[go: up one dir, main page]

CN102323990B - 一种刚体空间运动气动模型的建模方法 - Google Patents

一种刚体空间运动气动模型的建模方法 Download PDF

Info

Publication number
CN102323990B
CN102323990B CN201110280210.7A CN201110280210A CN102323990B CN 102323990 B CN102323990 B CN 102323990B CN 201110280210 A CN201110280210 A CN 201110280210A CN 102323990 B CN102323990 B CN 102323990B
Authority
CN
China
Prior art keywords
alpha
cos
beta
space motion
rigid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110280210.7A
Other languages
English (en)
Other versions
CN102323990A (zh
Inventor
史忠科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Feisida Automation Engineering Co Ltd
Original Assignee
Xian Feisida Automation Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Feisida Automation Engineering Co Ltd filed Critical Xian Feisida Automation Engineering Co Ltd
Priority to CN201110280210.7A priority Critical patent/CN102323990B/zh
Publication of CN102323990A publication Critical patent/CN102323990A/zh
Application granted granted Critical
Publication of CN102323990B publication Critical patent/CN102323990B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明公开了一种刚体空间运动的气动模型,该模型通过定义三元数,得到刚体运动姿态的表达,避免了姿态方程奇异问题,根据三元数进一步得到速度的气动模型表达式,并且得到了气流迎角和侧滑角的气动力表达式,从而得到刚体主要运动状态的模型;通过引入三元数简化了气流轴系刚体运动方程,使得刚体运动姿态方程中不再出现奇点,便于工程使用。

Description

一种刚体空间运动气动模型的建模方法
技术领域
本发明涉及空间运动刚体模型,特别涉及飞行器大机动气动模型的建模方法。
背景技术
机体轴系刚体运动微分方程是描述飞行器、鱼雷、航天器等空间运动的基本方程。通常,在数据处理等应用中,体轴系的状态变量主要包含3个速度分量、三个欧拉角、以及地面坐标系的XE,YE,ZE等,由于ZE定义为垂直地面指向地球中心,因此ZE实际为负的飞行高度;XE,YE通常主要依赖GPS、GNSS、北斗等直接给出;欧拉角表示刚体空间运动姿态,而刻画刚体姿态的微分方程又是其中的核心,通常以三个欧拉角即俯仰、滚转和偏航角来描述。当刚体的俯仰角为±90°时,滚转角和偏航角无法定值,同时临近该奇点的区域求解误差过大,导致工程上不可容忍的误差而不能使用;为了避免这一问题,人们首先采用限制俯仰角取值范围的方法,这使得方程式退化,不能全姿态工作,因而难以广泛用于工程实践。随着对飞行器极限飞行的研究,人们又相继采用了方向余弦法、等效转动矢量法、四元数法等推算刚体运动姿态。
方向余弦法避免了欧拉角描述方法的“奇异”现象,用方向余弦法计算姿态矩阵没有方程退化问题,可以全姿态工作,但需要求解9个微分方程,计算量较大,实时性较差,无法满足工程实践要求。等效转动矢量法如单子样递推、双子样转动矢量、三子样转动矢量和四子样旋转矢量法以及在此基础上的各种修正算法和递推算法等。文献中研究旋转矢量时,都是基于速率陀螺输出为角增量的算法。然而在实际工程中,一些陀螺的输出是角速率信号,如光纤陀螺、动力调谐陀螺等。当速率陀螺输出为角速率信号时,旋转矢量法的算法误差明显增大。四元数法是定义4个欧拉角的函数来计算航姿,能够有效弥补欧拉角描述方法的奇异性,只要解4个一阶微分方程式组即可,比方向余弦姿态矩阵微分方程式计算量有明显的减少,能满足工程实践中对实时性的要求。其常用的计算方法有毕卡逼近法、二阶、四阶龙格-库塔法和三阶泰勒展开法等。毕卡逼近法实质是单子样算法,对有限转动引起的不可交换误差没有补偿,在高动态情况下姿态解算中的算法漂移会十分严重。采用四阶龙格-库塔法求解四元数微分方程时,随着积分误差的不断积累,会出现三角函数取值超出±1的现象,从而导致计算发散;泰勒展开法也因计算精度的不足而受到制约。当刚体大机动时,角速率较大导致上述方法的误差更大;不仅如此,姿态估计的误差常常会导致速度4个分量、高度输出的误差急剧增大,导致气动模型和参数估计不准确。
发明内容
为了克服现有刚体运动模型建模误差大的问题,本发明提供了一种刚体空间运动气动模型的建模方法,该模型通过定义三元数,得到刚体运动姿态的表达,避免了姿态方程奇异问题,根据三元数进一步得到刚体空间运动的速度的气动模型表达式,并且得到了刚体空间运动的气流迎角和侧滑角的气动力表达式,从而得到刚体主要运动状态的模型。
本发明解决其技术问题采用的技术方案是,一种刚体空间运动气动模型的建模方法,其特征包括以下步骤:
1、定义三元数:
其中:分别指刚体空间运动的滚转角和俯仰角,且
进一步得到:
s · 1 = qs 3 - rs 2 s · 2 = ps 3 + rs 1 s · 3 = - ps 2 - qs 1
其中:p,q,r分别为刚体空间运动的滚转角速度、俯仰角速度和偏航角速度;
2、刚体空间运动速度的气动模型为:
V · 0 = V 0 [ ( QS m V 0 C x - gs 1 V 0 ) cos α cos β - ( QS m V 0 C y + gs 2 V 0 ) sin β - ( QS m V 0 C z + gs 3 V 0 ) sin αβ cos ]
其中:V0为刚体质心运动速度,g为重力加速度,α为刚体空间运动的气流迎角,β为刚体空间运动的侧滑角,Q为刚体空间运动的动压,S为刚体机翼面积,m为刚体的质量,Cx、Cy、Cz分别为刚体空间运动的纵向气动力、侧向气动力和法向气动力;
3、刚体空间运动的气流迎角和侧滑角气动模型为:
α · = q - p cos α tan β - r sin α tan β + cos α cos β ( gs 3 V 0 + QS m V 0 C z ) + sin α cos β ( gs 1 V 0 - QS m V 0 C x )
β · = - r cos α + p sin α + cos β ( QS m V 0 C y + gs 2 V 0 ) - sin β [ ( QS m V 0 C x - gs 1 V 0 ) cos α - ( QS m V 0 C z + gs 3 V 0 ) sin α ]
通常刚体空间运动的侧滑角通常小于90°,cosβ不会为零。
本发明的有益效果是:通过引入三元数简化了气流轴系刚体运动方程,使得刚体运动姿态方程中不再出现奇点,便于工程使用。
下面结合实施例对本发明作详细说明。
具体实施方式
1、定义三元数:
其中:分别指刚体空间运动的滚转角和俯仰角,且
进一步得到:
s · 1 = qs 3 - rs 2 s · 2 = ps 3 + rs 1 s · 3 = - ps 2 - qs 1
其中:p,q,r分别为刚体空间运动的滚转角速度、俯仰角速度和偏航角速度;
2、刚体空间运动速度的气动模型为:
V · 0 = V 0 [ ( QS m V 0 C x - gs 1 V 0 ) cos α cos β - ( QS m V 0 C y + gs 2 V 0 ) sin β - ( QS m V 0 C z + gs 3 V 0 ) sin αβ cos ]
h · = us 1 - vs 2 - ws 3
其中:V0为刚体质心运动速度,h为刚体空间运动的高度,g为重力加速度,α为刚体空间运动的气流迎角,β为刚体空间运动的侧滑角,Q为刚体空间运动的动压,S为刚体机翼面积,m为刚体的质量,Cx、Cy、Cz分别为刚体空间运动的纵向气动力、侧向气动力和法向气动力;
3、刚体空间运动的气流迎角和侧滑角气动模型为:
α · = q - p cos α tan β - r sin α tan β + cos α cos β ( gs 3 V 0 + QS m V 0 C z ) + sin α cos β ( gs 1 V 0 - QS m V 0 C x )
β · = - r cos α + p sin α + cos β ( QS m V 0 C y + gs 2 V 0 ) - sin β [ ( QS m V 0 C x - gs 1 V 0 ) cos α - ( QS m V 0 C z + gs 3 V 0 ) sin α ]
通常刚体空间运动的侧滑角通常小于90°,cosβ不会为零。

Claims (1)

1.一种刚体空间运动气动模型的建模方法,所述刚体是飞行器,其特征包括以下步骤:
a)定义三元数:
其中:分别指刚体空间运动的滚转角和俯仰角,且
进一步得到:
s · 1 = q s 3 - r s 2 s · 2 = p s 3 + r s 1 s · 3 = - p s 2 - q s 1
其中:p,q,r分别为刚体空间运动的滚转角速度、俯仰角速度和偏航角速度;
b)刚体空间运动速度的气动模型为:
V · 0 = V 0 [ ( QS m V 0 C x - g s 1 V 0 ) cos α cos β - ( QS m V 0 C y + g s 2 V 0 ) sin β - ( QS m V 0 C z + g s 3 V 0 ) sin α cos β ]
其中:V0为刚体质心运动速度,g为重力加速度,α为刚体空间运动的气流迎角,β为刚体空间运动的侧滑角,Q为刚体空间运动的动压,S为刚体的机翼面积,m为刚体质量,Cx、Cy、Cz分别为刚体空间运动的纵向气动力、侧向气动力和法向气动力;
c)刚体空间运动的气流迎角和侧滑角气动模型为:
α · = q - p cos α tan β - r sin α tan β + cos α cos β ( g s 3 V 0 + QS m V 0 C z ) + sin α cos β ( g s 1 V 0 - QS m V 0 C x )
β · = - r cos α + p sin α + cos β ( QS m V 0 C y + g s 2 V 0 ) - sin β [ ( QS m V 0 C x - g s 1 V 0 ) cos α - ( QS m V 0 C z + g s 3 V 0 ) sin α ]
CN201110280210.7A 2011-09-20 2011-09-20 一种刚体空间运动气动模型的建模方法 Expired - Fee Related CN102323990B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110280210.7A CN102323990B (zh) 2011-09-20 2011-09-20 一种刚体空间运动气动模型的建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110280210.7A CN102323990B (zh) 2011-09-20 2011-09-20 一种刚体空间运动气动模型的建模方法

Publications (2)

Publication Number Publication Date
CN102323990A CN102323990A (zh) 2012-01-18
CN102323990B true CN102323990B (zh) 2014-11-19

Family

ID=45451731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110280210.7A Expired - Fee Related CN102323990B (zh) 2011-09-20 2011-09-20 一种刚体空间运动气动模型的建模方法

Country Status (1)

Country Link
CN (1) CN102323990B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065917B (zh) * 2017-06-06 2020-03-17 上海微小卫星工程中心 临近空间航天器姿态运动特性描述模型及其建模方法
CN112800543B (zh) * 2021-01-27 2022-09-13 中国空气动力研究与发展中心计算空气动力研究所 一种基于改进Goman模型的非线性非定常气动力建模方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422380A (zh) * 2000-02-03 2003-06-04 独立技术有限责任公司 用变更四元数数据表示对可倾斜物体中的方位角估算
CN101033973A (zh) * 2007-04-10 2007-09-12 南京航空航天大学 微小型飞行器微惯性组合导航系统的姿态确定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2238936B1 (es) * 2004-02-27 2006-11-16 INSTITUTO NACIONAL DE TECNICA AEROESPACIAL "ESTEBAN TERRADAS" Sistema y metodo de fusion de sensores para estimar posicion, velocidad y orientacion de un vehiculo, especialmente una aeronave.
FR2955934B1 (fr) * 2010-01-29 2012-03-09 Eurocopter France Estimation stabilisee en virage des angles d'assiettes d'un aeronef

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422380A (zh) * 2000-02-03 2003-06-04 独立技术有限责任公司 用变更四元数数据表示对可倾斜物体中的方位角估算
CN101033973A (zh) * 2007-04-10 2007-09-12 南京航空航天大学 微小型飞行器微惯性组合导航系统的姿态确定方法

Also Published As

Publication number Publication date
CN102323990A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
CN107544067B (zh) 一种基于高斯混合近似的高超声速再入飞行器跟踪方法
CN111258231A (zh) 仿猛禽视觉导航的自主空中加油对接半物理系统及其方法
CN102809377A (zh) 飞行器惯性/气动模型组合导航方法
CN112198885B (zh) 一种满足机动平台自主降落需求的无人机控制方法
CN103926931A (zh) 轴对称高速飞行器运动特征综合识别方法
CN111488646B (zh) 一种旋转地球下高超声速平稳滑翔弹道的解析求解方法
CN102589553B (zh) 建立飞行器运动模型的切换方法
CN111813133A (zh) 一种基于相对精密单点定位的无人机舰船自主着陆方法
CN102323990B (zh) 一种刚体空间运动气动模型的建模方法
Kehoe et al. State estimation using optical flow from parallax-weighted feature tracking
CN102436437A (zh) 基于角速度的飞行器极限飞行时四元数傅里埃近似输出方法
CN107063300A (zh) 一种基于反演的水下导航系统动力学模型中扰动估计方法
CN102445202B (zh) 一种刚体空间运动状态的拉盖尔输出方法
CN109445283B (zh) 一种用于欠驱动浮空器在平面上定点跟踪的控制方法
CN102346729B (zh) 一种刚体空间运动状态的勒让德输出方法
CN102323992B (zh) 一种刚体空间运动状态多项式类输出模型的建模方法
CN102384746B (zh) 一种刚体空间运动状态的切比雪夫输出的建模方法
CN102375803B (zh) 一种刚体空间运动的气流轴系模型的建立方法
CN106483967B (zh) 一种基于角速度信息测量与滑模的飞艇俯仰角稳定方法
CN102508818B (zh) 一种刚体空间运动状态的任意步长正交级数输出模型建模方法
CN109737960A (zh) 基于速度加角速度匹配的船体变形测量方法
CN102508821B (zh) 一种刚体空间运动的状态输出模型建模方法
CN102359789B (zh) 一种刚体空间运动状态的任意阶输出方法
CN102346727B (zh) 一种刚体空间运动的机体轴系的建模方法
CN102323991B (zh) 一种刚体空间运动状态沃尔什输出模型的建模方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141119

CF01 Termination of patent right due to non-payment of annual fee