CN102323656B - High-frequency response two-dimensional micro angular deflection control reflector based on double-shaft flexible hinge - Google Patents
High-frequency response two-dimensional micro angular deflection control reflector based on double-shaft flexible hinge Download PDFInfo
- Publication number
- CN102323656B CN102323656B CN201110290112.1A CN201110290112A CN102323656B CN 102323656 B CN102323656 B CN 102323656B CN 201110290112 A CN201110290112 A CN 201110290112A CN 102323656 B CN102323656 B CN 102323656B
- Authority
- CN
- China
- Prior art keywords
- flexible hinge
- reflector
- piezoelectric ceramic
- deflection
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000004044 response Effects 0.000 title claims abstract description 25
- 238000006073 displacement reaction Methods 0.000 claims abstract description 26
- 230000007246 mechanism Effects 0.000 claims abstract description 13
- 239000000919 ceramic Substances 0.000 claims description 38
- 230000001939 inductive effect Effects 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims 1
- 238000013519 translation Methods 0.000 abstract description 6
- 238000010168 coupling process Methods 0.000 abstract description 5
- 238000005859 coupling reaction Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
Description
技术领域 technical field
本发明属于光束控制技术领域,主要涉及一种基于双轴柔性铰链的高频响二维微角摆控制反射镜。The invention belongs to the technical field of beam control, and mainly relates to a high-response two-dimensional micro-angle pendulum control reflector based on a biaxial flexible hinge.
背景技术 Background technique
微角摆控制反射镜常用于光学系统中,控制光束的快速角度偏转,实现光束的方向校正与稳定。如自适应光学系统中用于校正光束波前的整体倾斜;无线光通信技术领域中用于实现光束的对准与稳定;激光雷达中用于激光光束的大范围扫描以及对目标的快速瞄准与跟踪;高能激光以及精密准直领域中用于实现光束方向的稳定。在这些光学系统的应用中,为了提高光束控制精度,获得良好的补偿、跟踪和控制效果,要求光束快速偏转控制装置必须具有高的角偏转灵敏度以及快速响应的能力,即高角灵敏度与高频响,并且在激光雷达等一些场合要求同时具有较大的角度扫描范围。Micro pendulum control mirrors are often used in optical systems to control the rapid angular deflection of light beams and realize the direction correction and stabilization of light beams. For example, in the adaptive optics system, it is used to correct the overall tilt of the beam front; in the field of wireless optical communication technology, it is used to achieve the alignment and stability of the beam; Tracking; used in the field of high-energy lasers and precision collimation to stabilize the beam direction. In the application of these optical systems, in order to improve the beam control accuracy and obtain good compensation, tracking and control effects, it is required that the beam fast deflection control device must have high angular deflection sensitivity and fast response capability, that is, high angular sensitivity and high frequency response. , and in some occasions such as laser radar, it is required to have a large angular scanning range at the same time.
目前,光束的快速偏转控制方法包括有机械式光束偏转器,传统的机械式光束偏转器主要是基于万向节或柔性铰链结构实现的,是目前应用较多的一种光束偏转方式。At present, the rapid deflection control method of the beam includes a mechanical beam deflector. The traditional mechanical beam deflector is mainly realized based on a universal joint or a flexible hinge structure, and is currently a widely used beam deflection method.
万向支架结构是将反射镜安装在万向支架上,通过万向支架的旋转带动反射镜实现出射光束任意角度的偏转,万向支架结构的优点是可实现极大空间角度的光束偏转,但用这种万向支架结构进行光束的偏转控制,均需操作整个机架,由于机架结构惯量大,频带窄,响应慢,要达到高的精度是较困难的,只适合作中等精度或低速情况下的光束偏转控制。The gimbal structure is to install the reflector on the gimbal, and the rotation of the gimbal drives the reflector to deflect the outgoing beam at any angle. The advantage of the gimbal structure is that it can deflect the beam at a large spatial angle, but To control the deflection of the light beam with this gimbal structure requires the operation of the entire rack. Due to the large inertia of the rack structure, narrow frequency band, and slow response, it is difficult to achieve high precision. It is only suitable for medium precision or low speed. Beam deflection control in case.
基于柔性铰链结构的微角摆控制反射镜具有结构紧凑、无摩擦损耗等特点,利用压电陶瓷或音圈电机驱动器推动柔性铰链或直接推动反射镜实现角度偏转,由于采用高位移灵敏度的压电陶瓷或音圈电机驱动器,可以实现非常高的光束偏转灵敏度,但是其快速偏转时的响应速度常受到柔性铰链自身的谐振频率限制,如何提高柔性铰链的谐振频率是需要研究的问题,并且柔性铰链结构在进行二维角度偏转时,在二维偏转方向上容易产生耦合。The micro-angular pendulum control mirror based on the flexible hinge structure has the characteristics of compact structure and no friction loss. The piezoelectric ceramic or voice coil motor driver is used to push the flexible hinge or directly push the mirror to achieve angular deflection. Due to the high displacement sensitivity of the piezoelectric Ceramic or voice coil motor drivers can achieve very high beam deflection sensitivity, but their response speed during fast deflection is often limited by the resonant frequency of the flexible hinge itself. How to improve the resonant frequency of the flexible hinge is a problem that needs to be studied, and the flexible hinge When the structure performs two-dimensional angular deflection, it is easy to generate coupling in the two-dimensional deflection direction.
中国科学院光电技术研究所李新阳等人制作了单点柔性支撑非对称结构的二维高速倾斜镜,根据测量数据建立了高速倾斜反射镜机械谐振的动态数学模型,提出采用网络滤波技术来减小倾斜反射镜的机械谐振,使得高速倾斜反射镜的控制稳定性和控制带宽都得到了较大改善。但是该方法并没有从系统结构上解决机械谐振的问题,并且该方法中的动态数学模型直接会影响到网络滤波的效果,建立准确的动态数学模型比较困难,限制了控制稳定性和带宽的进一步提高。Li Xinyang and others from the Institute of Optoelectronics Technology, Chinese Academy of Sciences made a two-dimensional high-speed tilting mirror with asymmetric structure supported by a single point of flexible support. Based on the measurement data, a dynamic mathematical model of the mechanical resonance of the high-speed tilting mirror was established, and a network filtering technology was proposed to reduce the tilt. The mechanical resonance of the mirror greatly improves the control stability and control bandwidth of the high-speed tilting mirror. However, this method does not solve the problem of mechanical resonance from the system structure, and the dynamic mathematical model in this method will directly affect the effect of network filtering. It is difficult to establish an accurate dynamic mathematical model, which limits the further improvement of control stability and bandwidth. improve.
中国科学院光电技术研究所朱衡等人提出一种基于薄板径向支撑的高速压电倾斜镜,在镜片与驱动器连接处添加了薄板径向支撑,用以限制径向偏移,同时增大轴向刚度,有效改进了倾斜镜的整体刚度分布,提高了原结构倾斜镜的谐振频率。但结构较复杂,对安装要求较高,并且驱动点距反射镜转动中心的距离较小,限制了系统的角度分辨力。Zhu Heng, Institute of Optoelectronics Technology, Chinese Academy of Sciences, and others proposed a high-speed piezoelectric tilting mirror based on thin-plate radial support. A thin-plate radial support was added at the connection between the lens and the driver to limit the radial offset and increase the axis. The axial stiffness effectively improves the overall stiffness distribution of the tilted mirror and increases the resonant frequency of the tilted mirror with the original structure. However, the structure is more complex, the installation requirements are higher, and the distance between the driving point and the rotation center of the mirror is small, which limits the angular resolution of the system.
国防科学技术大学范大鹏等人在2010年申请的发明专利“基于分辨率倍增柔顺机构的光束精密指向装置”(申请号:CN 101794020.A)中,提出一种采用分辨率倍增杠杆结构,利用倍增杠杆的两端位移量成比例变化的特点来提高系统的角度分辨力,具有结构紧凑、定位精度高、角度分辨力高等特点,但由于平行导向柔顺机构和分辨率倍增杠杆的柔性铰链均为弹簧片结构,系统的响应速度较低,无法在需要快速响应的情况下使用。In the invention patent "Beam Precision Pointing Device Based on Resolution Multiplier Compliant Mechanism" (Application No.: CN 101794020.A) filed by Fan Dapeng and others from National University of Defense Technology in 2010, they proposed a resolution multiplication lever structure, using multiplication The displacement of both ends of the lever changes proportionally to improve the angular resolution of the system. It has the characteristics of compact structure, high positioning accuracy, and high angular resolution. However, due to the parallel guiding compliance mechanism and the flexible hinge of the resolution multiplying lever are springs Chip structure, the response speed of the system is low, and it cannot be used when a fast response is required.
新型的机械式光束偏转器主要有偏心透镜式、旋转棱镜式、偏心微透镜阵列式、可控微棱镜阵列式。New mechanical beam deflectors mainly include eccentric lens type, rotating prism type, eccentric microlens array type, and controllable microprism array type.
美国Dayton大学J.Gibson等人提出的偏心透镜式光束偏转器,将前后两个透镜共焦面放置,前一个透镜固定,通过后一个透镜相对于前一透镜的横向平移实现出射光束的角度偏转,与传统的机械式偏转结构相比,具有无旋转光轴、偏转角大(可达到45°)等特点;前苏联建立的用于直线度平面度测量的国家专用基准装置中用到一种同样的结构,通过后一个透镜的平移将入射光束相对于光轴的角度变化转换为出射光束的平移,实现出射光束相对于入射光束的角度偏转,以达到校正光束角漂移量的目的;J.Gibson等人还提出一种旋转楔形棱镜式光束偏转器,将两个双胶合消色散楔形棱镜相对放置,两个楔形棱镜以入射光束为旋转轴作圆周旋转运动,实现出射光束方向的偏转;以上两种光束偏转器均能达到分辨力1mrad、偏转速度1rad/s以及大于45°的二维角度偏转范围。由于装置中采用透镜、楔形棱镜的运动实现光束偏转,体积、质量和功耗没有得到改善,光束偏转响应速度难以得到提高,并且透镜的二维平移容易产生耦合,两个楔形棱镜的旋转运动控制过程较复杂。The eccentric lens beam deflector proposed by J.Gibson et al. of Dayton University in the United States places two front and rear lenses on the confocal plane, the front lens is fixed, and the angle deflection of the outgoing beam is realized by the lateral translation of the latter lens relative to the previous lens. , compared with the traditional mechanical deflection structure, it has the characteristics of no rotating optical axis and large deflection angle (up to 45°); a national special reference device established by the former Soviet Union for straightness and flatness measurement is used. With the same structure, through the translation of the latter lens, the angle change of the incident beam relative to the optical axis is converted into the translation of the outgoing beam, so as to realize the angular deflection of the outgoing beam relative to the incident beam, so as to achieve the purpose of correcting the drift of the beam angle; J. Gibson et al. also proposed a rotating wedge prism beam deflector, in which two double glued adispersive wedge prisms are placed opposite each other, and the two wedge prisms take the incident beam as the rotation axis for circular rotation to realize the deflection of the outgoing beam direction; above Both beam deflectors can achieve a resolution of 1mrad, a deflection speed of 1rad/s, and a two-dimensional angular deflection range greater than 45°. Because the movement of the lens and wedge prism is used in the device to realize the beam deflection, the volume, quality and power consumption have not been improved, the response speed of the beam deflection is difficult to be improved, and the two-dimensional translation of the lens is easy to generate coupling. The rotational motion control of the two wedge prisms The process is more complicated.
土耳其Koc大学的A.Akatay和H.Urey提出一种采用二元光学制作的高分辨力微透镜阵列光束偏转器,由一对间距为几微米的微透镜阵列组成,前组为正透镜,后组为负透镜,准直光经正透镜后聚焦,然后经负透镜再变为准直光,当正负透镜阵列之间产生横向相对运动时,出射准直光束的方向就会发生偏转。利用微光学元件代替传统光学元件,可以有效地减小光束偏转系统的体积、质量和功耗,这种透镜只需很小的相对位移输出光束就会产生很大的角度偏转,透镜阵列越小,达到相同的偏转所需的相对位移就越小,因此这种扫描器的扫描速率能达到很高,但扫描角度相对较小(能够达到几度),透过率低,微光学元件的制作工艺是决定其性能的关键因素,目前工程应用中尚不成熟。A.Akatay and H.Urey of Koc University in Turkey proposed a high-resolution microlens array beam deflector made of binary optics, which consists of a pair of microlens arrays with a pitch of several microns. The group is a negative lens. The collimated light is focused by the positive lens, and then becomes collimated light by the negative lens. When there is a lateral relative movement between the positive and negative lens arrays, the direction of the outgoing collimated beam will be deflected. Using micro-optical components instead of traditional optical components can effectively reduce the volume, mass and power consumption of the beam deflection system. This kind of lens only needs a small relative displacement to produce a large angular deflection of the output beam. The smaller the lens array , the smaller the relative displacement required to achieve the same deflection, so the scanning rate of this scanner can be very high, but the scanning angle is relatively small (can reach several degrees), the transmittance is low, and the fabrication of micro-optical elements Technology is the key factor to determine its performance, and it is not yet mature in engineering applications.
美国Cincinnati大学N.R.Smith等人提出一种电润湿微楔形棱镜(EMPs)的光束偏转装置,在微空腔中装入一定折射率的液体材料,液体接地,空腔的两侧为两个电极板,当对两极板施以不同的电压时,空腔中的液体上表面将随极板电压不同而呈现出不同角度的斜面,与液体底面构成楔角,成为一个楔角可控的微楔形棱镜,通过控制空腔两侧的极板电压改变微楔形棱镜的楔角,实现对光束出射角度的偏转控制。此方法中光束的最大偏转角度与所用液体材料的折射率有关,所实现的光束偏转范围可以达到30°,响应速度为毫秒级,该方法中由于空腔壁的存在使得光束通过时存在一定程度的损失,使用时空腔壁两侧电极板之间的电压需要达到几十伏,并且为了增大光束偏转角,需要增加电极板之间的电压差以增大液体微楔形棱镜的楔角,而电极板之间的间距为微米至毫米量级,从而在空腔内形成非常强的电场,容易造成击穿,并且该器件的制作过程比较复杂。N.R.Smith of the University of Cincinnati in the United States proposed a beam deflection device for electrowetting micro wedge prisms (EMPs). A liquid material with a certain refractive index is placed in the micro cavity, the liquid is grounded, and two electrodes are placed on both sides of the cavity. When different voltages are applied to the two polar plates, the upper surface of the liquid in the cavity will present slopes with different angles according to the voltage of the polar plates, and form a wedge angle with the bottom surface of the liquid, forming a micro-wedge with a controllable wedge angle. The prism changes the wedge angle of the micro-wedge prism by controlling the plate voltage on both sides of the cavity to realize the deflection control of the beam exit angle. In this method, the maximum deflection angle of the beam is related to the refractive index of the liquid material used. The realized beam deflection range can reach 30°, and the response speed is on the order of milliseconds. loss, the voltage between the electrode plates on both sides of the cavity wall needs to reach tens of volts, and in order to increase the beam deflection angle, it is necessary to increase the voltage difference between the electrode plates to increase the wedge angle of the liquid micro-wedge prism, while The distance between the electrode plates is on the order of micron to millimeter, so a very strong electric field is formed in the cavity, which is easy to cause breakdown, and the manufacturing process of the device is relatively complicated.
发明内容 Contents of the invention
本发明的目的就是为了克服现有技术的不足,提供一种基于双轴柔性铰链的高频响二维微角摆控制反射镜,达到动态响应速度快、可同时实现二维微角度偏转的目的。The purpose of the present invention is to overcome the deficiencies of the prior art, and provide a high-response two-dimensional micro-angle pendulum control mirror based on a biaxial flexible hinge, so as to achieve fast dynamic response and realize two-dimensional micro-angle deflection at the same time .
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
一种基于双轴柔性铰链的高频响二维微角摆控制反射镜,在底座上端面上固装双轴柔性铰链,刚性平台垂直置于双轴柔性铰链的输出端上,且绕双轴柔性铰链发生二维微角度偏转,由底座、双轴柔性铰链和刚性平台构成二维偏转机构;反射镜固配在刚性平台上端面上,反射镜、刚性平台、双轴柔性铰链与底座中心共轴;驱动机构由四个压电陶瓷驱动器、相应的压电陶瓷驱动电源及紧固件构成,其中四个压电陶瓷驱动器通过紧固件均布配装在底座上,且相对应的两个压电陶瓷驱动器构成一组,两组压电陶瓷驱动器分别相对于双轴柔性铰链的正交偏转轴对称设置;四个位移传感器和计算机系统构成控制系统,所述的四个位移传感器相对于双轴柔性铰链对称配装在底座上,且与刚性平台接触配合;导线分别将位移传感器与计算机系统主机、计算机系统主机与压电陶瓷驱动电源、压电陶瓷驱动电源与压电陶瓷驱动器连通。A high-response two-dimensional micro-angular pendulum control mirror based on a biaxial flexible hinge, a biaxial flexible hinge is fixed on the upper end surface of the base, a rigid platform is placed vertically on the output end of the biaxial flexible hinge, and the The flexible hinge produces two-dimensional micro-angle deflection, and the two-dimensional deflection mechanism is composed of the base, the biaxial flexible hinge and the rigid platform; Shaft; the driving mechanism is composed of four piezoelectric ceramic drivers, corresponding piezoelectric ceramic drive power supplies and fasteners, of which the four piezoelectric ceramic drivers are evenly distributed on the base through fasteners, and the corresponding two The piezoelectric ceramic drivers constitute a group, and the two groups of piezoelectric ceramic drivers are respectively arranged symmetrically with respect to the orthogonal deflection axes of the biaxial flexible hinge; four displacement sensors and a computer system constitute a control system, and the four displacement sensors are relatively The shaft flexible hinge is symmetrically assembled on the base and is in contact with the rigid platform; the wires respectively connect the displacement sensor with the computer system host, the computer system host with the piezoelectric ceramic driving power supply, and the piezoelectric ceramic driving power supply and the piezoelectric ceramic driver.
所述的基于双轴柔性铰链的高频响二维微角摆控制反射镜中压电陶瓷驱动器和压电陶瓷驱动电源分别为电致伸缩驱动器和驱动源、或者磁致伸缩驱动器和驱动源、或者音圈电机驱动器和驱动源。The piezoelectric ceramic driver and the piezoelectric ceramic driving power in the high-response two-dimensional micro-angular pendulum control mirror based on the biaxial flexible hinge are respectively an electrostrictive driver and a driving source, or a magnetostrictive driver and a driving source, Or a voice coil motor driver and drive source.
所述的基于双轴柔性铰链的高频响二维微角摆控制反射镜中位移传感器为电容传感器、或者电感传感器、或者电涡流传感器。The displacement sensor in the high-response two-dimensional micro-angular pendulum control mirror based on the biaxial flexible hinge is a capacitive sensor, or an inductive sensor, or an eddy current sensor.
本发明的显著特点与优势在于:Notable features and advantages of the present invention are:
1、本发明采用双轴柔性铰链实现二维正交方向的微角度偏转,利用双轴柔性铰链在二维正交偏转方向上不产生角度耦合和干扰,可产生准确的高灵敏度微角位移;1. The present invention uses a biaxial flexible hinge to realize the micro-angle deflection in the two-dimensional orthogonal direction. The biaxial flexible hinge does not produce angular coupling and interference in the two-dimensional orthogonal deflection direction, and can produce accurate and highly sensitive micro-angular displacement;
2、本发明中在二维偏转方向上分别利用双驱动器在对称位置分别沿正反方向同步驱动,可以使反射镜具有高速无滞后动态跟踪响应特性;通过优化双轴柔性铰链的宽度和厚度,可以在二维偏转时获得完全一致的响应特性;并且双轴柔性铰链极大地轴向刚度可以限制反射镜在偏转时的轴向位移。2. In the present invention, in the two-dimensional deflection direction, dual drivers are used to drive synchronously in the forward and reverse directions at symmetrical positions, so that the mirror can have high-speed and no-lag dynamic tracking response characteristics; by optimizing the width and thickness of the biaxial flexible hinge, The fully consistent response characteristics can be obtained during two-dimensional deflection; and the great axial stiffness of the biaxial flexible hinge can limit the axial displacement of the mirror during deflection.
附图说明 Description of drawings
图1是本发明总体装配结构示意图;Fig. 1 is a schematic diagram of the overall assembly structure of the present invention;
图2是本发明总体拆解结构示意图;Fig. 2 is a schematic diagram of the overall disassembly structure of the present invention;
图3是图1中底座与双轴柔性铰链、刚性平台装配连接结构示意图;Fig. 3 is a schematic diagram of the assembly and connection structure of the base, the biaxial flexible hinge and the rigid platform in Fig. 1;
图4中(a)是图1中底座与双轴柔性铰链、刚性平台装配连接结构y向正视图,(b)是图1中底座与双轴柔性铰链、刚性平台装配连接结构x向正视图;Figure 4 (a) is the y-direction front view of the assembly connection structure of the base, biaxial flexible hinge and rigid platform in Figure 1, and (b) is the x-direction front view of the assembly connection structure of the base, biaxial flexible hinge and rigid platform in Figure 1 ;
图中件号说明:1、反射镜,2、刚性平台,3、压电陶瓷驱动器,4、底座,5、双轴柔性铰链,6、位移传感器,7、紧固件,8、压电陶瓷驱动电源,9、计算机系统。Part number description in the figure: 1. Mirror, 2. Rigid platform, 3. Piezoelectric ceramic driver, 4. Base, 5. Biaxial flexible hinge, 6. Displacement sensor, 7. Fastener, 8. Piezoelectric ceramic Drive power supply, 9. Computer system.
具体实施方式 Detailed ways
下面结合附图对本发明具体实施方案进行详细描述。Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
一种基于双轴柔性铰链的高频响二维微角摆控制反射镜,在底座4上端面上固装双轴柔性铰链5,刚性平台2垂直置于双轴柔性铰链5的输出端上,且绕双轴柔性铰链5发生二维微角度偏转,由底座4、双轴柔性铰链5和刚性平台2构成二维偏转机构;反射镜1固配在刚性平台2上端面上,反射镜1、刚性平台2、双轴柔性铰链5与底座4中心共轴;驱动机构由四个压电陶瓷驱动器3、相应的压电陶瓷驱动电源8及紧固件7构成,其中四个压电陶瓷驱动器3通过紧固件7均布配装在底座4上,且相对应的两个压电陶瓷驱动器4构成一组,两组压电陶瓷驱动器4分别相对于双轴柔性铰链5的正交偏转轴对称设置;四个位移传感器6和计算机系统9构成控制系统,所述的四个位移传感器6相对于双轴柔性铰链5对称配装在底座4上,且与刚性平台2接触配合;导线分别将位移传感器6与计算机系统9主机、计算机系统9主机与压电陶瓷驱动电源8、压电陶瓷驱动电源8与压电陶瓷驱动器3连通。A high-response two-dimensional micro-angle pendulum control mirror based on a biaxial flexible hinge, a biaxial
压电陶瓷驱动器3和压电陶瓷驱动电源8分别为电致伸缩驱动器和驱动源、或者磁致伸缩驱动器和驱动源、或者音圈电机驱动器和驱动源。The piezoelectric
位移传感器6为电容传感器、或者电感传感器、或者电涡流传感器。The displacement sensor 6 is a capacitive sensor, or an inductive sensor, or an eddy current sensor.
作业时,当需要反射镜1偏转某一空间角度(αx,αy)时,控制系统控制压电陶瓷电源8的四路输出电压,分别驱动四个压电陶瓷驱动器3,压电陶瓷驱动器3在刚性平台2上的驱动点距刚性平台2中心的距离为L,四个压电陶瓷驱动器3两个一组,分别相对于双轴柔性铰链5的正交偏转轴对称放置,各组中的两个压电陶瓷驱动器3均以差动的方式工作,即一个发生正向位移,另一个发生负向位移,二者位移量相同,方向相反,位移量大小分别为:sx=L×tanαx,sy=L×tanαy。压电陶瓷驱动器3推动刚性平台2使反射镜1绕中心发生空间角度偏转,四个位移传感器6两个一组分别以差动的方式工作,将刚性平台2的转角信息反馈给计算机系统9,计算机系统9根据位移传感器6反馈的转角信息实时控制压电陶瓷驱动器3输出的位移量,从而精确调整反射镜1的偏转角度。本发明具有二维光束偏转控制能力,在二维方向的偏转无耦合、无轴向平移,并且在二维方向上具有相同的动态快速跟踪响应能力。During operation, when the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110290112.1A CN102323656B (en) | 2011-09-28 | 2011-09-28 | High-frequency response two-dimensional micro angular deflection control reflector based on double-shaft flexible hinge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110290112.1A CN102323656B (en) | 2011-09-28 | 2011-09-28 | High-frequency response two-dimensional micro angular deflection control reflector based on double-shaft flexible hinge |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102323656A CN102323656A (en) | 2012-01-18 |
CN102323656B true CN102323656B (en) | 2013-03-20 |
Family
ID=45451433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110290112.1A Expired - Fee Related CN102323656B (en) | 2011-09-28 | 2011-09-28 | High-frequency response two-dimensional micro angular deflection control reflector based on double-shaft flexible hinge |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102323656B (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102981243B (en) * | 2012-11-02 | 2014-10-29 | 华中科技大学 | Two-dimensional quick control reflecting mirror |
CN102981245A (en) * | 2012-12-25 | 2013-03-20 | 中国科学院长春光学精密机械与物理研究所 | Two-dimensional transmissive fast reflecting mirror |
CN103133828B (en) * | 2013-01-30 | 2014-07-23 | 西安交通大学 | Double-shaft micro angle swing platform based on asymmetric bridge type flexible displacement amplifying mechanisms |
CN103324208B (en) * | 2013-06-20 | 2016-02-03 | 山东理工大学 | A kind of two axle Laser Scanning and devices |
CN103744177A (en) * | 2014-01-09 | 2014-04-23 | 中国科学院光电技术研究所 | Combined type wavefront corrector |
CN103969692A (en) * | 2014-05-21 | 2014-08-06 | 哈尔滨工程大学 | Two-dimensional composite pendulum crustal inclination low-frequency vibration isolation device based on capacitive sensing |
CN104360455B (en) * | 2014-10-16 | 2016-08-24 | 中国科学院上海技术物理研究所 | A kind of space remote sensing camera speculum flexibility Hooke's hinge supporting mechanism |
CN104375258B (en) * | 2014-11-14 | 2016-06-22 | 中国工程物理研究院总体工程研究所 | Reflecting mirror back support two-freedom rotates flexible hinge |
US9678199B2 (en) * | 2015-01-30 | 2017-06-13 | Qualcomm Incorporated | Propulsion device lidar system and method |
CN105572861A (en) * | 2015-12-22 | 2016-05-11 | 中国科学院长春光学精密机械与物理研究所 | Deformable rapid control integrated reflector device |
CN105932541A (en) * | 2016-06-14 | 2016-09-07 | 西安交通大学 | Tunable semiconductor laser with Littman-structured outer cavity |
CN106227241A (en) * | 2016-08-01 | 2016-12-14 | 西北工业大学 | A kind of motion platform double-view field double loop scan tracing system and method |
CN106090543A (en) * | 2016-08-04 | 2016-11-09 | 苏州大学 | Two-dimensional micro-rotating device of fine sighting telescope |
CN106371191B (en) * | 2016-11-28 | 2019-02-19 | 长光卫星技术有限公司 | The flexible support structure of light optical reflecting mirror |
CN106597459B (en) * | 2016-11-30 | 2019-04-30 | 中国人民解放军陆军炮兵防空兵学院 | Laser Active denial system |
CN206627697U (en) * | 2016-12-16 | 2017-11-10 | 深圳先进技术研究院 | Two-dimensional rapid control reflector and laser scanner based on direct bulk of optical feedback |
CN107393599B (en) * | 2017-07-25 | 2018-07-06 | 西安交通大学 | Two-dimensional fast deflection stage and method integrating sensing unit and constraining element |
CN107526159B (en) * | 2017-07-27 | 2019-09-10 | 中国科学院长春光学精密机械与物理研究所 | A kind of heavy caliber beat mirror |
CN107462880A (en) * | 2017-08-30 | 2017-12-12 | 中国科学院上海技术物理研究所 | A kind of two-sided fast steering reflection mirror structure |
CN107479187B (en) * | 2017-09-29 | 2023-05-12 | 河南理工大学 | A Two-Dimensional Fast Swing Mirror and Its Working Method |
CN107797272A (en) * | 2017-12-08 | 2018-03-13 | 中国科学院长春光学精密机械与物理研究所 | A kind of mirror deflection system |
CN108448809B (en) * | 2018-04-26 | 2019-11-19 | 长春萨米特光电科技有限公司 | It is a kind of based on scratch bar and flexible ring composition two axis rotating mechanisms |
CN110553124A (en) * | 2018-06-01 | 2019-12-10 | 长春理工大学 | Two-stage composite single-reflector type mechanical tracking rotary table for laser communication |
CN108562992B (en) * | 2018-06-20 | 2024-01-19 | 中国人民解放军国防科技大学 | Precise reflector frame based on flexible hinge |
CN110701994B (en) * | 2018-08-18 | 2021-04-20 | 重庆大学 | Unipolar one-dimensional and two-dimensional capacitive deflection angle sensor |
CN109471122B (en) * | 2018-11-01 | 2020-09-22 | 百度在线网络技术(北京)有限公司 | Scanning control method, device and equipment based on laser radar and laser radar |
CN110104227B (en) * | 2019-04-17 | 2020-06-26 | 西安交通大学 | Double-shaft translation self-sensing super-resolution imaging platform and method |
CN110095860B (en) * | 2019-04-29 | 2021-05-25 | 汕头大学 | A Two-Stage Composite Large Stroke High Precision Fast Mirror |
CN111510019B (en) * | 2020-04-22 | 2021-03-16 | 西安交通大学 | Two-dimensional fast deflection adjustment device and method with sensing signal leveling function |
CN112666859A (en) * | 2020-12-14 | 2021-04-16 | 武汉华中天纬测控有限公司 | High-precision two-dimensional quick reflector device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159225A (en) * | 1991-10-18 | 1992-10-27 | Aura Systems, Inc. | Piezoelectric actuator |
CN1879050A (en) * | 2003-11-08 | 2006-12-13 | Hysonic株式会社 | Minute motion member, an image tilting device and a projection system having the same |
CN101187721A (en) * | 2007-12-04 | 2008-05-28 | 中国科学院光电技术研究所 | Mode-free coupled two-axis deflection flexible support structure |
CN101563638A (en) * | 2006-06-22 | 2009-10-21 | 以色列商奥宝科技股份有限公司 | Tilting device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPS022102A0 (en) * | 2002-02-01 | 2002-02-21 | Tenix Lads Corporation Pty Ltd | An apparatus and method for the measurement of water depth including a scannin g assembly driven in part by a piezoelectric actuator |
-
2011
- 2011-09-28 CN CN201110290112.1A patent/CN102323656B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159225A (en) * | 1991-10-18 | 1992-10-27 | Aura Systems, Inc. | Piezoelectric actuator |
CN1879050A (en) * | 2003-11-08 | 2006-12-13 | Hysonic株式会社 | Minute motion member, an image tilting device and a projection system having the same |
CN101563638A (en) * | 2006-06-22 | 2009-10-21 | 以色列商奥宝科技股份有限公司 | Tilting device |
CN101187721A (en) * | 2007-12-04 | 2008-05-28 | 中国科学院光电技术研究所 | Mode-free coupled two-axis deflection flexible support structure |
Also Published As
Publication number | Publication date |
---|---|
CN102323656A (en) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102323656B (en) | High-frequency response two-dimensional micro angular deflection control reflector based on double-shaft flexible hinge | |
CN102354051B (en) | Light beam deflection control device with superhigh frequency response and high sensitivity based on reflecting mirror translation | |
CN206209099U (en) | A kind of non-mechanical scanning laser radar optics device and laser radar system | |
CN107843886B (en) | Non-mechanical scanning laser radar optical device and laser radar system | |
CN103543526B (en) | A kind of array laser scanner | |
CN102354050B (en) | Micro angular swing control reflecting mirror followed by flexible auxiliary arm with superhigh angular sensitivity and high frequency response | |
CN102981243B (en) | Two-dimensional quick control reflecting mirror | |
CN108205193B (en) | Two-dimensional control mirror, control method thereof, and laser scanner including the same | |
CN108205124A (en) | A kind of Optical devices and laser radar system based on micro electronmechanical galvanometer | |
CN103823275B (en) | Adaptive Fiber Collimator Based on Flexible Hinge | |
CN105301762A (en) | Low-thickness two-dimensional rapid deflection apparatus including secondary amplification, and deflection method thereof | |
CN105301761A (en) | Two-dimensional deflection apparatus based on macro fiber composites, and deflection method thereof | |
CN104849858A (en) | Control mechanism for rapid deflection reflection mirror with rotation center arranged at reflection surface and method thereof | |
CN112068309B (en) | A 3D scanning system with dynamic focusing module of double parabolic mirrors | |
US20210011282A1 (en) | Optical scanning device and method of control therefor | |
CN101226276A (en) | Fine Tracking Subsystem in Laser Communication Tracking System | |
CN1306310C (en) | Laser printer deive with scanning mirror on pivot | |
CN114833473A (en) | Special-shaped group hole machining system and method | |
CN102522685A (en) | Compensation device for thermal lens effect of laser | |
CN206515462U (en) | A kind of Optical devices and laser radar system based on micro electronmechanical galvanometer | |
CN107462880A (en) | A kind of two-sided fast steering reflection mirror structure | |
CN114185133A (en) | A Fiber Collimator With Continuously Adjustable Divergence Angle | |
CN110346929A (en) | A kind of super large angle stroke tilting mirror based on series connection enlarger | |
CN116449526B (en) | fast mirror device | |
CN102684055A (en) | Device for adjusting curvature radius of reflector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130320 Termination date: 20210928 |
|
CF01 | Termination of patent right due to non-payment of annual fee |