CN102280511A - A dense array concentrated solar photovoltaic device - Google Patents
A dense array concentrated solar photovoltaic device Download PDFInfo
- Publication number
- CN102280511A CN102280511A CN2011102423666A CN201110242366A CN102280511A CN 102280511 A CN102280511 A CN 102280511A CN 2011102423666 A CN2011102423666 A CN 2011102423666A CN 201110242366 A CN201110242366 A CN 201110242366A CN 102280511 A CN102280511 A CN 102280511A
- Authority
- CN
- China
- Prior art keywords
- photocell
- array
- fresnel lens
- solar photovoltaic
- photovoltaic device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Photovoltaic Devices (AREA)
Abstract
一种密集阵列式聚光太阳能光伏装置,属于光伏领域,其包括菲涅耳透镜阵列、平面基板和至少两块光电池;所述菲涅耳透镜阵列处于顶层;所述菲涅耳透镜阵列为一块整体透镜,上表面为平面,下表面有至少两组成同心圆环状的锯齿;每组同心圆环形成一个菲涅耳透镜,所有菲涅耳透镜组成阵列形式;所述平面基板设置于底层;所述至少两块光电池设置于所述平面基板上表面并排布为光电池阵列形式,所述光电池阵列中的光电池数目和所述菲涅耳透镜阵列中的菲涅耳透镜数相同,且每块光电池对应一个菲涅耳透镜。本发明所提供的阵列式聚光太阳能光伏装置散热简单、聚光焦距短、太阳能利用率高且光电池芯片内部无需排布电极。
A dense array concentrated solar photovoltaic device, belonging to the field of photovoltaics, comprising a Fresnel lens array, a planar substrate and at least two photovoltaic cells; the Fresnel lens array is on the top layer; the Fresnel lens array is a Integral lens, the upper surface is plane, and the lower surface has at least two sets of serrations in the shape of concentric rings; each set of concentric rings forms a Fresnel lens, and all the Fresnel lenses form an array; the planar substrate is arranged on the bottom layer; The at least two photocells are arranged on the upper surface of the planar substrate and arranged in a photocell array, the number of photocells in the photocell array is the same as the number of Fresnel lenses in the Fresnel lens array, and each photocell Corresponds to a Fresnel lens. The array type concentrating solar photovoltaic device provided by the invention has the advantages of simple heat dissipation, short concentrating focal length, high utilization rate of solar energy and no need to arrange electrodes inside the photovoltaic cell chip.
Description
技术领域 technical field
本发明涉及光伏领域,尤其涉及一种密集阵列式聚光太阳能光伏装置。The invention relates to the field of photovoltaics, in particular to a dense array concentrated solar photovoltaic device.
背景技术 Background technique
太阳能是最有应用价值的清洁能源之一,是未来基础能源的重要组成部分,太阳能光伏发电技术将太阳能直接转换为电能。Solar energy is one of the most valuable clean energy sources and an important part of the future basic energy. Solar photovoltaic power generation technology directly converts solar energy into electrical energy.
但是,长久以来太阳能发电系统的价格一直居高不下,其主要原因是因为太阳能的密度低,且太阳能电池的转化效率不高。为了降低太阳能发电系统的价格,高倍聚光太阳能光伏发电技术应运而生。聚光光伏发电技术通过透射或反射将接收到的太阳能放大成百上千倍,然后将放大的能量聚焦于效率极高的小光电池上。该技术利用大面积、便宜的聚光装置来代替昂贵而且供应紧张的单晶硅原料,进而达到大幅度降低太阳能光伏发电成本的目的,使太阳能光伏发电具有跟常规能源竞争的能力。具有质量轻、同比发电量比平板电池高30-40%、同比价格是平板电池的一半、安装方便、使用寿命长、可靠性高、造型美观大方、易于大范围组合安装形成大规模的光伏发电站等特点,因此聚光光伏发电技术已成为未来太阳能光伏发电技术的主要走向。However, the price of solar power generation systems has remained high for a long time, mainly due to the low density of solar energy and the low conversion efficiency of solar cells. In order to reduce the price of solar power generation systems, high-power concentrating solar photovoltaic power generation technology has emerged as the times require. Concentrating photovoltaic power generation technology amplifies the received solar energy by hundreds or thousands of times through transmission or reflection, and then focuses the amplified energy on small photocells with extremely high efficiency. This technology uses a large-area, cheap concentrating device to replace expensive and short-supply monocrystalline silicon raw materials, thereby achieving the goal of greatly reducing the cost of solar photovoltaic power generation, making solar photovoltaic power generation capable of competing with conventional energy sources. Light weight, 30-40% higher year-on-year power generation than flat-panel batteries, half the year-on-year price of flat-panel batteries, easy installation, long service life, high reliability, beautiful appearance, easy to be combined and installed in a wide range to form large-scale photovoltaic power generation Therefore, concentrating photovoltaic power generation technology has become the main trend of solar photovoltaic power generation technology in the future.
现有技术中,透射式聚光光伏发电主要采用传统的菲涅耳(Fresnel)透镜作为聚光光学元件,将大量太阳光聚焦到一块多节太阳能光电池上。为了采集更多太阳光以实现高聚光比,现有技术中用于聚光光伏发电的菲涅耳透镜口径通常比较大(例如:50mm×50mm),而传统菲涅耳透镜的口径难以做大,此外,由于聚焦后的光斑很小(例如聚焦到2mm×2mm),这样导致辐射到每个光电池芯片局部上的太阳光能量高度集中,容易损伤甚至烧坏光电池芯片,即该种技术存在很大的散热难题,为了使聚焦到太阳能电池上的太阳强分布均匀,该种聚光光伏装置中一般需要添加二次匀光装置。此外,现有的采用大口径菲涅耳透镜的聚光光伏装置还存在聚焦焦距长以致光伏装置无法小型化,以及光电池芯片内须排布电极等缺点。In the prior art, the transmissive concentrating photovoltaic power generation mainly uses a traditional Fresnel lens as a concentrating optical element to focus a large amount of sunlight onto a multi-segment solar photovoltaic cell. In order to collect more sunlight to achieve a high concentration ratio, the Fresnel lenses used for concentrated photovoltaic power generation in the prior art are usually relatively large in diameter (for example: 50mm×50mm), while the diameter of traditional Fresnel lenses is difficult to enlarge. In addition, since the focused light spot is very small (for example, focused to 2mm×2mm), the solar energy radiated to each photovoltaic cell chip is highly concentrated, and it is easy to damage or even burn out the photovoltaic cell chip. In order to make the distribution of the solar intensity focused on the solar cells uniform, it is generally necessary to add a secondary uniformity device to this kind of concentrating photovoltaic device. In addition, the existing concentrating photovoltaic devices using large-diameter Fresnel lenses also have disadvantages such as long focal lengths that prevent miniaturization of photovoltaic devices, and the need to arrange electrodes in the photovoltaic chip.
发明内容 Contents of the invention
本发明实施例提供一种密集阵列式聚光太阳能光伏装置,用于解决现有的大口径菲涅耳聚光光伏发电技术中的太阳能电池散热难、聚光焦距长以及光电池芯片内须排布电极等问题。本发明所提供的阵列式聚光太阳能光伏装置散热简单、聚光焦距短、太阳能利用率高光电池芯片内部无需排布电极。The embodiment of the present invention provides a dense array concentrating solar photovoltaic device, which is used to solve the problems of difficult heat dissipation of solar cells, long focal length of concentrating light and internal arrangement of photovoltaic cell chips in the existing large-diameter Fresnel concentrating photovoltaic power generation technology. electrodes etc. The array type concentrating solar photovoltaic device provided by the present invention has the advantages of simple heat dissipation, short concentrating focal length, and high solar energy utilization rate without needing to arrange electrodes inside the photovoltaic cell chip.
一种密集阵列式聚光太阳能光伏装置,包括:菲涅耳透镜阵列1、平面基板2和至少两块光电池3。A dense array concentrated solar photovoltaic device includes: a Fresnel
所述菲涅耳透镜阵列1处于顶层;所述菲涅耳透镜阵列1为一块整体透镜,上表面为平面,下表面有至少两组相同的成同心圆环状的锯齿;所述每组相同的同心圆环形成一个菲涅耳透镜,所有菲涅耳透镜组成阵列形式。The Fresnel
所述平面基板2设置于底层。The
所述至少两块光电池3设置于所述平面基板2的上表面并排布为光电池阵列形式,所述光电池阵列中的光电池3的数目和所述菲涅耳透镜阵列1中的菲涅耳透镜数相同,且每块光电池3对应一个菲涅耳透镜。The at least two
每块所述光电池3位于该光电池3所对应的菲涅耳透镜的聚焦光斑上。Each
各所述菲涅耳透镜的下表面外围形状为方形,任意两个菲涅耳透镜的下表面完全一致且各菲涅耳透镜下表面无分割地紧密排列在一起。The peripheral shape of the lower surface of each Fresnel lens is square, the lower surfaces of any two Fresnel lenses are completely consistent, and the lower surfaces of each Fresnel lens are closely arranged without division.
每块光电池3由金属薄片4和嵌套于所述金属薄片4中央的受光区域5构成;任一所述光电池3的受光区域5的面积小于该光电池3所对应的菲涅耳透镜的下表面面积,每块光电池3的金属薄片4上设置有所述光电池3的电流输出电极6。Each
所述平面基板2包括:金属散热底板9和镀于其上的绝缘散热薄膜8;所述光电池3通过绝缘散热薄膜8固定于所述金属散热底板9上。The
所述金属散热底板9的热膨胀系数与所述金属薄片4的热膨胀系数相同。The thermal expansion coefficient of the metal heat
该装置还包括至少两个位于所述菲涅耳透镜阵列1和所述平面基板2之间的复合曲面反射镜。The device also includes at least two compound curved mirrors located between the Fresnel
所述至少两个复合曲面反射镜紧密排列成复合曲面反射镜阵列,复合曲面反射镜阵列中的复合曲面反射镜数目和光电池阵列中的光电池3的数目相同;每个复合曲面反射镜的底部出光口处封接一个光电池3,上端开口封接于所述光电池3所对应的菲涅耳透镜下表面,各所述复合曲面反射镜的内表面为反射面。The at least two composite curved mirrors are closely arranged to form a composite curved mirror array, and the number of composite curved mirrors in the composite curved mirror array is the same as the number of
所述复合曲面反射镜为复合抛物面反射镜10。The compound curved reflector is a compound
所述复合曲面反射镜为复合双曲面反射镜11。The compound curved reflector is a
该装置还包括至少两个位于所述菲涅耳透镜阵列1和平面基板2之间的漏斗型平凸透镜12。The device also includes at least two funnel-shaped plano-
上述的平凸透镜12紧密排列成平凸透镜阵列,所述平凸透镜阵列中的平凸透镜12的数目和所述光电池阵列中的光电池3的数目相同;每个所述平凸透镜12对应于一块光电池3和与该光电池3相对应的菲涅耳透镜,且每个所述平凸透镜12的光轴与其所对应的菲涅耳透镜的光轴重合;每个所述平凸透镜12的平面端的大小与其所对应的光电池3的受光区域等大,且所述平面端紧贴所述光电池3的受光区域5;每个所述平凸透镜12的凸面端与其所对应的菲涅耳透镜的下表面不相接触,且所述凸面端的口径与该平凸透镜12所对应的菲涅耳透镜的口径相等。The above-mentioned plano-
所述平凸透镜12的侧面涂覆有反光层。The side of the plano-
相对于现有的采用大口径菲涅耳透镜的聚光光伏发电技而言,本发明实施例提供的上述阵列式聚光太阳能光伏装置具有以下优点:Compared with the existing concentrated photovoltaic power generation technology using large-diameter Fresnel lenses, the above-mentioned array concentrated solar photovoltaic device provided by the embodiment of the present invention has the following advantages:
1、光电池上的光强变小并得到分散散热,同时无须二次匀光装置。1. The light intensity on the photocell is reduced and dispersed and dissipated, and there is no need for a secondary uniform light device.
2、聚焦光斑较小,对太阳跟踪的精确度要求降低。在和大口径菲涅耳透镜具有同等聚光比的情况下,光电池的使用面积大大减小。2. The focus spot is small, and the requirement for the accuracy of sun tracking is reduced. In the case of having the same light-gathering ratio as the large-aperture Fresnel lens, the use area of the photovoltaic cell is greatly reduced.
3、光电池芯片中不含有电极,电极只是设置于光电池芯片外围,太阳能利用率得以提高。3. The photovoltaic chip does not contain electrodes, and the electrodes are only arranged on the periphery of the photovoltaic chip, so that the utilization rate of solar energy can be improved.
4、菲涅耳透镜的聚光焦距可以做得很小,有效降低了光伏发电组件的高度,有利于装置小型化。4. The focal length of the Fresnel lens can be made very small, which effectively reduces the height of the photovoltaic power generation module and is conducive to the miniaturization of the device.
在具有上述优点的基础上,对于本发明实施例所提供的具有复合曲面反射镜的阵列式聚光太阳能光伏装置而言,不再需要追日装置,太阳能利用率进一步得到提高。On the basis of the above-mentioned advantages, for the array type concentrating solar photovoltaic device provided by the embodiment of the present invention with the compound curved surface mirror, the solar tracking device is no longer needed, and the utilization rate of solar energy is further improved.
在具有上述优点的基础上,对于本发明实施例所提供的具有平凸透镜的阵列式聚光太阳能光伏装置而言,聚光焦距进一步缩短,太阳能利用率进一步得到提高。On the basis of the above advantages, for the arrayed concentrating solar photovoltaic device with plano-convex lenses provided by the embodiment of the present invention, the concentrating focal length is further shortened, and the utilization rate of solar energy is further improved.
附图说明 Description of drawings
图1为本发明实施例一所提供的一种密集阵列式聚光太阳能光伏装置结构示意图;Fig. 1 is a schematic structural diagram of a dense array concentrated solar photovoltaic device provided by
图2为图1中菲涅耳透镜阵列1的下表面示意图;Fig. 2 is the lower surface schematic view of Fresnel
图3为图1所示阵列式聚光太阳能光伏装置的A-A剖视图;Fig. 3 is the A-A sectional view of the arrayed concentrated solar photovoltaic device shown in Fig. 1;
图4为本发明实施例一提供的另一种阵列式聚光太阳能光伏装置结构示意图;Fig. 4 is a schematic structural diagram of another array concentrated solar photovoltaic device provided by Embodiment 1 of the present invention;
图5为一块光电池3与用作散热板的平面基板2之间的连接示意图;Fig. 5 is a schematic diagram of the connection between a
图6为本发明实施例二提供的具有复合抛物面反射镜的阵列式聚光太阳能光伏装置结构示意图之一;Fig. 6 is one of the structural schematic diagrams of an array concentrated solar photovoltaic device with a compound parabolic reflector provided by
图7为本发明实施例二提供的具有复合抛物面反射镜的阵列式聚光太阳能光伏装置结构示意图之二;Fig. 7 is the second structural schematic diagram of the array concentrated solar photovoltaic device provided by the second embodiment of the present invention with a compound parabolic reflector;
图8为本发明实施例二所提供的具有复合双曲面反射镜的阵列式聚光太阳能光伏装置结构示意图之一;Fig. 8 is one of the structural schematic diagrams of the arrayed concentrating solar photovoltaic device provided by the second embodiment of the present invention with a compound hyperboloid reflector;
图9为本发明实施例二所提供的具有复合双曲面反射镜的阵列式聚光太阳能光伏装置结构示意图之二;Fig. 9 is the second structural schematic diagram of the arrayed concentrating solar photovoltaic device provided by the second embodiment of the present invention with a compound hyperboloid reflector;
图10为本发明实施例三所提供的具有平凸透镜的阵列式聚光太阳能光伏装置结构示意图之一;Fig. 10 is one of the structural schematic diagrams of the arrayed concentrating solar photovoltaic device with plano-convex lenses provided by
图11为本发明实施例三所提供的具有平凸透镜的阵列式聚光太阳能光伏装置结构示意图之二;Fig. 11 is the second structural schematic diagram of the arrayed concentrating solar photovoltaic device with plano-convex lenses provided by the third embodiment of the present invention;
图中:1、菲涅耳透镜阵列,2、平面基板,3、光电池,4、金属薄片,5、受光区域,6、电极,7、绝缘带,8、绝缘散热薄膜,9、金属散热底板,10、复合抛物面反射镜,11、复合双曲面反射镜,12、平凸透镜。In the figure: 1. Fresnel lens array, 2. Planar substrate, 3. Photocell, 4. Metal sheet, 5. Light receiving area, 6. Electrode, 7. Insulation tape, 8. Insulation and heat dissipation film, 9. Metal heat dissipation base plate , 10, compound parabolic reflector, 11, compound hyperboloid reflector, 12, plano-convex lens.
具体实施方式 Detailed ways
本发明实施例提供一种密集阵列式聚光太阳能光伏装置,该装置中采用若干个小口径菲涅耳透镜组成的菲涅耳透镜阵列替代现有技术中的大口径菲涅耳透镜,并将现有技术中对应大口径菲涅耳透镜的光电池缩小为若干个分别对应所述菲涅耳透镜阵列中的菲涅耳透镜的小光电池,解决了现有技术中聚光焦距短且光电池上局部热量过于集中的问题。特别地,本发明实施例所提供的菲涅耳透镜阵列为一块整体透镜。An embodiment of the present invention provides a dense array concentrated solar photovoltaic device, in which a Fresnel lens array composed of several small-diameter Fresnel lenses is used to replace the large-diameter Fresnel lens in the prior art, and the In the prior art, the photocell corresponding to the large-diameter Fresnel lens is reduced to several small photocells respectively corresponding to the Fresnel lens in the Fresnel lens array, which solves the problem of the short focusing focal length and local problems on the photocell in the prior art. The problem of too much heat concentration. In particular, the Fresnel lens array provided by the embodiment of the present invention is an integral lens.
以下结合附图,具体说明本发明的实施方式。Embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
实施例一Embodiment one
图1为本发明实施例一所提供的一种密集阵列式聚光太阳能光伏装置结构示意图,该装置包括:菲涅耳透镜阵列1、平面基板2和至少两块光电池3。FIG. 1 is a schematic structural diagram of a dense array concentrated solar photovoltaic device provided by
菲涅耳透镜阵列1处于顶层,为一块整体透镜,上表面为平面,下表面有至少两组相同的成同心圆环状的锯齿,每组相同的同心圆环形成一个菲涅耳透镜,所有菲涅耳透镜组成阵列形式。平面基板2设置于底层。光电池3设置于平面基板2上表面并排布为光电池阵列形式,光电池阵列中的光电池3的数目和菲涅耳透镜阵列1中的菲涅耳透镜数相同,且每块光电池对应一个菲涅耳透镜。具体地,每个光电池3位于其所对应的菲涅耳透镜的聚焦光斑位置。图1中,菲涅尔透镜阵列1上方的多个平行箭头表示垂直入射太阳光,即箭头所表示方向即为所述菲涅尔透镜的光轴方向。The
实际上,本实施例以及以后所有实施例中所述的菲涅耳透镜阵列都为M×N行阵列,其中,M和N均取值为正整数,且M和N不同时取值为1。不失一般性,以下为方便表示,本发明所有实施例的附图中均将菲涅耳透镜阵列表示为3×4的矩阵进行说明。In fact, the Fresnel lens arrays described in this embodiment and all subsequent embodiments are arrays of M×N rows, where both M and N are positive integers, and M and N are not 1 at the same time . Without loss of generality, for the convenience of representation below, the Fresnel lens array is represented as a 3×4 matrix in the drawings of all embodiments of the present invention for illustration.
图2为图1中菲涅耳透镜阵列1的下表面示意图。由图2可见:菲涅耳透镜阵列1中的每个菲涅耳透镜的下表面具有同心圆环状锯齿且外围形状为方形,且所有菲涅耳透镜下表面无分割地紧密排列在一起。FIG. 2 is a schematic diagram of the lower surface of the
现有的采用大口径菲涅耳透镜进行聚光光伏发电的技术中,考虑到对日追踪的要求,虽然聚焦光斑很小,但是光电池芯片还是需要设计的较大。此种情况下,光电池受光面上各处产生的光生电流大小不均且无法跨越整个光电池传输到其外缘,因此,现有的大口径菲涅耳透镜聚光光伏发电组件中,通常需要在光电池芯片中设置电流输出电极,这样增加了光电池生产工艺的复杂性,还会使光电池的有效受光面分布不均匀。In the existing concentrating photovoltaic power generation technology using large-diameter Fresnel lenses, considering the requirements for tracking the sun, although the focus spot is small, the photovoltaic chip still needs to be designed to be relatively large. In this case, the magnitude of the photogenerated current generated on the light-receiving surface of the photovoltaic cell is uneven and cannot be transmitted across the entire photovoltaic cell to its outer edge. The current output electrodes are arranged in the photovoltaic cell chip, which increases the complexity of the production process of the photovoltaic cell, and also makes the distribution of the effective light-receiving surface of the photovoltaic cell uneven.
为解决现有技术的所述难题以有效提高太阳能的利用率,本发明实施例一提供的阵列式聚光太阳能光伏装置中的光电池由金属薄片和嵌套于所述金属薄片中央的受光区域构成,具体如图3所示。图3为图1所示阵列式聚光太阳能光伏装置的A-A剖视图。其中,每块光电池3的受光区域5嵌套于所述金属薄片4中央,任一光电池3的受光区域5的面积小于该光电池3所对应的菲涅耳透镜的下表面面积,每块光电池3的金属薄片4上设置有该光电池3的电流输出电极6。图3中为方便表示,仅画出4个电极6而不画出电极6的实际连线,具体实施时,电极数量及连线根据实际需要设置即可。In order to solve the problems in the prior art and effectively improve the utilization rate of solar energy, the photovoltaic cell in the array concentrated solar photovoltaic device provided by
较佳地,任意两块相邻光电池3之间由绝缘带7绝缘隔离,如图4所示。Preferably, any two adjacent
较佳地,本发明实施例一所提供的阵列式聚光太阳能光伏装置中,平面基板2除了用于作为光电池3的固定板,还可同时作为散热板使用。图5为一块光电池3与用作散热板的平面基板2之间的连接示意图。如图5所示:当平面基板2作为散热板时,平面基板2可包括绝缘散热薄膜8和金属散热底板9。光电池3通过绝缘散热薄膜8固定于金属散热底板9上。绝缘散热薄膜8用于使光电池3及其电极电路和金属散热底板9之间有良好的热接触而不导电。现有技术中,由于光电池受光不均匀导致光电池局部发烫而容易烧坏光电池芯片,本发明实施例一中由于将大口径菲涅耳透镜拆分为小口径菲涅耳透镜阵列,同时选用更小的光电池芯片对应每一块菲涅耳透镜,这样使得聚焦到每块光电池上的光强度得以减少,避免了光电池上的热量过于集中,显然,在选用合理的金属散热底板后,光电池的散热问题在上述基础上得到进一步优化解决。Preferably, in the array type concentrating solar photovoltaic device provided by
较佳地,金属散热底板9的热膨胀系数与光电池3中的金属薄片4的热膨胀系数相同,从而在温度变化时,使金属薄片4和金属散热底板9的膨胀一致并均匀,这样各金属薄片之间的电气接头就不会在温度变化时脱开。Preferably, the thermal expansion coefficient of the metal heat
综上所述,相对于现有的采用大口径菲涅耳透镜的聚光光伏发电技而言,本发明实施例一提供的上述阵列式聚光太阳能光伏装置具有以下优点:To sum up, compared with the existing concentrated photovoltaic power generation technology using large-diameter Fresnel lenses, the above-mentioned array concentrated solar photovoltaic device provided by
1、由于聚光口径小,因此经过聚光后,辐射到每个光电池上的能量小,这样可以分散散热,同时无须二次匀光装置。1. Due to the small condensing aperture, the energy radiated to each photocell is small after condensing, which can disperse and dissipate heat, and at the same time, there is no need for a secondary homogenization device.
2、充分利用聚集透镜的聚光效果,通常可以聚焦到非常小的光斑(例如聚焦倍数可达1万倍),由于菲涅尔透镜口径比较小,因此光电池芯片相对光斑而言比较大,这样可以有效降低太阳跟踪的精确度。此外,由于聚焦光斑较小,因此在和大口径菲涅耳透镜具有同等聚光比的情况下,大大减小了现有技术中光电池的使用面积。2. Make full use of the concentrating effect of the concentrating lens, and usually can focus to a very small spot (for example, the focusing factor can reach 10,000 times). Since the Fresnel lens has a relatively small aperture, the photocell chip is relatively large compared to the spot, so Can effectively reduce the accuracy of sun tracking. In addition, since the focused light spot is small, the usage area of the photocell in the prior art is greatly reduced under the condition of having the same light-gathering ratio as the large-diameter Fresnel lens.
3、光电池芯片中不含有电极,电极只是设置于光电池芯片外围,太阳能利用率得以提高。3. The photovoltaic chip does not contain electrodes, and the electrodes are only arranged on the periphery of the photovoltaic chip, so that the utilization rate of solar energy can be improved.
4、由于本发明实施例一所提供的光伏装置中将现有的大口径菲涅耳透镜转化为多个小口径的菲涅耳透镜阵列,因此,本发明实施例一中的每个菲涅耳透镜的聚光焦距可以做得很小(例如比常规大口径菲涅耳透镜小十倍),这样使得光伏发电组件的高度得到有效降低,有利于装置小型化,运输、安装等都很方便。4. Since the existing large-diameter Fresnel lens is converted into a plurality of small-diameter Fresnel lens arrays in the photovoltaic device provided by
实施例二Embodiment two
考虑到当本发明实施例一提供的阵列式聚光太阳能光伏装置应用在没有使用追日装置的光伏发电系统中时,若太阳高度变化会导致入射至菲涅耳透镜阵列的太阳光非垂直入射,此时部分边缘光线经各有效菲涅耳透镜折射后不能到达各菲涅耳透镜所对应的光电池的受光区域上,太阳能利用率降低。为解决此问题,在上述实施例一的基础上,本发明实施例二又提供另外一种密集阵列式聚光太阳能光伏装置,该种装置在实施例一所提供的任意一种密集阵列式聚光太阳能光伏装置中添加了:至少两个位于所述菲涅耳透镜阵列1和平面基板2之间的复合曲面反射镜。所述至少两个复合曲面反射镜紧密排列成复合曲面反射镜阵列,复合曲面反射镜阵列中的复合曲面反射镜数目和光电池阵列中的光电池3数目相同。每个复合曲面反射镜的底部出光口处封接一个光电池3,上端开口封接于该光电池3所对应的菲涅耳透镜下表面,各复合曲面反射镜的内表面为反射面。Considering that when the arrayed concentrating solar photovoltaic device provided by
入射阳光在此种复合曲面反射镜中通过几次反射到达底部出光孔,光流失较少,尤其可以对于斜入射的太阳光进行有效收集,达到最大理论聚光比,该种聚光器的运行不需要随时跟踪太阳位置,只需根据季节调节方位,结构简单、操控方便,由于在太阳能聚光技术中,复合曲面反射镜聚光器已是成熟的技术,此处不再多做说明。The incident sunlight reaches the light exit hole at the bottom through several reflections in this kind of composite curved surface mirror, and the light loss is small. Especially, it can effectively collect the obliquely incident sunlight to achieve the maximum theoretical concentration ratio. The operation of this kind of concentrator It does not need to track the position of the sun at any time, but only needs to adjust the orientation according to the season. The structure is simple and the operation is convenient. Since the compound curved mirror concentrator is a mature technology in the solar concentrating technology, no further explanation is given here.
本实施例二中所提供的阵列式聚光太阳能光伏装置同样能够具备实施例一中所述的各种附加技术特征,例如将平面基板同时作为散热板使用等,此处不再详述。The array type concentrating solar photovoltaic device provided in the second embodiment can also have various additional technical features described in the first embodiment, such as using a planar substrate as a heat sink at the same time, etc., which will not be described in detail here.
较佳地,所述复合曲面反射镜是截面为抛物线的复合抛物面反射镜(CPC,Compound Parabolic Collector),如图6所示为本发明实施例二所提供的具有复合抛物面反射镜的阵列式聚光太阳能光伏装置结构示意图之一,图6所示装置是在图1所示装置的基础上添加了若干个复合抛物面反射镜10的阵列式聚光太阳能光伏装置。图7所示为本发明实施例二所提供的具有复合抛物面反射镜的阵列式聚光太阳能光伏装置结构示意图之二,该装置中任意两块相邻光电池3之间以绝缘带7绝缘隔离。Preferably, the compound curved reflector is a compound parabolic reflector (CPC, Compound Parabolic Collector) whose section is a parabola, as shown in FIG. One of the structural schematic diagrams of solar photovoltaic devices, the device shown in Figure 6 is an array concentrated solar photovoltaic device with several compound
较佳地,所述复合曲面反射镜是截面为双曲线的复合双曲面反射镜(CHC,Compound Hyperbolic Collector),如图8所示为本发明实施例二所提供的具有复合双曲面反射镜的阵列式聚光太阳能光伏装置结构示意图之一,图8所示装置是在图1所示装置的基础上添加了若干个复合双曲面反射镜11所得到的阵列式聚光太阳能光伏装置。图9所示为本发明实施例所提供的具有复合双曲面反射镜的阵列式聚光太阳能光伏装置结构示意图之二,该装置中任意两块相邻光电池3之间以绝缘带7绝缘隔离。Preferably, the compound hyperbolic reflector is a compound hyperbolic reflector (CHC, Compound Hyperbolic Collector) with a hyperbolic section, as shown in FIG. One of the schematic diagrams of the structure of an array concentrated solar photovoltaic device, the device shown in Figure 8 is an array concentrated solar photovoltaic device obtained by adding several compound hyperboloid mirrors 11 on the basis of the device shown in Figure 1 . FIG. 9 is the second schematic diagram of the structure of an arrayed concentrating solar photovoltaic device with a compound hyperboloid mirror provided by an embodiment of the present invention. In this device, any two adjacent
显然,本发明实施例所提供的具有复合曲面反射镜的阵列式聚光太阳能光伏装置也具有前面所述的不含有复合曲面反射镜的阵列式聚光太阳能光伏装置的优点,虽然结构更为复杂一些,但是该种装置可以用在没有追日装置的光伏系统中,太阳能利用率更高。Obviously, the array concentrated solar photovoltaic device with compound curved reflector provided by the embodiment of the present invention also has the advantages of the array concentrated solar photovoltaic device without compound curved reflector mentioned above, although the structure is more complicated Some, but this kind of device can be used in photovoltaic systems without solar tracking devices, and the utilization rate of solar energy is higher.
实施例三Embodiment Three
类似于实施例二,为了进一步提高实施例一所提供的阵列式聚光太阳能光伏装置的太阳能利用率,在实施例一的基础上,本发明实施例三又提供另外一种密集阵列式聚光太阳能光伏装置,该种装置在实施例一所提供的任意一种密集阵列式聚光太阳能光伏装置中添加了至少两个漏斗型平凸透镜。Similar to the second embodiment, in order to further improve the solar energy utilization rate of the array concentrated solar photovoltaic device provided by the first embodiment, on the basis of the first embodiment, the third embodiment of the present invention provides another dense array concentrated solar photovoltaic device. Solar photovoltaic device, this kind of device adds at least two funnel-shaped plano-convex lenses to any dense array concentrated solar photovoltaic device provided in
如图10所示为本发明实施例三所提供的具有平凸透镜的阵列式聚光太阳能光伏装置结构示意图之一。由图10可见,该装置在图1所示基础上添加了至少两个位于菲涅耳透镜阵列1和平面基板2之间的漏斗型平凸透镜12。所述至少两个平凸透镜12紧密排列成平凸透镜阵列,平凸透镜阵列中的平凸透镜12的数目和光电池阵列中的光电池3的数目相同;每个平凸透镜12对应于一块光电池3和与该光电池3对应的菲涅耳透镜,且每个平凸透镜12的光轴与其所对应的菲涅耳透镜的光轴重合;每个平凸透镜12的平面端的大小与其所对应的光电池的受光区域等大,且所述平面端紧贴其所对应的光电池3的受光区域5;每个平凸透镜12的凸面端与其所对应的菲涅耳透镜的下表面不相接触,且所述凸面端口径与该菲涅耳透镜的口径相等。在菲涅耳透镜的光轴方向上,菲涅耳透镜阵列1和平凸透镜阵列之间有一定的空气间隔。FIG. 10 is one of the structural schematic diagrams of the arrayed concentrating solar photovoltaic device with plano-convex lenses provided by
较佳地,所述平凸透镜的侧面涂覆有反光层,用于将入射至侧面的太阳光进行反射。Preferably, the side of the plano-convex lens is coated with a reflective layer for reflecting sunlight incident on the side.
显然,每个平凸透镜12首先作为凸透镜,用于将其所对应的菲涅耳透镜折射后的太阳光进一步聚焦到它们所对应的光电池上,其次,侧面具有反光层的平凸透镜12还可将进入平凸透镜12后射至其侧面的太阳光进一步来回全反射后导向光电池3。这样,当太阳高度较低时,入射至菲涅耳透镜阵列1上的太阳光能够尽可能多地被菲涅耳透镜和平凸透镜12折射至光电池上,光伏装置的太阳能利用率进一步得到提高。Obviously, each plano-
其中,所述平凸透镜由透明材料制成。Wherein, the plano-convex lens is made of transparent material.
本实施例三中所提供的阵列式聚光太阳能光伏装置同样能够具备实施例一中所述的各种附加技术特征,例如将平面基板同时作为散热板使用等,此处不再详述。The arrayed concentrating solar photovoltaic device provided in the third embodiment can also have various additional technical features described in the first embodiment, such as using a planar substrate as a heat sink, etc., which will not be described in detail here.
图11为本发明实施例三所提供的具有平凸透镜的阵列式聚光太阳能光伏装置结构示意图之二,该装置中任意两块相邻光电池3之间以绝缘带7绝缘隔离。FIG. 11 is the second schematic diagram of the structure of the arrayed concentrating solar photovoltaic device with plano-convex lenses provided by the third embodiment of the present invention. In this device, any two adjacent
显然,本发明实施例所提供的具有复合曲面反射镜的阵列式聚光太阳能光伏装置不仅具有前面所述的不含有复合曲面反射镜的阵列式聚光太阳能光伏装置的优点,而且由于平凸透镜的使用,不仅太阳能利用率得到提高,聚光焦距还可进一步缩短,装置结构简单,易于实现。Obviously, the array concentrated solar photovoltaic device with compound curved reflector provided by the embodiment of the present invention not only has the advantages of the array concentrated solar photovoltaic device without compound curved reflector mentioned above, but also has With the use of the utility model, not only the utilization rate of solar energy is improved, but also the focusing focal length can be further shortened, and the device has a simple structure and is easy to realize.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110242366.6A CN102280511B (en) | 2011-08-23 | 2011-08-23 | Dense array concentrating solar energy photovoltaic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110242366.6A CN102280511B (en) | 2011-08-23 | 2011-08-23 | Dense array concentrating solar energy photovoltaic device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102280511A true CN102280511A (en) | 2011-12-14 |
CN102280511B CN102280511B (en) | 2014-09-17 |
Family
ID=45105826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110242366.6A Expired - Fee Related CN102280511B (en) | 2011-08-23 | 2011-08-23 | Dense array concentrating solar energy photovoltaic device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102280511B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014029259A1 (en) * | 2012-08-22 | 2014-02-27 | Chen Dinglin | Solar concentrating and collecting line-focus fresnel lens |
CN106024961A (en) * | 2016-06-16 | 2016-10-12 | 昆山诃德新能源科技有限公司 | Dense array-type concentrating solar photovoltaic device |
WO2017091971A1 (en) * | 2015-12-01 | 2017-06-08 | 博立多媒体控股有限公司 | Light-concentrating solar system |
CN106982027A (en) * | 2017-05-03 | 2017-07-25 | 成都菲斯特科技有限公司 | A kind of solar concentrating photovoltaic component |
CN107154445A (en) * | 2016-03-03 | 2017-09-12 | 苏州升奥新能源有限公司 | A kind of solar cell encapsulation structure |
CN107834950A (en) * | 2017-12-11 | 2018-03-23 | 山东理工昊明新能源有限公司 | A kind of BIPV electricity generation system |
CN107959472A (en) * | 2017-12-21 | 2018-04-24 | 光隶新能源(南平)科技有限公司 | The photovoltaic module and lamps and lanterns of 3 times of electric energy output are improved by faint light power generation |
WO2018090277A1 (en) * | 2016-11-17 | 2018-05-24 | 博立多媒体控股有限公司 | Concentrated light-energy receiving device |
CN108168079A (en) * | 2018-02-06 | 2018-06-15 | 江苏贝德莱特太阳能科技有限公司 | A kind of light collecting power generation and heat supply integrated system |
CN110707168A (en) * | 2019-10-12 | 2020-01-17 | 成都中建材光电材料有限公司 | A thin film power generation glass with decorative function |
CN111025437A (en) * | 2019-12-31 | 2020-04-17 | 武汉华中天勤防务技术有限公司 | Fresnel lens array, light guide and energy collection system and preparation method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI234635B (en) * | 2001-10-23 | 2005-06-21 | Leon L C Chen | Photovoltaic array module design for solar electric power generation systems |
CN201270256Y (en) * | 2008-08-26 | 2009-07-08 | 上海太阳能工程技术研究中心有限公司 | Condensing solar cell component |
CN201294229Y (en) * | 2008-10-10 | 2009-08-19 | 宣家骆 | Ultra-thin solar high power condensation photovoltaic battery mold component |
CN201827822U (en) * | 2010-09-14 | 2011-05-11 | 黄竞磊 | Dual-lens condensed light and parallel light transmission sunlamp illuminator |
CN202259382U (en) * | 2011-08-23 | 2012-05-30 | 北京工业大学 | Concentrated array condensation solar photovoltaic apparatus |
-
2011
- 2011-08-23 CN CN201110242366.6A patent/CN102280511B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI234635B (en) * | 2001-10-23 | 2005-06-21 | Leon L C Chen | Photovoltaic array module design for solar electric power generation systems |
CN201270256Y (en) * | 2008-08-26 | 2009-07-08 | 上海太阳能工程技术研究中心有限公司 | Condensing solar cell component |
CN201294229Y (en) * | 2008-10-10 | 2009-08-19 | 宣家骆 | Ultra-thin solar high power condensation photovoltaic battery mold component |
CN201827822U (en) * | 2010-09-14 | 2011-05-11 | 黄竞磊 | Dual-lens condensed light and parallel light transmission sunlamp illuminator |
CN202259382U (en) * | 2011-08-23 | 2012-05-30 | 北京工业大学 | Concentrated array condensation solar photovoltaic apparatus |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014029259A1 (en) * | 2012-08-22 | 2014-02-27 | Chen Dinglin | Solar concentrating and collecting line-focus fresnel lens |
CN103630951A (en) * | 2012-08-22 | 2014-03-12 | 陈鼎凌 | Solar concentrating and collecting line-focus Fresnel lens |
CN103630951B (en) * | 2012-08-22 | 2016-08-03 | 陈鼎凌 | Light and heat collection Fresnel line focus lens |
US10554168B2 (en) | 2015-12-01 | 2020-02-04 | Bolymedia Holdings Co. Ltd. | Light-concentrating solar system |
WO2017091971A1 (en) * | 2015-12-01 | 2017-06-08 | 博立多媒体控股有限公司 | Light-concentrating solar system |
CN107154445A (en) * | 2016-03-03 | 2017-09-12 | 苏州升奥新能源有限公司 | A kind of solar cell encapsulation structure |
CN106024961A (en) * | 2016-06-16 | 2016-10-12 | 昆山诃德新能源科技有限公司 | Dense array-type concentrating solar photovoltaic device |
WO2018090277A1 (en) * | 2016-11-17 | 2018-05-24 | 博立多媒体控股有限公司 | Concentrated light-energy receiving device |
CN106982027A (en) * | 2017-05-03 | 2017-07-25 | 成都菲斯特科技有限公司 | A kind of solar concentrating photovoltaic component |
CN107834950A (en) * | 2017-12-11 | 2018-03-23 | 山东理工昊明新能源有限公司 | A kind of BIPV electricity generation system |
CN107834950B (en) * | 2017-12-11 | 2024-03-19 | 山东理工昊明新能源有限公司 | Photovoltaic building integrated power generation system |
CN107959472A (en) * | 2017-12-21 | 2018-04-24 | 光隶新能源(南平)科技有限公司 | The photovoltaic module and lamps and lanterns of 3 times of electric energy output are improved by faint light power generation |
CN108168079A (en) * | 2018-02-06 | 2018-06-15 | 江苏贝德莱特太阳能科技有限公司 | A kind of light collecting power generation and heat supply integrated system |
CN110707168A (en) * | 2019-10-12 | 2020-01-17 | 成都中建材光电材料有限公司 | A thin film power generation glass with decorative function |
CN111025437A (en) * | 2019-12-31 | 2020-04-17 | 武汉华中天勤防务技术有限公司 | Fresnel lens array, light guide and energy collection system and preparation method |
CN111025437B (en) * | 2019-12-31 | 2023-06-27 | 武汉华中天勤防务技术有限公司 | Fresnel lens array, light guide energy collection system and preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN102280511B (en) | 2014-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102280511B (en) | Dense array concentrating solar energy photovoltaic device | |
CN101371369B (en) | Concentration solar battery apparatus | |
AU2009246638B2 (en) | Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector | |
US9905718B2 (en) | Low-cost thin-film concentrator solar cells | |
CN101719739A (en) | Reflective light-gathering solar photovoltaic power generation assembly with double parabolic cylinders | |
CN202259382U (en) | Concentrated array condensation solar photovoltaic apparatus | |
CN104917444B (en) | Quasi- slot type point Photospot solar utilizes device | |
CN106024961A (en) | Dense array-type concentrating solar photovoltaic device | |
CN102683461B (en) | A kind of Photospot solar device | |
CN201733250U (en) | Line-focusing light-focusing photovoltaic module | |
CN101860271B (en) | Line-focusing solar photo-electric conversion device with high multiplying power | |
CN103137760A (en) | Micro integrated solar concentrating electricity generating assembly | |
CN104917453B (en) | High concentrating photovoltaic power generation co-generation unit and its Component Structure | |
CN201550050U (en) | Double parabolic cylindrical reflection light-gathering solar photo-voltaic generation component | |
CN111953290B (en) | Thermoelectric combination multifunctional glass device | |
CN103411754A (en) | Method for measuring distribution of intensity of light spots of reflecting type concentrating photovoltaic condenser | |
CN202034394U (en) | Light gathering solar device | |
CN101521242A (en) | High-efficiency solar cell and production method thereof | |
CN202996871U (en) | Power generation and heat supply combined production apparatus of condensation and reflection type photovoltaic module group | |
RU2641627C1 (en) | Solar photovoltaic concentrator module | |
RU2496181C1 (en) | Photoelectric concentrator submodule | |
CN103456806A (en) | Low-power concentrating photovoltaic module | |
RU2436193C1 (en) | Photovoltaic concentrator module | |
RU2740738C1 (en) | Powerful concentrator photoelectric module | |
CN108322182A (en) | A kind of concentrating solar receiving unit and solar battery apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: GUANGDONG RUIDE XINGYANG SOLAR TECHNOLOGY CO., LTD Free format text: FORMER OWNER: BEIJING INDUSTRY UNIVERSITY Effective date: 20130105 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 100124 CHAOYANG, BEIJING TO: 528437 ZHONGSHAN, GUANGDONG PROVINCE |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20130105 Address after: 528437 Zhongshan Torch Development Zone, Guangdong, one of the torch Road, No. 22 Applicant after: GUANGDONG REDSOLAR PHOTOVOLTAIC TECHNOLOGY CO.,LTD. Address before: 100124 Chaoyang District, Beijing Ping Park, No. 100 Applicant before: Beijing University of Technology |
|
C53 | Correction of patent of invention or patent application | ||
CB02 | Change of applicant information |
Address after: 528437 Zhongshan Torch Development Zone, Guangdong, one of the torch Road, No. 22 Applicant after: REDSOLAR NEW ENERGY TECHNOLOGY Co.,Ltd. Address before: 528437 Zhongshan Torch Development Zone, Guangdong, one of the torch Road, No. 22 Applicant before: GUANGDONG REDSOLAR PHOTOVOLTAIC TECHNOLOGY CO.,LTD. |
|
COR | Change of bibliographic data |
Free format text: CORRECT: APPLICANT; FROM: GUANGDONG RUIDE XINGYANG SOLAR TECHNOLOGY CO., LTD. TO: REDSOLAR NEW ENERGY TECHNOLOGY CO., LTD. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140917 |
|
CF01 | Termination of patent right due to non-payment of annual fee |