CN102304200B - Crosslinked polymer microspheres and preparation method thereof - Google Patents
Crosslinked polymer microspheres and preparation method thereof Download PDFInfo
- Publication number
- CN102304200B CN102304200B CN 201110140086 CN201110140086A CN102304200B CN 102304200 B CN102304200 B CN 102304200B CN 201110140086 CN201110140086 CN 201110140086 CN 201110140086 A CN201110140086 A CN 201110140086A CN 102304200 B CN102304200 B CN 102304200B
- Authority
- CN
- China
- Prior art keywords
- cross
- linked polymer
- preparation
- aqueous dispersion
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920006037 cross link polymer Polymers 0.000 title claims abstract description 83
- 239000004005 microsphere Substances 0.000 title claims abstract description 60
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- 239000006185 dispersion Substances 0.000 claims abstract description 43
- 239000000178 monomer Substances 0.000 claims abstract description 27
- 229920000642 polymer Polymers 0.000 claims abstract description 14
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 14
- 239000002270 dispersing agent Substances 0.000 claims abstract description 13
- 229910017053 inorganic salt Inorganic materials 0.000 claims abstract description 9
- 238000004132 cross linking Methods 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 29
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 19
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical group [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 14
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 13
- 238000006073 displacement reaction Methods 0.000 claims description 12
- 239000003999 initiator Substances 0.000 claims description 12
- 239000011780 sodium chloride Substances 0.000 claims description 11
- 235000002639 sodium chloride Nutrition 0.000 claims description 11
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 9
- 239000004202 carbamide Substances 0.000 claims description 9
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 9
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 8
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 8
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 8
- 239000002738 chelating agent Substances 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 7
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical group [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 claims description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000006184 cosolvent Substances 0.000 claims description 6
- 229920001519 homopolymer Polymers 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical group C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- 235000019270 ammonium chloride Nutrition 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical group OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims description 3
- 239000001294 propane Substances 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 2
- LBSPZZSGTIBOFG-UHFFFAOYSA-N bis[2-(4,5-dihydro-1h-imidazol-2-yl)propan-2-yl]diazene;dihydrochloride Chemical compound Cl.Cl.N=1CCNC=1C(C)(C)N=NC(C)(C)C1=NCCN1 LBSPZZSGTIBOFG-UHFFFAOYSA-N 0.000 claims description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims description 2
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 claims description 2
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 claims description 2
- 239000001103 potassium chloride Substances 0.000 claims description 2
- 235000011164 potassium chloride Nutrition 0.000 claims description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 claims description 2
- 229910052939 potassium sulfate Inorganic materials 0.000 claims description 2
- 235000011151 potassium sulphates Nutrition 0.000 claims description 2
- 238000007670 refining Methods 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 2
- 235000011152 sodium sulphate Nutrition 0.000 claims description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims 2
- CCTFAOUOYLVUFG-UHFFFAOYSA-N 2-(1-amino-1-imino-2-methylpropan-2-yl)azo-2-methylpropanimidamide Chemical compound NC(=N)C(C)(C)N=NC(C)(C)C(N)=N CCTFAOUOYLVUFG-UHFFFAOYSA-N 0.000 claims 1
- ZFSPZXXKYPTSTJ-UHFFFAOYSA-N 5-methyl-2-propan-2-yl-4,5-dihydro-1h-imidazole Chemical compound CC(C)C1=NCC(C)N1 ZFSPZXXKYPTSTJ-UHFFFAOYSA-N 0.000 claims 1
- 235000017557 sodium bicarbonate Nutrition 0.000 claims 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 40
- 238000011084 recovery Methods 0.000 abstract description 20
- 238000002347 injection Methods 0.000 abstract description 15
- 239000007924 injection Substances 0.000 abstract description 15
- 230000001965 increasing effect Effects 0.000 abstract description 12
- 239000000243 solution Substances 0.000 abstract description 11
- 238000011161 development Methods 0.000 abstract description 9
- 239000000843 powder Substances 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 abstract description 5
- 239000003921 oil Substances 0.000 description 34
- 230000035699 permeability Effects 0.000 description 21
- 239000007864 aqueous solution Substances 0.000 description 16
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical group O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000000977 initiatory effect Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229940047670 sodium acrylate Drugs 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 4
- 230000002902 bimodal effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 230000033116 oxidation-reduction process Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- XKXHCNPAFAXVRZ-UHFFFAOYSA-N benzylazanium;chloride Chemical compound [Cl-].[NH3+]CC1=CC=CC=C1 XKXHCNPAFAXVRZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- -1 dimethyl chloride Ammonium chloride Chemical compound 0.000 description 2
- 239000012259 ether extract Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- FZGFBJMPSHGTRQ-UHFFFAOYSA-M trimethyl(2-prop-2-enoyloxyethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCOC(=O)C=C FZGFBJMPSHGTRQ-UHFFFAOYSA-M 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- AUZRCMMVHXRSGT-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid;prop-2-enamide Chemical compound NC(=O)C=C.CC(C)CS(O)(=O)=O AUZRCMMVHXRSGT-UHFFFAOYSA-N 0.000 description 1
- FYRWKWGEFZTOQI-UHFFFAOYSA-N 3-prop-2-enoxy-2,2-bis(prop-2-enoxymethyl)propan-1-ol Chemical compound C=CCOCC(CO)(COCC=C)COCC=C FYRWKWGEFZTOQI-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- KVJXEJFFQNSORF-UHFFFAOYSA-L disodium acetic acid diacetate Chemical compound [Na+].[Na+].CC(O)=O.CC(O)=O.CC([O-])=O.CC([O-])=O KVJXEJFFQNSORF-UHFFFAOYSA-L 0.000 description 1
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- 229940124274 edetate disodium Drugs 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 1
- PKBWOCHWPFCSLN-UHFFFAOYSA-M prop-2-enamide;trimethyl(2-prop-2-enoyloxyethyl)azanium;chloride Chemical group [Cl-].NC(=O)C=C.C[N+](C)(C)CCOC(=O)C=C PKBWOCHWPFCSLN-UHFFFAOYSA-M 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- LPXFITACVAQQAL-UHFFFAOYSA-M sodium;prop-2-enoylazanide Chemical compound [Na+].[NH-]C(=O)C=C LPXFITACVAQQAL-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Manufacturing Of Micro-Capsules (AREA)
Abstract
本发明提供了一种交联聚合物微球及其制备方法。该制备方法包括如下步骤:在惰性气氛下,聚合单体在溶有高分子分散剂、无机盐和交联单体的水分散液中进行聚合反应得到所述交联聚合物微球。本发明提供的交联聚合物微球实际使用时,可以直接采用含有所述交联聚合物微球的水分散液或所述交联聚合物微球粉体配制的浓溶液,经过高压比例泵泵入注水管线,现场在线混合、稀释后以预先设计的质量百分含量通过注水井注入到油藏内部,达到改善油藏非均质性、提高注水开发油藏原油采收率的目的。The invention provides a cross-linked polymer microsphere and a preparation method thereof. The preparation method comprises the following steps: under an inert atmosphere, the polymerization monomer is polymerized in an aqueous dispersion liquid in which a polymer dispersant, an inorganic salt and a cross-linking monomer are dissolved to obtain the cross-linked polymer microsphere. When the cross-linked polymer microspheres provided by the present invention are actually used, the aqueous dispersion containing the cross-linked polymer microspheres or the concentrated solution prepared by the cross-linked polymer microsphere powder can be directly used, and then passed through a high-pressure proportional pump. It is pumped into the water injection pipeline, mixed and diluted on-line on site, and then injected into the oil reservoir through the water injection well at a pre-designed mass percentage to achieve the purpose of improving the heterogeneity of the oil reservoir and increasing the oil recovery rate of the water injection development oil reservoir.
Description
技术领域 technical field
本发明涉及一种能够改善油藏非均质性、提高注水开发油藏原油采收率的交联聚合物微球及其制备方法,属于石油工业领域。The invention relates to a cross-linked polymer microsphere capable of improving the heterogeneity of oil reservoirs and increasing the oil recovery rate of water injection development oil reservoirs and a preparation method thereof, belonging to the field of petroleum industry.
背景技术 Background technique
目前,早期开发油田已逐步进入注水采油中、后期,如何进一步提高注入水的体积波及系数和水波及体积内的驱替效率,经济、有效地开采现有油田是石油工业界亟待解决的重大课题之一,其中强化采油技术的发展和应用发挥了重要的作用。At present, the early development of oil fields has gradually entered the middle and late stages of water flooding. How to further improve the volumetric sweep coefficient of injected water and the displacement efficiency within the water sweep volume, and economically and effectively exploit existing oil fields is a major issue to be solved urgently by the petroleum industry. One, in which the development and application of enhanced oil recovery technology has played an important role.
强化采油技术涉及很多方面,而基于改进驱替效果的方法可分为提高注入液的体积波及系数及提高波及体积内的洗油效率两类。Enhanced oil recovery technology involves many aspects, and the methods based on improving the displacement effect can be divided into two categories: increasing the volumetric sweep coefficient of the injected fluid and improving the oil washing efficiency in the swept volume.
随着研究的深入,油藏的非均质性对水驱、化学驱驱替液波及系数的影响日益引起业内关注,人们认识到只有通过深部调剖,才能更加经济、有效地调整、改善油藏的非均质性,从而提高注入液的体积波及系数,保证化学驱实现高驱替效率,提高化学驱驱替液及后续水驱阶段的原油采收率。这其中,以交联聚合物流动凝胶、交联聚合物溶液、交联聚合物微球为代表的深部调剖技术是经济上有优势,效果明显,符合长期注入、利于环保的技术,在更深层次上对该方法的研究和改进,对调整、改善油藏的非均质性有非常重要的意义。With the deepening of research, the influence of reservoir heterogeneity on the sweep coefficient of water flooding and chemical flooding fluid has attracted increasing attention in the industry. It is recognized that only through deep profile control can it be more economical and effective to adjust and improve The heterogeneity of the reservoir can be improved to improve the volumetric sweep coefficient of the injection fluid, ensure high displacement efficiency of the chemical flooding, and improve the oil recovery of the chemical flooding fluid and the subsequent water flooding stage. Among them, the deep profile control technology represented by cross-linked polymer flow gel, cross-linked polymer solution, and cross-linked polymer microspheres has economic advantages, obvious effects, long-term injection, and environmentally friendly technologies. The research and improvement of this method at a deeper level has very important significance for adjusting and improving the heterogeneity of reservoirs.
目前,制备用于三次采油的交联聚合物线团的方法,一种是采用线形部分水解聚丙烯酰胺(HPAM)稀溶液(质量分数在其临界交叠质量分数以下)与交联剂反应,形成交联聚合物线团的水分散体系(即,交联聚合物溶液);另外一种方法是设法形成纳米或微米尺度的水分散相,在水分散相中进行包含交联单体在内的多种单体的共聚合反应,形成聚合物微胶粒,这些微胶粒在水中溶涨、溶解后形成不同尺度的交联聚合物线团。从理论上讲,只有使用注入后可形成粒径与地层孔道尺寸相匹配的交联聚合物线团,才能有效地滞留和封堵喉道,造成深部液流改向,真正实现调整和改善油藏的非均质性,提高注水开发原油的采收率。At present, the method for preparing cross-linked polymer coils for tertiary oil recovery is to use a linear partially hydrolyzed polyacrylamide (HPAM) dilute solution (mass fraction below its critical overlap mass fraction) to react with a cross-linking agent, Form an aqueous dispersion of cross-linked polymer coils (i.e., a cross-linked polymer solution); another method is to try to form a nano- or micro-scale aqueous dispersion, which contains cross-linking monomers. The copolymerization reaction of a variety of monomers forms polymer micelles, which swell and dissolve in water to form cross-linked polymer coils of different sizes. Theoretically speaking, only the use of cross-linked polymer coils whose particle size matches the formation pore size after injection can effectively retain and block throats, cause deep liquid flow to divert, and truly adjust and improve oil production. The heterogeneity of reservoirs can improve the recovery of crude oil in water flooding development.
中国专利ZL 200410006334.6公开报道的制备方法中得到的水溶性交联聚合物线团的尺寸通常为几百纳米、粒径较小,中国专利ZL 200710063645.X公开报道的制备方法中得到的水溶性交联聚合物线团的尺寸增加至几个微米,采用上述两种方法制备的水溶性交联聚合物线团能够满足中、低渗透率油藏的使用要求,矿厂试验获得了良好的提高采收率效果。但在矿厂应用中也发现,对于较高渗透率油藏(渗透率大于1000毫达西),或存在较高渗透率条带的中、低渗透率油藏,为了获得较好的封堵效果,试验早期需要增加注入液中水溶性交联聚合物线团的质量分数,降低了注入体系的经济性。因此,研究、探寻一种大尺寸水溶性交联聚合物微球(线团)的制备方法,对于提高和改善较高渗透率油藏(渗透率大于1000毫达西),或存在较高渗透率条带的中、低渗透率油藏的驱替效果,将具有很实用的价值。Chinese patent ZL 200410006334.6 publicly reported in the preparation method of the water-soluble cross-linked polymer coil size is usually hundreds of nanometers, smaller particle size, Chinese patent ZL 200710063645. The size of the coils increases to several microns. The water-soluble cross-linked polymer coils prepared by the above two methods can meet the requirements of medium and low permeability reservoirs. The mine test has obtained a good effect of enhancing recovery . However, it is also found in the application of mines that for higher permeability reservoirs (permeability greater than 1000 mD), or medium and low permeability reservoirs with higher permeability bands, in order to obtain better plugging As a result, it is necessary to increase the mass fraction of water-soluble cross-linked polymer coils in the injection solution in the early stage of the test, which reduces the economy of the injection system. Therefore, research and search for a preparation method of large-scale water-soluble cross-linked polymer microspheres (coils) are useful for increasing and improving higher permeability reservoirs (permeability greater than 1000 mD), or there is a higher permeability The displacement effect of striped medium and low permeability reservoirs will have very practical value.
发明内容 Contents of the invention
本发明的目的是提供一种交联聚合物微球及其制备方法。The object of the present invention is to provide a cross-linked polymer microsphere and a preparation method thereof.
本发明提供的交联聚合物微球的制备方法,包括如下步骤:在惰性气氛下,聚合单体在溶有高分子分散剂、无机盐和交联单体的水分散液中进行聚合反应得到所述交联聚合物微球。The preparation method of the cross-linked polymer microspheres provided by the present invention comprises the following steps: under an inert atmosphere, the polymerized monomer is polymerized in an aqueous dispersion in which a polymer dispersant, an inorganic salt and a cross-linked monomer are dissolved to obtain The cross-linked polymer microspheres.
上述的制备方法中,所述水分散液中所述高分子分散剂、无机盐和交联单体的质量百分含量分别为1.0%~10.0%、10.0%~40.0%和0.001%~3.0%;所述聚合单体占所述水分散液的质量百分含量为1.0%~40.0%。In the above preparation method, the mass percentages of the polymer dispersant, inorganic salt and crosslinking monomer in the aqueous dispersion are 1.0% to 10.0%, 10.0% to 40.0% and 0.001% to 3.0% respectively ; The mass percentage of the polymerized monomer in the aqueous dispersion is 1.0%-40.0%.
上述的制备方法中,所述水分散液中所述高分子分散剂的质量百分含量具体可为4.3%、5.82%或6.82%;所述水分散液中无机盐的质量百分含量具体可为18%或195;所述水分散液中交联单体的质量百分含量具体可为0.45%或0.46%;所述聚合单体占所述水分散液的质量百分含量具体可为5.68%或5.7%。In the above preparation method, the mass percentage of the polymer dispersant in the aqueous dispersion can specifically be 4.3%, 5.82% or 6.82%; the mass percentage of the inorganic salt in the aqueous dispersion can specifically be 18% or 195%; the mass percentage of the crosslinking monomer in the aqueous dispersion can be specifically 0.45% or 0.46%; the mass percentage of the polymerized monomer in the aqueous dispersion can be specifically 5.68% % or 5.7%.
上述的制备方法中,所述聚合单体可为分子结构中仅含有单个双键和水溶性基团的单体分子;包括非离子单体,例如:丙烯酰胺、甲基丙烯酰胺、N-乙烯基甲酰胺、N-乙烯基乙酰胺、N-乙烯基吡咯烷酮、N,N-二甲基丙烯酰胺、丙烯腈、二丙酮丙烯酰胺、(甲基)丙烯酸-2-羟乙基酯丙烯酰胺或丙烯醇等;阴离子单体,例如:(甲基)丙烯酸、依康酸、马来酸、2-丙烯酰胺-2-甲基丙磺酸或乙烯基磺酸等单体的相应盐;阳离子单体,例如:(甲基)丙烯酰氧乙基三甲基氯化铵、(甲基)丙烯酰氧乙基二乙基甲基氯化铵、(甲基)丙烯酰氧乙基二甲基苄基氯化铵、(甲基)丙烯酰氧乙基二乙基苄基氯化铵或二甲基二烯丙基氯化铵等。In the above preparation method, the polymerized monomer can be a monomer molecule containing only a single double bond and a water-soluble group in the molecular structure; including nonionic monomers, such as: acrylamide, methacrylamide, N-ethylene Nyl formamide, N-vinylacetamide, N-vinylpyrrolidone, N,N-dimethylacrylamide, acrylonitrile, diacetone acrylamide, (meth)acrylate-2-hydroxyethyl acrylamide or Allyl alcohol, etc.; anionic monomers, such as (meth)acrylic acid, itaconic acid, maleic acid, 2-acrylamide-2-methylpropanesulfonic acid or vinylsulfonic acid, etc. For example: (meth)acryloyloxyethyltrimethylammonium chloride, (meth)acryloyloxyethyldiethylmethylammonium chloride, (meth)acryloyloxyethyldimethyl Benzyl ammonium chloride, (meth)acryloyloxyethyldiethyl benzyl ammonium chloride, dimethyl diallyl ammonium chloride, or the like.
上述的制备方法中,所述无机盐可为硫酸铵、硫酸钠、硫酸钾、氯化铵、氯化钾和氯化钠等中至少一种。In the above preparation method, the inorganic salt can be at least one of ammonium sulfate, sodium sulfate, potassium sulfate, ammonium chloride, potassium chloride and sodium chloride.
上述的制备方法中,所述交联单体可为分子结构中含有两个或两个以上双键的多官能团单体,双键之间距离可以通过调节连接双键基团的长短加以调节。例如:双官能团单体可以是N,N′-亚甲基双丙烯酰胺、聚乙二醇二丙烯酸酯、聚乙二醇二烯丙基醚、N,N-二烯丙基二甲基氯化胺、N,N′-二烯丙基-N,N,N′,N′-四甲基己二氯化铵或N,N′-二对乙烯基苄基-N,N,N′,N′-四甲基己二氯化胺等;三官能团单体可以为三丙烯酸-(丙基)三甲酯或季戊四醇三烯丙基醚等。In the above preparation method, the crosslinking monomer can be a multifunctional monomer containing two or more double bonds in the molecular structure, and the distance between the double bonds can be adjusted by adjusting the length of the group connecting the double bonds. For example: bifunctional monomers can be N,N'-methylenebisacrylamide, polyethylene glycol diacrylate, polyethylene glycol diallyl ether, N,N-diallyl dimethyl chloride Ammonium chloride, N,N'-diallyl-N,N,N',N'-tetramethylhexammonium chloride or N,N'-di-p-vinylbenzyl-N,N,N' , N'-tetramethylhexamethylenedichloride, etc.; the trifunctional monomer can be triacrylic acid-(propyl)trimethyl ester or pentaerythritol triallyl ether, etc.
上述的制备方法中,所述高分子分散剂可以选择市售的高分子分散剂,例如采用市售的:相对分子质量为4000-20000的聚乙烯醇、相对分子质量为5000-30000的聚乙烯胺、乙烯基吡咯烷酮的均聚物或共聚物等,其中采用乙烯基吡咯烷酮的均聚物或共聚物效果较好;或通过所述交联聚合物微球的分子结构中相应的离子型所述聚合单体的稀溶液聚合获得,如合成分子结构中包含丙烯酰胺-丙烯酸钠-2-丙烯酰胺-2-甲基丙磺酸钠结构的阴离子交联聚合物微球,所述高分子分散剂可以由2-丙烯酰胺-2-甲基丙磺酸钠进行稀溶液聚合所得均聚物充当;又比如合成分子结构中包含丙烯酰胺-丙烯酰氧乙基三甲基氯化铵-2-丙烯酰胺-2-甲基丙磺酸钠结构的两性离子交联聚合物微球或分子结构中包含丙烯酰胺-丙烯酰氧乙基三甲基氯化铵结构的阳离子交联聚合物微球,所述高分子分散剂可以由丙烯酰氧乙基三甲基氯化铵进行稀溶液聚合所得均聚物充当。In the above-mentioned preparation method, the polymer dispersant can be selected from commercially available polymer dispersants, such as commercially available: polyvinyl alcohol with a relative molecular mass of 4000-20000, polyethylene glycol with a relative molecular mass of 5000-30000 Amines, homopolymers or copolymers of vinylpyrrolidone, etc., wherein the homopolymer or copolymer of vinylpyrrolidone is better; Obtained by dilute solution polymerization of polymerized monomers, such as anionic crosslinked polymer microspheres containing acrylamide-sodium acrylate-2-acrylamide-2-methylpropanesulfonate structure in the synthetic molecular structure, the polymer dispersant It can be used as a homopolymer obtained by dilute solution polymerization of 2-acrylamide-2-methylpropanesulfonate sodium; another example is that the synthetic molecular structure contains acrylamide-acryloyloxyethyltrimethylammonium chloride-2-propene Zwitterionic cross-linked polymer microspheres with amide-2-methylpropanesulfonate sodium structure or cationic cross-linked polymer microspheres with acrylamide-acryloyloxyethyltrimethylammonium chloride structure in molecular structure, so The above-mentioned polymer dispersant can be used as a homopolymer obtained by dilute solution polymerization of acryloyloxyethyltrimethylammonium chloride.
上述的制备方法中,所述分散液中还可包括氧化性引发剂、水溶性热分解引发剂、螯合剂、pH值调节剂和助溶剂中至少一种。In the above preparation method, the dispersion liquid may further include at least one of an oxidative initiator, a water-soluble thermal decomposition initiator, a chelating agent, a pH regulator and a co-solvent.
上述的制备方法中,所述氧化性引发剂可为过硫酸铵,所述氧化性引发剂可以单独、或与还原性气体进行氧化-还原反应形成自由基,引发聚合反应,所述还原性气体优选为二氧化硫,所述氧化性引发剂的加入量可占所述水分散液的质量百分含量为0.0001%-0.0005%,如0.00025%或0.0003%;所述水溶性热分解引发剂可为2,2’-偶氮二{2-[1-(2-羟乙基)-2-咪唑啉-2-基]丙烷}二盐酸盐、2,2’-偶氮二(2-脒基丙烷)二盐酸盐、2,2’-偶氮二[2-(2-咪唑啉-2-基)丙烷)二盐酸盐或2,2’-偶氮二[2-(5-甲基-2-咪唑啉-2-基)丙烷)二盐酸盐,所述水溶性热分解引发剂用于聚合后期引发剩余所述聚合单体,降低所述交联聚合物微球的水分散液中残余的聚合单体含量,所述水溶性热分解引发剂的加入量可占所述水分散液的质量百分含量为0.0001%-0.0008%,如0.0005%或0.00075%;所述螯合剂为乙二胺四乙酸二钠,用于减缓、消除聚合物单体中重金属离子对聚合反应的影响,所述螯合剂的加入量可占所述水分散液的质量百分含量为0.0001%-0.0005%,如0.0005%;所述pH值调节剂为氢氧化钠、碳酸钠或碳酸氢钠,用于调节水分散液的pH值,保证水分散液适宜的酸碱性;所述助溶剂可为脲,可使水相中的各成分能够充分溶解于水,所述助溶剂的加入量可占所述水分散液的质量百分含量为0.001%-0.005%,如0.001%。In the above-mentioned preparation method, the oxidizing initiator can be ammonium persulfate, and the oxidizing initiator can be alone or carry out oxidation-reduction reaction with a reducing gas to form a free radical to initiate a polymerization reaction, and the reducing gas It is preferably sulfur dioxide, and the addition amount of the oxidizing initiator can account for 0.0001%-0.0005% of the mass percentage of the aqueous dispersion, such as 0.00025% or 0.0003%; the water-soluble thermal decomposition initiator can be 2 , 2'-Azobis{2-[1-(2-hydroxyethyl)-2-imidazolin-2-yl]propane} dihydrochloride, 2,2'-Azobis(2-amidino propane) dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane) dihydrochloride or 2,2'-azobis[2-(5-methyl base-2-imidazolin-2-yl) propane) dihydrochloride, the water-soluble thermal decomposition initiator is used to trigger the remaining polymerized monomers in the later stage of polymerization, and reduces the water dispersion of the cross-linked polymer microspheres The residual polymerized monomer content in the liquid, the addition of the water-soluble thermal decomposition initiator can account for 0.0001%-0.0008% of the mass percentage of the water dispersion, such as 0.0005% or 0.00075%; the chelating agent It is disodium ethylenediamine tetraacetate, which is used to slow down and eliminate the influence of heavy metal ions in the polymer monomer on the polymerization reaction. The amount of the chelating agent added can be 0.0001%- 0.0005%, such as 0.0005%; the pH adjuster is sodium hydroxide, sodium carbonate or sodium bicarbonate, which is used to adjust the pH value of the water dispersion to ensure the suitable acidity and alkalinity of the water dispersion; the cosolvent can be It is urea, so that the components in the water phase can be fully dissolved in water, and the addition amount of the co-solvent can be 0.001%-0.005%, such as 0.001%, in the mass percentage of the aqueous dispersion.
上述的制备方法中,所述方法还包括将所述交联聚合物微球进行沉淀、精制和干燥的步骤。In the above preparation method, the method further includes the steps of precipitating, refining and drying the cross-linked polymer microspheres.
上述的制备方法中,所述聚合反应的温度可为5℃-85℃,如35℃或50℃;所述聚合反应的时间可为4小时-12小时,如10小时。In the above preparation method, the temperature of the polymerization reaction may be 5°C-85°C, such as 35°C or 50°C; the time of the polymerization reaction may be 4 hours-12 hours, such as 10 hours.
本发明上述方法制备的交联聚合物微球的粒径为3μm-50μm,如9.6μm、14.5μm或15.6μm。The cross-linked polymer microspheres prepared by the above method of the present invention have a particle size of 3 μm-50 μm, such as 9.6 μm, 14.5 μm or 15.6 μm.
本发明提供的交联聚合物微球实际使用时,可以直接采用含有所述交联聚合物微球的水分散液或所述交联聚合物微球粉体配制的浓溶液,经过高压比例泵泵入注水管线,现场在线混合、稀释后以预先设计的质量百分含量通过注水井注入到油藏内部,达到改善油藏非均质性、提高注水开发油藏原油采收率的目的。本发明所述交联聚合物微球作为适合改善油藏非均质性、提高注水开发油藏原油采收率的调剖剂应用时,通常在质量百分含量为注入水质量的0.1~3.0‰范围内有效,当其质量百分含量为注入水质量的0.2~1.5‰时效果较好,而当其质量百分含量为注入水质量的0.4~0.8‰时效果最佳。当然,对于不同地质条件、不同开发阶段的油藏,还应通过前期室内实验、数值模拟来具体确定其实际的使用质量分数及注入方式。When the cross-linked polymer microspheres provided by the present invention are actually used, the aqueous dispersion containing the cross-linked polymer microspheres or the concentrated solution prepared by the cross-linked polymer microsphere powder can be directly used, and then passed through a high-pressure proportional pump. It is pumped into the water injection pipeline, mixed and diluted on-line on site, and then injected into the oil reservoir through the water injection well at a pre-designed mass percentage to achieve the purpose of improving the heterogeneity of the oil reservoir and increasing the oil recovery rate of the water injection development oil reservoir. When the cross-linked polymer microspheres of the present invention are used as a profile control agent suitable for improving reservoir heterogeneity and increasing oil recovery in water injection development reservoirs, the mass percentage is usually 0.1 to 3.0% of the injected water quality. It is effective within the range of ‰, and the effect is better when the mass percentage is 0.2-1.5 ‰ of the injected water quality, and the best effect is when the mass percentage is 0.4-0.8 ‰ of the injected water quality. Of course, for reservoirs with different geological conditions and different development stages, the actual use mass fraction and injection method should be determined through preliminary laboratory experiments and numerical simulations.
在对油藏的调剖处理中,通过本发明提供的交联聚合物微球在较高渗透率(渗透率大于1000毫达西),或存在较高渗透率条带的中、低渗透率油藏中的机械滞留、封堵较大尺寸喉道,造成深部液流改向,能够调整和改善油藏的非均质影响,封堵油藏深部长期注水所形成的优势水通道。本发明提供的交联聚合物微球的水溶液体系特别适合于较高渗透率油藏(渗透率大于1000毫达西),或存在较高渗透率条带的中、低渗透率油藏应用、提高注水开发中、后期油藏原油的采收率。In the profile control treatment of oil reservoirs, the cross-linked polymer microspheres provided by the present invention have higher permeability (permeability greater than 1000 mD), or medium and low permeability with higher permeability bands The mechanical retention and plugging of larger throats in the reservoir can cause deep liquid flow to change direction, which can adjust and improve the heterogeneity of the reservoir, and block the dominant water channel formed by long-term water injection in the deep reservoir. The aqueous solution system of cross-linked polymer microspheres provided by the present invention is particularly suitable for higher permeability reservoirs (permeability greater than 1000 mD), or the application of medium and low permeability reservoirs with higher permeability bands, Improve the recovery rate of crude oil in the middle and late stages of water flooding development.
具体实施方式 Detailed ways
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
采用确定体积的交联聚合物微球水溶液对气测渗透率为2.0μm2的人造岩心的封堵调剖性能和驱油效率,模拟交联聚合物微球水溶液对油藏地层孔道的封堵来评价交联聚合物微球水溶液的封堵调剖性能。Using a determined volume of cross-linked polymer microsphere aqueous solution to plug profile control performance and oil displacement efficiency of artificial core with a gas permeability of 2.0 μm2 , to simulate the plugging of reservoir formation pores by cross-linked polymer microsphere aqueous solution To evaluate the plugging profile control performance of cross-linked polymer microsphere aqueous solution.
实施例1、交联聚合物微球的制备Embodiment 1, the preparation of cross-linked polymer microspheres
在装有气体气导入管、温度计、恒速搅拌器的夹套反应器中加入聚乙烯吡咯烷酮(K-60)1.50克,硫酸铵16.50克,氯化钠1.50克,丙烯酰胺(AM)5.68克,丙烯酸钠1.02克,2-丙烯酰胺-2-甲基丙磺酸(AMPS)3.30克,N,N′-二烯丙基-N,N,N′,N′-四甲基己二氯化铵0.45克,螯合剂乙二胺四乙酸二钠0.50毫克,助溶剂脲1.0毫克,以上各种成分溶解于68.00克超纯水(电导率≤4μS/cm)中,并用35%氢氧化钠调节溶液pH值为7.5-8.5;上述水分散液中,硫酸铵和氯化钠的质量百分含量为18.0%;丙烯酰胺的质量百分含量为5.68%;聚乙烯吡咯烷酮、丙烯酸钠和2-丙烯酰胺-2-甲基丙磺酸的质量百分含量为5.82%;N,N′-二烯丙基-N,N,N′,N′-四甲基己二氯化铵的质量百分含量为0.45%;乙二胺四乙酸二钠的质量百分含量为0.0005%;脲的质量百分含量为0.001%。Add 1.50 grams of polyvinylpyrrolidone (K-60), 16.50 grams of ammonium sulfate, 1.50 grams of sodium chloride, and 5.68 grams of acrylamide (AM) in a jacketed reactor equipped with a gas inlet pipe, a thermometer, and a constant speed stirrer , sodium acrylate 1.02 g, 2-acrylamide-2-methylpropanesulfonic acid (AMPS) 3.30 g, N,N'-diallyl-N,N,N',N'-tetramethylhexanedichloride 0.45 g of ammonium chloride, 0.50 mg of disodium edetate as a chelating agent, and 1.0 mg of cosolvent urea, all the above ingredients were dissolved in 68.00 g of ultrapure water (conductivity ≤ 4 μS/cm), and mixed with 35% sodium hydroxide Adjust the pH value of the solution to 7.5-8.5; in the above water dispersion, the mass percentage of ammonium sulfate and sodium chloride is 18.0%; the mass percentage of acrylamide is 5.68%; polyvinylpyrrolidone, sodium acrylate and 2- The mass percent of acrylamide-2-methylpropanesulfonic acid is 5.82%; the mass percent of N,N'-diallyl-N,N,N',N'-tetramethylhexammonium chloride The content of urea is 0.45%; the mass percentage of disodium edetate is 0.0005%; the mass percentage of urea is 0.001%.
设定35℃为引发温度,首先向上述盐水分散液中通入惰性气体高纯氮气驱氧,降低体系中氧含量(≤0.3μg/g)便于聚合反应被引发,加入过硫酸铵0.30毫克(占水分散液的质量百分含量为0.0003%),2,2’-偶氮二(2-脒基丙烷)二盐酸盐0.50毫克(占水分散液的质量百分含量为0.0005%),然后通入还原性气体二氧化硫与水相中过硫酸铵复合构成氧化-还原引发体系,使聚合反应进行4小时,再将温度升至50℃,继续6小时,得到交联聚合物微球的水分散液,25℃时其粘度为848mPa.s,其粒度分布中值14.5μm。Set 35°C as the initiation temperature, first pass inert gas high-purity nitrogen into the above-mentioned saline dispersion to drive oxygen, reduce the oxygen content in the system (≤0.3μg/g) to facilitate the polymerization reaction, and add 0.30 mg of ammonium persulfate ( Accounting for the mass percent of the aqueous dispersion is 0.0003%), 0.50 mg of 2,2'-azobis(2-amidinopropane) dihydrochloride (accounting for the mass percent of the aqueous dispersion is 0.0005%), Then pass through reducing gas sulfur dioxide and ammonium persulfate in the water phase to form an oxidation-reduction initiation system, and the polymerization reaction is carried out for 4 hours, and then the temperature is raised to 50 ° C and continued for 6 hours to obtain water of cross-linked polymer microspheres. The dispersion has a viscosity of 848mPa.s at 25°C and a median particle size distribution of 14.5μm.
取出部分上述制备的含有交联聚合物微球的水分散液溶解于水,在该水溶液中加入无水乙醇作为沉淀剂,沉淀出粒径为14.5μm的交联聚合物微球,经过石油醚抽提,干燥制成交联聚合物微球粉体。Take out part of the aqueous dispersion containing cross-linked polymer microspheres prepared above and dissolve it in water, add absolute ethanol as a precipitant to the aqueous solution, and precipitate cross-linked polymer microspheres with a particle size of 14.5 μm, pass through petroleum ether Extract and dry to make cross-linked polymer microsphere powder.
质量分数为400mg/kg的上述交联聚合物微球在60℃渤海SZ36-1油田模拟水中熟化96小时得到交联聚合物线团水溶液,对气测渗透率为2.0μm2的人造岩心进行渤海SZ36-1油田模拟油的驱替实验,测得实验条件下能够提高模拟油采收率20.6%。The above-mentioned cross-linked polymer microspheres with a mass fraction of 400 mg/kg were matured in the simulated water of Bohai SZ36-1 oil field at 60 °C for 96 hours to obtain an aqueous solution of cross-linked polymer coils. The displacement experiment of simulated oil in SZ36-1 oilfield shows that the simulated oil recovery can be increased by 20.6% under the experimental conditions.
实施例2、交联聚合物微球的制备Embodiment 2, the preparation of cross-linked polymer microspheres
在装有气体气导入管、温度计、恒速搅拌器的夹套反应器中加入聚乙烯吡咯烷酮(K-17)2.50克,硫酸铵17.50克,氯化钠1.50克,丙烯酰胺(AM)5.68克,丙烯酸钠1.02克,2-丙烯酰胺-2-甲基丙磺酸(AMPS)3.30克,N,N′-二烯丙基-N,N,N′,N′-四甲基己二氯化铵0.45克,螯合剂乙二胺四乙酸二钠0.50毫克,脲1.0毫克,以上各种成分溶解于66.00克超纯水(电导率≤4μS/cm)中,并用35%氢氧化钠调节溶液pH值为7.5-8.5。上述水分散液中,硫酸铵和氯化钠的质量百分含量为19.0%;丙烯酰胺的质量百分含量为5.68%;聚乙烯吡咯烷酮、丙烯酸钠和2-丙烯酰胺-2-甲基丙磺酸的质量百分含量为6.82%;N,N′-二烯丙基-N,N,N′,N′-四甲基己二氯化铵的质量百分含量为0.45%;乙二胺四乙酸二钠的质量百分含量为0.0005%;脲的质量百分含量为0.001%。Add 2.50 grams of polyvinylpyrrolidone (K-17), 17.50 grams of ammonium sulfate, 1.50 grams of sodium chloride, and 5.68 grams of acrylamide (AM) in a jacketed reactor equipped with a gas inlet pipe, a thermometer, and a constant speed stirrer , sodium acrylate 1.02 g, 2-acrylamide-2-methylpropanesulfonic acid (AMPS) 3.30 g, N,N'-diallyl-N,N,N',N'-tetramethylhexanedichloride 0.45 grams of ammonium chloride, 0.50 milligrams of disodium edetate as a chelating agent, and 1.0 milligrams of urea. The above ingredients were dissolved in 66.00 grams of ultrapure water (conductivity ≤ 4 μS/cm), and the solution was adjusted with 35% sodium hydroxide The pH is 7.5-8.5. In the above aqueous dispersion, the mass percentage of ammonium sulfate and sodium chloride is 19.0%; the mass percentage of acrylamide is 5.68%; polyvinylpyrrolidone, sodium acrylate and 2-acrylamide-2-methylpropanesulfonate The mass percentage of acid is 6.82%; the mass percentage of N, N'-diallyl-N, N, N', N'-tetramethylhexammonium chloride is 0.45%; ethylenediamine The mass percentage content of disodium tetraacetate is 0.0005%; the mass percentage content of urea is 0.001%.
设定35℃为引发温度,首先向上述盐水分散液中通入惰性气体高纯氮气驱氧,降低体系中氧含量(≤0.3μg/g)便于聚合反应被引发,加入过硫酸铵0.30毫克(占水分散液的质量百分含量为0.0003%),2,2’-偶氮二(2-脒基丙烷)二盐酸盐0.50毫克(占水分散液的质量百分含量为0.0005%),然后通入还原性气体二氧化硫与水相中过硫酸铵复合构成氧化-还原引发体系,使聚合反应进行4小时,再将温度升至50℃,继续6小时,得到大尺寸交联聚合物微球水分散液,25℃时其粘度为640mPa.s,其粒度分布中值9.6μm。Set 35°C as the initiation temperature, first pass inert gas high-purity nitrogen into the above-mentioned saline dispersion to drive oxygen, reduce the oxygen content in the system (≤0.3μg/g) to facilitate the polymerization reaction, and add 0.30 mg of ammonium persulfate ( Accounting for the mass percent of the aqueous dispersion is 0.0003%), 0.50 mg of 2,2'-azobis(2-amidinopropane) dihydrochloride (accounting for the mass percent of the aqueous dispersion is 0.0005%), Then, the reducing gas sulfur dioxide and ammonium persulfate in the water phase are introduced to form an oxidation-reduction initiation system, and the polymerization reaction is carried out for 4 hours, and then the temperature is raised to 50°C for 6 hours to obtain large-sized cross-linked polymer microspheres The viscosity of the aqueous dispersion is 640mPa.s at 25°C, and the median particle size distribution is 9.6μm.
取出部分上述制备的含有交联聚合物微球水分散液溶解于水,在其水溶液中加入无水乙醇作为沉淀剂,沉淀出粒径为9.6μm的交联聚合物微球,经过石油醚抽提,干燥制成大尺寸交联聚合物微球粉体。Take out part of the aqueous dispersion containing cross-linked polymer microspheres prepared above and dissolve it in water, add absolute ethanol as a precipitant to the aqueous solution, and precipitate cross-linked polymer microspheres with a particle size of 9.6 μm. Extract and dry to make large-size cross-linked polymer microsphere powder.
质量分数为400mg/kg的上述大尺寸交联聚合物微球在60℃渤海SZ36-1油田模拟水中熟化96小时得到交联聚合物线团水溶液,对气测渗透率为2.0μm2的人造岩心进行渤海SZ36-1油田模拟油的驱替实验,测得实验条件下能够提高模拟油采收率18.2%。The above-mentioned large-sized cross-linked polymer microspheres with a mass fraction of 400mg/kg were matured in the simulated water of Bohai SZ36-1 oilfield at 60°C for 96 hours to obtain an aqueous solution of cross-linked polymer coils. The displacement experiment of simulated oil in Bohai SZ36-1 oilfield was carried out, and it was measured that the simulated oil recovery could be increased by 18.2% under the experimental conditions.
实施例3、交联聚合物微球的制备Embodiment 3, the preparation of cross-linked polymer microsphere
按照与实施例1相同的方法制备交联聚合物微球水溶液粉体。The crosslinked polymer microsphere aqueous solution powder was prepared according to the same method as in Example 1.
质量分数为400mg/kg的上述制备的交联聚合物微球在60℃渤海SZ36-1油田模拟水中熟化96小时得到交联聚合物线团水溶液,对气测渗透率为3.5μm2的人造岩心进行渤海SZ36-1油田模拟油的驱替实验,测得实验条件下能够提高模拟油采收率18.6%。The above-prepared cross-linked polymer microspheres with a mass fraction of 400mg/kg were matured for 96 hours in the simulated water of Bohai SZ36-1 oilfield at 60°C to obtain an aqueous solution of cross-linked polymer coils. The displacement experiment of simulated oil in Bohai SZ36-1 oilfield was carried out, and it was measured that the simulated oil recovery could be increased by 18.6% under the experimental conditions.
实施例4、交联聚合物微球的制备Embodiment 4, the preparation of cross-linked polymer microspheres
在装有气体气导入管、温度计、恒速搅拌器的夹套反应器中加入丙烯酰胺(AM)1.42克,2-丙烯酰胺-2-甲基丙磺酸(AMPS)6.40克,超纯水(电导率≤4μS/cm)42克,通氮气30分钟,加入过硫酸铵0.46毫克,亚硫酸氢钠0.26毫克,引发温度35℃,反应4小时得到AM-AMPS共聚物溶液作为分散剂。Add 1.42 g of acrylamide (AM), 6.40 g of 2-acrylamide-2-methylpropanesulfonic acid (AMPS), and ultrapure water into a jacketed reactor equipped with a gas inlet tube, a thermometer, and a constant-speed stirrer. (Conductivity≤4μS/cm) 42 grams, nitrogen gas 30 minutes, add ammonium persulfate 0.46 mg, sodium bisulfite 0.26 mg, trigger temperature 35 ℃, react for 4 hours to obtain AM-AMPS copolymer solution as a dispersant.
继续在反应器中加入硫酸铵43.80克,氯化钠3.80克,丙烯酰胺(AM)14.20克,丙烯酸钠2.55克,2-丙烯酰胺-2-甲基丙磺酸(AMPS)8.30克,N,N′-二烯丙基-N,N,N′,N′-四甲基己二氯化铵1.15克,螯合剂乙二胺四乙酸二钠1.25毫克,脲2.5毫克,超纯水(电导率≤4μS/cm)120.00克,并用35%氢氧化钠调节溶液pH值为7.5-8.5,上述水分散液中,硫酸铵和氯化钠的质量百分含量为19.0%;丙烯酰胺的质量百分含量为5.7%;丙烯酸钠和2-丙烯酰胺-2-甲基丙磺酸的质量百分含量为4.3%;N,N′-二烯丙基-N,N,N′,N′-四甲基己二氯化铵的质量百分含量为0.46%;乙二胺四乙酸二钠的质量百分含量为0.0005%;脲的质量百分含量为0.001%。Continue to add 43.80 grams of ammonium sulfate, 3.80 grams of sodium chloride, 14.20 grams of acrylamide (AM), 2.55 grams of sodium acrylate, 8.30 grams of 2-acrylamide-2-methylpropanesulfonic acid (AMPS) in the reactor, N, N'-diallyl-N, N, N', N'-tetramethylhexammonium chloride 1.15 grams, chelating agent edetate disodium 1.25 mg, urea 2.5 mg, ultrapure water (conductivity rate≤4μS/cm) 120.00 grams, and with 35% sodium hydroxide to adjust the pH value of the solution to 7.5-8.5, in the above water dispersion, the mass percentage of ammonium sulfate and sodium chloride is 19.0%; the mass percentage of acrylamide The content is 5.7%; the mass percentage content of sodium acrylate and 2-acrylamide-2-methylpropanesulfonic acid is 4.3%; N, N'-diallyl-N, N, N', N'- The mass percentage of tetramethylhexammonium chloride is 0.46%, the mass percentage of disodium edetate is 0.0005%, and the mass percentage of urea is 0.001%.
设定35℃为引发温度,首先向上述盐水分散液中通入惰性气体高纯氮气驱氧,降低体系中氧含量(≤0.3μg/g)便于聚合反应被引发,加入过硫酸铵0.25毫克(占水分散液的质量百分含量为0.00025%),2,2’-偶氮二(2-脒基丙烷)二盐酸盐0.75毫克(占水分散液的质量百分含量为0.00075%),然后通入还原性气体二氧化硫与水相中过硫酸铵复合构成氧化-还原引发体系,使聚合反应进行4小时,再将温度升至50℃,继续6小时,得到大尺寸交联聚合物微球水分散液,25℃时其粘度为940mPa.s,其粒度分布中值15.6μm。Set 35°C as the initiation temperature, first pass inert gas high-purity nitrogen into the above-mentioned saline dispersion to drive oxygen, reduce the oxygen content in the system (≤0.3μg/g) to facilitate the polymerization reaction to be initiated, add 0.25 mg of ammonium persulfate ( Accounting for the mass percentage of the aqueous dispersion is 0.00025%), 0.75 mg of 2,2'-azobis(2-amidinopropane) dihydrochloride (accounting for the mass percentage of the aqueous dispersion is 0.00075%), Then, the reducing gas sulfur dioxide and ammonium persulfate in the water phase are introduced to form an oxidation-reduction initiation system, and the polymerization reaction is carried out for 4 hours, and then the temperature is raised to 50°C for 6 hours to obtain large-sized cross-linked polymer microspheres The viscosity of the aqueous dispersion is 940mPa.s at 25°C, and the median particle size distribution is 15.6μm.
取出部分上述制备的含有交联聚合物微球的水分散液溶解于水,在其水溶液中加入无水乙醇作为沉淀剂,沉淀出粒径为15.6μm的交联聚合物微球,经过石油醚抽提,干燥制成大尺寸交联聚合物微球粉体。Take out part of the aqueous dispersion containing cross-linked polymer microspheres prepared above and dissolve in water, add absolute ethanol as a precipitating agent to the aqueous solution, and precipitate cross-linked polymer microspheres with a particle size of 15.6 μm, pass through petroleum ether Extract and dry to make large-size cross-linked polymer microsphere powder.
质量分数为400mg/kg的上述交联聚合物微球在60℃渤海SZ36-1油田模拟水中熟化96小时得到交联聚合物线团水溶液,对气测渗透率为3.5μm2的人造岩心进行渤海SZ36-1油田模拟油的驱替实验,测得实验条件下能够提高模拟油采收率19.5%。The above-mentioned cross-linked polymer microspheres with a mass fraction of 400 mg/kg were matured for 96 hours in the simulated water of Bohai SZ36-1 oilfield at 60°C to obtain an aqueous solution of cross-linked polymer coils. The displacement experiment of simulated oil in SZ36-1 oil field shows that the simulated oil recovery can be increased by 19.5% under the experimental conditions.
对比例1、交联聚合物线团的制备Comparative example 1, the preparation of cross-linked polymer coils
按照中国专利ZL 200710063645.X公开报道的制备方法中实施例5制备出含有粒径呈双峰分布的交联聚合物线团的W/O型分散液;According to Example 5 in the preparation method disclosed in the Chinese patent ZL 200710063645.X, a W/O type dispersion containing crosslinked polymer coils with a bimodal distribution of particle diameters was prepared;
取少量上述含有粒径呈双峰分布的交联聚合物线团的W/O型分散液,加入无水乙醇作为沉淀剂沉淀出粒径呈双峰分布的交联聚合物线团,经过石油醚抽提,干燥制成粒径呈双峰分布的交联聚合物线团粉体。Take a small amount of the above-mentioned W/O dispersion containing cross-linked polymer coils with bimodal particle size distribution, add absolute ethanol as a precipitant to precipitate cross-linked polymer coils with bimodal particle size distribution, and pass through petroleum Ether extraction, drying to produce cross-linked polymer coil powder with bimodal particle size distribution.
质量分数为400mg/kg的交联聚合物线团在60℃渤海SZ36-1油田模拟水中熟化96小时得到交联聚合物线团水溶液,对气测渗透率为2.0μm2的人造岩心进行渤海SZ36-1油田模拟油的驱替实验,测得实验条件下能够提高模拟油采收率15.0%,实验结果如表1所示。The cross-linked polymer coils with a mass fraction of 400 mg/kg were matured in the simulated water of Bohai SZ36-1 oilfield at 60°C for 96 hours to obtain an aqueous solution of cross-linked polymer coils. The displacement experiment of simulated oil in the -1 oilfield shows that the simulated oil recovery can be increased by 15.0% under the experimental conditions. The experimental results are shown in Table 1.
各实施例和对比例的结果综合列于表1中。The results of each embodiment and comparative example are comprehensively listed in Table 1.
表1、对照例与各实施例提高采收率比较Table 1, comparative example and the comparison of the enhanced oil recovery of each embodiment
对照实施例1与3可以看出,本发明制备的交联聚合物微球对不同渗透率的岩心的封堵调剖效果不同,这就存在本发明的交联聚合物微球的尺寸与岩心孔道的匹配问题,需要通过有针对性地调节聚合时高分子分散剂、无机盐的用量和/或交联聚合物线团的质量分数来实现。Comparing Examples 1 and 3, it can be seen that the cross-linked polymer microspheres prepared by the present invention have different plugging and profile control effects on rock cores with different permeability, which means that the size of the cross-linked polymer microspheres of the present invention is different from that of the rock cores. The channel matching problem needs to be achieved by adjusting the amount of polymer dispersant, inorganic salt and/or mass fraction of cross-linked polymer coils during polymerization.
对照实施例1、2与4可以看出,本发明制备的交联聚合物微球的提高采收率能力能够通过调节分子结构、制备方法进行调节。Comparing Examples 1, 2 and 4, it can be seen that the enhanced oil recovery capability of the cross-linked polymer microspheres prepared by the present invention can be adjusted by adjusting the molecular structure and preparation method.
以上实施例和比较结果仅提示了本发明的制备方法所能达到的功效,即,不同的大尺寸交联聚合物微球可以根据油藏特征、采出程度进行适应性的制取。The above examples and comparative results only suggest the effect that the preparation method of the present invention can achieve, that is, different large-sized cross-linked polymer microspheres can be prepared adaptively according to the reservoir characteristics and recovery degree.
另一方面,比较对比例1与四个具体实施例可以看出,在质量分数相同、矿化度相同、温度相同、熟化时间相同的条件下得到的用于封堵调剖的调剖剂水溶液,当对气测渗透率相同的岩心进行驱油实验时,采用本方法得到的交联聚合物微球水溶液的较好的提高模拟油的采收率,说明采用本方法得到的交联聚合物微球水溶液对于较高渗透率多孔介质具有与采用乳液聚合方法得到的尺寸较小的交联聚合物线团溶液相同、或更加优越的封堵能力。On the other hand, comparing Comparative Example 1 with the four specific examples, it can be seen that the aqueous solution of the profile control agent for plugging and profile control obtained under the conditions of the same mass fraction, the same salinity, the same temperature, and the same aging time , when carrying out oil displacement experiments on rock cores with the same gas permeability, the cross-linked polymer microsphere aqueous solution obtained by this method can better improve the recovery of simulated oil, indicating that the cross-linked polymer obtained by this method The microsphere aqueous solution has the same or better plugging ability than the smaller cross-linked polymer coil solution obtained by the emulsion polymerization method for porous media with higher permeability.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110140086 CN102304200B (en) | 2011-05-27 | 2011-05-27 | Crosslinked polymer microspheres and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110140086 CN102304200B (en) | 2011-05-27 | 2011-05-27 | Crosslinked polymer microspheres and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102304200A CN102304200A (en) | 2012-01-04 |
CN102304200B true CN102304200B (en) | 2013-08-21 |
Family
ID=45378130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110140086 Active CN102304200B (en) | 2011-05-27 | 2011-05-27 | Crosslinked polymer microspheres and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102304200B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109021159A (en) * | 2018-06-08 | 2018-12-18 | 中国石油天然气股份有限公司 | Oil well water shutoff agent and preparation method and application thereof |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102114784B1 (en) * | 2012-05-30 | 2020-05-26 | 누리온 케미칼즈 인터내셔널 비.브이. | Microspheres |
CN103408703B (en) * | 2013-08-06 | 2015-07-22 | 西安石油大学 | Liquid polymeric microspheres and synthetic method thereof |
CN103806889B (en) * | 2014-03-04 | 2016-08-17 | 中国石油集团渤海钻探工程有限公司 | Method for infinite-grade chemical layering fracturing or acidizing |
JP6313454B2 (en) * | 2014-08-19 | 2018-04-18 | 富士フイルム株式会社 | Polymer membrane-forming composition and method for producing the same, polymer membrane, separation membrane module, and ion exchange device |
CN104194753A (en) * | 2014-08-25 | 2014-12-10 | 孙安顺 | Water dispersible profile control agent for oil extraction and preparation method thereof |
CN105399873B (en) * | 2014-09-03 | 2017-06-30 | 中国石油化工股份有限公司 | Water-soluble azo initiator and acrylamide polymer and its preparation method and application |
CN105482033B (en) * | 2014-09-19 | 2017-12-19 | 中国石油化工股份有限公司 | A kind of polymer microballoon and its preparation method and application |
CN105524215B (en) * | 2014-10-24 | 2019-07-05 | 中国石油化工股份有限公司 | Temperature-resistant anti-salt acrylamide copolymer microballoon dispersion and its preparation method and application |
CN105273145B (en) * | 2014-11-07 | 2017-11-17 | 中国石油化工股份有限公司 | A kind of weak cross-linked particles profile control agent for improving oil recovery and preparation method thereof |
US10450500B2 (en) | 2015-01-12 | 2019-10-22 | Ecolab Usa Inc. | Thermally stable polymers for enhanced oil recovery |
CN105622842B (en) * | 2016-03-22 | 2018-05-22 | 浙江理工大学 | Azacyclopropane and N- vinyl acetamides or the synthetic method with N- methyl-Nvinylacetamide copolymers |
CN109415455B (en) | 2016-07-08 | 2020-12-01 | 株式会社日本触媒 | N-vinyllactam crosslinked polymer, cosmetic, ink absorbent, and absorbent composite |
CN106279525A (en) * | 2016-08-08 | 2017-01-04 | 东营华力石油技术股份有限公司 | Tertiary oil recovery surface-active polymer oil displacement agent and preparation method thereof |
FR3061909B1 (en) * | 2017-01-19 | 2019-05-24 | S.P.C.M. Sa | PROCESS FOR ASSISTED OIL RECOVERY BY INJECTION OF A POLYMERIC AQUEOUS COMPOSITION CONTAINING MICROGELS |
CN106832146B (en) * | 2017-01-26 | 2019-02-22 | 中国海洋石油集团有限公司 | One kind can viscosify profile control agent and preparation method thereof |
CN107795296A (en) | 2017-07-31 | 2018-03-13 | 中国石油天然气股份有限公司 | Method for deep profile control and flooding of low-permeability reservoir |
WO2019024531A1 (en) * | 2017-07-31 | 2019-02-07 | 中国石油天然气股份有限公司 | Method for deep profile modification and flooding of low-permeability reservoir |
CN108329422B (en) * | 2018-02-07 | 2020-12-29 | 山东诺尔生物科技有限公司 | Water-in-water type microsphere profile control agent and preparation method thereof |
CN108929404B (en) * | 2018-07-20 | 2020-04-28 | 四川大学 | A kind of preparation method of hydrophilic acrylamide-based cross-linked polymer microspheres |
CN109320972A (en) * | 2018-09-27 | 2019-02-12 | 江南大学 | A kind of preparation method of porous polyethyleneimine microspheres |
CN114478897B (en) * | 2021-11-24 | 2024-02-23 | 四川轻化工大学 | Slow-expansion type pre-crosslinked gel particles and preparation method thereof |
CN114736659B (en) * | 2022-03-16 | 2024-03-26 | 长江大学 | Preparation method of high-temperature high-density water-based drilling fluid filtrate reducer composition |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101229509A (en) * | 2008-02-05 | 2008-07-30 | 南京大学 | A kind of synthetic method of polymer high performance liquid chromatography filler with uniform particle size |
CN101549270A (en) * | 2009-04-03 | 2009-10-07 | 西北工业大学 | Preparation method of magnetic polymer inorganic composite micro-sphere |
AU2009232000A1 (en) * | 2008-04-03 | 2009-10-08 | Baxter International Inc. | Hemostatic microspheres |
CN101612543A (en) * | 2008-06-25 | 2009-12-30 | 中国科学院大连化学物理研究所 | Preparation of polystyrene-divinylbenzene microspheres for blood purification |
CN101759838A (en) * | 2009-12-30 | 2010-06-30 | 中国石油大学(华东) | Preparation method of profile control and oil displacement system of polyacrylamide nanometer microsphere with low interfacial tension |
CN101773812A (en) * | 2010-01-12 | 2010-07-14 | 南京大学 | High-specific surface polymer microsphere resin with even particle size and preparation method thereof |
CN101798372A (en) * | 2010-04-13 | 2010-08-11 | 苏州大学 | Polymer microsphere and preparation method thereof |
CN101805423A (en) * | 2009-12-30 | 2010-08-18 | 中国石油大学(华东) | Method for preparing polyacrylamide nano microsphere system |
CN101816909A (en) * | 2009-03-20 | 2010-09-01 | 兰州理工大学 | Preparation method of poly(phenylethylene-acrylic acid) magnetic polymer microsphere |
EP2295480A1 (en) * | 2009-09-10 | 2011-03-16 | Occlugel | Implantable bio-resorbable polymer |
-
2011
- 2011-05-27 CN CN 201110140086 patent/CN102304200B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101229509A (en) * | 2008-02-05 | 2008-07-30 | 南京大学 | A kind of synthetic method of polymer high performance liquid chromatography filler with uniform particle size |
AU2009232000A1 (en) * | 2008-04-03 | 2009-10-08 | Baxter International Inc. | Hemostatic microspheres |
CN101612543A (en) * | 2008-06-25 | 2009-12-30 | 中国科学院大连化学物理研究所 | Preparation of polystyrene-divinylbenzene microspheres for blood purification |
CN101816909A (en) * | 2009-03-20 | 2010-09-01 | 兰州理工大学 | Preparation method of poly(phenylethylene-acrylic acid) magnetic polymer microsphere |
CN101549270A (en) * | 2009-04-03 | 2009-10-07 | 西北工业大学 | Preparation method of magnetic polymer inorganic composite micro-sphere |
EP2295480A1 (en) * | 2009-09-10 | 2011-03-16 | Occlugel | Implantable bio-resorbable polymer |
CN101759838A (en) * | 2009-12-30 | 2010-06-30 | 中国石油大学(华东) | Preparation method of profile control and oil displacement system of polyacrylamide nanometer microsphere with low interfacial tension |
CN101805423A (en) * | 2009-12-30 | 2010-08-18 | 中国石油大学(华东) | Method for preparing polyacrylamide nano microsphere system |
CN101773812A (en) * | 2010-01-12 | 2010-07-14 | 南京大学 | High-specific surface polymer microsphere resin with even particle size and preparation method thereof |
CN101798372A (en) * | 2010-04-13 | 2010-08-11 | 苏州大学 | Polymer microsphere and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
双水相中制备交联泊洛沙姆亲水凝胶微球;徐晖等;《沈阳药科大学学报》;20010530(第03期);全文 * |
徐晖等.双水相中制备交联泊洛沙姆亲水凝胶微球.《沈阳药科大学学报》.2001,(第03期), |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109021159A (en) * | 2018-06-08 | 2018-12-18 | 中国石油天然气股份有限公司 | Oil well water shutoff agent and preparation method and application thereof |
CN109021159B (en) * | 2018-06-08 | 2020-03-10 | 中国石油天然气股份有限公司 | Oil well water shutoff agent and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102304200A (en) | 2012-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102304200B (en) | Crosslinked polymer microspheres and preparation method thereof | |
US11390795B2 (en) | Delayed gelling agents | |
RU2500711C2 (en) | Composition and method of hydrocarbon fluid extraction at underground deposit | |
CN102702424B (en) | Zwitterionic polymer, its preparation method and its application in hydrochloric acid-based fracturing fluid | |
AU2018238041A1 (en) | Fracturing fluid comprising a (co)polymer of a hydrated crystalline form of 2-acrylamido-2-methylpropane sulphonic acid and hydraulic fracturing method | |
RU2500712C2 (en) | Composition and method of hydrocarbon fluid extraction at underground deposit | |
EP2528984B1 (en) | Water-soluble polymers for oil recovery | |
RU2618239C2 (en) | Composition and method for selection of hydrocarbon fluids from undergound reservoir | |
CN104892838B (en) | Cloudy non-both sexes hydrophobic associated copolymer of a kind of heatproof and preparation method thereof | |
CN102286274A (en) | Cross-linked polymer microsphere-polymer composite in-depth profile control and oil displacement agent and use method thereof | |
WO2011113470A1 (en) | Enhanced oil recovery process using water soluble polymers having improved shear resistance | |
CN102304201A (en) | Hydrophobic association crosslinked polymer coil and preparation method thereof | |
CN103242818B (en) | AM (acrylamide)/NaAA (sodium acrylic acid)/AMPL (N-allyl morpholinium) ternary copolymer oil displacement agent and synthesis method thereof | |
CN108117621B (en) | Tackifying calcium salt resistant polymer filtrate reducer and preparation method thereof | |
WO2023015730A1 (en) | Polymeric microsphere with surfactant wrapped therein and preparation method therefor | |
CN104371682A (en) | AA-AM-AMPS-DAC (acrylic acid-acrylamide-2-acrylamido-methylpropanesulfonic acid-acryloyloxyethyl ammonium chloride) polymer gel plugging agent and synthesis method thereof | |
CN103923629A (en) | Plugging agent | |
Chen | Polyacrylamide and its derivatives for oil recovery | |
CN105153363A (en) | Partially-crosslinked and partially-branched copolymer oil displacement agent and preparation method thereof | |
CN106467599A (en) | A kind of self-association type linked polymer coil and preparation method thereof | |
CN104861949A (en) | Micro-scale dynamic dispersion agent and preparation method thereof | |
CN105085798B (en) | A kind of partial cross-linked partially branched polymer oil displacement agent of dual-network and preparation method thereof | |
CN114479817B (en) | Polymer microsphere and polymer compound system and preparation method and application thereof | |
CN106467598A (en) | A kind of cross linked amphoteric polymeric ball of string and preparation method thereof | |
CN107686533B (en) | Polymer with selective water plugging function and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP01 | Change in the name or title of a patent holder |
Address after: 100010 Beijing, Chaoyangmen, North Street, No. 25, No. Patentee after: China National Offshore Oil Corporation Patentee after: CNOOC Research Institute Patentee after: China University of Petroleum (Beijing) Address before: 100010 Beijing, Chaoyangmen, North Street, No. 25, No. Patentee before: China National Offshore Oil Corporation Patentee before: CNOOC Research Center Patentee before: China University of Petroleum (Beijing) |
|
CP01 | Change in the name or title of a patent holder |
Address after: 100010 Beijing, Chaoyangmen, North Street, No. 25, No. Co-patentee after: CNOOC research institute limited liability company Patentee after: China Offshore Oil Group Co., Ltd. Co-patentee after: China University of Petroleum (Beijing) Address before: 100010 Beijing, Chaoyangmen, North Street, No. 25, No. Co-patentee before: CNOOC Research Institute Patentee before: China National Offshore Oil Corporation Co-patentee before: China University of Petroleum (Beijing) |
|
CP01 | Change in the name or title of a patent holder | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210804 Address after: 100010 No. 25 North Main Street, Dongcheng District, Beijing, Chaoyangmen Patentee after: CHINA NATIONAL OFFSHORE OIL Corp. Patentee after: CNOOC RESEARCH INSTITUTE Co.,Ltd. Address before: 100010 No. 25 North Main Street, Dongcheng District, Beijing, Chaoyangmen Patentee before: CHINA NATIONAL OFFSHORE OIL Corp. Patentee before: CNOOC RESEARCH INSTITUTE Co.,Ltd. Patentee before: China University of Petroleum (Beijing) |
|
TR01 | Transfer of patent right |