[go: up one dir, main page]

CN102288133A - Installation deflection angle calibration method of gyro indirect stable system - Google Patents

Installation deflection angle calibration method of gyro indirect stable system Download PDF

Info

Publication number
CN102288133A
CN102288133A CN2011101088923A CN201110108892A CN102288133A CN 102288133 A CN102288133 A CN 102288133A CN 2011101088923 A CN2011101088923 A CN 2011101088923A CN 201110108892 A CN201110108892 A CN 201110108892A CN 102288133 A CN102288133 A CN 102288133A
Authority
CN
China
Prior art keywords
msub
mtd
mrow
mover
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101088923A
Other languages
Chinese (zh)
Other versions
CN102288133B (en
Inventor
迟家升
薛宏斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING STARNETO TECHNOLOGY DEVELOPMENT Co Ltd
Original Assignee
BEIJING STARNETO TECHNOLOGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING STARNETO TECHNOLOGY DEVELOPMENT Co Ltd filed Critical BEIJING STARNETO TECHNOLOGY DEVELOPMENT Co Ltd
Priority to CN 201110108892 priority Critical patent/CN102288133B/en
Publication of CN102288133A publication Critical patent/CN102288133A/en
Application granted granted Critical
Publication of CN102288133B publication Critical patent/CN102288133B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

The invention relates to an installation deflection angle calibration method of a gyro indirect stable system, which comprises the steps that: an inertial measurement unit (IMU) and a video camera are simultaneously arranged on a carrier, the optical axis of the video camera aims at a fixed target, the carrier is controlled to swing regularly, the optical axis of the video camera is stabilized through an indirect stabilizing technology, then an image processing technology is adopted to estimate the deviation information of the optical axis of the video camera relative to the fixed target, the deviation information is used for measuring, and the installation deflection angle between an IMU coordinate system and a carrier coordinate system in the indirect stabilizing system as well as the installation deflection between a video camera coordinate system and the carrier coordinate system can be accurately estimated according to an installation deflection angle estimation model. The installation deflection angle calibration method of the gyro indirect stable system excites installation errors into view axis aiming errors through the regular swinging of the carrier, reverses the installation deflection angles by measuring the aiming errors, can estimate five installation deflection angles through one experiment, and has the characteristics of accuracy, high efficiency, easiness in operation, high universality and the like. After the installation deflection angles are estimated and corresponding errors are compensated through the method, the view axis stability and precision of the system can be greatly improved.

Description

Method for calibrating installation deflection angle of gyro indirect stabilization system
Technical Field
The invention relates to a method for calibrating installation errors, which can be applied to self-calibration and self-correction of various instruments and systems and also can be applied to testing and calibration of inertial devices and inertial components, and belongs to the field of automatic control and inertial measurement.
Technical Field
The photoelectric detection system with the functions of stabilizing and tracking the visual axis has wide application prospect in the fields of missile terminal guidance systems, unmanned aerial vehicle detection systems and the like. At present, most photoelectric detection systems adopt a traditional rate gyro stable platform scheme, the scheme is widely applied to various fields by high stability precision and high bandwidth, but the system is large in size and weight and high in cost. With the development requirements of miniaturized and low-cost photoelectric detection systems, the stabilization technology of directly adopting a rate gyro is limited, and an indirect stabilization mode is proposed to solve the problem of stabilizing the visual axis.
The direct stabilization mode is a traditional gyro stabilization platform, two gyros are directly mounted on an inner frame of a two-degree-of-freedom servo turntable, a rate gyro directly measures the interference angular velocity of an aiming line and forms a feedback moment to counteract the interference moment of the platform, and therefore the spatial stability of an optical axis is achieved, and the principle of the direct stabilization mode is shown in figure 2. The stabilization mode can directly measure the interference angular velocity of the aiming line, has a good inhibition effect on interference torque, and has been proved by theory and practice that the precision of the direct stabilization system of the aiming line can meet engineering requirements. However, the method has high cost, large volume and complex structure, and an indirect stable mode is attempted to solve the problem of stability of the aiming line in order to meet the development requirements of a miniaturized and low-cost seeker. The indirect stabilization mode removes two gyros on a seeker stabilization platform, and angular velocities of the carrier in three directions are measured by an automatic pilot fixedly connected to the carrier or an Inertial Measurement Unit (IMU) of a navigation system. And the computer estimates and reconstructs the interference torque borne by the photoelectric detection system through the angular rate information of the carrier and combining a kinematic model and a dynamic model of a photoelectric detection system frame, and controls the motor to eliminate the interference torque. The stabilization principle is shown in fig. 3 below. The stable mode has compact and small mechanical structure and relatively reasonable cost, but the camera loses the capability of directly measuring the angular rate of the sighting line, can only provide a measured value of the sighting line angle in the carrier coordinate system, and has larger measurement noise. In addition, as can be known from the principle of indirect stability, the mounting drift angles of the IMU and the camera relative to the carrier coordinate system cause angular rate and angular coupling errors of the system, and the larger the carrier disturbance, the larger the caused errors, so that deep analysis and research are required to be performed and the problem of high-precision and quick calibration of the mounting drift angles is solved.
The traditional installation deflection angle calibration scheme usually adopts a discrete calibration mode, and a calibration experiment needs to be designed for one installation deflection angle, namely, only one deflection angle can be calibrated in one experiment. The invention provides an installation declination calibration scheme based on optical measurement of the visual axis stable error.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: at present, the research on the gyro indirect stabilization technology in China is not deep enough, and the installation declination calibration technology of the gyro indirect stabilization system is not researched from literature data at present.
The technical solution of the invention is as follows: a method for calibrating an installation deflection angle of a gyro indirect stabilization system comprises the following implementation steps:
firstly, establishing a camera visual axis stabilizing error and an IMU installation deflection angle in a gyro indirect stabilizing system
Figure BSA00000484173700021
And camera mounting declinationA model of (a) to (b);
(1) defining the coordinate system of the carrier as o-xbybzbIMU measurement coordinate system is o-xmymzmVideo camera visual axis coordinate system o-xpypzpDefining the installation deflection angle of the IMU measurement coordinate system relative to the carrier coordinate systemDefining the installation deflection angle of the camera visual axis coordinate system relative to the carrier coordinate system
Figure BSA00000484173700031
Angular rate of movement of carrier
Figure BSA00000484173700032
IMU measured angular velocity can be obtained
Figure BSA00000484173700033
Angular velocity of movement of carrier
Figure BSA00000484173700034
The relationship between them is:
<math> <mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>bm</mi> </msub> <mo>=</mo> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>y</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>z</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>b</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
in the above formula (1)
Figure BSA00000484173700036
Are euler angle rotation matrices around the x, y, z axes, respectively, and have:
<math> <mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>y</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> </mrow> </mtd> <mtd> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>z</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
(2) the camera adopts a double-shaft double-frame control mode to define o-xoyozoA coordinate system (an orientation frame) of an outer frame of the camera; o-xiyiziIs an inner frame coordinate system (pitching frame), and eta and epsilon are respectively an azimuth angle and a pitching angle of the camera frame. According to the frame structure and the composite motion principle, the motion of the inner frame is caused by the self-motion of the inner frame and the rotation of the outer frame, and the motion of the outer frame is caused by the self-rotation of the outer frame and the motion of the base, so that the motion of the visual axis is the synthesis of the motion of the inner frame, the outer frame and the base.
Let the angular velocity vector of the carrier motion be
Figure BSA000004841737000310
The angular velocity vector of the motion of the outer frameCan be expressed as:
<math> <mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>o</mi> </msub> <mo>=</mo> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>b</mi> </msub> <mo>+</mo> <mover> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
Figure BSA000004841737000313
is a rotation matrix from the vehicle coordinate system to the camera outer frame coordinate system,
Figure BSA000004841737000314
the angular velocity vector is tracked for the outer frame of the camera. Can be respectively expressed as:
Figure BSA000004841737000315
cη=cos(η);sη=sin(η);
Figure BSA000004841737000316
Figure BSA000004841737000317
angular velocity is tracked for the outer frame.
Similarly, the angular velocity vector of the inner frame of the seeker
Figure BSA000004841737000318
Can be expressed as:
<math> <mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>o</mi> </msub> <mo>+</mo> <mover> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,is a rotation matrix from the outer frame coordinate system to the inner frame coordinate system of the camera,
Figure BSA000004841737000321
is the tracking angular velocity vector of the inner frame of the camera. Can be respectively expressed as:
Figure BSA00000484173700041
cε=cos(ε);sε=sin(ε);
Figure BSA00000484173700042
the angular velocity is tracked for the inner frame.
The formula (3) can be substituted for the formula (2):
<math> <mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>b</mi> </msub> <mo>+</mo> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mover> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mo>&OverBar;</mo> </mover> <mo>+</mo> <mover> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
the expansion (4) yields:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ix</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>iy</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>iz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>bx</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>by</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>bx</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>by</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>bz</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>bx</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>by</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>bz</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
(5)
according to the indirect stabilization principle, in order to ensure the stabilization of the visual axis, i.e. to ensure the stabilization of the visual axis
Figure BSA00000484173700046
The angular rates of motion required to control the pitch and azimuth motors are:
<math> <mrow> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>bx</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>by</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> </mrow> </math> (6)
<math> <mrow> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>bx</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> <mi>tan</mi> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>by</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>)</mo> </mrow> <mi>tan</mi> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>bz</mi> </msub> </mrow> </math>
when the camera visual axis coordinate system has an installation declination angle relative to the carrier coordinate system
Figure BSA00000484173700049
When, equation (4) can be rewritten as:
<math> <mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&omega;</mi> <mi>b</mi> </msub> <mo>+</mo> <mover> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>+</mo> <mover> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
(3) due to angular velocity of movement of the carrier
Figure BSA000004841737000411
Measured by a gyro, and hence, in the formula (7)
Figure BSA000004841737000412
Need to be composed ofInstead, by substituting equations (1) and (6) for equation (7), the stable error of the visual axis with respect to the mounting deflection angle can be obtainedAndthe relationship of (A) is as follows:
<math> <mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mi>A</mi> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>bx</mi> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mi>by</mi> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mi>bz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
<math> <mrow> <mi>A</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> </mtd> <mtd> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> </mtd> <mtd> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
sε=sinε,cε=cosε,sη=sinη,cη=cosη
(4) only considering the disturbance angular velocity of the visual axis in the pitch and azimuth directions, neglecting the second order small quantity, the arrangement formula (8) can be obtained:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>&Delta;</mi> <msub> <mi>&omega;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;</mi> <msub> <mi>&omega;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mn>1,1</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>1,2</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>1,3</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>1,4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>H</mi> <mn>2,1</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>2,2</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>2,3</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>2,4</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>X</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
H1,1=0,H1,2=-sinηωbz,H1,3=cosηωbz,H1,4=cosηωby-sinηωbx
H2,1=cosεsinηωbx-cosεcosηωby-sinεωbz,H2,2=sinεcosηωbz+cosεωby
H2,3=-cosεωbx+sinεsinηωbz,H2,4=sinεcosηωbx+sinεsinηωby
X=[δpx δgx δgyδz]Tdue to deltapzAnd deltagzThe effect is the same with respect to the effect of the settling error, so take δz=δpzgz
Δωx,ΔωzThe deviation angular speed of the visual axis of the camera in two directions of pitching and heading, namely the visual axis stability error, can be obtained by means of image processing.
Secondly, aiming the visual axis of the camera at a fixed target, controlling the carrier to swing according to the following rule:
the carrier does the third maneuver around course axle (Z axle), every single move axle (X axle), roller bearing (Y axle) respectively, and the law of the third maneuver is sinusoidal law: heading angle psi ═ A1sin(ω1t), pitch angle θ ═ a2sin(ω2t), roll angle γ ═ a3sin(ω3t) and A)1≠A2≠A3,ω1≠ω2≠ω3
Estimating the error delta omega of the camera visual axis relative to the initial aiming point in the carrier motion process by utilizing the image processing technologyx,ΔωzAlso known as visual axis stabilization error;
thirdly, the stable error of the visual axis obtained by measurement is used as measurement information, and the installation deflection angle of the system can be estimated by using a recursive least square algorithm in combination with the error model established in the first step; taking state variablesX=[δpxδgxδgyδz]TAnd measuring Z ═ Δ ωx Δωz]TThe estimation formula of the recursive least square method is as follows:
X ^ k + 1 = X ^ k + P k + 1 H k + 1 T ( Z k + 1 - H k + 1 X ^ k ) (10)
P k + 1 = P k - P k H k + 1 T ( I + H k + 1 P k H k + 1 T ) - 1 H k + 1 P k
and fourthly, compensating the mounting declination angle estimated in the third step, repeating the second step, observing the visual axis stability error in the carrier motion process, and verifying the estimation effect of the mounting declination angle.
Compared with the prior art, the invention has the advantages that:
(1) the research on the gyro indirect stabilizing system in China is less, and the research on the calibration of the installation error of the gyro indirect stabilizing system is not seen at present, so that the method has greater innovation.
(2) The traditional installation deflection angle calibration scheme usually adopts a discrete calibration mode, and a calibration experiment needs to be designed for one installation deflection angle, namely, only one deflection angle can be calibrated in one experiment. The invention provides an installation declination calibration scheme based on optical measurement of the visual axis stable error.
Drawings
FIG. 1 is a flow chart of an implementation of the method of the present invention;
FIG. 2 is a schematic diagram of a direct gyro stabilization system;
FIG. 3 is a schematic diagram of a gyro indirect stabilization system;
FIG. 4 is a plot of the stabilization error of the boresight with installation declination in an embodiment of the present disclosure;
FIG. 5 is a real-time estimation curve of the installation declination in an embodiment of the present invention;
FIG. 6 is a view axis stabilizing error curve after compensating for installation declination in an embodiment of the present invention;
Detailed Description
The specific implementation process of the invention is illustrated by taking the calibration of the installation deflection angle of the double-shaft photoelectric stable detection system of the unmanned aerial vehicle as an example.
The airborne photoelectric detection system adopts a double-frame mode (can rotate around a pitch axis and an azimuth axis), the photoelectric detection system and the airborne IMU (used for an automatic pilot) are both installed on the unmanned aerial vehicle, and the installation deflection angle of the IMU measurement coordinate system relative to the carrier coordinate system is defined
Figure BSA00000484173700071
Defining the installation deflection angle of the camera visual axis coordinate system relative to the carrier coordinate system
Figure BSA00000484173700072
The camera adopts an indirect stable control mode, and a model between the visual axis stable error and the system installation deflection angle is shown as a formula (9).
In the simulation, a fixed target is locked by a visual axis of a camera, the unmanned aerial vehicle respectively performs three maneuvers around a course axis, a pitch axis and a roll axis, and the law of the three maneuvers is (degree): heading angle ψ is 20sin (0.1 π t), pitch angle θ is 10sin (0.2 π t), and roll angle γ is 15sin (0.3 π t). Assuming that the angle mismatch output error of the image processing system is 2 pixels, the camera view angle is 3 degrees, and the image resolution is 512 × 512, the maximum measurement error of the view axis deflection angle is ± 4.2 ".
Neglecting second order small quantities in the simulation, measuring in the matrix
Figure BSA00000484173700073
Using gyroscopic measurements
Figure BSA00000484173700074
Replacing; the mounting errors of the IMU relative to the X, Y, Z axis of the carrier system are respectively 1 degree, 0.5 degree and 2 degrees, and the mounting errors of the seeker relative to the X, Z axis of the carrier system are respectively 1.5 degrees and 0 degree; taking an initial state X0=[1°1°1°1°]. FIG. 4 is a plot of the stabilization error of the boresight in the presence of an installation declination; fig. 5 is a graph of real-time estimation of declination. As can be seen from fig. 5, after about 30 seconds, the mounting error angle estimated by the photoelectric tracking technique approaches the actual mounting error, and the system stability accuracy is greatly improved by compensating the mounting error angle, as shown in fig. 6.
Those skilled in the art will appreciate that the invention may be practiced without these specific details.
Finally, it should be noted that: the above embodiments are merely illustrative and not restrictive of the technical solutions of the present invention, and all modifications or partial replacements that do not depart from the spirit and scope of the present invention should be embraced in the claims of the present invention.

Claims (3)

1. A calibration method for an installation deflection angle of a gyro indirect stabilization system is characterized by comprising the following implementation steps:
firstly, establishing a camera visual axis stabilizing error and an IMU installation deflection angle in a gyro indirect stabilizing system
Figure FSA00000484173600011
And camera mounting declination
Figure FSA00000484173600012
Of the moldMolding;
secondly, aiming the visual axis of the camera at a fixed target, controlling the carrier to swing according to a certain rule, and estimating the error of the visual axis of the camera relative to an initial aiming point in the motion process of the carrier by utilizing an image processing technology, wherein the error is also called the visual axis stability error;
thirdly, the stable error of the visual axis obtained by measurement is used as measurement information, and the installation deflection angle of the system can be estimated by using a recursive least square algorithm in combination with the error model established in the first step;
and fourthly, compensating the mounting declination angle estimated in the third step, repeating the second step, observing the visual axis stability error in the carrier motion process, and verifying the estimation effect of the mounting declination angle.
2. The method for calibrating the installation deflection angle of the gyro indirect stabilization system according to claim 1, characterized in that: the stable error of the visual axis of the camera is relative to the installation declination
Figure FSA00000484173600013
The modeling steps are as follows:
step 1: defining an installation declination angle of the IMU relative to the carrier coordinate system
Figure FSA00000484173600014
Angular rate of movement of carrier
Figure FSA00000484173600015
IMU measured angular velocity can be obtainedAngular velocity of movement of carrier
Figure FSA00000484173600017
The relationship between them is:
<math> <mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>bm</mi> </msub> <mo>=</mo> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>y</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>z</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>b</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
in the above formula (1)
Figure FSA00000484173600019
Are euler angle rotation matrices around the x, y, z axes, respectively, and have:
<math> <mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>y</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> </mrow> </mtd> <mtd> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>z</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
step 2: according to the principle of gyro-based indirect stabilization, the disturbance angular rate of the camera's visual axis can be expressed as:
<math> <mrow> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>&epsiv;</mi> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mi>&eta;</mi> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&omega;</mi> <mi>b</mi> </msub> <mo>+</mo> <mover> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>+</mo> <mover> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
in the above formula
Figure FSA00000484173600022
And
Figure FSA00000484173600023
frame control angular rates calculated for the indirect stabilization algorithm, respectively, wherein
<math> <mrow> <mover> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> <math> <mrow> <mover> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <mi>cos</mi> <mi>&eta;</mi> <msub> <mi>&omega;</mi> <mi>bx</mi> </msub> <mo>-</mo> <mi>sin</mi> <mi>&eta;</mi> <msub> <mi>&omega;</mi> <mi>by</mi> </msub> </mrow> </math> (4)
<math> <mrow> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mi>sec</mi> <mi>&epsiv;</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&epsiv;</mi> <mi>sin</mi> <mi>&eta;</mi> <msub> <mi>&omega;</mi> <mi>bx</mi> </msub> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&epsiv;</mi> <mi>cos</mi> <mi>&eta;</mi> <msub> <mi>&omega;</mi> <mi>by</mi> </msub> <mo>-</mo> <mi>cos</mi> <mi>&epsiv;</mi> <msub> <mi>&omega;</mi> <mi>bz</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
And step 3: due to angular velocity of movement of the carrier
Figure FSA00000484173600028
Measured by a gyro, and hence, in the formula (2)
Figure FSA00000484173600029
Need to be composed of
Figure FSA000004841736000210
Instead, by substituting equations (1), (3) and (4) for equation (2), the stable error of the visual axis with respect to the mounting deflection angle can be obtained
Figure FSA000004841736000211
And
Figure FSA000004841736000212
the relationship of (A) is as follows:
<math> <mrow> <msub> <mover> <mi>&omega;</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mi>A</mi> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>bx</mi> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mi>by</mi> </msub> </mtd> <mtd> <msub> <mi>&omega;</mi> <mi>bz</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
<math> <mrow> <mi>A</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> </mtd> <mtd> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> </mtd> <mtd> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>pz</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>gz</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <msub> <mi>c</mi> <mi>&epsiv;</mi> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>&delta;</mi> <mi>px</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>gy</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>s</mi> <mi>&eta;</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>gx</mi> </msub> <msub> <mi>s</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>c</mi> <mi>&eta;</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
sε=sinε,cε=cosε,sη=sinη,cη=cosη
and 4, step 4: only considering the disturbance angular velocity of the visual axis in the pitch and azimuth directions, neglecting the second order small quantity, the arrangement formula (5) can be obtained:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>&Delta;</mi> <msub> <mi>&omega;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;</mi> <msub> <mi>&omega;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mn>1,1</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>1,2</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>1,3</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>1,4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>H</mi> <mn>2,1</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>2,2</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>2,3</mn> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mn>2,4</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>X</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
H1,1=0,H1,2=-sinηωbz,H1,3=cosηωbz,H1,4=cos ηωby-sinηωbxH2,1=cosεsinηωbx-cosεcosηωby-sinεωbz,H2,2=sinεcosηωbz+cosεωbyH2,3=-cosεωbx+sinεsinηωbz,H2,4=sinεcosηωbx+sinεsinηωby
X=[δpx δgx δgy δz]Tdue to deltapzAnd deltagzThe effect of the influence with respect to the settling error is the same,
therefore take deltaz=δpzgz
Δωx,ΔωzThe deviation angular speed of the visual axis of the camera in two directions of pitching and heading, namely the visual axis stability error, can be obtained by means of image processing.
3. The method for calibrating the installation deflection angle of the gyro indirect stabilization system according to claim 1, characterized in that: the motion rule of the carrier is as follows:
the carrier does the third maneuver around course axle (Z axle), every single move axle (X axle), roller bearing (Y axle) respectively, and the law of the third maneuver is sinusoidal law: heading angle psi ═ A1sin(ω1t), pitch angle θ ═ a2sin(ω2t), roll angle γ ═ a3sin(ω3t) and A)1≠A2≠A3,ω1≠ω2≠ω3
CN 201110108892 2011-04-29 2011-04-29 Installation deflection angle calibration method of gyro indirect stable system Active CN102288133B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110108892 CN102288133B (en) 2011-04-29 2011-04-29 Installation deflection angle calibration method of gyro indirect stable system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110108892 CN102288133B (en) 2011-04-29 2011-04-29 Installation deflection angle calibration method of gyro indirect stable system

Publications (2)

Publication Number Publication Date
CN102288133A true CN102288133A (en) 2011-12-21
CN102288133B CN102288133B (en) 2013-04-17

Family

ID=45334761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110108892 Active CN102288133B (en) 2011-04-29 2011-04-29 Installation deflection angle calibration method of gyro indirect stable system

Country Status (1)

Country Link
CN (1) CN102288133B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106500619A (en) * 2016-10-21 2017-03-15 哈尔滨理工大学 The camera internal imageing sensor alignment error separation method of view-based access control model measurement
CN108036801A (en) * 2017-12-30 2018-05-15 湖北航天技术研究院总体设计所 Optical axis stable inertia reference data device
CN108061477A (en) * 2016-11-08 2018-05-22 北京机电工程研究所 Opposite installation error bearing calibration between a kind of target seeker and used system system
CN109788200A (en) * 2019-01-31 2019-05-21 长安大学 A camera stabilization control method based on predictive analysis
CN110808447A (en) * 2019-10-24 2020-02-18 迪泰(浙江)通信技术有限公司 Shipborne satellite antenna system based on triaxial dynamic tracking technology
CN111238439A (en) * 2020-02-14 2020-06-05 天津时空经纬测控技术有限公司 Angular deviation measuring system
CN112200875A (en) * 2020-12-02 2021-01-08 武汉光谷信息技术股份有限公司 Method and system for cross-coupling error compensation and image matching correction of non-metrology camera
CN112781497A (en) * 2021-01-20 2021-05-11 西安应用光学研究所 Method for eliminating installation error of visual axis high-precision stable system
CN114088019A (en) * 2021-11-18 2022-02-25 中国科学院长春光学精密机械与物理研究所 Portable measuring device and method for two-dimensional declination of axis
CN115597625A (en) * 2022-09-27 2023-01-13 北京航空航天大学(Cn) External field calibration method for mounting deflection angles among multiple sets of inertial navigation systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763477A (en) * 2005-11-04 2006-04-26 北京航空航天大学 A Hybrid Calibration Method for Inertial Measurement Units Eliminating the Influence of Gyro Constant Drift
CN1818555A (en) * 2006-03-29 2006-08-16 北京航空航天大学 Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling
CN101029833A (en) * 2007-03-12 2007-09-05 北京航空航天大学 Method for calibrating connected MEMS gyro dynamic error
US20090089001A1 (en) * 2007-08-14 2009-04-02 American Gnc Corporation Self-calibrated azimuth and attitude accuracy enhancing method and system (SAAAEMS)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763477A (en) * 2005-11-04 2006-04-26 北京航空航天大学 A Hybrid Calibration Method for Inertial Measurement Units Eliminating the Influence of Gyro Constant Drift
CN1818555A (en) * 2006-03-29 2006-08-16 北京航空航天大学 Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling
CN101029833A (en) * 2007-03-12 2007-09-05 北京航空航天大学 Method for calibrating connected MEMS gyro dynamic error
US20090089001A1 (en) * 2007-08-14 2009-04-02 American Gnc Corporation Self-calibrated azimuth and attitude accuracy enhancing method and system (SAAAEMS)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106500619B (en) * 2016-10-21 2018-11-13 哈尔滨理工大学 The camera internal imaging sensor installation error separation method that view-based access control model measures
CN106500619A (en) * 2016-10-21 2017-03-15 哈尔滨理工大学 The camera internal imageing sensor alignment error separation method of view-based access control model measurement
CN108061477A (en) * 2016-11-08 2018-05-22 北京机电工程研究所 Opposite installation error bearing calibration between a kind of target seeker and used system system
CN108061477B (en) * 2016-11-08 2019-08-13 北京机电工程研究所 Opposite installation error bearing calibration between a kind of target seeker and used group system
CN108036801A (en) * 2017-12-30 2018-05-15 湖北航天技术研究院总体设计所 Optical axis stable inertia reference data device
CN108036801B (en) * 2017-12-30 2020-05-19 湖北航天技术研究院总体设计所 Visual axis inertia stable reference datum device
CN109788200B (en) * 2019-01-31 2021-04-06 长安大学 Camera stability control method based on predictive analysis
CN109788200A (en) * 2019-01-31 2019-05-21 长安大学 A camera stabilization control method based on predictive analysis
CN110808447A (en) * 2019-10-24 2020-02-18 迪泰(浙江)通信技术有限公司 Shipborne satellite antenna system based on triaxial dynamic tracking technology
CN111238439A (en) * 2020-02-14 2020-06-05 天津时空经纬测控技术有限公司 Angular deviation measuring system
CN112200875A (en) * 2020-12-02 2021-01-08 武汉光谷信息技术股份有限公司 Method and system for cross-coupling error compensation and image matching correction of non-metrology camera
CN112781497A (en) * 2021-01-20 2021-05-11 西安应用光学研究所 Method for eliminating installation error of visual axis high-precision stable system
CN114088019A (en) * 2021-11-18 2022-02-25 中国科学院长春光学精密机械与物理研究所 Portable measuring device and method for two-dimensional declination of axis
CN115597625A (en) * 2022-09-27 2023-01-13 北京航空航天大学(Cn) External field calibration method for mounting deflection angles among multiple sets of inertial navigation systems

Also Published As

Publication number Publication date
CN102288133B (en) 2013-04-17

Similar Documents

Publication Publication Date Title
CN102288133B (en) Installation deflection angle calibration method of gyro indirect stable system
CN108051866B (en) Based on strap down inertial navigation/GPS combination subsidiary level angular movement isolation Gravimetric Method
CN104006787B (en) Spacecraft Attitude motion simulation platform high-precision attitude defining method
CN101793523B (en) Combined navigation and photoelectric detection integrative system
CN102749079B (en) Optical fiber strapdown inertial navigation double-shaft rotation modulation method and double-shaft rotation mechanism
CN105157705B (en) A kind of half strapdown radar seeker line of sight rate extracting method
CN110926468B (en) Communication-in-motion antenna multi-platform navigation attitude determination method based on transfer alignment
CN111102993A (en) A method for initial alignment of the shaking base of a rotational modulation type SINS system
CN106052682B (en) A kind of hybrid inertial navigation system and air navigation aid
CN104596546B (en) A kind of posture output compensation method of single-shaft-rotation inertial navigation system
CN110954102B (en) Magnetometer-assisted inertial navigation system and method for robot positioning
CN109506660B (en) Attitude optimization resolving method for bionic navigation
CN109211269A (en) A kind of dual-axis rotation inertial navigation system attitude error scaling method
US8521428B1 (en) Heading determination using sensors mounted on rotatable assembly
CN109489661B (en) Gyro combination constant drift estimation method during initial orbit entering of satellite
CN103630146A (en) Laser gyroscope IMU (inertial measurement unit) calibration method combining discrete analysis and Kalman filtration
CN103674059A (en) External measured speed information-based horizontal attitude error correction method for SINS (serial inertial navigation system)
CN105910623B (en) The method for carrying out the correction of course using magnetometer assisted GNSS/MINS tight integration systems
CN112325841B (en) Method for estimating installation error angle of communication-in-motion antenna
CN103968844A (en) Large ellipse maneuverable spacecraft autonomous navigation method based on low-orbit platform tracking measurement
CN110488853B (en) A Calculation Method for Stability Control Command of Hybrid Inertial Navigation System Reducing the Influence of Rotational Shaft
CN108507572A (en) A kind of attitude orientation error correcting method based on MEMS Inertial Measurement Units
CN104501833B (en) Accelerometer combined error coefficient scaling method under a kind of benchmark uncertain condition
Zhang et al. The standing calibration method of MEMS gyro bias for autonomous pedestrian navigation system
CN105300407B (en) A kind of marine dynamic starting method for single axis modulation laser gyro inertial navigation system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: 100097 Beijing city Haidian District landianchang Road No. 2 Building No. 2 hospital (Jin Yuan era business center building 2) unit 2 (B) 5A

Applicant after: Beijing StarNeto Technology Co., Ltd.

Address before: 100097 Beijing city Haidian District landianchang residential district four area F Jin Yuan era business center building 2, block A, 12D

Applicant before: Beijing StarNeto Technology Development Co., Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: BEIJING STARNETO TECHNOLOGY DEVELOPMENT CO., LTD. TO: BEIJING STARNETO TECHNOLOGY CORPORATION LIMITED

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: 100097 Beijing city Haidian District landianchang Road No. 2 Building No. 2 4 unit 1 (A) 5C

Patentee after: Beijing StarNeto Technology Co., Ltd.

Address before: 100097 Beijing city Haidian District landianchang Road No. 2 Building No. 2 hospital (Jin Yuan era business center building 2) unit 2 (B) 5A

Patentee before: Beijing StarNeto Technology Co., Ltd.