Disclosure of Invention
The technical problem to be solved by the invention is as follows: at present, the research on the gyro indirect stabilization technology in China is not deep enough, and the installation declination calibration technology of the gyro indirect stabilization system is not researched from literature data at present.
The technical solution of the invention is as follows: a method for calibrating an installation deflection angle of a gyro indirect stabilization system comprises the following implementation steps:
firstly, establishing a camera visual axis stabilizing error and an IMU installation deflection angle in a gyro indirect stabilizing system
And camera mounting declination
A model of (a) to (b);
(1) defining the coordinate system of the carrier as o-x
by
bz
bIMU measurement coordinate system is o-x
my
mz
mVideo camera visual axis coordinate system o-x
py
pz
pDefining the installation deflection angle of the IMU measurement coordinate system relative to the carrier coordinate system
Defining the installation deflection angle of the camera visual axis coordinate system relative to the carrier coordinate system
Angular rate of movement of carrier
IMU measured angular velocity can be obtained
Angular velocity of movement of carrier
The relationship between them is:
<math>
<mrow>
<msub>
<mover>
<mi>ω</mi>
<mo>‾</mo>
</mover>
<mi>bm</mi>
</msub>
<mo>=</mo>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>y</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>gy</mi>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>x</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>gx</mi>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>z</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>gz</mi>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mover>
<mi>ω</mi>
<mo>‾</mo>
</mover>
<mi>b</mi>
</msub>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
</math>
in the above formula (1)
Are euler angle rotation matrices around the x, y, z axes, respectively, and have:
<math>
<mrow>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>y</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>gy</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>gy</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>δ</mi>
<mi>gy</mi>
</msub>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math>
<math>
<mrow>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>x</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>gx</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<msub>
<mi>δ</mi>
<mi>gx</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>0</mn>
</mrow>
</mtd>
<mtd>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>gx</mi>
</msub>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math>
<math>
<mrow>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>z</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>gz</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<msub>
<mi>δ</mi>
<mi>gz</mi>
</msub>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>gz</mi>
</msub>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow>
</math>
(2) the camera adopts a double-shaft double-frame control mode to define o-xoyozoA coordinate system (an orientation frame) of an outer frame of the camera; o-xiyiziIs an inner frame coordinate system (pitching frame), and eta and epsilon are respectively an azimuth angle and a pitching angle of the camera frame. According to the frame structure and the composite motion principle, the motion of the inner frame is caused by the self-motion of the inner frame and the rotation of the outer frame, and the motion of the outer frame is caused by the self-rotation of the outer frame and the motion of the base, so that the motion of the visual axis is the synthesis of the motion of the inner frame, the outer frame and the base.
Let the angular velocity vector of the carrier motion be
The angular velocity vector of the motion of the outer frame
Can be expressed as:
<math>
<mrow>
<msub>
<mover>
<mi>ω</mi>
<mo>‾</mo>
</mover>
<mi>o</mi>
</msub>
<mo>=</mo>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>z</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
<msub>
<mover>
<mi>ω</mi>
<mo>‾</mo>
</mover>
<mi>b</mi>
</msub>
<mo>+</mo>
<mover>
<mover>
<mi>η</mi>
<mo>·</mo>
</mover>
<mo>‾</mo>
</mover>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</mrow>
</math>
wherein,
is a rotation matrix from the vehicle coordinate system to the camera outer frame coordinate system,
the angular velocity vector is tracked for the outer frame of the camera. Can be respectively expressed as:
c
η=cos(η);s
η=sin(η);
angular velocity is tracked for the outer frame.
Similarly, the angular velocity vector of the inner frame of the seeker
Can be expressed as:
<math>
<mrow>
<msub>
<mover>
<mi>ω</mi>
<mo>‾</mo>
</mover>
<mi>i</mi>
</msub>
<mo>=</mo>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>x</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<msub>
<mover>
<mi>ω</mi>
<mo>‾</mo>
</mover>
<mi>o</mi>
</msub>
<mo>+</mo>
<mover>
<mover>
<mi>ϵ</mi>
<mo>·</mo>
</mover>
<mo>‾</mo>
</mover>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
</mrow>
</math>
wherein,
is a rotation matrix from the outer frame coordinate system to the inner frame coordinate system of the camera,
is the tracking angular velocity vector of the inner frame of the camera. Can be respectively expressed as:
the angular velocity is tracked for the inner frame.
The formula (3) can be substituted for the formula (2):
<math>
<mrow>
<msub>
<mover>
<mi>ω</mi>
<mo>‾</mo>
</mover>
<mi>i</mi>
</msub>
<mo>=</mo>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>x</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>z</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
<msub>
<mover>
<mi>ω</mi>
<mo>‾</mo>
</mover>
<mi>b</mi>
</msub>
<mo>+</mo>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>x</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<mover>
<mover>
<mi>η</mi>
<mo>·</mo>
</mover>
<mo>‾</mo>
</mover>
<mo>+</mo>
<mover>
<mover>
<mi>ϵ</mi>
<mo>·</mo>
</mover>
<mo>‾</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
</mrow>
</math>
the expansion (4) yields:
<math>
<mrow>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>ix</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>iy</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>iz</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>bx</mi>
</msub>
<mi>cos</mi>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>ω</mi>
<mi>by</mi>
</msub>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>-</mo>
<msub>
<mi>ω</mi>
<mi>bx</mi>
</msub>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
<mi>cos</mi>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>ω</mi>
<mi>by</mi>
</msub>
<mi>cos</mi>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
<mi>cos</mi>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>ω</mi>
<mi>bz</mi>
</msub>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>bx</mi>
</msub>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>ω</mi>
<mi>by</mi>
</msub>
<mi>cos</mi>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>ω</mi>
<mi>bz</mi>
</msub>
<mi>cos</mi>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>+</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mover>
<mi>ϵ</mi>
<mo>·</mo>
</mover>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<mover>
<mi>η</mi>
<mo>·</mo>
</mover>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>cos</mi>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<mover>
<mi>η</mi>
<mo>·</mo>
</mover>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow>
</math>
(5)
according to the indirect stabilization principle, in order to ensure the stabilization of the visual axis, i.e. to ensure the stabilization of the visual axis
The angular rates of motion required to control the pitch and azimuth motors are:
<math>
<mrow>
<mover>
<mi>ϵ</mi>
<mo>·</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>-</mo>
<msub>
<mi>ω</mi>
<mi>bx</mi>
</msub>
<mi>cos</mi>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>ω</mi>
<mi>by</mi>
</msub>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
</mrow>
</math> (6)
<math>
<mrow>
<mover>
<mi>η</mi>
<mo>·</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>-</mo>
<msub>
<mi>ω</mi>
<mi>bx</mi>
</msub>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
<mi>tan</mi>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>ω</mi>
<mi>by</mi>
</msub>
<mi>cos</mi>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>)</mo>
</mrow>
<mi>tan</mi>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>ω</mi>
<mi>bz</mi>
</msub>
</mrow>
</math>
when the camera visual axis coordinate system has an installation declination angle relative to the carrier coordinate system
When, equation (4) can be rewritten as:
<math>
<mrow>
<msub>
<mover>
<mi>ω</mi>
<mo>‾</mo>
</mover>
<mi>i</mi>
</msub>
<mo>=</mo>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>x</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>ϵ</mi>
<mo>+</mo>
<msub>
<mi>δ</mi>
<mi>px</mi>
</msub>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>R</mi>
<mo>‾</mo>
</mover>
<mi>z</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>η</mi>
<mo>+</mo>
<msub>
<mi>δ</mi>
<mi>pz</mi>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mi>ω</mi>
<mi>b</mi>
</msub>
<mo>+</mo>
<mover>
<mover>
<mi>η</mi>
<mo>·</mo>
</mover>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mover>
<mover>
<mi>ϵ</mi>
<mo>·</mo>
</mover>
<mo>‾</mo>
</mover>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>7</mn>
<mo>)</mo>
</mrow>
</mrow>
</math>
(3) due to angular velocity of movement of the carrier
Measured by a gyro, and hence, in the formula (7)
Need to be composed of
Instead, by substituting equations (1) and (6) for equation (7), the stable error of the visual axis with respect to the mounting deflection angle can be obtained
And
the relationship of (A) is as follows:
<math>
<mrow>
<msub>
<mover>
<mi>ω</mi>
<mo>‾</mo>
</mover>
<mi>i</mi>
</msub>
<mo>=</mo>
<mi>A</mi>
<msup>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>bx</mi>
</msub>
</mtd>
<mtd>
<msub>
<mi>ω</mi>
<mi>by</mi>
</msub>
</mtd>
<mtd>
<msub>
<mi>ω</mi>
<mi>bz</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mi>T</mi>
</msup>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>8</mn>
<mo>)</mo>
</mrow>
</mrow>
</math>
wherein,
<math>
<mrow>
<mi>A</mi>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>gz</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>pz</mi>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mi>s</mi>
<mi>η</mi>
</msub>
</mtd>
<mtd>
<mo>-</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>gz</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>pz</mi>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mi>c</mi>
<mi>η</mi>
</msub>
</mtd>
<mtd>
<msub>
<mi>δ</mi>
<mi>gy</mi>
</msub>
<msub>
<mi>c</mi>
<mi>η</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>gx</mi>
</msub>
<msub>
<mi>s</mi>
<mi>η</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>gz</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>pz</mi>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mi>c</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>c</mi>
<mi>η</mi>
</msub>
<mo>+</mo>
<msub>
<mi>δ</mi>
<mi>px</mi>
</msub>
<msub>
<mi>s</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>s</mi>
<mi>η</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>gy</mi>
</msub>
<msub>
<mi>s</mi>
<mi>ϵ</mi>
</msub>
</mtd>
<mtd>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>gz</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>pz</mi>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mi>c</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>s</mi>
<mi>η</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>px</mi>
</msub>
<msub>
<mi>s</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>c</mi>
<mi>η</mi>
</msub>
<mo>+</mo>
<msub>
<mi>δ</mi>
<mi>gx</mi>
</msub>
<msub>
<mi>s</mi>
<mi>ϵ</mi>
</msub>
</mtd>
<mtd>
<msub>
<mi>δ</mi>
<mi>px</mi>
</msub>
<msub>
<mi>c</mi>
<mi>ϵ</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>gy</mi>
</msub>
<msub>
<mi>c</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>s</mi>
<mi>η</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>gx</mi>
</msub>
<msub>
<mi>c</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>c</mi>
<mi>η</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>pz</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>gz</mi>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mi>s</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>c</mi>
<mi>η</mi>
</msub>
<mo>+</mo>
<msub>
<mi>δ</mi>
<mi>px</mi>
</msub>
<msub>
<mi>c</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>s</mi>
<mi>η</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>gy</mi>
</msub>
<msub>
<mi>c</mi>
<mi>ϵ</mi>
</msub>
</mtd>
<mtd>
<mrow>
<mo>(</mo>
<msub>
<mi>δ</mi>
<mi>pz</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>gz</mi>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mi>s</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>s</mi>
<mi>η</mi>
</msub>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>px</mi>
</msub>
<msub>
<mi>c</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>c</mi>
<mi>η</mi>
</msub>
<mo>+</mo>
<msub>
<mi>δ</mi>
<mi>gx</mi>
</msub>
<msub>
<mi>c</mi>
<mi>ϵ</mi>
</msub>
</mtd>
<mtd>
<mo>-</mo>
<msub>
<mi>δ</mi>
<mi>px</mi>
</msub>
<msub>
<mi>s</mi>
<mi>ϵ</mi>
</msub>
<mo>+</mo>
<msub>
<mi>δ</mi>
<mi>gy</mi>
</msub>
<msub>
<mi>s</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>s</mi>
<mi>η</mi>
</msub>
<mo>+</mo>
<msub>
<mi>δ</mi>
<mi>gx</mi>
</msub>
<msub>
<mi>s</mi>
<mi>ϵ</mi>
</msub>
<msub>
<mi>c</mi>
<mi>η</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow>
</math>
sε=sinε,cε=cosε,sη=sinη,cη=cosη
(4) only considering the disturbance angular velocity of the visual axis in the pitch and azimuth directions, neglecting the second order small quantity, the arrangement formula (8) can be obtained:
<math>
<mrow>
<mfenced open='(' close=')'>
<mtable>
<mtr>
<mtd>
<mi>Δ</mi>
<msub>
<mi>ω</mi>
<mi>x</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>Δ</mi>
<msub>
<mi>ω</mi>
<mi>z</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>=</mo>
<mfenced open='(' close=')'>
<mtable>
<mtr>
<mtd>
<msub>
<mi>H</mi>
<mn>1,1</mn>
</msub>
</mtd>
<mtd>
<msub>
<mi>H</mi>
<mn>1,2</mn>
</msub>
</mtd>
<mtd>
<msub>
<mi>H</mi>
<mn>1,3</mn>
</msub>
</mtd>
<mtd>
<msub>
<mi>H</mi>
<mn>1,4</mn>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>H</mi>
<mn>2,1</mn>
</msub>
</mtd>
<mtd>
<msub>
<mi>H</mi>
<mn>2,2</mn>
</msub>
</mtd>
<mtd>
<msub>
<mi>H</mi>
<mn>2,3</mn>
</msub>
</mtd>
<mtd>
<msub>
<mi>H</mi>
<mn>2,4</mn>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mi>X</mi>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>9</mn>
<mo>)</mo>
</mrow>
</mrow>
</math>
wherein,
H1,1=0,H1,2=-sinηωbz,H1,3=cosηωbz,H1,4=cosηωby-sinηωbx
H2,1=cosεsinηωbx-cosεcosηωby-sinεωbz,H2,2=sinεcosηωbz+cosεωby
H2,3=-cosεωbx+sinεsinηωbz,H2,4=sinεcosηωbx+sinεsinηωby
X=[δpx δgx δgyδz]Tdue to deltapzAnd deltagzThe effect is the same with respect to the effect of the settling error, so take δz=δpz-δgz。
Δωx,ΔωzThe deviation angular speed of the visual axis of the camera in two directions of pitching and heading, namely the visual axis stability error, can be obtained by means of image processing.
Secondly, aiming the visual axis of the camera at a fixed target, controlling the carrier to swing according to the following rule:
the carrier does the third maneuver around course axle (Z axle), every single move axle (X axle), roller bearing (Y axle) respectively, and the law of the third maneuver is sinusoidal law: heading angle psi ═ A1sin(ω1t), pitch angle θ ═ a2sin(ω2t), roll angle γ ═ a3sin(ω3t) and A)1≠A2≠A3,ω1≠ω2≠ω3。
Estimating the error delta omega of the camera visual axis relative to the initial aiming point in the carrier motion process by utilizing the image processing technologyx,ΔωzAlso known as visual axis stabilization error;
thirdly, the stable error of the visual axis obtained by measurement is used as measurement information, and the installation deflection angle of the system can be estimated by using a recursive least square algorithm in combination with the error model established in the first step; taking state variablesX=[δpxδgxδgyδz]TAnd measuring Z ═ Δ ωx Δωz]TThe estimation formula of the recursive least square method is as follows:
(10)
and fourthly, compensating the mounting declination angle estimated in the third step, repeating the second step, observing the visual axis stability error in the carrier motion process, and verifying the estimation effect of the mounting declination angle.
Compared with the prior art, the invention has the advantages that:
(1) the research on the gyro indirect stabilizing system in China is less, and the research on the calibration of the installation error of the gyro indirect stabilizing system is not seen at present, so that the method has greater innovation.
(2) The traditional installation deflection angle calibration scheme usually adopts a discrete calibration mode, and a calibration experiment needs to be designed for one installation deflection angle, namely, only one deflection angle can be calibrated in one experiment. The invention provides an installation declination calibration scheme based on optical measurement of the visual axis stable error.
Detailed Description
The specific implementation process of the invention is illustrated by taking the calibration of the installation deflection angle of the double-shaft photoelectric stable detection system of the unmanned aerial vehicle as an example.
The airborne photoelectric detection system adopts a double-frame mode (can rotate around a pitch axis and an azimuth axis), the photoelectric detection system and the airborne IMU (used for an automatic pilot) are both installed on the unmanned aerial vehicle, and the installation deflection angle of the IMU measurement coordinate system relative to the carrier coordinate system is defined
Defining the installation deflection angle of the camera visual axis coordinate system relative to the carrier coordinate system
The camera adopts an indirect stable control mode, and a model between the visual axis stable error and the system installation deflection angle is shown as a formula (9).
In the simulation, a fixed target is locked by a visual axis of a camera, the unmanned aerial vehicle respectively performs three maneuvers around a course axis, a pitch axis and a roll axis, and the law of the three maneuvers is (degree): heading angle ψ is 20sin (0.1 π t), pitch angle θ is 10sin (0.2 π t), and roll angle γ is 15sin (0.3 π t). Assuming that the angle mismatch output error of the image processing system is 2 pixels, the camera view angle is 3 degrees, and the image resolution is 512 × 512, the maximum measurement error of the view axis deflection angle is ± 4.2 ".
Neglecting second order small quantities in the simulation, measuring in the matrix
Using gyroscopic measurements
Replacing; the mounting errors of the IMU relative to the X, Y, Z axis of the carrier system are respectively 1 degree, 0.5 degree and 2 degrees, and the mounting errors of the seeker relative to the X, Z axis of the carrier system are respectively 1.5 degrees and 0 degree; taking an initial state X
0=[1°1°1°1°]. FIG. 4 is a plot of the stabilization error of the boresight in the presence of an installation declination; fig. 5 is a graph of real-time estimation of declination. As can be seen from fig. 5, after about 30 seconds, the mounting error angle estimated by the photoelectric tracking technique approaches the actual mounting error, and the system stability accuracy is greatly improved by compensating the mounting error angle, as shown in fig. 6.
Those skilled in the art will appreciate that the invention may be practiced without these specific details.
Finally, it should be noted that: the above embodiments are merely illustrative and not restrictive of the technical solutions of the present invention, and all modifications or partial replacements that do not depart from the spirit and scope of the present invention should be embraced in the claims of the present invention.