can be achieved. At the same time, the separate hydrofining of catalytic cracking heavy oil can be realized, and the accumulation of heavy metals such as Ni and V, residual carbon and asphaltenes in residual oil can be avoided. Influence, improve the effect of catalytic cracking heavy oil hydrogenation.
本发明的所提供的方法,包括:The provided method of the present invention comprises:
(1)、渣油原料、来自步骤(2)的部分催化裂化重油和氢气一起进入渣油加氢反应器,在渣油加氢催化剂的作用下进行反应,反应物流进入高压分离器分离为气相物流和液相物流,其中气相物流经净化、升压后循环使用,液相物流经分馏得到气体、加氢汽油、加氢柴油和加氢渣油;(1) The residual oil raw material, part of the catalytically cracked heavy oil from step (2) and hydrogen enter the residual oil hydrogenation reactor together, and react under the action of the residual oil hydrogenation catalyst, and the reactant flow enters the high-pressure separator to be separated into a gas phase Logistics and liquid phase logistics, wherein the gas phase stream is recycled after being purified and boosted, and the liquid phase stream is fractionated to obtain gas, hydrogenated gasoline, hydrogenated diesel oil and hydrogenated residue;
(2)、步骤(1)所得加氢渣油进入催化裂化装置,在催化转化催化剂存在下进行反应,分离反应产物得到干气、液化气、催化裂化汽油、催化裂化柴油和催化裂化重油;(2), step (1) obtained hydrogenated residue enters the catalytic cracking unit, reacts in the presence of a catalytic conversion catalyst, and separates the reaction product to obtain dry gas, liquefied gas, catalytic cracked gasoline, catalytic cracked diesel oil and catalytic cracked heavy oil;
(3)、步骤(2)所得催化裂化重油分为两部分,一部分返回步骤(1)与渣油原料混合后进入渣油加氢反应器,剩余部分与氢气混合后进入催化裂化重油加氢反应器,在催化裂化重油加氢催化剂的作用下进行反应,反应物流进入步骤(1)所述的高压分离器中进行气液分离。(3) The catalytic cracking heavy oil obtained in step (2) is divided into two parts, one part is returned to step (1) and mixed with residual oil raw material to enter the residual oil hydrogenation reactor, and the remaining part is mixed with hydrogen to enter the catalytic cracking heavy oil hydrogenation reaction The reaction is carried out under the action of the catalytic cracking heavy oil hydrogenation catalyst, and the reactant flow enters the high-pressure separator described in step (1) for gas-liquid separation.
步骤(1)中所述的渣油原料是常压渣油和/或减压渣油,粘度在500mm2/s-3000mm2/s之间,所述的粘度是指运动粘度(100℃)。The residual oil raw material described in step (1) is atmospheric residual oil and/or vacuum residual oil, the viscosity is between 500mm 2 /s-3000mm 2 /s, and the viscosity mentioned refers to kinematic viscosity (100°C) .
渣油加氢反应器的反应条件为:氢分压5.0MPa-22.0MPa、反应温度330℃-450℃、体积空速0.1h-1-3.0h-1、氢气与原料油的体积比(氢油体积比)350-2000。所述的催化剂可以是各种现有的渣油加氢催化剂,其活性金属组分为镍-钨、镍-钨-钴、镍-钼或钴-钼,载体为氧化铝、二氧化硅或无定形硅铝,其中氧化铝为最常用载体。渣油加氢反应器类型可以是固定床、移动床或沸腾床,渣油加氢装置至少包括一个反应器和一个分馏塔。The reaction conditions of the residual oil hydrogenation reactor are: hydrogen partial pressure 5.0MPa-22.0MPa, reaction temperature 330°C-450°C, volume space velocity 0.1h -1 -3.0h -1 , volume ratio of hydrogen to raw oil (hydrogen Oil volume ratio) 350-2000. Described catalyst can be various existing residual oil hydrogenation catalysts, and its active metal component is nickel-tungsten, nickel-tungsten-cobalt, nickel-molybdenum or cobalt-molybdenum, and carrier is alumina, silicon dioxide or Amorphous silica-alumina, among which alumina is the most commonly used carrier. The type of residual oil hydrogenation reactor can be fixed bed, moving bed or ebullating bed, and the residual oil hydrogenation unit includes at least one reactor and one fractionation tower.
步骤(2)中预热的加氢渣油在水蒸汽的提升作用下进入催化转化反应器的第一反应区与热的再生催化转化催化剂接触,在反应温度为510℃-650℃、反应时间为0.05秒-1.0秒、催化剂与原料油的重量比(以下简称剂油比)为3-15∶1、水蒸汽与原料油的重量比(以下简称水油比)为0.03-0.3∶1、压力为130kPa-450kPa的条件下发生大分子裂化反应,脱除劣质原料油中金属、硫、氮中至少一种杂质;生成的油气和第一反应区用过的催化剂进入催化转化反应器的第二反应区,在反应温度为420℃-550℃、反应时间为1.5秒-20秒的条件下进行裂化反应、氢转移反应和异构化反应;分离反应产物得到干气、丙烯、丙烷、C4烃、催化裂化汽油、催化裂化柴油和催化裂化重油。The hydrogenated residual oil preheated in step (2) enters the first reaction zone of the catalytic conversion reactor under the lifting effect of water vapor to contact with the hot regenerated catalytic conversion catalyst. 0.05 seconds-1.0 seconds, the weight ratio of catalyst to feedstock oil (hereinafter referred to as agent-oil ratio) is 3-15:1, the weight ratio of water vapor to feedstock oil (hereinafter referred to as water-oil ratio) is 0.03-0.3:1, Under the condition of pressure of 130kPa-450kPa, macromolecule cracking reaction occurs, and at least one impurity in metal, sulfur, and nitrogen in inferior raw material oil is removed; the generated oil gas and the catalyst used in the first reaction zone enter the second stage of the catalytic conversion reactor In the second reaction zone, the cracking reaction, hydrogen transfer reaction and isomerization reaction are carried out under the conditions of the reaction temperature of 420°C-550°C and the reaction time of 1.5 seconds to 20 seconds; the reaction products are separated to obtain dry gas, propylene, propane, C4 Hydrocarbons, FCC gasoline, FCC diesel and FCC heavy oil.
步骤(2)中所述的催化裂化汽油或催化裂化柴油馏程按实际需要进行调整,不仅限于全馏程汽油或柴油。The distillation range of catalytic cracking gasoline or catalytic cracking diesel oil described in step (2) is adjusted according to actual needs, not limited to full range gasoline or diesel oil.
步骤(2)中所述的催化转化催化剂包括沸石、无机氧化物和任选的粘土,各组分分别占催化剂总重量:沸石1重%-50重%、无机氧化物5重%-99重%、粘土0重%-70重%。其中沸石作为活性组分,选自中孔沸石和/或任选的大孔沸石,中孔沸石占沸石总重量的0重%-100重%,优选20重%-80重%,大孔沸石占沸石总重量的0重%-100重%,优选20重%-80重%。中孔沸石选自ZSM系列沸石和/或ZRP沸石,也可对上述中孔沸石用磷等非金属元素和/或铁、钴、镍等过渡金属元素进行改性。ZSM系列沸石选自ZSM-5、ZSM-11、ZSM-12、ZSM-23、ZSM-35、ZSM-38、ZSM-48和其它类似结构的沸石之中的一种或一种以上的混合物,有关ZSM-5更为详尽的描述参见US3,702,886。大孔沸石选自由稀土Y(REY)、稀土氢Y(REHY)、不同方法得到的超稳Y、高硅Y构成的这组沸石中的一种或一种以上的混合物。The catalytic conversion catalyst described in step (2) comprises zeolite, inorganic oxide and optional clay, and each component accounts for the total weight of the catalyst respectively: zeolite 1%-50% by weight, inorganic oxide 5%-99% by weight %, clay 0%-70% by weight. Wherein the zeolite as an active component is selected from medium-pore zeolite and/or optional large-pore zeolite, medium-pore zeolite accounts for 0%-100% by weight of the total weight of zeolite, preferably 20%-80% by weight, large-pore zeolite It accounts for 0% to 100% by weight of the total weight of the zeolite, preferably 20% to 80% by weight. The medium-pore zeolite is selected from ZSM series zeolite and/or ZRP zeolite, and the above-mentioned medium-pore zeolite can also be modified with non-metal elements such as phosphorus and/or transition metal elements such as iron, cobalt, and nickel. ZSM series zeolites are selected from one or more mixtures of ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, ZSM-38, ZSM-48 and other similar structure zeolites, For a more detailed description of ZSM-5 see US 3,702,886. The large-pore zeolite is selected from one or more mixtures of zeolites in the group consisting of rare earth Y (REY), rare earth hydrogen Y (REHY), ultrastable Y obtained by different methods, and high silicon Y.
所述步骤(2)所得催化裂化重油的馏程为260℃-550℃,以催化裂化新鲜原料为基准,催化裂化重油所占的重量百分比为12%-60%。优选15%-40%。The distillation range of the catalytic cracking heavy oil obtained in the step (2) is 260°C-550°C, and the weight percentage of the catalytic cracking heavy oil is 12%-60% based on the catalytic cracking fresh raw material. Preferably 15%-40%.
在步骤(1)中,以渣油原料为基准,催化裂化重油作为渣油原料的稀释油,掺入比例为5重%-20重%,具体比例由渣油原料的粘度确定。控制掺入催化裂化重油后渣油原料的粘度为50mm2/s-300mm2/s,优选100mm2/s-200mm2/s,所述的粘度是指运动粘度(100℃)。余下部分的催化裂化重油与氢气混合后进入催化裂化重油加氢反应器。In step (1), based on the residual oil raw material, catalytically cracked heavy oil is used as the diluent oil of the residual oil raw material, and the blending ratio is 5% to 20% by weight, and the specific ratio is determined by the viscosity of the residual oil raw material. The viscosity of the residual oil raw material after being mixed with catalytic cracking heavy oil is controlled to be 50mm 2 /s-300mm 2 /s, preferably 100mm 2 /s-200mm 2 /s, and the said viscosity refers to kinematic viscosity (100°C). The rest of the catalytic cracking heavy oil is mixed with hydrogen and then enters the catalytic cracking heavy oil hydrogenation reactor.
步骤(3)所述催化裂化重油加氢催化剂,按照反应物流的流向依次包括加氢保护剂、加氢脱沥青质剂和加氢精制剂,以整体催化裂化重油加氢催化剂体积为基准,所述的加氢保护剂、加氢脱沥青质剂和加氢精制剂的装填体积百分数分别为2%-30%,5%-50%和5%-93%。The catalytic cracking heavy oil hydrogenation catalyst described in step (3) includes a hydrogenation protecting agent, a hydrogenation deasphaltene agent, and a hydrofinishing agent in sequence according to the flow direction of the reactant stream, and is based on the volume of the overall catalytic cracking heavy oil hydrogenation catalyst. The filling volume percentages of the hydrogenation protecting agent, hydrogenation deasphaltene agent and hydrofinishing agent are respectively 2%-30%, 5%-50% and 5%-93%.
步骤(3)中所述的加氢保护剂为拉西环状,含有一种氧化铝载体和负载在该氧化铝载体上的钼和/或钨,以及镍和/或钴,以催化剂的总重量为基准,并以氧化物计,钼和/或钨的含量为1-10重量%,镍和/或钴的含量为0.5-3重量%。所述的氧化铝为γ-氧化铝。该加氢保护剂孔容不小于0.50ml/g,优选不小于0.60ml/g。该加氢保护剂具有低的积炭量、低的孔容下降率、好的活性稳定性和高的强度。本发明在反应器的上部装填空隙率较大的加氢保护剂,可以进一步脱除原料中夹带的细小的催化裂化催化剂粉末,同时能有效脱除原料中易生焦的结垢物,达到保护主催化剂的目的,保证加氢处理装置长期运行。The hydrogenation protecting agent described in the step (3) is a Raschig ring, containing a kind of alumina carrier and molybdenum and/or tungsten loaded on the alumina carrier, and nickel and/or cobalt, with the total amount of the catalyst Based on weight and calculated as oxides, the content of molybdenum and/or tungsten is 1-10% by weight, and the content of nickel and/or cobalt is 0.5-3% by weight. The alumina is γ-alumina. The pore volume of the hydrogenation protecting agent is not less than 0.50ml/g, preferably not less than 0.60ml/g. The hydrogenation protecting agent has low carbon deposition, low pore volume decrease rate, good activity stability and high strength. The present invention fills the upper part of the reactor with a hydrogenation protective agent with a large void ratio, which can further remove the fine catalytic cracking catalyst powder entrained in the raw material, and at the same time effectively remove the fouling substances that are prone to coke in the raw material to achieve protection. The purpose of the main catalyst is to ensure the long-term operation of the hydrotreating unit.
步骤(3)中所述的加氢脱沥青质剂为蝶型,含有一种载体和负载在该载体上的钼和/或钨,以及镍和/或钴,以催化剂的总重量为基准,并以氧化物计,钼和/或钨的含量为0.5-18重量%,镍和/或钴的含量为0.3-10重量%,载体为氧化铝和任选的氧化硅。该加氢脱沥青质剂孔容不小于0.60ml/g,优选不小于0.70ml/g。常规蜡油加氢精制装置设计进料的沥青质含量一般应小于500μg/g,而催化裂化重油中的沥青质含量在3000μg/g左右,远高于常规蜡油加氢装置设计进料的要求。但是,沥青质是催化裂化重油中最重的组分,是催化裂化重油中主要的生焦前驱物,分子尺寸往往达到十几个纳米以上,容易造成常规加氢精制催化剂结焦失活,影响加氢精制催化剂活性稳定性和缩短加氢精制催化剂的使用寿命。因此在加氢保护剂后面要装填大孔容的加氢脱沥青质剂,使催化裂化重油中的沥青质可以得到部分脱除,以达到保护后部加氢精制剂的目的。The hydrodeasphaltene agent described in step (3) is a butterfly type, containing a carrier and molybdenum and/or tungsten loaded on the carrier, and nickel and/or cobalt, based on the total weight of the catalyst, And based on oxides, the content of molybdenum and/or tungsten is 0.5-18% by weight, the content of nickel and/or cobalt is 0.3-10% by weight, and the carrier is aluminum oxide and optional silicon oxide. The pore volume of the hydrodeasphaltene agent is not less than 0.60ml/g, preferably not less than 0.70ml/g. The asphaltene content of the feedstock designed for conventional wax oil hydrotreating units should generally be less than 500 μg/g, while the asphaltene content in FCC heavy oil is around 3000 μg/g, much higher than the design feed requirements for conventional wax oil hydrotreating units . However, asphaltene is the heaviest component in catalytic cracking heavy oil, and is the main coke precursor in catalytic cracking heavy oil. The molecular size often reaches more than ten nanometers, which easily causes coking and deactivation of conventional hydrotreating catalysts and affects Activity stability of hydrofinishing catalysts and shortening of service life of hydrofinishing catalysts. Therefore, a hydrodeasphaltene agent with a large pore volume should be filled behind the hydrogenation protecting agent, so that the asphaltenes in the catalytic cracking heavy oil can be partially removed, so as to achieve the purpose of protecting the rear hydrofinishing agent.
步骤(3)中所述的加氢精制剂为蝶型,含有一种载体和负载在该载体上的钼和/或钨,以及镍和/或钴,以催化剂的总重量为基准,并以氧化物计,钼和/或钨的含量为10-40重量%,镍和/或钴的含量为0.3-7重量%,载体为氧化铝和任选的氧化硅。该加氢精制剂孔容不小于0.25ml/g,优选不小于0.30ml/g。在加氢脱沥青质催化剂后面装填加氢精制催化剂,该催化剂具有高的多环芳烃饱和活性,同时具有高的脱硫和脱氮活性。The hydrofinishing preparation described in step (3) is a butterfly type, containing a carrier and molybdenum and/or tungsten loaded on the carrier, and nickel and/or cobalt, based on the total weight of the catalyst, and in Based on the oxides, the content of molybdenum and/or tungsten is 10-40% by weight, the content of nickel and/or cobalt is 0.3-7% by weight, and the carrier is alumina and optionally silicon oxide. The pore volume of the hydrofinishing preparation is not less than 0.25ml/g, preferably not less than 0.30ml/g. A hydrorefining catalyst is installed behind the hydrodeasphaltene catalyst, which has high polycyclic aromatic hydrocarbon saturation activity and high desulfurization and denitrogenation activities.
本发明的优点在于:The advantages of the present invention are:
1、本发明将渣油加氢、催化裂化重油加氢和催化裂化装置有机地联合起来,能将劣质渣油最大限度地转化为轻质油品,提高了汽油和柴油的收率。1. The present invention organically combines residual oil hydrogenation, catalytic cracking heavy oil hydrogenation and catalytic cracking unit, can convert inferior residual oil into light oil products to the greatest extent, and improves the yield of gasoline and diesel oil.
2、本发明将催化裂化重油分为两部分,一部分作为渣油原料的稀释油,另一部分进行单独加氢。既达到了降低渣油原料粘度,促进渣油加氢脱杂质反应的目的,同时也实现了催化裂化重油单独的加氢精制,避免了渣油中Ni、V等重金属,残炭值和沥青质的影响,可以使催化裂化重油中的多环芳烃大部分饱和,改善其裂解性能,显著提高了催化裂化装置液体收率,实现石油资源的高效利用。2. The present invention divides catalytic cracking heavy oil into two parts, one part is used as the dilution oil of residual oil raw material, and the other part is subjected to separate hydrogenation. It not only achieves the purpose of reducing the viscosity of residual oil raw materials and promoting the reaction of residual oil hydrogenation to remove impurities, but also realizes the separate hydrofining of catalytic cracking heavy oil, avoiding heavy metals such as Ni and V in residual oil, residual carbon value and asphaltenes It can saturate most of the polycyclic aromatic hydrocarbons in the catalytic cracking heavy oil, improve its cracking performance, significantly increase the liquid yield of the catalytic cracking unit, and realize the efficient utilization of petroleum resources.
3、本发明充分利用了现有渣油加氢装置的氢气系统和高压分离系统,由于催化裂化重油加氢无需单独的氢源、循环氢压缩机和高压分离器,因此无论投资还是操作费用都远小于单独新建一套催化裂化重油加氢装置。3. The present invention makes full use of the hydrogen system and high-pressure separation system of the existing residual oil hydrogenation device. Since the hydrogenation of catalytic cracking heavy oil does not require a separate hydrogen source, circulating hydrogen compressor and high-pressure separator, both investment and operating costs are low. It is much smaller than building a separate set of catalytic cracking heavy oil hydrogenation unit.
附图说明 Description of drawings
附图是本发明所提供的劣质渣油加工方法的工艺流程示意图。Accompanying drawing is the process flow schematic diagram of the inferior residual oil processing method provided by the present invention.
具体实施方式 Detailed ways
下面通过附图对本发明的方法予以进一步说明,但并不因此而限制本发明。如图所示,本发明所提供的劣质渣油加工方法的工艺流程:The method of the present invention will be further described below by means of the accompanying drawings, but the present invention is not limited thereby. As shown in the figure, the technological process of the inferior residual oil processing method provided by the present invention:
来自管线1的渣油原料、来自管线23的催化裂化重油混合后经管线2与来自管线9的氢气混合一起进入渣油加氢反应器3,在渣油加氢催化剂的作用下进行反应,反应产物经管线4进入高压分离器5,分离得到液相物流和气相物流。其中气相物流(富氢气体)经管线6进入压缩机7,升压后与来自管线8的新氢混合后,分别经管线9和管线10进入渣油加氢反应器3和催化裂化重油加氢反应器25。高压分离器5所得的液相物流经管线11进入常压塔12,分离得到气体,加氢汽油和加氢柴油分别经管线13、14和15出装置,分离得到的加氢渣油经管线16进入催化裂化装置17,在催化转化催化剂的存在下进行反应,分离反应产物得到的干气、液化气、催化裂化汽油和催化裂化柴油,分别经管线18、19、20和21出装置。分离所得催化裂化重油分两部分,一部分经管线22和23作为稀释油与来自管线1的渣油原料混合后进入渣油加氢反应器3,另一部分经管线22和24进入催化裂化重油加氢反应器25,在催化裂化重油加氢催化剂的作用下进行反应,反应产物经管线26和管线4进入高压分离器5进行气液分离。The residual oil raw material from
下面的实施例将对本发明予以进一步的说明,但并不因此限制本发明。The following examples will further illustrate the present invention, but do not limit the present invention thereby.
实施例和对比例中采用的渣油原料A和B,性质见表1。渣油加氢试验在双管反应器中进行,在第一反应器(简称一反)中装填加氢保护剂和加氢脱金属催化剂,在第二反应器(简称二反)中装填加氢脱硫催化剂,三者比例为5∶45∶50,其中加氢保护剂、加氢脱金属催化剂、加氢脱硫催化剂的商品牌号分别为RG-10A、RDM-2B、RMS-1B,均由中国石化催化剂分公司长岭催化剂厂生产。催化裂化试验所使用的催化转化催化剂由中石化催化剂分公司齐鲁催化剂厂生产,商品牌号为MLC-500。催化裂化重油加氢试验所采用的加氢保护剂、加氢脱沥青质剂和加氢精制剂比例为5∶15∶80,其中加氢保护剂的商品牌号分别为RG-10B,由中国石化催化剂分公司长岭催化剂厂生产。加氢脱沥青质剂和加氢精制剂由实验室制备,物化性质见表2。The properties of the residue raw materials A and B adopted in Examples and Comparative Examples are shown in Table 1. The residual oil hydrogenation test was carried out in a double-tube reactor. The hydrogenation protection agent and hydrodemetallization catalyst were filled in the first reactor (referred to as the first reactor), and the hydrogenation agent was filled in the second reactor (referred to as the second reactor). Desulfurization catalyst, the ratio of the three is 5:45:50, of which the trade names of hydrogenation protection agent, hydrodemetallization catalyst, and hydrodesulfurization catalyst are RG-10A, RDM-2B, and RMS-1B, all produced by Sinopec Catalyst Branch Changling Catalyst Factory production. The catalytic conversion catalyst used in the catalytic cracking test is produced by Qilu Catalyst Factory of Sinopec Catalyst Branch Company, and the brand name is MLC-500. The ratio of hydrogenation protection agent, hydrodeasphaltenation agent and hydrofinishing agent used in the hydrogenation test of catalytic cracking heavy oil is 5:15:80, and the brand name of the hydrogenation protection agent is RG-10B, which is supplied by Sinopec Catalyst Branch Changling Catalyst Factory production. The hydrodeasphaltene agent and hydrofinishing agent were prepared in the laboratory, and their physical and chemical properties are shown in Table 2.
实施例1Example 1
加热后的渣油原料A和催化裂化重油与氢气混合后进入渣油加氢反应器,在渣油加氢催化剂的作用下进行反应,渣油加氢单元的试验条件见表3。反应物流进入高压分离器分离为气相物流和液相物流,其中气相物流经净化、升压后循环使用。液相物流经常压分馏得到气体、加氢汽油、加氢柴油和加氢渣油。加氢渣油作为催化裂化单元的原料,在催化转化催化剂存在下进行裂化反应,分离反应产物得到干气、液化气、催化汽油、催化柴油和催化裂化重油,催化裂化的操作条件见表3。催化裂化重油(占催化裂化进料的35%)分为两部分,其中一部分(占催化裂化进料的14%)作为稀释油与渣油进料混合后进入渣油加氢反应器,掺入催化裂化重油后渣油原料的粘度为100mm2/s。余下部分(占催化裂化进料的21%)与氢气混合后进入催化裂化重油加氢反应器,在催化剂的作用下进行反应,反应物流进入高压分离器气液分离。总产品分布(两个装置产品之和)见表3。The heated residual oil raw material A and FCC heavy oil are mixed with hydrogen and then enter the residual oil hydrogenation reactor to react under the action of the residual oil hydrogenation catalyst. The test conditions of the residual oil hydrogenation unit are shown in Table 3. The reactant flow enters the high-pressure separator and is separated into a gas-phase flow and a liquid-phase flow, wherein the gas-phase flow is recycled after being purified and boosted. The liquid phase stream is subjected to atmospheric pressure fractionation to obtain gas, hydrogenated gasoline, hydrogenated diesel oil and hydrogenated residue. The hydrogenated residual oil is used as the raw material of the catalytic cracking unit, and the cracking reaction is carried out in the presence of a catalytic conversion catalyst. The reaction products are separated to obtain dry gas, liquefied gas, catalytic gasoline, catalytic diesel oil and catalytic cracking heavy oil. The operating conditions of catalytic cracking are shown in Table 3. FCC heavy oil (accounting for 35% of catalytic cracking feed) is divided into two parts, one part (accounting for 14% of catalytic cracking feed) is mixed with residual oil feed as diluent oil and then enters residue hydrogenation reactor, mixed with The viscosity of residual oil raw material after catalytic cracking heavy oil is 100mm 2 /s. The remaining part (accounting for 21% of the catalytic cracking feed) is mixed with hydrogen and enters the catalytic cracking heavy oil hydrogenation reactor, and reacts under the action of the catalyst, and the reactant flow enters the high-pressure separator for gas-liquid separation. The total product distribution (sum of the products of the two installations) is shown in Table 3.
实施例2Example 2
实施例2采用渣油原料B。工艺流程与实施例1相同。与实施例1不同的是,实施例2中催化裂化重油占催化裂化进料的比例为22%,其中作为稀释油部分占催化裂化进料的6%,掺入催化裂化重油后渣油原料的粘度为110mm2/s。余下部分(占催化裂化进料的16%)进入催化裂化重油加氢反应器。组总产品分布(两个装置产品之和)见表3。
由表3可见,实施例1和实施例2均达到了较高的液体(液化气+汽油+柴油)收率,分别为81.86%和86.43%。说明采用本发明的方法,既可以达到降低原料渣油粘度,促进渣油加氢杂质的脱除反应的目的,同时通过催化裂化重油单独的加氢精制,避免了渣油中杂质的影响,改善了催化裂化重油加氢的效果,提高了催化裂化装置液体收率。It can be seen from Table 3 that both Example 1 and Example 2 have achieved relatively high liquid (liquefied gas+gasoline+diesel) yields, which are 81.86% and 86.43% respectively. Illustrate that adopting the method of the present invention can reduce the viscosity of raw material residual oil and promote the purpose of the removal reaction of residual oil hydrogenation impurities, and at the same time, the influence of impurities in residual oil can be avoided by the independent hydrofinishing of catalytic cracking heavy oil, and the improvement can be improved. Improve the effect of catalytic cracking heavy oil hydrogenation, improve the liquid yield of catalytic cracking unit.
表1Table 1
表2Table 2
表3table 3
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010245832.1A CN102344828B (en) | 2010-08-05 | 2010-08-05 | Processing method of inferior residual oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010245832.1A CN102344828B (en) | 2010-08-05 | 2010-08-05 | Processing method of inferior residual oil |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102344828A CN102344828A (en) | 2012-02-08 |
CN102344828B true CN102344828B (en) | 2014-05-28 |
Family
ID=45543904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010245832.1A Active CN102344828B (en) | 2010-08-05 | 2010-08-05 | Processing method of inferior residual oil |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102344828B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104560177B (en) * | 2013-10-29 | 2017-02-01 | 中国石油化工股份有限公司 | Heavy hydrocarbon oil hydro-conversion method |
CN104560176B (en) * | 2013-10-29 | 2017-03-01 | 中国石油化工股份有限公司 | A kind of heavy oil hydrogenation conversion method |
CN106609155B (en) * | 2015-10-27 | 2019-03-22 | 中国石油化工股份有限公司 | A method of producing cleaning diesel oil |
CN106833741A (en) * | 2017-02-08 | 2017-06-13 | 上海河图工程股份有限公司 | Boiling bed hydrogenation and RFCC combined method and hydrogenation catalyst |
CN109705898B (en) * | 2017-10-26 | 2021-03-12 | 中国石油化工股份有限公司 | Process for hydrotreating residua feedstocks |
CN111647429B (en) * | 2019-03-04 | 2022-01-04 | 中国石油化工股份有限公司 | Method and system for processing inferior oil |
CN111647434B (en) * | 2019-03-04 | 2022-01-04 | 中国石油化工股份有限公司 | Method and system for processing inferior oil |
CN111647428B (en) * | 2019-03-04 | 2022-01-04 | 中国石油化工股份有限公司 | A method and system for treating inferior oil |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4713221A (en) * | 1984-05-25 | 1987-12-15 | Phillips Petroleum Company | Crude oil refining apparatus |
CN1313379A (en) * | 2000-03-10 | 2001-09-19 | 中国石油化工集团公司 | A method for hydrotreating inferior catalytic cracking raw materials |
CN1872957A (en) * | 2005-05-31 | 2006-12-06 | 中国石油化工股份有限公司 | Method for catalytic cracking petroleum hydrocarbons |
CN101210200A (en) * | 2006-12-27 | 2008-07-02 | 中国石油化工股份有限公司 | A combined process method of residual oil hydrotreating and catalytic cracking |
CN101434866A (en) * | 2007-11-15 | 2009-05-20 | 中国石油化工股份有限公司 | Heavy distillate hydrogenation and catalytic cracking combined method |
CN101463274A (en) * | 2007-12-20 | 2009-06-24 | 中国石油化工股份有限公司 | Improved hydrocarbon oil hydrotreating and catalytic cracking combined technique |
CN101684417A (en) * | 2008-09-27 | 2010-03-31 | 中国石油化工股份有限公司 | Optimized hydrogenation-catalytic cracking combination process |
-
2010
- 2010-08-05 CN CN201010245832.1A patent/CN102344828B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4713221A (en) * | 1984-05-25 | 1987-12-15 | Phillips Petroleum Company | Crude oil refining apparatus |
CN1313379A (en) * | 2000-03-10 | 2001-09-19 | 中国石油化工集团公司 | A method for hydrotreating inferior catalytic cracking raw materials |
CN1872957A (en) * | 2005-05-31 | 2006-12-06 | 中国石油化工股份有限公司 | Method for catalytic cracking petroleum hydrocarbons |
CN101210200A (en) * | 2006-12-27 | 2008-07-02 | 中国石油化工股份有限公司 | A combined process method of residual oil hydrotreating and catalytic cracking |
CN101434866A (en) * | 2007-11-15 | 2009-05-20 | 中国石油化工股份有限公司 | Heavy distillate hydrogenation and catalytic cracking combined method |
CN101463274A (en) * | 2007-12-20 | 2009-06-24 | 中国石油化工股份有限公司 | Improved hydrocarbon oil hydrotreating and catalytic cracking combined technique |
CN101684417A (en) * | 2008-09-27 | 2010-03-31 | 中国石油化工股份有限公司 | Optimized hydrogenation-catalytic cracking combination process |
Also Published As
Publication number | Publication date |
---|---|
CN102344828A (en) | 2012-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101045884B (en) | A method for producing clean diesel oil and low-carbon olefins from residual oil and heavy distillate oil | |
CN102344828B (en) | Processing method of inferior residual oil | |
CN102311795B (en) | Hydrogenation method for producing high-octane gasoline components by diesel oil raw material | |
CN102373084B (en) | Method producing light fuel oil and propylene from poor residual oil | |
CN102453541B (en) | Combined processing method for treating residual oil | |
CN103773495B (en) | A combined hydrotreating-catalytic cracking process | |
CN104593068B (en) | A method of producing gasoline with a high octane number from residual oil | |
CN107460003A (en) | A kind of method for being hydrocracked increasing of aviation kerosene yield | |
CN104560188B (en) | A kind of combined hydrogenation method of voluminous gasoline | |
CN103102982A (en) | Combined process for conversion of residual oil | |
CN102344829B (en) | Combination method for residue hydrotreatment, catalytic cracking heavy oil hydrogenation and catalytic cracking | |
CN103773497B (en) | A kind of method increasing production clean fuel oil | |
EP3936589A1 (en) | Method and system for producing light olefin from poor oil | |
CN102373086B (en) | Method for producing light fuel by using gas oil and residual oil | |
CN110835550B (en) | Hydrocracking method for producing chemical raw materials | |
CN100443572C (en) | A hydrocracking method for producing diesel oil from heavy feed oil with high nitrogen content | |
CN107557069B (en) | Method and system for hydro-conversion of coal tar raw material | |
CN102719272B (en) | A kind of catalysis conversion method of petroleum hydrocarbon | |
CN103059993B (en) | Catalytic conversion method of petroleum hydrocarbon | |
CN102911730B (en) | Catalytic conversion method for high sulfur wax oil | |
CN102719274B (en) | High efficiency catalytic conversion method of petroleum hydrocarbon | |
CN109988625B (en) | Hydrofining and hydrocracking combined process | |
CN100549143C (en) | A kind of working method of petroleum hydrocarbon | |
CN103059995B (en) | Effective catalytic conversion method of petroleum hydrocarbon | |
CN102911733B (en) | Catalytic conversion method of high-sulfur wax oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |