CN102318157B - 控制方法和装置 - Google Patents
控制方法和装置 Download PDFInfo
- Publication number
- CN102318157B CN102318157B CN200980156704.5A CN200980156704A CN102318157B CN 102318157 B CN102318157 B CN 102318157B CN 200980156704 A CN200980156704 A CN 200980156704A CN 102318157 B CN102318157 B CN 102318157B
- Authority
- CN
- China
- Prior art keywords
- electrical network
- characteristic
- fed
- nose
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/70—Regulating power factor; Regulating reactive current or power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
- F03D9/255—Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/12—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load by adjustment of reactive power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/50—Controlling the sharing of the out-of-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/04—Control effected upon non-electric prime mover and dependent upon electric output value of the generator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/10—Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
- H02P9/102—Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2101/00—Special adaptation of control arrangements for generators
- H02P2101/15—Special adaptation of control arrangements for generators for wind-driven turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Sustainable Energy (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Control Of Eletrric Generators (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
Abstract
本公开涉及一种用于控制风力发电系统的方法和控制器。所述系统在连接点处连接到电网,并且所述系统被设计成向所述电网馈送无功功率以改善电网稳定性。确定所述连接点处所述电网的Q-V特性以及所述Q-V特性的鼻点。确定与所述鼻点相比安全的最小无功电流IQmin,并且控制无功功率的馈送以使得所述无功电流保持高于最小无功电流。通过这种方式,确保无功电流不使Q-V特性反转,并且从而改善系统的稳定性。
Description
技术领域
本公开涉及用于控制在连接点处连接到电网的风力发电系统的方法,其中设计所述系统以在瞬态条件下向所述电网馈送无功功率,以改善电网稳定性。本公开还涉及一种相应的控制器。
背景技术
例如,在EP1855367中示出了这种方法。通过能够应对电网中的电压波动并且向电网供应无功功率,发电系统能够改善电网的整体稳定性。与这种控制方法相关联的一个问题在于如何避免电压崩溃使得该发电系统必须断开的情况。
发明内容
因此,本公开的一个目的在于提供一种最先提出的具有改善的稳定性的控制方法。该目的利用权利要求1中限定的方法来实现。更具体而言,本方法涉及确定连接点处电网的Q-V特性,并且基于所述Q-V特性来控制无功功率的馈送。通过这种方式,能够避免控制器将无功电流驱动到电压崩溃作为其结果的点。这改善了系统的稳定性。
所述方法可以进一步涉及确定Q-V特性的鼻点(nose point)并且利用所述鼻点确定安全的最小无功电流IQmin。然后无功功率的馈送的控制可以包括使所述无功电流保持高于最小无功电流。这提供改善的可靠性,并且可以由用户来设置所述鼻点电流的最小无功电流百分比。
可以通过在所述连接点处引入干扰来确定所述Q-V特性。这意味着由于不需要等待电网中的干扰而能够以规则的间隔来确定所述Q-V特性。
可以通过控制双馈感应发电机DFIG的转子电流或者可选地通过控制使发电机与所述电网连接的AC/DC/AC转换器配置的开关,来控制所述无功功率向所述电网的馈送。由于用于控制所述无功公开的装置已经设置在其中,因此执行该方法的控制器能够容易地集成在任何这种系统的控制环路中。
所述方法可以在瞬态条件和稳态条件下使用以改善电网稳定性。包括能够执行所述方法的行为的功能块的控制器暗示着相应的优点并且可以相应地改变。
这种控制器可以包括在风力发电系统中。
附图说明
图1示出了连接到电网的风力发电系统。
图2示出了Q-V特性。
图3示出了用于控制方法的流程图。
图4示出了具有双馈感应发电机的风力发电系统的配置。
图5示出了具有全转换器(full converter)的风力发电系统的配置。
图6示意性示出了风力发电系统控制器。
具体实施方式
图1示出了连接到电网3的风力发电设备1。通常,该设备包括涡轮机5,所述涡轮机5包括多个叶片并且被安装在塔架7上,且通常经由齿轮箱连接到该塔架中的发电机。发电机又利用三相连接(未示出接零)在连接点9处经常经由切换的转换器(未示出)并且通常经由一个或者多个变换器(未示出)连接到电网3。
在所示出的情况下,风力发电设备1仅具有一个涡轮机5。然而,在本公开的上下文中,风力发电设备1可以包括均安装在塔架上的多个涡轮机。风力发电设备1因此可以是风力发电场。除了所示出的风力涡轮机的类型,还能够想到垂直轴涡轮机。
由管理者和电网操作者建立的电网规程要求风力发电设备能够在电网故障期间保持连接到电网,这种能力被称为低电压穿越LVRT。而且,发电设备应该能够在瞬态条件期间向电网供应无功功率或者从电网吸收无功功率。例如,如果由于一个或者多个电网相上的故障而发生电压骤降,则发电设备应该能够向电网供应无功电流以改善稳定性。因此,无功功率调节装置11在连接点处连接到电网3。无功功率调节装置11可以与系统中的能量转换链路集成或者可以设置为单独的辅助单元。下面将结合图4和图5来描述根据本公开调节无功功率的各种方式。
在本公开中,瞬态条件不仅指电网中的电压骤降,而且还指能够受在连接点处向电网引入无功功率或者从电网吸收无功功率影响的电网参数的突然改变。因而,例如也包括电压浪涌。
图2示出了电网的典型连接点的Q-V特性13。在本公开中,Q涉及通过在连接点处向电网添加或者减去无功电流而向电网引入或者从电网吸收的无功功率(VAr)的量。V涉及连接点处的电网电压。Q-V特性示出了两个参数之间的关系。对于更高的被添加无功电流,所述特性相对更具有线性。参见与点Qmin相关的电压V的右侧的Q-V特性。对于在所示出的特性中这些相对较高的电流,电压随着增加的被添加无功电流而增加。然而,Q-V曲线整体上具有抛物线本质。结果,在Q-V特性的点15处,dQ/dV为零。该点被称为鼻点15,并且电网的当前特性确定了鼻点15所处的位置。在该点之下,被添加无功电流的增加将降低电压而不是增加电压,并且被添加无功电流的这种增加结果将使电网的状态恶化。
因此,本公开提供一种控制方法,其中控制无功功率的提供以使其保持在Q-V特性的安全部分,其中提供对于鼻点的某些余量。这意味着或多或少地消除了风力发电系统使电网的状态恶化的风险。图3示出了用于该控制方法的流程图。
首先,在步骤21处确定连接点处电网的Q-V特性。对于任何给定的有功功率水平,期望操作范围中的Q-V曲线代表具有下面形式的抛物线函数:
aQ=V2+bV+c
通过引入干扰,典型地通过增加引入的无功电流,能够确定参数a、b和c。然而也能够利用系统中的其它干扰,例如电压降来确定该特性。
在步骤23处确定Q-V特性的鼻点。这能够通过在特性上发现dQ/dV为零的点来进行,这是非常简单的操作。
然后,第三,在步骤25处确定最小无功电流IQmin。该电流与该鼻点相比应该安全,即在一些实例中与该鼻点以及高于该鼻点相比,典型地意味着IQmin是与鼻点对应的电流的110%。然而,该百分比仅是示例并且可以根据电网稳定性要求或者操作者设置变化。从而,将操作保持在Q-V特性的无功电流IQ大于最小无功电流IQmin的点处,使得电压V保持高于与鼻点相对应的电压。从而,确保了被添加的无功电流的增加将使电压增加。
然后,在步骤27处设置控制器27以提供IQmin作为最小无功电流,使得即使在LVRT条件期间也将被添加的无功电流保持高于提供最小无功电流的水平。
无功功率调节装置11(参见图1)应该包括用于执行这些行为的功能块。图6示出了包括这些块(即Q-V特性检测器51、鼻点检测器53、IQmin确定单元55和电流控制器57)的调节器。这些块可以典型地是实现为在数字信号处理器上执行的例程的软件,尽管各种硬件配置,例如利用专用集成电路ASIC在理论上也是可想象的。
图4示出了具有连接到风力涡轮机(未示出)的双馈感应发电机31的功率转换配置。可以使用滑环向转子中的线圈馈送电流33。可以利用连接到发电机31输出的AC/DC/AC转换器35提供转子电流33。这种双馈感应发电机允许发电机的转子以变化的旋转速度进行旋转,与电网频率不同步。可选地,变压器(未示出)可以放置在电网3和发电机31之间。此外,本身已知的是,可以通过控制馈送到发电机的转子绕组的电流来控制馈送到电网的有功功率和无功功率的量。在本公开的上下文中,然后调节器11可以具有作为集成部件的转换器35,生成提供被添加的无功功率的期望量的转子电流。
图5示出了用于连接到风力涡轮机(未示出)的同步发电机41的功率转换配置。然后,连同AC/DC/AC转换器配置43、45、47使用永磁体同步发电机PMSG41。转换器配置包括连接到发电机41的定子绕组的AC/DC转换器43。AC/DC转换器43向滤波电容器45馈送DC功率。DC/AC转换器47将来自所述滤波电容器45的功率馈送到电网3。可以通过控制该配置中形成无功功率调节器11的一部分的DC/AC转换器的开关来控制供应到电网的有功功率和无功功率的量。
作为进一步替代,无功功率调节器11可以包括可以用于控制所产生的无功功率的静态VAR电容器组。理论上,也可以按照相同方式使用旋转补偿器。
本公开并不限于所描述的实施例。可以在所附权利要求的范围内按照不同的方式修改或者改变本公开。
Claims (8)
1.一种用于控制在连接点处连接到电网的风力发电系统的方法,其中所述系统被设计成向所述电网馈送无功功率,其特征在于:
-确定所述连接点处所述电网的Q-V特性(21);以及
-基于所述Q-V特性来控制所述无功功率的馈送(27),
其中所述方法还包括:
-确定所述Q-V特性的鼻点(23),其中在dQ/dV为零处的点称为鼻点,并且所述电网的当前特性确定了所述鼻点所处的位置;以及
-确定与所述鼻点相比安全的最小无功电流IQmin(25);并且其中
-对所述无功功率的馈送的控制(27)包括使无功电流保持高于所述最小无功电流IQmin。
2.根据权利要求1所述的方法,其中,通过在所述连接点处引入干扰来确定所述Q-V特性。
3.根据前述权利要求中任一项所述的方法,其中通过控制双馈感应发电机DFIG的转子电流来控制所述无功功率向所述电网的馈送。
4.根据权利要求1-3中任一项所述的方法,其中通过控制将发电机与所述电网连接的AC/DC/AC转换器配置的开关来控制所述无功功率向所述电网的馈送。
5.根据前述权利要求中任一项所述的方法,其中所述方法在瞬态条件下使用。
6.根据权利要求1-4中任一项所述的方法,其中所述方法在稳态条件下使用。
7.一种用于控制在连接点处连接到电网的风力发电系统的控制器,其中所述系统被设计成向所述电网馈送无功功率,其特征在于:
-用于确定所述连接点处所述电网的Q-V特性的Q-V特性检测器(51);以及
-控制器(57),基于所述Q-V特性来控制所述无功功率的馈送,
其中所述控制器还包括:
-用于检测所述Q-V特性的鼻点的鼻点检测器(53),其中在dQ/dV为零处的点称为鼻点,并且所述电网的当前特性确定了所述鼻点所处的位置;以及
-确定最小无功电流IQmin的确定单元(55),所述最小无功电流IQmin与所述鼻点相比安全;并且其中
-所述控制器(57)被设计成保持无功电流高于所述最小无功电流IQmin。
8.一种风力发电系统,包括根据权利要求7所述的控制器。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12209008P | 2008-12-12 | 2008-12-12 | |
DKPA200801776 | 2008-12-12 | ||
US61/122,090 | 2008-12-12 | ||
DKPA200801776 | 2008-12-12 | ||
PCT/EP2009/066974 WO2010066892A2 (en) | 2008-12-12 | 2009-12-11 | Control method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102318157A CN102318157A (zh) | 2012-01-11 |
CN102318157B true CN102318157B (zh) | 2014-07-23 |
Family
ID=42239595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980156704.5A Active CN102318157B (zh) | 2008-12-12 | 2009-12-11 | 控制方法和装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8615331B2 (zh) |
EP (1) | EP2376773B1 (zh) |
CN (1) | CN102318157B (zh) |
ES (1) | ES2581427T3 (zh) |
WO (1) | WO2010066892A2 (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2586334T3 (es) * | 2009-08-21 | 2016-10-13 | Vestas Wind Systems A/S | Sistema y método para monitorizar filtros de potencia y detectar un fallo de filtro de potencia en un generador eléctrico de turbina eólica |
ES2613734T3 (es) * | 2010-03-31 | 2017-05-25 | Vestas Wind Systems A/S | Método de funcionamiento de una turbina eólica, turbina eólica, sistema de control de turbina eólica y sistema de procesamiento |
TWI449838B (zh) * | 2010-12-07 | 2014-08-21 | Univ Nat Cheng Kung | 整合風力發電及潮汐能發電的系統及方法 |
US8121739B2 (en) * | 2010-12-29 | 2012-02-21 | Vestas Wind Systems A/S | Reactive power management for wind power plant internal grid |
US10103661B2 (en) | 2011-09-28 | 2018-10-16 | Vestas Wind Systems A/S | Wind power plant and a method for operating thereof |
WO2013071098A1 (en) * | 2011-11-11 | 2013-05-16 | Power Quality Renaissance, Llc | Reactive following for distributed generation and loads of other reactive controller(s) |
EP2629386B1 (en) * | 2012-02-16 | 2018-01-10 | GE Renewable Technologies | Method for avoiding voltage instability in an electrical grid of an offshore wind park |
DE102012212364A1 (de) * | 2012-07-13 | 2014-01-16 | Wobben Properties Gmbh | Verfahren und Vorrichtung zum Einspeisen elektrischer Energie in ein elektrisches Versorgungsnetz |
US9244506B2 (en) * | 2012-11-16 | 2016-01-26 | Siemens Aktiengesellschaft | Method of controlling a power plant |
US9825465B2 (en) * | 2013-08-15 | 2017-11-21 | Mitsubishi Electric Corporation | Voltage monitoring control device and voltage control device |
US10042374B2 (en) | 2014-06-13 | 2018-08-07 | Siemens Gamesa Renewable Energy A/S | Method and apparatus for determining a weakened grid condition and controlling a power plant in a manner appropriate to the grid condition |
US20170317630A1 (en) * | 2016-04-29 | 2017-11-02 | Hamilton Sundstrand Corporation | PMG Based Variable Speed Constant Frequency Generating System |
CN113726136B (zh) * | 2020-05-26 | 2023-11-03 | 台达电子企业管理(上海)有限公司 | 变换装置 |
CN113726137B (zh) * | 2020-05-26 | 2023-11-03 | 台达电子企业管理(上海)有限公司 | 变换装置 |
US11509138B1 (en) * | 2020-05-27 | 2022-11-22 | Mohd Hasan Ali | System and method for improving transient stability of grid-connected wind generator system |
CN113937771A (zh) * | 2020-06-29 | 2022-01-14 | 北京金风科创风电设备有限公司 | 风力发电机组变流器滤波电容投切控制方法、装置和系统 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5745368A (en) * | 1996-03-29 | 1998-04-28 | Siemens Energy & Automation, Inc. | Method for voltage stability analysis of power systems |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5796628A (en) | 1995-04-20 | 1998-08-18 | Cornell Research Foundation, Inc. | Dynamic method for preventing voltage collapse in electrical power systems |
US6670721B2 (en) * | 2001-07-10 | 2003-12-30 | Abb Ab | System, method, rotating machine and computer program product for enhancing electric power produced by renewable facilities |
PL199777B1 (pl) | 2001-12-24 | 2008-10-31 | B Spo & Lstrok Ka Z Ograniczon | Sposób badania stabilności napięciowej systemu elektroenergetycznego |
US7015595B2 (en) * | 2002-02-11 | 2006-03-21 | Vestas Wind Systems A/S | Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control |
US7087332B2 (en) * | 2002-07-31 | 2006-08-08 | Sustainable Energy Systems, Inc. | Power slope targeting for DC generators |
USRE43698E1 (en) * | 2003-05-02 | 2012-10-02 | Schneider Electric USA, Inc. | Control system for doubly fed induction generator |
WO2005002022A1 (en) | 2003-06-27 | 2005-01-06 | Robert Schlueter | Voltage collapse diagnostic and atc system |
DE10357292B4 (de) * | 2003-12-05 | 2006-02-02 | Voith Turbo Gmbh & Co. Kg | Verfahren für die Steuerung eines Antriebsstrangs für eine Strömungskraftmaschine mit Drehzahlführung, Kraftstoßreduktion und Kurzzeitenergiespeicherung |
ES2277724B1 (es) * | 2005-02-23 | 2008-06-16 | GAMESA INNOVATION & TECHNOLOGY, S.L. | Procedimiento y dispositivo para inyectar intensidad reactiva durante un hueco de tension de red. |
US8436490B2 (en) * | 2005-08-30 | 2013-05-07 | Abb Research Ltd. | Wind mill power flow control with dump load and power converter |
US7680562B2 (en) * | 2005-09-08 | 2010-03-16 | General Electric Company | Power generation system |
US7425771B2 (en) * | 2006-03-17 | 2008-09-16 | Ingeteam S.A. | Variable speed wind turbine having an exciter machine and a power converter not connected to the grid |
US7391126B2 (en) * | 2006-06-30 | 2008-06-24 | General Electric Company | Systems and methods for an integrated electrical sub-system powered by wind energy |
DE102006054870A1 (de) * | 2006-11-20 | 2008-06-12 | Repower Systems Ag | Windenergieanlage mit Gegensystemregelung und Betriebsverfahren |
EP2140137B1 (en) * | 2007-04-30 | 2013-04-10 | Vestas Wind Systems A/S | Variable speed wind turbine with doubly-fed induction generator compensated for varying rotor speed |
US8198742B2 (en) * | 2007-12-28 | 2012-06-12 | Vestas Wind Systems A/S | Variable speed wind turbine with a doubly-fed induction generator and rotor and grid inverters that use scalar controls |
US7966103B2 (en) * | 2007-12-28 | 2011-06-21 | Vestas Wind Systems A/S | Apparatus and method for operating a wind turbine under low utility grid voltage conditions |
US20110019443A1 (en) * | 2008-02-15 | 2011-01-27 | Wind To Power System, S.L. | Series voltage compensator and method for series voltage compensation in electrical generators |
DE102008017715A1 (de) * | 2008-04-02 | 2009-10-15 | Nordex Energy Gmbh | Verfahren zum Betreiben einer Windenergieanlage mit einer doppelt gespeisten Asynchronmaschine sowie Windenergieanlage mit einer doppelt gespeisten Asynchronmaschine |
US8120932B2 (en) * | 2008-07-01 | 2012-02-21 | American Superconductor Corporation | Low voltage ride through |
DE102008039429A1 (de) * | 2008-08-23 | 2010-02-25 | DeWind, Inc. (n.d.Ges.d. Staates Nevada), Irvine | Verfahren zur Regelung eines Windparks |
US8610306B2 (en) * | 2011-07-29 | 2013-12-17 | General Electric Company | Power plant control system and method for influencing high voltage characteristics |
-
2009
- 2009-12-11 US US12/636,196 patent/US8615331B2/en active Active
- 2009-12-11 EP EP09795963.9A patent/EP2376773B1/en active Active
- 2009-12-11 WO PCT/EP2009/066974 patent/WO2010066892A2/en active Application Filing
- 2009-12-11 CN CN200980156704.5A patent/CN102318157B/zh active Active
- 2009-12-11 ES ES09795963.9T patent/ES2581427T3/es active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5745368A (en) * | 1996-03-29 | 1998-04-28 | Siemens Energy & Automation, Inc. | Method for voltage stability analysis of power systems |
Non-Patent Citations (1)
Title |
---|
G.Govinda Rao,K.V.S.Ramachandra Murthy.Model Validation Studies in obtaining Q-V Characteristics of P-Q Loads in Respect of Reactive Power Management and Voltage Stability.《POWER ELECTRONICS,DRIVES AND ENERGY SYSTEM》.2006,第1页第1段-第2页第三段. * |
Also Published As
Publication number | Publication date |
---|---|
WO2010066892A3 (en) | 2011-08-18 |
WO2010066892A2 (en) | 2010-06-17 |
ES2581427T3 (es) | 2016-09-05 |
EP2376773B1 (en) | 2016-06-15 |
EP2376773A2 (en) | 2011-10-19 |
US8615331B2 (en) | 2013-12-24 |
US20100148508A1 (en) | 2010-06-17 |
CN102318157A (zh) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102318157B (zh) | 控制方法和装置 | |
Geng et al. | Synchronization and reactive current support of PMSG-based wind farm during severe grid fault | |
DK2688172T3 (en) | Method and arrangement for adaptive control of wind turbines in a wind farm | |
US8692523B2 (en) | Power generation system and method with voltage fault ride-through capability | |
EP2114007A1 (en) | Power-system with utility fault ride-through capability | |
Kynev et al. | Comparison of modern STATCOM and synchronous condenser for power transmission systems | |
El Moursi et al. | Application of series voltage boosting schemes for enhanced fault ridethrough performance of fixed speed wind turbines | |
KR101410744B1 (ko) | 계통 연계형 전력변환장치의 전류기준치 및 발전기준치 제한 방법 | |
Ren et al. | A novel control strategy of an active crowbar for DFIG-based wind turbine during grid faults | |
EP3464889B1 (en) | Operating a wind turbine generator during an abnormal grid event | |
Shukla et al. | Low voltage ride through (LVRT) ability of DFIG based wind energy conversion system II | |
Nelson et al. | Fault ride-through capabilities of siemens full-converter wind turbines | |
Ghorbanian et al. | Mitigating voltage sag by implementing STATCOM on DFIG-based wind farms connected to a power system | |
Karbouj et al. | A comparative study on the impact of grid code regulations on stability of wind integrated power systems | |
Ushkewar et al. | Compensation of reactive power in DFIG based wind farm using STATCOM | |
Zobaa et al. | A comprehensive review of power quality issues and measurement for grid-integrated wind turbines | |
Justo et al. | Low voltage ride through enhancement for wind turbines equipped with DFIG under symmetrical grid faults | |
Mehta et al. | Implementation of StAtcoM in a Doubly fed Induction Machine based Wind park | |
Wanik et al. | Influence of distributed generations and renewable energy resources power plant on power system transient stability | |
Miller et al. | GE wind plant dynamic performance for grid and wind events | |
Apata et al. | Impact of STATCOM on voltage stability of fixed speed wind farms | |
Thakur et al. | Challenges in Power Quality and its Mitigation in Wind Integrated Generating Power System | |
Mendis et al. | Voltage quality behaviour of a wind turbine based Remote Area Power System | |
Qiu et al. | Modeling and control of a wind-turbine-drive DFIG during grid voltage dips based on DIgSILENT/PowerFactory | |
Li et al. | An improved frequency modulation method for fault ride through of MMC-HVDC systems connected DFIG wind farms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |