CN102305985B - All-optical regeneration method and device for high-speed DQPSK modulated signal - Google Patents
All-optical regeneration method and device for high-speed DQPSK modulated signal Download PDFInfo
- Publication number
- CN102305985B CN102305985B CN2011102557444A CN201110255744A CN102305985B CN 102305985 B CN102305985 B CN 102305985B CN 2011102557444 A CN2011102557444 A CN 2011102557444A CN 201110255744 A CN201110255744 A CN 201110255744A CN 102305985 B CN102305985 B CN 102305985B
- Authority
- CN
- China
- Prior art keywords
- polarization
- signal
- phase
- signals
- phase shift
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Communication System (AREA)
Abstract
一种高速DQPSK调制信号的全光再生方法及装置。该方法包括DQPSK信号的解调,OOK信号的再生,DQPSK信号的恢复。所述传送链路上的恶化DQPSK光信号,进入DQPSK信号的解调单元,DQPSK信号解调为OOK信号,同时相位噪声转化为强度噪声,然后通过OOK信号再生器对光信号进行幅度再生,最后再通过偏振控制器和起偏器将OOK信号转化为DQPSK信号,从而实现对DQPSK的全光再生。本发明方法及装置能够实现对DQPSK信号的全光再生,不仅有望解决DQPSK信号全光再生中的一个难题,也为高速光信号处理中类似问题提供了一个可能的解决方案。
An all-optical regeneration method and device for a high-speed DQPSK modulated signal. The method includes demodulation of DQPSK signal, regeneration of OOK signal and recovery of DQPSK signal. The degraded DQPSK optical signal on the transmission link enters the demodulation unit of the DQPSK signal, and the DQPSK signal is demodulated into an OOK signal, and the phase noise is converted into an intensity noise at the same time, and then the amplitude of the optical signal is regenerated by the OOK signal regenerator, and finally Then, the OOK signal is converted into a DQPSK signal through a polarization controller and a polarizer, thereby realizing all-optical regeneration of DQPSK. The method and device of the present invention can realize all-optical regeneration of DQPSK signals, which is not only expected to solve a difficult problem in all-optical regeneration of DQPSK signals, but also provides a possible solution to similar problems in high-speed optical signal processing.
Description
技术领域 technical field
本发明涉及高速大容量全光网络通信技术领域,具体涉及高速新型调制格式的全光再生方法及装置。 The invention relates to the technical field of high-speed and large-capacity all-optical network communication, in particular to an all-optical regeneration method and device of a high-speed new modulation format.
背景技术 Background technique
在近几年中,波分复用技术、前向纠错编码、拉曼分布式放大器、新型的传输光纤都极大地提高了光纤通信系统的容量和距离。光纤通信系统的调制格式主要是采用传统的开关键控(On-Off-Keying, OOK), 而一系列新的调制格式在光纤通信系统中逐渐开始得到重视,新的调制格式提高了信号对于色度色散、光滤波以及非线性的容忍度。这些调制格式包括了 CRZ(Chirped Return toZero)、AMI (Alternate Mark Inversion)、CSRZ(Carrier Suppressed Return to Zero)以及 PSK(Phase Shift Keying)。而目前有报道的单纤最高传输容量已达25.6Tb/s。对于如此高的传输速率,采用传统的RZ 或NRZ 码型的OOK 调制信号已经难以实现,只能采用频谱效率更高的相位-幅度混合调制的多进制调制格式。正因如此,如DQPSK 等调制格式在目前的高速光传输方案中得到广泛的研究,被公认为下一代宽带光纤通信系统的理想选择。 In recent years, wavelength division multiplexing technology, forward error correction coding, Raman distributed amplifiers, and new transmission optical fibers have greatly improved the capacity and distance of optical fiber communication systems. The modulation format of the optical fiber communication system mainly adopts the traditional On-Off-Keying (OOK), and a series of new modulation formats are gradually getting attention in the optical fiber communication system. The new modulation format improves the signal for color chromatic dispersion, optical filtering, and nonlinear tolerance. These modulation formats include CRZ (Chirped Return to Zero), AMI (Alternate Mark Inversion), CSRZ (Carrier Suppressed Return to Zero) and PSK (Phase Shift Keying). At present, the highest transmission capacity of a single fiber reported has reached 25.6Tb/s. For such a high transmission rate, it is difficult to realize the OOK modulation signal using the traditional RZ or NRZ code type, and only the multi-ary modulation format of the phase-amplitude mixed modulation with higher spectral efficiency can be used. For this reason, modulation formats such as DQPSK have been widely studied in current high-speed optical transmission schemes, and are recognized as ideal choices for next-generation broadband optical fiber communication systems.
与此同时,尽管相对于传统OOK 调制格式,相位调制格式对传输中的非线性效应具有更高的容忍度,但是高速传输中由光放大器引入的线性相位噪声,以及由线路非线性作用导致的非线性相位噪声,仍将引起差分移相键控(DPSK)、四相相对相移键控(DQPSK) 等相位调制信号质量的严重恶化。为了保证未来高速大容量光网络中信号的传输质量,必须对DPSK、DQPSK 信号进行再生。因此,研究出一种能够实现对相位调制信号的全光再生技术是适应未来高速光传输技术发展的必然要求。 At the same time, although the phase modulation format has a higher tolerance to the nonlinear effect in transmission than the traditional OOK modulation format, the linear phase noise introduced by the optical amplifier in high-speed transmission and the nonlinear effect caused by the line Nonlinear phase noise will still cause serious deterioration in the quality of phase modulation signals such as differential phase shift keying (DPSK) and quadrature relative phase shift keying (DQPSK). In order to ensure the transmission quality of signals in future high-speed and large-capacity optical networks, DPSK and DQPSK signals must be regenerated. Therefore, it is an inevitable requirement to adapt to the development of future high-speed optical transmission technology to develop an all-optical regeneration technology that can realize phase modulation signals.
目前,针对相位调制信号的再生技术研究,国际上已有相当的报道,但大部分还主要集中在DPSK 信号的再生方面。常见的几种方案有:1、在高非线性光纤中利用交叉相位调制或光纤参量放大效应实现对RZ-DPSK 信号的再放大和再整形;2、利用半导体光放大器(SOA)结合Sagnac环实现DPSK 的再生放大;3、通过偏振干涉结构将DPSK 的相位噪声转换为强度噪声,同时在OOK 的数据脉冲中保留有相位信息,利用SOA 来对强度信号实现再整形,最后利用低噪声的EDFA 对再生的DPSK 信号进行再放大。 At present, there have been considerable reports in the world on the research on the regeneration technology of phase modulation signals, but most of them are mainly focused on the regeneration of DPSK signals. Several common schemes are: 1. Reamplification and reshaping of RZ-DPSK signals are realized by using cross-phase modulation or fiber parametric amplification effect in highly nonlinear optical fiber; 2. Realization by using semiconductor optical amplifier (SOA) combined with Sagnac ring DPSK regeneration amplification; 3. Convert the phase noise of DPSK to intensity noise through the polarization interference structure, and at the same time retain the phase information in the OOK data pulse, use SOA to reshape the intensity signal, and finally use the low-noise EDFA to The regenerated DPSK signal is re-amplified.
而对于DQPSK 信号的再生技术研究,则鲜见相关报道。德国的研究小组K. Cvecek提出利用非线性放大环镜(NALM)对DQPSK 信号进行幅度再生实验,但该方案只能够对由ASE 引起的幅度噪声进行再生,没有能力对恶化DQPSK 信号中的相位噪声进行再生。日本的研究小组Masayuki Matsumoto 通过仿真提出的再生方案中,首先对DQPSK 信号通过延时干涉,转换为OOK 信号,然后通过2R 再生器对OOK 信号进行整形和幅度再生,再生后的OOK 信号在随后的全光相位调制器中与提取到的时钟脉冲进行相互作用,最终得到再生后的DQPSK 信号。 However, there are few relevant reports on the research on the regeneration technology of DQPSK signal. The German research group K. Cvecek proposed to use the nonlinear magnifying loop mirror (NALM) to perform amplitude regeneration experiments on DQPSK signals, but this scheme can only regenerate the amplitude noise caused by ASE, and has no ability to degrade the phase noise in the DQPSK signal. to regenerate. In the regeneration scheme proposed by the Japanese research group Masayuki Matsumoto through simulation, the DQPSK signal is first converted into an OOK signal through delay interference, and then the OOK signal is reshaped and amplitude-regenerated by a 2R regenerator. The regenerated OOK signal is subsequently The all-optical phase modulator interacts with the extracted clock pulse, and finally obtains the regenerated DQPSK signal.
在国内,全光再生技术的研究成果大多体现在对OOK 信号的再生上,相比之下,对于相位调制信号的研究则在许多高校和研究机构中开展较晚,并且多以理论仿真研究为主。而针对DQPSK 信号的研究,大多工作集中在信号的调制、传输、解调等方面。 In China, the research results of all-optical regeneration technology are mostly reflected in the regeneration of OOK signals. In contrast, the research on phase modulation signals is carried out late in many universities and research institutions, and most of them are based on theoretical simulation research. host. For the research on DQPSK signals, most of the work focuses on signal modulation, transmission, and demodulation.
重要的是,国际上目前以DPSK、DQPSK 为代表的相位调制格式已在高速光传输技术研究得到大量关注,并且成为一种必然的研究趋势。但对其再生技术的研究却大部分还限于对DPSK 的研究,对于DQPSK 的再生则仍未提出行之有效的解决方案。 The important thing is that the current international phase modulation format represented by DPSK and DQPSK has received a lot of attention in the research of high-speed optical transmission technology, and has become an inevitable research trend. However, most of the research on its regeneration technology is still limited to the research on DPSK, and no effective solution has been proposed for the regeneration of DQPSK.
发明内容 Contents of the invention
本发明目的是实现DQPSK调制信号的全光再生,以解决当前DQPSK信号再生方法中存在的系统复杂、成本高、稳定性差等问题,提供一种新型高速DQPSK调制信号的全光再生方法及装置。 The purpose of the present invention is to realize the all-optical regeneration of DQPSK modulation signals, to solve the problems of complex system, high cost, poor stability and the like in current DQPSK signal regeneration methods, and to provide a novel high-speed all-optical regeneration method and device for DQPSK modulation signals.
本发明首先提供了一种高速DQPSK 调制信号的全光再生装置,该装置包括: The present invention at first provides a kind of all-optical regeneration device of high-speed DQPSK modulated signal, and this device comprises:
第一偏振控制器:用于将传输链路上输入的恶化DQPSK信号光实现45°线偏光的转换; The first polarization controller: used to convert the deteriorated DQPSK signal light input on the transmission link to 45° linear polarization;
差分群延时线:用于将第一偏振控制器转换后的DQPSK信号实现x 轴和y 轴两个偏振态上的信号有一个符号周期的延时; Differential group delay line: for the DQPSK signal converted by the first polarization controller to realize that the signals on the two polarization states of the x axis and the y axis have a delay of one symbol period;
第一光耦合器:用于将差分群延时后的光信号分为两路,第一路当做DQPSK信号的实部,第二路作为DQPSK信号的虚部; The first optical coupler: used to divide the optical signal after differential group delay into two paths, the first path is used as the real part of the DQPSK signal, and the second path is used as the imaginary part of the DQPSK signal;
第一路包括:第二偏振控制器、第二光耦合器和第一偏振分束器,第一路DQPSK信号的实部通过第二偏振控制器使两个主轴的偏振态之间产生一个+45°相位差,再通过第二光耦合器后两个正交的椭偏光进入第一偏振分束器,之后椭偏光变成正交且互补的两个线偏光,最后两个互补的OOK数据流在环内经过相同路程之后,在第一偏振分束器的输出端产生偏振干涉,此时DQPSK中的一部分相位噪声转变成幅度噪声而存在于两个互补的OOK数据流中; The first path includes: a second polarization controller, a second optical coupler, and a first polarization beam splitter. The real part of the first path DQPSK signal passes through the second polarization controller to generate a + 45° phase difference, after passing through the second optical coupler, the two orthogonal ellipsometric lights enter the first polarization beam splitter, and then the ellipsometric lights become two orthogonal and complementary linear polarized lights, and finally the two complementary OOK data After the streams go through the same path in the ring, polarization interference occurs at the output of the first polarization beam splitter, and at this time, a part of the phase noise in DQPSK is converted into amplitude noise and exists in the two complementary OOK data streams;
第二路包括:第三偏振控制器、第三光耦合器和第二偏振分束器,第二路DQPSK信号的虚部同样通过第三偏振控制器使两个主轴的偏振态之间产生一个-45°相位差,再通过第三光耦合器后两个正交的椭偏光进入第二偏振分束器,之后椭偏光变成正交且互补的两个线偏光,最后两个互补的OOK数据流在环内经过相同路程之后,在第二偏振分束器的输出端会产生偏振干涉,此时DQPSK中的一部分相位噪声转变成幅度噪声而存在于两个互补的OOK数据流中; The second path includes: a third polarization controller, a third optical coupler, and a second polarization beam splitter. The imaginary part of the second path DQPSK signal also passes through the third polarization controller to generate a polarization state between the two main axes. -45° phase difference, after passing through the third optical coupler, the two orthogonal ellipsoidal lights enter the second polarizing beam splitter, and then the ellipsometric lights become two orthogonal and complementary linear polarized lights, and finally two complementary OOK After the data streams go through the same distance in the ring, polarization interference will occur at the output of the second polarization beam splitter, and at this time, a part of the phase noise in DQPSK is converted into amplitude noise and exists in the two complementary OOK data streams;
马赫曾德结构再生器:用于完成对上述两路数据的光强度再生,同时调整两路信号的延时,并且最终将两路光信号进行干涉成为一路信号; Mach-Zehnder structure regenerator: used to complete the light intensity regeneration of the above two channels of data, adjust the delay of the two channels of signals at the same time, and finally interfere the two channels of optical signals into one signal;
光带通滤波器:用于滤除马赫曾德结构再生器再生过程中光放大引入的噪声; Optical bandpass filter: used to filter out the noise introduced by optical amplification during the regeneration process of the Mach-Zehnder structure regenerator;
第四偏振控制器: Fourth polarization controller:
起偏器:把两两正交的信号变成一个偏振态以重新产生DQPSK信号; Polarizer: Turn two or two orthogonal signals into a polarization state to regenerate DQPSK signals;
掺铒光纤放大器: Erbium-doped fiber amplifier:
所述的马赫曾德结构再生器为具有马赫曾德结构且具有再生功能的半导体光放大器。 The Mach-Zehnder structure regenerator is a semiconductor optical amplifier with a Mach-Zehnder structure and regeneration function.
本发明同时提供了一种采用以上所述装置实现高速DQPSK 调制信号的全光再生方法,该方法通过如下步骤实现: The present invention simultaneously provides a kind of all-optical regeneration method that adopts above-mentioned device to realize high-speed DQPSK modulated signal, and this method realizes by following steps:
第1、通过第一偏振控制器(PC1)将恶化的DQPSK信号的偏振态变成45°线偏振态; 1. The polarization state of the deteriorated DQPSK signal is changed to a 45° linear polarization state by the first polarization controller (PC1);
第2、将上步转偏后的DQPSK信号送入差分群延时线(DGD),使x轴和y轴两个偏振态上的信号有一个符号周期的延时; 2. Send the DQPSK signal deflected in the previous step into the differential group delay line (DGD), so that the signals on the two polarization states of the x-axis and the y-axis have a delay of one symbol period;
第3、紧接着通过第一光耦合器(OC1)把差分群延时线的输出分成相同的两路:其中上面第一路表示为实部I通道,而下面第二路表示虚部Q通道; Thirdly, the output of the differential group delay line is divided into the same two channels through the first optocoupler (OC1): the first channel above represents the real part I channel, while the second channel below represents the imaginary part Q channel ;
第4、在第一路实部I通道中通过第二偏振控制器使两个主轴的偏振态之间产生一个+45°相位差,再通过第二光耦合器(OC2)后两个正交的椭偏光进入第一偏振分束器(PBS1),之后椭偏光变成正交且互补的两个线偏光,最后两个互补的OOK数据流在环内经过相同路程之后,在第一偏振分束器的输出端产生偏振干涉,此时DQPSK中的一部分相位噪声转变成幅度噪声而存在于两个互补的OOK数据流中; 4. In the first real part I channel, a +45° phase difference is generated between the polarization states of the two main axes through the second polarization controller, and then the two are orthogonal after passing through the second optical coupler (OC2). The ellipsometric light enters the first polarization beam splitter (PBS1), and then the ellipsometric light becomes two orthogonal and complementary linear polarized lights. After the last two complementary OOK data streams go through the same distance in the ring, they pass through the first polarization beam splitter. The output of the beamer produces polarization interference, at this time a part of the phase noise in DQPSK is converted into amplitude noise and exists in the two complementary OOK data streams;
第5、同样,在第二路虚部Q通道中通过第三偏振控制器使两个主轴的偏振态之间产生一个-45°相位差,再通过第三光耦合器(OC3)后两个正交的椭偏光进入第二偏振分束器(PBS2),之后椭偏光变成正交且互补的两个线偏光,最后两个互补的OOK数据流在环内经过相同路程之后,在第二偏振分束器的输出端产生偏振干涉,此时DQPSK中的一部分相位噪声转变成幅度噪声而存在于两个互补的OOK数据流中; 5. Similarly, in the second imaginary part Q channel, a -45° phase difference is generated between the polarization states of the two main axes through the third polarization controller, and then the last two through the third optical coupler (OC3) The orthogonal ellipsometric light enters the second polarization beam splitter (PBS2), and then the ellipsometric light becomes two orthogonal and complementary linearly polarized lights. After the two complementary OOK data streams go through the same path in the ring, they pass through the second The output of the polarization beam splitter produces polarization interference, at this time a part of the phase noise in DQPSK is converted into amplitude noise and exists in two complementary OOK data streams;
第6、上述第一路实部I通道和第二路虚部Q通道信号分别经第4步、第5步处理后进入马赫曾德结构再生器,利用再生器分别对两路信号完成幅度再生功能;在马赫曾德结构再生器的输出处,通过调节两臂的电流来实现调整第一路、第二路信号的相对相位关系,最终两路再生后的信号在马赫曾德结构再生器的输出端进行干涉并成为一路信号; 6. The signals of the first real part I channel and the second imaginary part Q channel are processed in step 4 and step 5 respectively and then enter the Mach-Zehnder structure regenerator, and use the regenerator to complete the amplitude regeneration of the two signals respectively Function; at the output of the Mach-Zehnder structure regenerator, the relative phase relationship between the first and second signals is adjusted by adjusting the current of the two arms, and finally the regenerated signals of the two routes are in the Mach-Zehnder structure regenerator. The output terminal interferes and becomes a signal;
第7、用光带通滤波器滤除OOK信号再生中放大引入的噪声; 7th, use optical bandpass filter to filter out the noise introduced by amplification in OOK signal regeneration;
第8、使用第四偏振控制器把偏振态正交的信号分别对应一个偏振轴变成45°,最后通过起偏器把两两正交的信号变成一个偏振态以重新产生DQPSK信号; 8. Use the fourth polarization controller to change the orthogonal signals of the polarization state to 45° respectively corresponding to one polarization axis, and finally change the two orthogonal signals into one polarization state through the polarizer to regenerate the DQPSK signal;
第9、对再生后的DQPSK信号进行放大以便于后续应用。 Ninth, the regenerated DQPSK signal is amplified for subsequent application.
本发明的优点和有益效果:Advantages and beneficial effects of the present invention:
1、方案简单经济实用,除马赫曾德结构再生器和掺铒光纤放大器(EDFA)外其余均为无源器件,结构简单。2、真正意义上的全光再生,其中没有涉及到光-电-光转换。3、解决了当前无法实现DQPSK信号全光的难题。 1. The scheme is simple, economical and practical. Except for the Mach-Zehnder structure regenerator and the erbium-doped fiber amplifier (EDFA), the rest are passive devices with a simple structure. 2. All-optical regeneration in the true sense, which does not involve light-electricity-light conversion. 3. It solves the problem that the DQPSK signal cannot be fully optical at present.
附图说明 Description of drawings
图1为本发明中DQPSK信号全光再生的总体结构示意图; Fig. 1 is the overall structural representation of DQPSK signal all-optical regeneration among the present invention;
图2为本发明中DQPSK信号转换工作框图。 Fig. 2 is a working block diagram of DQPSK signal conversion in the present invention.
图中,1是第一偏振控制器,2是第二偏振控制器,3是第三偏振控制器,4是第一光耦合器,5是第二光耦合器,6是第三光耦合器,7是第一偏振分束器,8是第二偏振分束器,9是光带通滤波器,10是第四偏振控制器,11是起偏器,12是掺铒光纤放大器。 In the figure, 1 is the first polarization controller, 2 is the second polarization controller, 3 is the third polarization controller, 4 is the first optical coupler, 5 is the second optical coupler, 6 is the third optical coupler , 7 is a first polarization beam splitter, 8 is a second polarization beam splitter, 9 is an optical bandpass filter, 10 is a fourth polarization controller, 11 is a polarizer, and 12 is an erbium-doped fiber amplifier.
现结合附图对DQPSK信号全光再生过程进行详细说明。 The process of all-optical regeneration of the DQPSK signal will now be described in detail with reference to the accompanying drawings.
具体实施方式 Detailed ways
实施例1、高速DQPSK 调制信号的全光再生装置
如图1所示,该装置包括: As shown in Figure 1, the device includes:
第一偏振控制器1:用于将传输链路上输入的恶化DQPSK信号光实现45°线偏光的转换; The first polarization controller 1: used to convert the deteriorated DQPSK signal light input on the transmission link to 45° linear polarization;
差分群延时线:用于将第一偏振控制器转换后的DQPSK信号实现x 轴和y 轴两个偏振态上的信号有一个符号周期的延时; Differential group delay line: for the DQPSK signal converted by the first polarization controller to realize that the signals on the two polarization states of the x axis and the y axis have a delay of one symbol period;
第一光耦合器4:用于将差分群延时后的光信号分为两路,第一路当做DQPSK信号的实部,第二路作为DQPSK信号的虚部; The first optical coupler 4: used to divide the optical signal after differential group delay into two paths, the first path is used as the real part of the DQPSK signal, and the second path is used as the imaginary part of the DQPSK signal;
第一路包括:第二偏振控制器2、第二光耦合器5和第一偏振分束器7,第一路DQPSK信号的实部通过第二偏振控制器使两个主轴的偏振态之间产生一个+45°相位差,再通过第二光耦合器后两个正交的椭偏光进入第一偏振分束器,之后椭偏光变成正交且互补的两个线偏光,最后两个互补的OOK数据流在环内经过相同路程之后,在第一偏振分束器的输出端产生偏振干涉,此时DQPSK中的一部分相位噪声转变成幅度噪声而存在于两个互补的OOK数据流中;
The first path includes: a
第二路包括:第三偏振控制器3、第三光耦合器6和第二偏振分束器8,第二路DQPSK信号的虚部同样通过第三偏振控制器使两个主轴的偏振态之间产生一个-45°相位差,再通过第三光耦合器后两个正交的椭偏光进入第二偏振分束器,之后椭偏光变成正交且互补的两个线偏光,最后两个互补的OOK数据流在环内经过相同路程之后,在第二偏振分束器的输出端会产生偏振干涉,此时DQPSK中的一部分相位噪声转变成幅度噪声而存在于两个互补的OOK数据流中;
The second path includes: a
马赫曾德结构再生器:用于完成对上述两路数据的光强度再生,同时调整两路信号的延时,并且最终将两路光信号进行干涉成为一路信号; Mach-Zehnder structure regenerator: used to complete the light intensity regeneration of the above two channels of data, adjust the delay of the two channels of signals at the same time, and finally interfere the two channels of optical signals into one signal;
光带通滤波器9:用于滤除马赫曾德结构再生器再生过程中光放大引入的噪声; Optical bandpass filter 9: used to filter out the noise introduced by optical amplification during the regeneration process of the Mach-Zehnder structure regenerator;
第四偏振控制器10:把偏振态正交的信号分别对应一个偏振轴变成45°; The fourth polarization controller 10: change the polarization state orthogonal signals corresponding to one polarization axis to 45°;
起偏器11:把两两正交的信号变成一个偏振态以重新产生DQPSK信号; Polarizer 11: convert two or two orthogonal signals into a polarization state to regenerate DQPSK signals;
掺铒光纤放大器12:对再生后的DQPSK信号进行放大以便于后续应用; Erbium-doped fiber amplifier 12: amplifies the regenerated DQPSK signal for subsequent application;
所述的马赫曾德结构再生器为具有马赫曾德结构且具有再生功能的半导体光放大器。 The Mach-Zehnder structure regenerator is a semiconductor optical amplifier with a Mach-Zehnder structure and regeneration function.
实施例2、高速DQPSK 调制信号的全光再生方法
本发明中高速DQPSK 调制信号的全光再生方法包括,DQPSK信号的解调、OOK信号再生,再生后DQPSK信号的产生。具体步骤如下: The all-optical regeneration method of high-speed DQPSK modulation signal among the present invention comprises, the demodulation of DQPSK signal, OOK signal regeneration, the generation of DQPSK signal after regeneration. Specific steps are as follows:
从传输线路上传来的恶化DQPSK信号首先进入图1所示再生装置的DQPSK信号解调部分,通过第一偏振控制器1(PC1)将恶化的DQPSK信号的偏振态变成45°线偏振态; The deteriorated DQPSK signal that comes from the transmission line first enters the DQPSK signal demodulation part of the regeneration device shown in Figure 1, and the polarization state of the deteriorated DQPSK signal is changed to 45 ° of linear polarization state by the first polarization controller 1 (PC1);
接着DQPSK信号经过差分群延时线(DGD),使x轴和y轴两个偏振态上的信号有一个符号周期的延时; Then the DQPSK signal passes through the differential group delay line (DGD), so that the signals on the two polarization states of the x-axis and the y-axis have a delay of one symbol period;
紧接着通过第一光耦合器4(OC1)把差分群延时线DGD的输出分成相同的两路:其中上面第一路表示为I通道,而下面第二路表示Q通道,在I通道中通过第二偏振控制器2(PC2)使两个主轴的偏振态之间产生一个+45°相位差,再通过第二光耦合器5(OC2)后两个正交的椭偏光进入第一偏振分束器7(PBS1),之后椭偏光变成正交且互补的两个线偏光,最后两个互补的OOK数据流在环内经过相同路程之后,在第一偏振分束器的输出端会产生偏振干涉,此时DQPSK中的一部分相位噪声转变成幅度噪声而存在于两个互补的OOK数据流中。在Q通道同样通过第三偏振控制器3(PC3)使两个主轴的偏振态之间产生一个-45°相位差,再通过第三光耦合器6(OC3)后两个正交的椭偏光进入第二偏振分束器8(PBS2),之后椭偏光变成正交且互补的两个线偏光,最后两个互补的OOK数据流在环内经过相同路程之后,在第二偏振分束器的输出端会产生偏振干涉,此时DQPSK中的一部分相位噪声转变成幅度噪声而存在于两个互补的OOK数据流中。在此获得两路互补的OOK信号,在此过程中使DQPSK信号的相位噪声转化为幅度噪声,见图2。 Then, the output of the differential group delay line DGD is divided into the same two channels through the first optocoupler 4 (OC1): the first channel above represents the I channel, and the second channel below represents the Q channel. In the I channel Through the second polarization controller 2 (PC2), a +45° phase difference is generated between the polarization states of the two main axes, and then through the second optical coupler 5 (OC2), the two orthogonal ellipsometric lights enter the first polarization Beam splitter 7 (PBS1), after which the ellipsometric light becomes two orthogonal and complementary linearly polarized lights, after the last two complementary OOK data streams go through the same distance in the ring, they will be transmitted at the output of the first polarizing beam splitter Polarization interference occurs, at this time a part of the phase noise in DQPSK is transformed into amplitude noise and exists in two complementary OOK data streams. In the Q channel, a -45° phase difference is generated between the polarization states of the two main axes through the third polarization controller 3 (PC3), and then two orthogonal ellipsoids are passed through the third optical coupler 6 (OC3). After entering the second polarizing beam splitter 8 (PBS2), the ellipsometric light becomes two orthogonal and complementary linear polarized lights, and finally the two complementary OOK data streams go through the same path in the ring, and then pass through the second polarizing beam splitter Polarization interference will occur at the output of the DQPSK, at this time, a part of the phase noise in DQPSK is converted into amplitude noise and exists in two complementary OOK data streams. Two complementary OOK signals are obtained here, and the phase noise of the DQPSK signal is converted into amplitude noise in the process, as shown in Figure 2.
上述I通道和Q通道信号进入马赫曾德结构再生器,利用再生器分别对两路信号完成幅度再生功能。 The above-mentioned I-channel and Q-channel signals enter the Mach-Zehnder structure regenerator, and the regenerator is used to complete the amplitude regeneration function of the two signals respectively.
在马赫曾德结构再生器中,可通过调节两臂的电流来实现调整上下两路信号的相对相位关系,最终两路再生后的信号在马赫曾德结构再生器的输出端进行干涉并成为一路信号,在此过程中消除幅度噪声对OOK信号进行再生,同时使两路互补的信号合成一路。 In the Mach-Zehnder structure regenerator, the relative phase relationship of the upper and lower signals can be adjusted by adjusting the currents of the two arms. Finally, the regenerated signals of the two channels interfere at the output of the Mach-Zehnder structure regenerator and become one In this process, the amplitude noise is eliminated to regenerate the OOK signal, and at the same time, two complementary signals are synthesized into one.
接着通过光带通滤波器9来滤除前面再生过程中放大器引入的噪声。
Next, the noise introduced by the amplifier in the preceding regeneration process is filtered out by an
最后经过第四偏振控制器10和起偏器11把再生后的信号变成与原始DQPSK信号一样的模式,并经掺铒光纤放大器12进行光放大以便于后面应用。
Finally, the regenerated signal is changed into the same mode as the original DQPSK signal through the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102557444A CN102305985B (en) | 2011-08-31 | 2011-08-31 | All-optical regeneration method and device for high-speed DQPSK modulated signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102557444A CN102305985B (en) | 2011-08-31 | 2011-08-31 | All-optical regeneration method and device for high-speed DQPSK modulated signal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102305985A CN102305985A (en) | 2012-01-04 |
CN102305985B true CN102305985B (en) | 2013-02-06 |
Family
ID=45379860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011102557444A Expired - Fee Related CN102305985B (en) | 2011-08-31 | 2011-08-31 | All-optical regeneration method and device for high-speed DQPSK modulated signal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102305985B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102624460B (en) * | 2012-01-16 | 2014-09-10 | 北京大学 | Modulator for optical fibre linear transmission and third-order intermodulation suppression method for modulator |
CN103117812B (en) * | 2013-01-24 | 2015-08-05 | 华中科技大学 | A kind of regenerator being applicable to WDM-DPSK light signal |
CN103780308B (en) * | 2014-01-13 | 2017-01-25 | 电子科技大学 | Multi-wavelength all-optical regenerative device capable of inhibiting crosstalk and method thereof |
CN104378159B (en) * | 2014-12-01 | 2017-04-12 | 中国人民解放军信息工程大学 | Multilayer modulation visible light communication method, transmitter, receiver and system |
CN107070559B (en) * | 2017-03-31 | 2019-04-30 | 南京恒高光电研究院有限公司 | A kind of full optical phase modulator |
CN112383362B (en) * | 2020-10-17 | 2021-12-03 | 北京邮电大学 | Method and system for regenerating MPSK (Multi-phase Shift keying) signal carrying ASE (amplified spontaneous emission) noise |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970706638A (en) * | 1995-08-10 | 1997-11-03 | 이데이 노브유끼 | CHARGING METHOD, CHARGING DEVICE AND INTEGRATED CIRCUIT |
CN101286801B (en) * | 2008-05-12 | 2011-12-14 | 华中科技大学 | Optical fiber transmission system in light frequency domain |
CN101304284B (en) * | 2008-06-20 | 2011-10-26 | 华中科技大学 | Multichannel complete light 3R regenerator |
-
2011
- 2011-08-31 CN CN2011102557444A patent/CN102305985B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102305985A (en) | 2012-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102305985B (en) | All-optical regeneration method and device for high-speed DQPSK modulated signal | |
CN1771679B (en) | Optical transmission system, optical transmitting device and optical receiving device of optical transmission system | |
CN101459638A (en) | Receiving apparatus and method for differential quadrature phased shift keying DQPSK signal | |
US9025967B2 (en) | All-optical phase-modulated data signal regeneration | |
CN102111374A (en) | Differential 8-phase shift keying (D8PSK)/amplitude shift keying (ASK) orthogonal light label switching method and system based on differential biphasic codes | |
CN101102162B (en) | All-optical regeneration method of optical quadrature phase-shift keying signal | |
CN102307066A (en) | High speed optical transmission system and method based on FSK (Frequency Shift Keying)-D8PSK (Differential Eight Phase Shift Keying)-ASK (Amplitude Shift Keying)-PolMUX (multiplexer) | |
CN104243046A (en) | PDM-MSK modulation and demodulation method for optical communication system | |
CN101997608B (en) | An optical transmitter and a method for generating an optical signal | |
CN104243047B (en) | A kind of PDM DQPSK/SAC signal exchange systems | |
CN102594457B (en) | Multifunctional tunable all optical code converter for multiplexed signals | |
CN110138454A (en) | Merge the dual-polarization state duobinary system multi-plexing light accessing system of optical fiber link and Channel of Free-space Optical Communication | |
CN109842448A (en) | Orthogonal modulation stamp methods based on reversion 4PPM line coding | |
CN102523047B (en) | Method and device for simultaneously carrying out amplification, inversion and code-pattern conversion on all-optical intensity signal | |
CN102929072B (en) | Full-optical-wavelength conversion simplifying device and full-optical-wavelength conversion simplifying method of polarization multiplexing system without polarization crosstalk | |
CN101478347B (en) | Pre-coder for light differential orthogonal phase shift keying modulator without feedback loop | |
CN103634052B (en) | Light modulation system and method thereof | |
CN102065045A (en) | D8PSK/IRZ quadrature modulation-based optical label switching method and system | |
CN101304287A (en) | Method and device for cascading two phase modulators to generate optically interleaved quadrature phase-shift keying codes | |
CN100424543C (en) | Crystal optical fiber solition type full light regenerator and its light signal regenerating method | |
CN107017953A (en) | A kind of fsk signal generation device, method and its application | |
CN102130739A (en) | Signal regeneration device and method | |
CN101494502B (en) | Method and apparatus for generating clear alternation mark reversion light modulation signal | |
Liu et al. | Demonstration of optical channel de-aggregation for 8QAM signal using FWM in HNLF | |
CN116865866B (en) | Carrier-suppressed zero-return alternating polarization/frequency shift keying quadrature modulation optical communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130206 Termination date: 20170831 |