[go: up one dir, main page]

CN102277355A - Rice seed glutelin GluA-2 gene terminator and application thereof - Google Patents

Rice seed glutelin GluA-2 gene terminator and application thereof Download PDF

Info

Publication number
CN102277355A
CN102277355A CN 201110198131 CN201110198131A CN102277355A CN 102277355 A CN102277355 A CN 102277355A CN 201110198131 CN201110198131 CN 201110198131 CN 201110198131 A CN201110198131 A CN 201110198131A CN 102277355 A CN102277355 A CN 102277355A
Authority
CN
China
Prior art keywords
gene
tglua
promoter
expression
expression cassette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201110198131
Other languages
Chinese (zh)
Inventor
曲乐庆
李文静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Botany of CAS
Original Assignee
Institute of Botany of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Botany of CAS filed Critical Institute of Botany of CAS
Priority to CN 201110198131 priority Critical patent/CN102277355A/en
Publication of CN102277355A publication Critical patent/CN102277355A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a rice seed glutelin GluA-2 gene terminator and application thereof. The terminator is a DNA (deoxyribonucleic acid) molecule, which is a molecule shown as 1), 2) or 3): 1) a DNA molecule consisting of nucleotide sequences shown as a sequence 1 in a sequence table; 2) a molecule with at least 70, 75, 80, 85, 90, 95, 96, 97, 98 or 99 percent of homology with the DNA sequence limited by 1); and 3) a molecule hybridized with the DNA sequence limited by 1) or 2) under a strict condition. The terminator disclosed by the invention is utilized to cooperate with different promoters, the expression and accumulation levels of an exogenous gene in a target plant can be improved, and foundation is established for researches in improving seed quality, molecular medicine farm and the like by utilizing biotechnology. Therefore the terminator has great application prospect.

Description

水稻种子谷蛋白GluA-2基因终止子及其应用Rice Seed Glutenin GluA-2 Gene Terminator and Its Application

技术领域 technical field

本发明涉及一种水稻种子谷蛋白GluA-2基因终止子及其应用。The invention relates to a rice seed glutelin GluA-2 gene terminator and application thereof.

背景技术 Background technique

植物生物技术的最新发展不仅实现了传统农艺性状的改良(如提高作物产量,增强抗病、抗虫、抗除草剂特性,改良品质等),而且使植物成为生物医药和工业产品的生物反应器。绝大多数禾本科作物具有产量高、生产成本低、耐储藏、生产规模容易控制、可直接食用等特点,并且其具备体内翻译后修饰的能力,因而成为第二代转基因产物的理想载体。近年来利用水稻种子生产具有保健作用的外源蛋白和可食性疫苗研究发展很快,且已经取得了巨大成功。如维生素A、具有降低血糖作用的大豆球蛋白(Glycinin)、具有预防和治疗缺铁性贫血和提高自身免疫功能的大豆铁蛋白(Ferritin)、具有刺激胰岛素分泌预防糖尿病发生功能的GLP、乙肝疫苗和花粉过敏症疫苗等均成功地在水稻中表达并高水平累积。然而,进一步实现外源基因的高效表达必须在转录和转录后水平同时提高基因表达。启动子主要在转录水平调控基因表达,终止子则在转录和转录后水平同时起调控作用。The latest development of plant biotechnology not only realizes the improvement of traditional agronomic traits (such as increasing crop yield, enhancing disease resistance, insect resistance, herbicide resistance, improving quality, etc.), but also makes plants become bioreactors for biomedicine and industrial products . Most gramineous crops have the characteristics of high yield, low production cost, storage resistance, easy control of production scale, direct consumption, etc., and they have the ability of post-translational modification in vivo, so they become ideal carriers for the second generation of transgenic products. In recent years, the use of rice seeds to produce exogenous proteins and edible vaccines with health effects has developed rapidly, and has achieved great success. Such as vitamin A, glycinin which can lower blood sugar, soybean ferritin which can prevent and treat iron deficiency anemia and improve autoimmune function, GLP which can stimulate insulin secretion and prevent diabetes, hepatitis B vaccine and pollen allergy vaccine were successfully expressed and accumulated in high levels in rice. However, to further achieve high-efficiency expression of exogenous genes must increase gene expression at both transcriptional and post-transcriptional levels. Promoters mainly regulate gene expression at the transcriptional level, while terminators regulate both transcriptional and post-transcriptional levels.

尽管目前广泛应用的终止子,如Nos、Ocs,与异源启动子组合后可启动报告基因在植物中的高表达,能够满足生物化学、生理学以及细胞定位方面的研究需求。然而,对于其他能够提高基因表达的终止子研究较少。由于一些重要农艺性状以及植物次生代谢产物都是由多基因控制,提高单个基因的表达对于相关性状改良作用不明显。通过传统转化方法,如重复转化或杂交来实现多基因转化却费时费力。近年来发展起来的多基因转化系统可以在一个表达载体中同时插入多个基因,为了避免转基因同源性过高引起的转基因沉默,这些基因需要由不同的启动子驱动表达,不同的终止子终止转录。Although currently widely used terminators, such as Nos and Ocs, combined with heterologous promoters can initiate high expression of reporter genes in plants, they can meet the research needs of biochemistry, physiology and cell localization. However, there are few studies on other terminators that can improve gene expression. Since some important agronomic traits and plant secondary metabolites are controlled by multiple genes, increasing the expression of a single gene has no obvious effect on improving related traits. It is time-consuming and labor-intensive to achieve multigene transformation through traditional transformation methods, such as repeated transformation or hybridization. The multi-gene transformation system developed in recent years can simultaneously insert multiple genes into an expression vector. In order to avoid transgene silencing caused by high homology of transgenes, these genes need to be driven by different promoters and terminated by different terminators. transcription.

发明内容 Contents of the invention

本发明的一个目的是提供一个终止子,名称为tGluA-2,该终止子与nos终止子相比,可以提高外源基因的表达水平。One object of the present invention is to provide a terminator named tGluA-2, which can increase the expression level of foreign genes compared with the nos terminator.

本发明所提供的终止子,为如下1)或2)或3)的DNA分子:The terminator provided by the present invention is the following 1) or 2) or 3) DNA molecule:

1)由序列表中序列1所示的核苷酸序列组成的DNA分子;1) A DNA molecule composed of the nucleotide sequence shown in Sequence 1 in the sequence listing;

2)与1)限定的DNA的序列至少具有70%、至少具有75%、至少具有80%、至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性的分子;2) at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97% of the DNA sequence defined in 1), Molecules with at least 98% or at least 99% homology;

3)在严格条件下与1)或2)限定的DNA序列杂交的分子。3) A molecule that hybridizes under stringent conditions to the DNA sequence defined in 1) or 2).

所述严格条件可为如下:50℃,在7%十二烷基硫酸钠(SDS)、0.5M Na3PO4和1mM EDTA的混合溶液中杂交,在50℃,2×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na3PO4和1mM EDTA的混合溶液中杂交,在50℃,1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na3PO4和1mM EDTA的混合溶液中杂交,在50℃,0.5×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na3PO4和1mM EDTA的混合溶液中杂交,在50℃,0.1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na3PO4和1mM EDTA的混合溶液中杂交,在65℃,0.1×SSC,0.1%SDS中漂洗;也可为:在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次。The stringent conditions may be as follows: 50°C, hybridization in a mixed solution of 7% sodium dodecyl sulfate (SDS), 0.5M Na 3 PO 4 and 1 mM EDTA, at 50°C, 2×SSC, 0.1% SDS Rinse in medium; can also be: 50°C, hybridize in a mixed solution of 7% SDS, 0.5M Na 3 PO 4 and 1mM EDTA, rinse in 50°C, 1×SSC, 0.1% SDS; can also be: 50°C , hybridize in a mixed solution of 7% SDS, 0.5M Na 3 PO 4 and 1mM EDTA, rinse at 50°C, 0.5×SSC, 0.1% SDS; also: 50°C, in 7% SDS, 0.5M Na 3 Hybridize in a mixed solution of PO 4 and 1mM EDTA, rinse at 50°C in 0.1×SSC, 0.1% SDS; also: 50°C, in a mixed solution of 7% SDS, 0.5M Na 3 PO 4 and 1mM EDTA Hybridization at 65°C, rinsing in 0.1×SSC, 0.1% SDS; alternatively: in a solution of 6×SSC, 0.5% SDS, hybridization at 65°C, and then with 2×SSC, 0.1% SDS and 1 ×SSC and 0.1% SDS were used to wash the membrane once.

其中,序列表中序列1由728个核苷酸组成。Wherein, sequence 1 in the sequence listing consists of 728 nucleotides.

含有所述DNA分子的重组载体、表达盒、转基因细胞系、重组菌或重组病毒也属于本发明的保护范围。Recombinant vectors, expression cassettes, transgenic cell lines, recombinant bacteria or recombinant viruses containing said DNA molecules also belong to the protection scope of the present invention.

可用现有的植物表达载体构建含有所述DNA分子的重组表达载体。所述植物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等。如pROKII、pBin438、pCAMBIA1302、pCAMBIA2301、pCAMBIA1301、pCAMBIA1300、pBI121、pCAMBIA1391-Xa或pCAMBIA1391-Xb(CAMBIA公司)等。使用所述DNA分子构建重组植物表达载体时,在外源基因转录起始核苷酸前可加上任何一种增强型启动子(如花椰菜花叶病毒(CAMV)35S启动子、玉米的泛素启动子(Ubiquitin))、组成型启动子或组织特异表达启动子(如种子特异表达的启动子),它们可单独使用或与其它的植物启动子结合使用;此外,使用本发明的DNA分子构建植物表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个外源基因序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、萤光素酶基因等)、抗生素的标记基因(如赋予对卡那霉素和相关抗生素抗性的nptII基因,赋予对除草剂膦丝菌素抗性的bar基因,赋予对抗生素潮霉素抗性的hph基因,和赋予对methatrexate抗性的dhfr基因,赋予对草甘磷抗性的EPSPS基因)或是抗化学试剂标记基因等(如抗除莠剂基因)、提供代谢甘露糖能力的甘露糖-6-磷酸异构酶基因。An existing plant expression vector can be used to construct a recombinant expression vector containing the DNA molecule. The plant expression vectors include binary Agrobacterium vectors and vectors that can be used for plant microprojectile bombardment and the like. Such as pROKII, pBin438, pCAMBIA1302, pCAMBIA2301, pCAMBIA1301, pCAMBIA1300, pBI121, pCAMBIA1391-Xa or pCAMBIA1391-Xb (CAMBIA Company), etc. When using the DNA molecule to construct a recombinant plant expression vector, any enhanced promoter (such as the cauliflower mosaic virus (CAMV) 35S promoter, the ubiquitin promoter of maize) can be added before the transcription initiation nucleotide of the foreign gene. promoter (Ubiquitin)), constitutive promoter or tissue-specific expression promoter (such as the promoter of seed-specific expression), they can be used alone or in combination with other plant promoters; in addition, using the DNA molecule of the present invention to construct plant When expressing vectors, enhancers can also be used, including translation enhancers or transcription enhancers. These enhancer regions can be ATG start codons or adjacent region start codons, etc., but must be the same as the reading frame of the coding sequence, to Ensure correct translation of the entire foreign gene sequence. The sources of the translation control signals and initiation codons are extensive and can be natural or synthetic. The translation initiation region can be from a transcription initiation region or a structural gene. In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vector used can be processed, such as adding genes (GUS gene, luciferase gene, etc.) genes, etc.), antibiotic marker genes (such as the nptII gene that confers resistance to kanamycin and related antibiotics, the bar gene that confers resistance to the herbicide phosphinothricin, and the hph gene that confers resistance to the antibiotic hygromycin , and the dhfr gene that confers resistance to metharexate, the EPSPS gene that confers resistance to glyphosate) or the marker gene for resistance to chemical agents (such as the herbicide resistance gene), the mannose-6- that provides the ability to metabolize mannose Phosphate isomerase gene.

所述重组载体具体可为任一如下载体:pGluB-3-tGluA-2、pGluC-tGluA-2、p35S-tGluA-2、pUbi-tGluA-2。Specifically, the recombinant vector can be any of the following vectors: pGluB-3-tGluA-2, pGluC-tGluA-2, p35S-tGluA-2, pUbi-tGluA-2.

所述pGluB-3-tGluA-2是将pGluB-3-nos中的nos终止子替换为序列表中序列1所示的tGluA-2终止子得到的重组载体,所述pGluC-tGluA-2是将pGluC-nos中的nos终止子替换为序列表中序列1所示的tGluA-2终止子得到的重组载体,所述p35S-tGluA-2是将pBI221中的nos终止子替换为序列表中序列1所示的tGluA-2终止子得到的重组载体,所述pUbi-tGluA-2是将pUbi-221中的nos终止子替换为序列表中序列1所示的tGluA-2终止子得到的重组载体,所述pUbi-221是将pBI221中的35S启动子替换为Ubiquitin启动子得到的重组载体。The pGluB-3-tGluA-2 is a recombinant vector obtained by replacing the nos terminator in pGluB-3-nos with the tGluA-2 terminator shown in Sequence 1 in the sequence listing, and the pGluC-tGluA-2 is a recombinant vector obtained by replacing The nos terminator in pGluC-nos is replaced by the tGluA-2 terminator shown in sequence 1 in the sequence listing. The recombinant vector obtained by the tGluA-2 terminator shown in the pUbi-tGluA-2 is a recombinant vector obtained by replacing the nos terminator in pUbi-221 with the tGluA-2 terminator shown in Sequence 1 in the sequence listing, The pUbi-221 is a recombinant vector obtained by replacing the 35S promoter in pBI221 with the Ubiquitin promoter.

所述表达盒是指由启动子、由所述启动子启动转录的目的基因和位于所述目的基因下游的所述DNA分子组成的。其中,所述启动子可为组成型启动子或组织特异表达启动子(如胚乳特异性启动子)。所述目的基因可为蛋白编码基因和/或非蛋白编码基因;所述蛋白编码基因优选为品质改良基因;所述非蛋白编码基因为正义RNA基因和/或反义RNA基因。The expression cassette refers to a promoter, a gene of interest transcribed by the promoter, and the DNA molecule located downstream of the gene of interest. Wherein, the promoter can be a constitutive promoter or a tissue-specific expression promoter (such as an endosperm-specific promoter). The target gene can be a protein-coding gene and/or a non-protein-coding gene; the protein-coding gene is preferably a quality-improving gene; and the non-protein-coding gene is a sense RNA gene and/or an antisense RNA gene.

本发明的另一个目的是提供一种培育转基因植物的方法。Another object of the present invention is to provide a method for breeding transgenic plants.

本发明所提供的培育转基因植物的方法,是将含有所述DNA分子的表达盒导入目的植物中,得到所述目的基因表达水平高于将如下表达盒导入所述目的植物的转基因植物:将所述的表达盒中的所述DNA分子替换为胭脂碱合成酶的nos终止子得到的表达盒。The method for cultivating transgenic plants provided by the present invention is to introduce the expression cassette containing the DNA molecule into the target plant to obtain a transgenic plant whose expression level of the target gene is higher than that of introducing the following expression cassette into the target plant: the The expression cassette obtained by replacing the DNA molecule in the above expression cassette with the nos terminator of nopaline synthase.

所述目的植物具体可为单子叶植物或双子叶植物。The target plant can specifically be a monocotyledonous plant or a dicotyledonous plant.

所述单子叶植物具体可为水稻,小麦,玉米,高粱或大麦,所述双子叶植物具体可为大豆,油菜,棉花,烟草,马铃薯,甘薯或油桐。Specifically, the monocotyledon can be rice, wheat, corn, sorghum or barley, and the dicot can be soybean, rapeseed, cotton, tobacco, potato, sweet potato or tung tree.

所述转基因植物理解为不仅包含将所述含有所述DNA分子的表达盒转化目的植物得到的第一代转基因植物,也包括其子代。对于转基因植物,可以在该物种中繁殖该含有所述DNA分子的表达盒,也可用常规育种技术将该含有所述DNA分子的表达盒转移进入相同物种的其它品种,特别包括商业品种中。The transgenic plant is understood to include not only the first-generation transgenic plant obtained by transforming the target plant with the expression cassette containing the DNA molecule, but also its progeny. For transgenic plants, the expression cassette containing the DNA molecule can be propagated in that species or transferred into other varieties of the same species, particularly including commercial varieties, using conventional breeding techniques.

所述DNA分子在培育转基因植物中的应用或作为终止子的应用也在本发明的保护范围内。The use of said DNA molecule in breeding transgenic plants or as a terminator is also within the protection scope of the present invention.

利用本发明的终止子与不同的启动子配合,可提高外源基因在目的植物中的表达和累积水平,可改良种子品质、将具有生理活性的蛋白或短肽导入种子中创制保健型功能新品种、利用种子作生物反应器生产有用外源蛋白或可食性疫苗,增加农产品科技附加值等。本发明的终止子及其应用为利用生物技术改良种子品质、分子医药农场等研究奠定了基础,具有极大的应用前景。Using the terminator of the present invention to cooperate with different promoters can increase the expression and accumulation level of foreign genes in target plants, improve seed quality, and introduce physiologically active proteins or short peptides into seeds to create new health-care products. Varieties, using seeds as bioreactors to produce useful exogenous proteins or edible vaccines, increasing the added value of agricultural products technology, etc. The terminator of the present invention and its application have laid a foundation for the use of biotechnology to improve the quality of seeds, the research of molecular medicine farms, etc., and have great application prospects.

附图说明 Description of drawings

图1为从水稻基因组DNA中PCR扩增谷蛋白GluA-2基因终止子(tGluA-2)的电泳图谱。其中1为DNA分子量标准,2为tGluA-2的片段。其中,标准分子量大小由下至上依次为:100bp,250bp,500bp,750bp,1000bp,2000bp,3000bp,5000bp。Fig. 1 is an electrophoretic pattern of PCR amplification of glutelin GluA-2 gene terminator (tGluA-2) from rice genomic DNA. Among them, 1 is a DNA molecular weight standard, and 2 is a fragment of tGluA-2. Among them, the standard molecular weight sizes from bottom to top are: 100bp, 250bp, 500bp, 750bp, 1000bp, 2000bp, 3000bp, 5000bp.

图2为载体pMD-tGluA-2经Sac I和EcoR I的双酶切鉴定图谱。其中1为DNA分子量标准,2为pMD-tGluA-2的酶切片段。其中,标准分子量大小由下至上依次为:100bp,250bp,500bp,750bp,1000bp,2000bp,3000bp,5000bp,酶切片段由下至上依次为:tGluA-2,728bp;pMD-18T载体片段,2700bp。Figure 2 is the identification map of vector pMD-tGluA-2 by Sac I and EcoR I double enzyme digestion. Among them, 1 is the molecular weight standard of DNA, and 2 is the digested fragment of pMD-tGluA-2. Among them, the standard molecular weight sizes from bottom to top are: 100bp, 250bp, 500bp, 750bp, 1000bp, 2000bp, 3000bp, 5000bp, and the restriction enzyme fragments from bottom to top are: tGluA-2, 728bp; pMD-18T vector fragment, 2700bp.

图3为含有tGluA-2的载体结构示意图。其中,A图为pGluB-3-tGluA-2结构示意图,B图为pGluC-tGluA-2结构示意图,C图为p35S-tGluA-2结构示意图,D图为pUbi-tGluA-2结构示意图,GluA-2T代表tGluA-2。Fig. 3 is a schematic diagram of the structure of the vector containing tGluA-2. Among them, Figure A is a schematic diagram of the structure of pGluB-3-tGluA-2, Figure B is a schematic diagram of the structure of pGluC-tGluA-2, Figure C is a schematic diagram of the structure of p35S-tGluA-2, Figure D is a schematic diagram of the structure of pUbi-tGluA-2, GluA- 2T stands for tGluA-2.

图4为含有tGluA-2的载体经Sac I和EcoR I双酶切的鉴定图谱。其中,A-D图分别为载体pGluB-3-tGluA-2、pGluC-tGluA-2、p35S-tGluA-2、pUbi-tGluA-2;1为DNA分子量标准,2为各载体的酶切片段。其中,A图标准分子量大小由下至上依次为:0.1kb,0.2kb,0.3kb,0.4kb,0.5kb,0.6kb,0.7kb,0.8kb,0.9kb,1.0kb,1.2kb,1.5kb,2.0kb,3.0kb,4.0kb,5.0kb,6.0kb,8.0kb,10.0kb,酶切片段由下至上依次为:tGluA-2,728bp;pGluB-3-tGluA-2载体框架片段,16.6kb。图4B-4D标准分子量大小由下至上依次为:100bp,250bp,500bp,750bp,1000bp,2000bp,3000bp,5000bp。图4B酶切片段由下至上依次为:tGluA-2,728bp;pGluC-tGluA-2载体框架片段,16.6kb;图4C酶切片段由下至上依次为:tGluA-2,728bp;p35S-tGluA-2载体框架片段,5.2kb。图4D酶切片段由下至上依次为:tGluA-2,728bp;GUS与部分Ubiquitin启动子融合片段2.5kb(其中部分Ubiquitin启动子大小为0.6kb),pUbi-tGluA-2去除以上两部分后片段3.9kb。Figure 4 is the identification map of the vector containing tGluA-2 after Sac I and EcoR I double digestion. Among them, A-D diagrams are the vectors pGluB-3-tGluA-2, pGluC-tGluA-2, p35S-tGluA-2, pUbi-tGluA-2 respectively; 1 is the DNA molecular weight standard, and 2 is the digested fragment of each vector. Among them, the standard molecular weight sizes in Figure A from bottom to top are: 0.1kb, 0.2kb, 0.3kb, 0.4kb, 0.5kb, 0.6kb, 0.7kb, 0.8kb, 0.9kb, 1.0kb, 1.2kb, 1.5kb, 2.0 kb, 3.0kb, 4.0kb, 5.0kb, 6.0kb, 8.0kb, 10.0kb, the restriction fragments from bottom to top are: tGluA-2, 728bp; pGluB-3-tGluA-2 vector frame fragment, 16.6kb. Figure 4B-4D standard molecular weight sizes from bottom to top are: 100bp, 250bp, 500bp, 750bp, 1000bp, 2000bp, 3000bp, 5000bp. Figure 4B enzyme-digested fragments from bottom to top are: tGluA-2, 728bp; 2 vector framework fragments, 5.2kb. Figure 4D restriction fragments from bottom to top are: tGluA-2, 728bp; GUS and part of the Ubiquitin promoter fusion fragment 2.5kb (of which part of the Ubiquitin promoter size is 0.6kb), pUbi-tGluA-2 fragment after removing the above two parts 3.9kb.

图5为部分转pGluB-3-tGluA-2和转pGluC-tGluA-2的T0代水稻植株嵌合引物PCR扩增电泳图谱。1为DNA分子量标准,2为以pGluB-3-tGluA-2为模板的阳性对照,3为以未转化株系为模板的阴性对照,4~13为部分转pGluB-3-tGluA-2的再生水稻植株,14~23为部分转pGluC-tGluA-2的再生水稻植株。Fig. 5 is the PCR amplification electrophoresis pattern of the chimeric primers of some rice plants of the T 0 generation transfected with pGluB-3-tGluA-2 and pGluC-tGluA-2. 1 is the DNA molecular weight standard, 2 is the positive control using pGluB-3-tGluA-2 as the template, 3 is the negative control using the untransformed strain as the template, 4-13 are the regeneration of partially transformed pGluB-3-tGluA-2 Rice plants, 14-23 are regenerated rice plants partially transfected with pGluC-tGluA-2.

图6为未转基因的野生型水稻Kitaake植株GUS染色结果。其中,1、2、3、4分别为未转基因的野生型水稻Kitaake植株根、茎、叶及种子的染色结果。Figure 6 shows the GUS staining results of non-transgenic wild-type rice Kitaake plants. Among them, 1, 2, 3, and 4 are the staining results of the roots, stems, leaves, and seeds of the non-transgenic wild-type rice Kitaake plants, respectively.

图7为T0代转基因水稻Kitaake/pGluB-3-nos植株GUS染色结果。其中,1、2、3、4分别为转pGluB-3-nos植株根、茎、叶及种子的染色结果。Fig. 7 shows the GUS staining results of the transgenic rice Kitaake/pGluB-3-nos plants of the T 0 generation. Among them, 1, 2, 3, and 4 are the staining results of the roots, stems, leaves, and seeds of pGluB-3-nos-transformed plants, respectively.

图8为T0代转基因水稻Kitaake/pGluB-3-tGluA-2植株GUS染色结果。其中,1、2、3、4分别为转pGluB-3-tGluA-2植株根、茎、叶及种子的染色结果。Figure 8 shows the GUS staining results of the transgenic rice Kitaake/pGluB-3-tGluA-2 plants of the T 0 generation. Among them, 1, 2, 3, and 4 are the staining results of the roots, stems, leaves, and seeds of the pGluB-3-tGluA-2-transformed plants, respectively.

图9为T0代转基因水稻Kitaake/pGluB-3-tGluA-2所结种子的GUS荧光活性测定结果。Fig. 9 is the measurement result of GUS fluorescence activity of seeds produced by T 0 transgenic rice Kitaake/pGluB-3-tGluA-2.

图10为T1代转基因水稻Kitaake/pGluB-3-tGluA-2所结种子的GUS荧光活性测定结果。Fig. 10 is the measurement result of GUS fluorescence activity of seeds produced by T1 transgenic rice Kitaake/pGluB-3-tGluA-2.

图11为T0代转基因水稻Kitaake/pGluC-tGluA-2所结种子的GUS荧光活性测定结果。Fig. 11 shows the results of measuring GUS fluorescence activity of seeds produced by T 0 transgenic rice Kitaake/pGluC-tGluA-2.

图12为对转p35S-tGluA-2及pBI221的水稻温育14小时原生质体提取GUS进行活性测定。其中,1为转pBI221的三次重复平均值,2、3、4则分别为转p35S-tGluA-2的三次测定值。Figure 12 shows the activity determination of GUS extracted from protoplasts of rice transfected with p35S-tGluA-2 and pBI221 incubated for 14 hours. Among them, 1 is the average value of three repetitions of pBI221 transformation, and 2, 3, and 4 are the three measured values of p35S-tGluA-2 transformation respectively.

图13为对转pUbi-tGluA-2及pUbi-221的水稻温育14小时原生质体提取GUS进行活性测定。其中,1为转pUbi-221的三次重复平均值,2、3、4则分别为转pUbi-tGluA-2的三次测定值。Figure 13 shows the activity determination of GUS extracted from protoplasts of rice transfected with pUbi-tGluA-2 and pUbi-221 after incubation for 14 hours. Among them, 1 is the average value of three replicates transformed into pUbi-221, and 2, 3, and 4 are the measured values of three times transformed into pUbi-tGluA-2, respectively.

具体实施方式 Detailed ways

下述实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.

下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.

实施例1、水稻种子谷蛋白GluA-2基因终止子(tGluA-2)的获得Embodiment 1, the acquisition of rice seed glutelin GluA-2 gene terminator (tGluA-2)

根据水稻谷蛋白GluA-2基因的cDNA序列(GenBank号为AK107314),从GenBank中查找谷蛋白GluA-2基因的基因组DNA序列,终止密码子后728bp的序列即为本发明的水稻种子谷蛋白GluA-2基因终止子(tGluA-2),设计引物扩增tGluA-2。为便于载体构建,在引物上分别添加酶切位点(下划线所示)。tGluA-2的正向引物为tGluA-2SacF:5′-GGAGCTCGTTGGCAATGCGGATAAAG-3′(Sac I),反向引物为tGluA-2EcoR:5′-AGAATTCGAATTCGGAAGCTCACTT-3′(EcoR I)。According to the cDNA sequence of rice glutelin GluA-2 gene (GenBank number is AK107314), search the genomic DNA sequence of glutelin GluA-2 gene from GenBank, the sequence of 728bp behind the stop codon is the rice seed glutelin GluA of the present invention -2 gene terminator (tGluA-2), design primers to amplify tGluA-2. To facilitate vector construction, restriction sites (underlined) were added to the primers respectively. The forward primer of tGluA-2 is tGluA-2SacF: 5′-G GAGCTC GTTGGCAATGCGGATAAAG-3′ (Sac I), and the reverse primer is tGluA-2EcoR: 5′-A GAATTC GAATTCGGAAGCTCACTT-3′ (EcoR I).

CTAB法从野生型水稻Kitaake(文献Qu et al.,J.Exp.Bot.2008,59:2417-2424)叶片中小量提取基因组DNA,以其为模板,以tGluA-2 SacF和tGluA-2 EcoR为引物,PCR扩增tGluA-2序列。PCR反应程序为:94℃预变性5min,然后94℃30sec,55℃30sec,72℃1min,30个循环,最后72℃10min。PCR扩增得到728bp的目的条带,如图1所示。回收扩增产物,直接连接到pMD18-T载体(购自TaKaRa公司)上,进行测序,结果表明,扩增得到的tGluA-2序列大小为728bp,具有序列表中序列1的核苷酸序列。将测序检测表明含有tGluA-2片段的重组载体命名为pMD-tGluA-2。pMD-tGluA-2经Sac I和EcoR I的双酶切鉴定图谱如图2所示。A small amount of genomic DNA was extracted from the leaves of wild-type rice Kitaake (Qu et al., J. Exp. Bot. 2008, 59: 2417-2424) by CTAB method. Using it as a template, tGluA-2 SacF and tGluA-2 EcoR As a primer, the tGluA-2 sequence was amplified by PCR. The PCR reaction program was: pre-denaturation at 94°C for 5 minutes, followed by 30 cycles at 94°C for 30 sec, 55°C for 30 sec, 72°C for 1 min, and finally 72°C for 10 min. The target band of 728bp was amplified by PCR, as shown in Figure 1. The amplified product was recovered, directly connected to the pMD18-T vector (purchased from TaKaRa Company), and sequenced. The results showed that the amplified tGluA-2 sequence was 728bp in size and had the nucleotide sequence of sequence 1 in the sequence table. The recombinant vector containing the tGluA-2 fragment was named pMD-tGluA-2 according to the sequencing detection. The identification map of pMD-tGluA-2 by Sac I and EcoR I double enzyme digestion is shown in Figure 2.

实施例2、水稻种子谷蛋白GluA-2基因终止子(tGluA-2)的载体构建与转化Example 2, Vector Construction and Transformation of Rice Seed Glutenin GluA-2 Gene Terminator (tGluA-2)

1、tGluA-2融合GUS基因的植物表达载体构建1. Construction of tGluA-2 fusion GUS gene plant expression vector

用Sac I和EcoR I双酶切pMD-tGluA-2质粒,回收tGluA-2的728bp酶切片段,将该片段分别插入到含有GluB-3启动子的pGluB-3-nos和GluC启动子的pGluC-nos的SacI和EcoR I双酶切识别位点之间构建稳定转化载体pGluB-3-tGluA-2(其结构示意图如图3A所示)和pGluC-tGluA-2(其结构示意图如图3B所示)。Digest the pMD-tGluA-2 plasmid with Sac I and EcoR I, recover the 728bp fragment of tGluA-2, and insert the fragment into pGluB-3-nos containing GluB-3 promoter and pGluC of GluC promoter respectively The stable transformation vectors pGluB-3-tGluA-2 (the schematic diagram of which is shown in Figure 3A) and pGluC-tGluA-2 (the schematic diagram of which is shown in Figure 3B) were constructed between the SacI and EcoR I double restriction recognition sites of -nos Show).

pGluB-3-nos和pGluC-nos按照文献Qu et al.,J.Exp.Bot.2008,59:2417-2424所述的方法构建:以水稻台中65的基因组DNA为模板,以pGluB-3-nos and pGluC-nos were constructed according to the method described in the literature Qu et al., J. Exp. Bot. 2008, 59: 2417-2424: the genomic DNA of rice Taichung 65 was used as a template, and

GluB-3正向引物5’-CCCAAGCTTATTTTACTTGTACTGTTTAACC-3’(HindIII)和GluB-3 Forward Primer 5'-CCC AAGCTT ATTTTACTTGTACTGTTTAACC-3'(HindIII) and

GluB-3反向引物5’AAACCCGGGAGCTTTCTGTATATGCTAATG-3’(Sma I)为引物,PCR扩增得到GluB-3启动子,将GluB-3启动子用HindIII和Sma I双酶切,插入到pGPTV-35S-HPT(Qu et al.,J.Exp.Bot.2008,59:2417-2424)的GUS上游的HindIII和Sma I位点,得到的重组载体即为pGluB-3-nos;以水稻台中65的基因组DNA为模板,以GluC正向引物5’-GGGAAGCTTGTTCAAGATTTATTTTTGG-3’(HindIII);GluC反向引物5’-ACGCGTCGACAGTTATTCACTTAGTTTCCC-3’(Sal I)为引物,PCR扩增得到GluC启动子,将GluC启动子用HindIII和Sal I双酶切,插入到pGPTV-35S-HPT的GUS上游的HindIII和Sal I位点,得到的重组载体即为pGluC-nos。pGPTV-35S-HPT以GUS为外源基因,nos为终止子。The GluB-3 reverse primer 5'AAA CCCGGG AGCTTTCTGTATATGCTAATG-3'(Sma I) was used as a primer, and the GluB-3 promoter was amplified by PCR. The GluB-3 promoter was double digested with HindIII and Sma I, and inserted into pGPTV- 35S-HPT (Qu et al., J.Exp.Bot.2008, 59:2417-2424) upstream of the GUS HindIII and SmaI sites, the resulting recombinant vector is pGluB-3-nos; rice Taichung 65 GluC forward primer 5'-GGG AAGCTT GTTCAAGATTTATTTTTGG-3'(HindIII); GluC reverse primer 5'-ACGC GTCGAC AGTTATTCACTTAGTTTCCC-3'(Sal I) was used as primer, and the GluC primer was amplified by PCR The GluC promoter was double digested with HindIII and Sal I, and inserted into the HindIII and Sal I sites upstream of the GUS of pGPTV-35S-HPT, and the resulting recombinant vector was pGluC-nos. pGPTV-35S-HPT uses GUS as the exogenous gene and nos as the terminator.

将tGluA-2分别构建到pBI221(Chen et al.,Mol.Breed.2003,11:287-293)和pUbi-221的Sac I和EcoR I双酶切识别位点之间构建瞬时表达载体p35S-tGluA-2(其结构示意图如图3C所示)和pUbi-tGluA-2(其结构示意图如图3D所示)。其中pUbi-221是将pBI221的35S启动子替换为Ubiquitin启动子得到的重组载体。tGluA-2 was constructed between pBI221 (Chen et al., Mol. Breed.2003, 11: 287-293) and pUbi-221 between the Sac I and EcoR I double restriction recognition sites to construct the transient expression vector p35S- tGluA-2 (the schematic diagram of which is shown in FIG. 3C ) and pUbi-tGluA-2 (the schematic diagram of which is shown in FIG. 3D ). Among them, pUbi-221 is a recombinant vector obtained by replacing the 35S promoter of pBI221 with the Ubiquitin promoter.

将以上得到的4种重组载体在PCR鉴定的基础上利用Sac I和EcoR I进行双酶切鉴定,得到含有728bp的tGluA-2片段,如图4所示。The four recombinant vectors obtained above were identified by double enzyme digestion with Sac I and EcoRI on the basis of PCR identification, and a tGluA-2 fragment containing 728bp was obtained, as shown in Figure 4.

2、转pGluB-3-tGluA-2、pGluC-tGluA-2、pGluB-3-nos及pGluC-nos水稻再生植株的获得2. Obtainment of regenerated rice plants transformed with pGluB-3-tGluA-2, pGluC-tGluA-2, pGluB-3-nos and pGluC-nos

构建完成的pGluB-3-tGluA-2、pGluC-tGluA-2表达载体经过酶切与测序验证其正确性后,利用冻融法分别导入农杆菌EHA105中,具体方法如下:吸取7μl表达载体质粒加入100μl EHA105农杆菌感受态细胞中,轻弹混匀后置于液氮中冷冻7min,之后转入37℃水浴中静置3min,然后加入800ulYEB液体培养基于28℃静置恢复培养3~5小时,取400μl菌液涂布于YEB抗性平板上(卡那霉素50mg/L,利福平Rif50mg/L),于28℃倒置培养2~3天。挑取少许农杆菌单菌落进行目标基因的菌落PCR检测后将阳性菌落在YEB抗性平板上划线扩繁培养,利用农杆菌侵染法转化水稻品种kitaake的愈伤组织,用潮霉素筛选抗性愈伤,并进一步培养分化成幼苗后移栽温室。After the constructed pGluB-3-tGluA-2 and pGluC-tGluA-2 expression vectors were digested and sequenced to verify their correctness, they were respectively introduced into Agrobacterium EHA105 by freeze-thawing method. In 100μl EHA105 Agrobacterium competent cells, lightly flick and mix well, freeze in liquid nitrogen for 7min, then transfer to 37℃ water bath and let stand for 3min, then add 800ulYEB liquid culture based on 28℃ for 3-5 hours to recover and cultivate. Take 400 μl of the bacterial liquid and spread it on the YEB resistance plate (Kanamycin 50 mg/L, Rifampicin Rif 50 mg/L), and culture it upside down at 28°C for 2 to 3 days. Pick a few single colonies of Agrobacterium for colony PCR detection of the target gene, and then streak the positive colonies on the YEB resistance plate for multiplication and culture, use the Agrobacterium infection method to transform the callus of rice variety kitaake, and screen with hygromycin Resistant calluses were further cultured and differentiated into seedlings, and then transplanted to the greenhouse.

利用潮霉素筛选方法(按照文献Hiei et al.,Plant J.1994,6:271-282所述方法进行),获得14株T0代转pGluB-3-tGluA-2水稻植株及17株T0代转pGluC-tGluA-2水稻植株。利用PCR方法对上述筛选得到的转pGluB-3-tGluA-2水稻及转pGluC-tGluA-2水稻进行PCR分子检测,PCR引物为tGluA-2和GUS基因序列的嵌合引物,即:tGluA-2序列反向引物tGluA-2 EcoR:5′-AGAATTCGAATTCGGAAGCTCACTT-3′和GUS序列内部的正向引物GUSF185:5′-TCGTCGGTGAACAGGTATGG-3′。PCR反应程序为:94℃预变性5min,然后94℃30sec,55℃30sec,72℃1min,30个循环,最后72℃10min。PCR扩增得到0.9kb的目的条带即为检测阳性(如图5所示)。Using the hygromycin screening method (according to the method described in the literature Hiei et al., Plant J.1994, 6: 271-282), 14 T 0 generation transgenic pGluB-3-tGluA-2 rice plants and 17 T The 0th generation was transformed into pGluC-tGluA-2 rice plants. Use the PCR method to carry out PCR molecular detection on the transpGluB-3-tGluA-2 rice and transpGluC-tGluA-2 rice obtained by the above screening, and the PCR primer is a chimeric primer of tGluA-2 and GUS gene sequence, namely: tGluA-2 Sequence reverse primer tGluA-2 EcoR: 5'-A GAATTC GAATTCGGAAGCTCACTT-3' and forward primer GUSF185 inside the GUS sequence: 5'-TCGTCGGTGAACAGGTATGG-3'. The PCR reaction program was: pre-denaturation at 94°C for 5 minutes, followed by 30 cycles at 94°C for 30 sec, 55°C for 30 sec, 72°C for 1 min, and finally 72°C for 10 min. A target band of 0.9 kb obtained through PCR amplification is positive for detection (as shown in FIG. 5 ).

结果表明14株转pGluB-3-tGluA-2植株(表示为Kitaake/pGluB-3-tGluA-2)PCR检测均呈阳性,17株转pGluC-tGluA-2植株(表示为Kitaake/pGluC-tGluA-2)PCR检测均呈阳性。The results showed that 14 pGluB-3-tGluA-2 plants (expressed as Kitaake/pGluB-3-tGluA-2) were all positive in PCR detection, and 17 plants transformed with pGluC-tGluA-2 (expressed as Kitaake/pGluC-tGluA- 2) PCR tests were all positive.

按照上述方法,将pGluB-3-nos、pGluC-nos分别转入野生型水稻Kitaake,得到9株转pGluB-3-nos的阳性植株(表示为Kitaake/pGluB-3-nos),10株转pGluC-nos的阳性植株(表示为Kitaake/pGluC-nos)。转pGluB-3-nos和pGluC-nos的水稻植株的PCR检测方法:以tnos序列反向引物tnosR:5′-GATCTAGTAACATAGATGAC-3′和GUS序列内部的正向引物GUSF185:5′-TCGTCGGTGAACAGGTATGG-3′为引物,扩增tnos和GUS基因的嵌合序列,得到500bp的目的条带即为阳性转化株。According to the above method, pGluB-3-nos and pGluC-nos were respectively transformed into wild-type rice Kitaake to obtain 9 positive plants transformed with pGluB-3-nos (expressed as Kitaake/pGluB-3-nos), and 10 plants transformed with pGluC -nos positive plants (indicated as Kitaake/pGluC-nos). PCR detection method of rice plants transfected with pGluB-3-nos and pGluC-nos: tnos sequence reverse primer tnosR: 5′-GATCTAGTAACATAGATGAC-3′ and GUS sequence internal forward primer GUSF185: 5′-TCGTCGGTGAACAGGTATGG-3′ As primers, amplify the chimeric sequences of tnos and GUS genes, and obtain the target band of 500bp, which is the positive transformant.

T0代转基因植株所结的种子和由该种子长成的植株为T1代,依此类推,T2、T3分别表示转基因植株第2代和第3代。The seeds produced by the transgenic plants of the T 0 generation and the plants grown from the seeds are the T 1 generation, and so on, T 2 and T 3 represent the second and third generation of the transgenic plants, respectively.

4、转p35S-tGluA-2、pUbi-tGluA-2、pBI221及pUbi-221原生质体的获得4. Obtaining of p35S-tGluA-2, pUbi-tGluA-2, pBI221 and pUbi-221 protoplasts

通过PEG介导的方法将p35S-tGluA-2、pUbi-tGluA-2、pBI221及pUbi-221分别转入用野生型水稻Kitaake的黄化苗制成的原生质体中(按照文献Chen et al,Mol PlantPathol.2006,7:417-427),每个载体三次重复,28℃温育14-16小时。By PEG-mediated method, p35S-tGluA-2, pUbi-tGluA-2, pBI221 and pUbi-221 were respectively transferred into the protoplasts made from the etiolated seedlings of wild-type rice Kitaake (according to the literature Chen et al, Mol PlantPathol. 2006, 7: 417-427), in triplicate for each vector, incubated at 28°C for 14-16 hours.

实施例3、水稻种子谷蛋白GluA-2基因终止子(tGluA-2)的功能验证Example 3, Functional Verification of Rice Seed Glutenin GluA-2 Gene Terminator (tGluA-2)

1、T0代转基因水稻的GUS组织化学检测1. GUS histochemical detection of T0 transgenic rice

对PCR检测为阳性的转基因水稻Kitaake/pGluB-3-nos和Kitaake/pGluB-3-tGluA-2的T0代植株进行组织化学染色,以未转基因的野生型水稻Kitaake植株为对照。具体步骤为:将转基因水稻Kitaake/pGluB-3-nos和Kitaake/pGluB-3-tGluA-2的T0代植株和未转基因的野生型水稻Kitaake植株的部分叶片、根、茎杆组织切成小块;将开花后17天的灌浆期种子用解剖刀从中部纵切开。将处理好的样品浸泡于GUS染色反应液(0.1M磷酸钠缓冲液(pH 7.0),10mM Na2-EDTA(pH7.0),5mM铁氰化钾,5mM亚铁氰化钾,1.0mM X-Gluc,0.1%Triton X-100),37℃反应0.5-4小时。70%乙醇中保存、观察。体视镜下观察并拍照。结果如图6、图7、图8所示:未转基因的野生型水稻Kitaake植株的根、叶片、茎杆和开花后17天的种子的糊粉层和亚糊粉层均未观察到GUS表达;T0代转基因水稻Kitaake/pGluB-3-nos和Kitaake/pGluB-3-tGluA-2植株的根、叶片、茎杆均未观察到GUS表达,T0代转基因水稻Kitaake/pGluB-3-nos开花后17天的种子仅在糊粉层和亚糊粉层有所表达,而T0代转基因水稻Kitaake/pGluB-3-tGluA-2的糊粉层、亚糊粉层及整个胚乳蓝色均清晰可见表达。结果表明:tGluA-2与nos终止子相比增强了β-葡萄糖苷酸酶(GUS)报告基因在水稻种子胚乳中的表达强度,但并未改变GUS报告基因在胚乳中的特异性表达。Histochemical staining was performed on T 0 plants of transgenic rice Kitaake/pGluB-3-nos and Kitaake/pGluB-3-tGluA-2 that were positive in PCR detection, and wild-type rice Kitaake plants that were not transgenic were used as controls. The specific steps are: cutting the T 0 generation plants of transgenic rice Kitaake/pGluB-3-nos and Kitaake/pGluB-3-tGluA-2 and part of the leaves, roots and stem tissues of non-transgenic wild-type rice Kitaake plants into small pieces block; the seeds at the filling stage 17 days after flowering were cut longitudinally from the middle with a scalpel. Soak the treated sample in GUS staining reaction solution (0.1M sodium phosphate buffer (pH 7.0), 10mM Na 2 -EDTA (pH 7.0), 5mM potassium ferricyanide, 5mM potassium ferrocyanide, 1.0mM X -Gluc, 0.1% Triton X-100), react at 37°C for 0.5-4 hours. Store and observe in 70% ethanol. Observe and take pictures under the stereoscope. The results are shown in Figure 6, Figure 7, and Figure 8: GUS expression was not observed in the aleurone layer and sub-aleurone layer of the roots, leaves, stems, and seeds 17 days after flowering of the non-transgenic wild-type rice Kitaake plants ; GUS expression was not observed in the roots, leaves, and stems of T 0 transgenic rice Kitaake/pGluB-3-nos and Kitaake/pGluB-3-tGluA-2 plants, and T 0 transgenic rice Kitaake/pGluB-3-nos Seeds 17 days after flowering were only expressed in the aleurone layer and sub-aleurone layer, while the aleurone layer, sub-aleurone layer and the whole endosperm of T 0 transgenic rice Kitaake/pGluB-3-tGluA-2 were blue. clearly visible expression. The results showed that tGluA-2 enhanced the expression intensity of β-glucuronidase (GUS) reporter gene in rice seed endosperm compared with nos terminator, but did not change the specific expression of GUS reporter gene in endosperm.

2、T0及T1代转基因水稻的GUS荧光活性测定2. Determination of GUS fluorescence activity of T 0 and T 1 transgenic rice

对PCR检测为阳性的转基因水稻Kitaake/pGluB-3-nos和Kitaake/pGluB-3-tGluA-2的T0代植株开花后17天的灌浆期种子、Kitaake/pGluC-nos和Kitaake/pGluC-tGluA-2的T0代植株开花后17天的灌浆期种子及Kitaake/pGluB-3-nos和Kitaake/pGluB-3-tGluA-2的T1代植株开花后17天的灌浆期种子进行GUS定量分析。方法按照Jefferson等的荧光检测方法(Jefferson,Plant Mol.Biol.Report,1987,5:387-405)进行。具体为:每株取3粒种子,分别置于3个1.5ml eppendorf管中,用研棒将种子碾碎,加入200μl抽提液(50mM磷酸钠缓冲溶液(pH7.0),10mMβ-巯基乙醇,10mM Na2EDTA(pH 8.0),0.1%SDS,0.1%Triton X-100),振荡混匀。4℃13,000rpm离心5min,取上清于新管中。10μl上清,加入90μl反应液(1mM 4-MUG溶于GUS抽提液),37℃反应60分钟,加入900μl终止液(0.2M Na2CO3),室温终止反应。以4-MU做标准曲线,用F-4500(日立)型荧光分光光度计在360nm激发波长和460nm吸收波长下检测相对4-MU含量。以牛血清白蛋白为对照,利用BIO-RadProtein Assay KitII(购自美国伯乐公司,编号GPR6611)测定蛋白质含量。Transgenic rice Kitaake/pGluB-3-nos and Kitaake/pGluB-3-tGluA-2 transgenic rice Kitaake/pGluB-3-nos and Kitaake/pGluB-3-tGluA-2 T 0 generation plants 17 days after flowering Seeds at filling stage, Kitaake/pGluC-nos and Kitaake/pGluC-tGluA GUS quantitative analysis of the seeds of the T 0 generation plants of -2 at the filling stage 17 days after flowering and the seeds of the T 1 generation plants of Kitaake/pGluB-3-nos and Kitaake/pGluB-3-tGluA-2 at the filling stage 17 days after flowering . The method was carried out according to the fluorescence detection method of Jefferson et al. (Jefferson, Plant Mol. Biol. Report, 1987, 5: 387-405). Specifically: take 3 seeds from each plant, place them in 3 1.5ml eppendorf tubes, crush the seeds with a pestle, add 200 μl of extract (50mM sodium phosphate buffer solution (pH7.0), 10mM β-mercaptoethanol , 10mM Na 2 EDTA (pH 8.0), 0.1% SDS, 0.1% Triton X-100), shake and mix. Centrifuge at 13,000 rpm at 4°C for 5 min, and take the supernatant into a new tube. 10 μl of supernatant was added to 90 μl of reaction solution (1 mM 4-MUG dissolved in GUS extract), reacted at 37°C for 60 minutes, added 900 μl of stop solution (0.2M Na 2 CO 3 ), and terminated at room temperature. 4-MU was used as a standard curve, and the relative 4-MU content was detected with an F-4500 (Hitachi) fluorescence spectrophotometer at an excitation wavelength of 360nm and an absorption wavelength of 460nm. Using bovine serum albumin as a control, the protein content was determined using BIO-Rad Protein Assay Kit II (purchased from Bio-Rad, USA, No. GPR6611).

对转基因株系T0代所结种子进行GUS活性测定结果如图9和图11所示。在14个Kitaake/pGluB-3-tGluA-2的T0株系中(图9),GUS活性最高值为53.46pmol 4-MUmin-1μg-1蛋白,最低值为18.24pmol 4-MU min-1μg-1蛋白,平均值为27.5±9.2pmol4-MU min-1μg-1蛋白。而9个对照Kitaake/pGluB-3-nos的T0株系中,GUS活性最高值为17.38pmol 4-MU min-1μg-1蛋白,最低值为2.39pmol 4-MU min-1μg-1蛋白,平均值为11.2±5.0pmol 4-MU min-1μg-1蛋白。转pGluB-3-tGluA-2载体的14个株系GUS表达量均大于转pGluB-3-nos植株最大值,前者最大值是后者最大值的3.1倍,是其最小值的22.33倍,平均值为对照平均值的2.5倍。Figure 9 and Figure 11 show the results of the GUS activity assay on the seeds of the transgenic line T 0 generation. Among the 14 T 0 strains of Kitaake/pGluB-3-tGluA-2 (Figure 9), the highest value of GUS activity was 53.46pmol 4-MUmin -1 μg -1 protein, and the lowest value was 18.24pmol 4-MU min - 1 μg -1 protein, the average value is 27.5±9.2 pmol4-MU min -1 μg -1 protein. In the 9 control Kitaake/pGluB-3-nos T 0 strains, the highest value of GUS activity was 17.38pmol 4-MU min -1 μg -1 protein, and the lowest value was 2.39pmol 4-MU min -1 μg -1 Protein, with an average of 11.2±5.0 pmol 4-MU min -1 μg -1 protein. The expression levels of GUS in the 14 lines transfected with pGluB-3-tGluA-2 vector were all greater than the maximum value of the pGluB-3-nos transfected plants, the former maximum value was 3.1 times the latter maximum value, and the latter was 22.33 times the minimum value. The value is 2.5 times of the average value of the control.

在17个Kitaake/pGluC-tGluA-2的T0株系中(图11),GUS活性最高值为76.12pmol4-MU min-1μg-1蛋白,最低值为31.74pmol 4-MU min-1μg-1蛋白,平均值为52.9±12.4pmol 4-MU min-1μg-1蛋白。而10个对照Kitaake/pGluC-nos的T0株系中,GUS活性最高值为43.55pmol 4-MU min-1μg-1蛋白,最低值为6.46pmol 4-MU min-1μg-1蛋白,平均值为20.38±10.64pmol 4-MU min-1μg-1蛋白。前者最大值是后者最大值的1.75倍,是其最小值的11.8倍,平均值为对照平均值的2.6倍。Among the 17 T 0 lines of Kitaake/pGluC-tGluA-2 (Figure 11), the highest value of GUS activity was 76.12pmol 4-MU min -1 μg -1 protein, and the lowest value was 31.74pmol 4-MU min -1 μg -1 protein with an average of 52.9±12.4 pmol 4-MU min -1 μg -1 protein. In the 10 control Kitaake/pGluC-nos T 0 strains, the highest value of GUS activity was 43.55pmol 4-MU min -1 μg -1 protein, the lowest value was 6.46pmol 4-MU min -1 μg -1 protein, The mean value was 20.38±10.64 pmol 4-MU min -1 μg -1 protein. The maximum value of the former is 1.75 times of the maximum value of the latter, 11.8 times of its minimum value, and the average value is 2.6 times of the control average value.

对转基因株系部分T1代所结种子进行GUS活性测定结果如图10所示。8个Kitaake/pGluB-3-tGluA-2的T1株系GUS活性最高值为55.45pmol 4-MU min-1μg-1蛋白,最低值为16.75pmol 4-MU min-1μg-1蛋白,平均值为31.6±12.8pmol 4-MU min-1μg-1蛋白。而7个对照Kitaake/pGluB-3-nos的T1株系中,则GUS活性最高值为21.52pmol4-MU min-1μg-1蛋白,最低值为2.82pmol 4-MU min-1μg-1蛋白,平均值为9.9±5.8pmol4-MU min-1μg-1蛋白。前者平均值为对照的3.17倍。Figure 10 shows the results of the GUS activity assay on the seeds produced by the T1 generation of the transgenic lines. The highest GUS activity of 8 Kitaake/pGluB-3-tGluA-2 T 1 strains was 55.45pmol 4-MU min -1 μg -1 protein, the lowest was 16.75pmol 4-MU min -1 μg -1 protein, The mean value was 31.6±12.8 pmol 4-MU min −1 μg −1 protein. In the 7 control Kitaake/pGluB-3-nos T 1 strains, the highest value of GUS activity was 21.52pmol4-MU min -1 μg -1 protein, and the lowest value was 2.82pmol 4-MU min -1 μg -1 Protein, the average value was 9.9±5.8pmol4-MU min -1 μg -1 protein. The average value of the former is 3.17 times that of the control.

结果表明,tGluA-2与nos终止子相比增强了外源基因在水稻胚乳中的表达水平。The results showed that tGluA-2 enhanced the expression level of exogenous genes in rice endosperm compared with the nos terminator.

3、水稻原生质体GUS荧光活性测定3. Determination of GUS fluorescence activity of rice protoplasts

对转p35S-tGluA-2及pBI221温育14小时的野生型水稻Kitaake原生质体提取GUS进行活性测定(图12所示)。1为转pBI221的三次重复平均值0.51pmol 4-MU min-1μg-1蛋白,而2、3、4则分别为转p35S-tGluA-2的三次测定值1.48、1.28及1.08pmol 4-MUmin-1μg-1蛋白,分别为对照的2.90、2.51及2.12倍。The activity of GUS extracted from wild-type rice Kitaake protoplasts transformed with p35S-tGluA-2 and pBI221 and incubated for 14 hours was measured (shown in FIG. 12 ). 1 is the average value of 0.51pmol 4-MU min -1 μg -1 protein of three repetitions of pBI221 transfection, while 2, 3 and 4 are the three measured values of 1.48, 1.28 and 1.08pmol 4-MUmin of p35S-tGluA-2 respectively -1 μg -1 protein, respectively 2.90, 2.51 and 2.12 times of the control.

对转pUbi-tGluA-2及pUbi-221温育14小时的野生型水稻Kitaake原生质体提取GUS进行活性测定(图13所示)。1为转pUbi-221的三次重复平均值9.22pmol 4-MUmin-1μg-1蛋白,而2、3、4则分别为转pUbi-tGluA-2的三次测定值24.0、21.86、20.82pmol 4-MU min-1μg-1蛋白,分别为对照的2.60、2.37及2.25倍。The activity of GUS extracted from wild-type rice Kitaake protoplasts incubated with pUbi-tGluA-2 and pUbi-221 for 14 hours was determined (shown in FIG. 13 ). 1 is the average value of 9.22pmol 4-MUmin -1 μg -1 protein of three repetitions of pUbi-221 transfection, while 2, 3 and 4 are the three measured values of 24.0, 21.86 and 20.82pmol 4-MUmin -1 of pUbi-tGluA-2 respectively MU min -1 μg -1 protein was 2.60, 2.37 and 2.25 times that of the control, respectively.

结果表明,tGluA-2与nos终止子相比增强了外源基因在水稻中的表达水平。The results showed that tGluA-2 enhanced the expression level of exogenous genes in rice compared with the nos terminator.

Claims (10)

1.DNA分子,其特征在于:所述DNA分子为如下1)或2)或3)的分子:1. DNA molecule, is characterized in that: described DNA molecule is following 1) or 2) or 3) molecule: 1)由序列表中序列1所示的核苷酸序列组成的DNA分子;1) A DNA molecule composed of the nucleotide sequence shown in Sequence 1 in the sequence listing; 2)与1)限定的DNA的序列至少具有70%、至少具有75%、至少具有80%、至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性的分子;2) at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97% of the DNA sequence defined in 1), Molecules with at least 98% or at least 99% homology; 3)在严格条件下与1)或2)限定的DNA序列杂交的分子。3) A molecule that hybridizes under stringent conditions to the DNA sequence defined in 1) or 2). 2.含有权利要求1所述DNA分子的重组载体、表达盒、转基因细胞系、重组菌或重组病毒。2. A recombinant vector, an expression cassette, a transgenic cell line, a recombinant bacterium or a recombinant virus containing the DNA molecule of claim 1. 3.根据权利要求2所述的表达盒,其特征在于:所述表达盒由启动子、由所述启动子启动转录的目的基因和位于所述目的基因下游的权利要求1所述的DNA分子组成。3. The expression cassette according to claim 2, characterized in that: the expression cassette consists of a promoter, a gene of interest for transcription initiated by the promoter, and the DNA molecule according to claim 1 positioned at the downstream of the gene of interest composition. 4.根据权利要求3所述的表达盒,其特征在于:所述启动子为组成型表达启动子或组织特异表达启动子,所述组织特异表达启动子为胚乳特异性表达启动子。4. The expression cassette according to claim 3, wherein the promoter is a constitutive expression promoter or a tissue-specific expression promoter, and the tissue-specific expression promoter is an endosperm-specific expression promoter. 5.根据权利要求3或4所述的表达盒,其特征在于:所述目的基因为蛋白编码基因和/或非蛋白编码基因;所述蛋白编码基因优选为品质改良基因;所述非蛋白编码基因为正义RNA基因和/或反义RNA基因。5. The expression cassette according to claim 3 or 4, characterized in that: the target gene is a protein-coding gene and/or a non-protein-coding gene; the protein-coding gene is preferably a quality-improving gene; the non-protein-coding gene The gene is a sense RNA gene and/or an antisense RNA gene. 6.一种培育转基因植物的方法,是将权利要求3-5中任一所述的表达盒导入目的植物中,得到所述目的基因表达水平高于将如下表达盒导入所述目的植物的转基因植物:将权利要求3所述的表达盒中的权利要求1所述的DNA分子替换为nos终止子得到的表达盒。6. A method for cultivating transgenic plants, which is to introduce the expression cassette described in any one of claims 3-5 into the plant of interest, and obtain the expression level of the gene of interest higher than that of the transgene that introduces the following expression cassette into the plant of interest Plant: an expression cassette obtained by replacing the DNA molecule of claim 1 in the expression cassette of claim 3 with a nos terminator. 7.根据权利要求6所述的方法,其特征在于:所述目的植物为单子叶植物或双子叶植物。7. The method according to claim 6, characterized in that: the target plant is a monocot or a dicot. 8.根据权利要求7所述的方法,其特征在于:所述单子叶植物为水稻,小麦,玉米,高粱或大麦,所述双子叶植物为大豆,油菜,棉花,烟草,马铃薯,甘薯或油桐。8. The method according to claim 7, characterized in that: the monocot is rice, wheat, corn, sorghum or barley, and the dicotyledon is soybean, rape, cotton, tobacco, potato, sweet potato or oil Tong. 9.权利要求1所述的DNA分子在培育转基因植物中的应用。9. The application of the DNA molecule according to claim 1 in cultivating transgenic plants. 10.权利要求1所述的DNA分子作为终止子的应用。10. Use of the DNA molecule of claim 1 as a terminator.
CN 201110198131 2011-07-15 2011-07-15 Rice seed glutelin GluA-2 gene terminator and application thereof Pending CN102277355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110198131 CN102277355A (en) 2011-07-15 2011-07-15 Rice seed glutelin GluA-2 gene terminator and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110198131 CN102277355A (en) 2011-07-15 2011-07-15 Rice seed glutelin GluA-2 gene terminator and application thereof

Publications (1)

Publication Number Publication Date
CN102277355A true CN102277355A (en) 2011-12-14

Family

ID=45103087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110198131 Pending CN102277355A (en) 2011-07-15 2011-07-15 Rice seed glutelin GluA-2 gene terminator and application thereof

Country Status (1)

Country Link
CN (1) CN102277355A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192813A1 (en) * 1999-08-18 2002-12-19 Timothy W. Conner Plant expression vectors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192813A1 (en) * 1999-08-18 2002-12-19 Timothy W. Conner Plant expression vectors

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《FEBS LETTERS》 19870831 Fumio Takaiwa et al. Nucleotide sequence of a rice glutelin gene 43-47 第221卷, 第1期 *
《Journal of Experimental Botany》 20081102 Taiji Kawakatsu et al. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm 4233-4245 第59卷, 第15期 *
《NCBI,Genbank》 20060222 Accesion: DQ195678.2 , *

Similar Documents

Publication Publication Date Title
CN102154289B (en) Corn drought inducible gene promoters and activity analysis thereof
CN103820445B (en) The qualification of one plant anther specific expression promoter and application
CN101063139B (en) A seed-specific high-efficiency promoter and its application
CN100562574C (en) Plant endosperm-specific promoter and its application
CN111154756B (en) Plant anther pollen late development specific expression promoter and application thereof
WO2015154689A1 (en) Identification and uses of plant anther-specific expression promoter ptaasg027
KR20250036967A (en) Plant regulatory elements and uses thereof
CN101532015A (en) Anther tapetum and pollen specific efficient promoter as well as application thereof
CN103261417A (en) Specific expression promoter of late development stage of plant pollens and use thereof
CN107058317B (en) A kind of pollen specific promoter and its application
CN102533761B (en) Pollen-specific promoter and expression vector and application thereof
CN109136257A (en) The identification and application of plant anther pollen development later period specific expressing promoter pOsLPS3
WO2015161744A1 (en) Identification and use of promoter ptaasg048 specifically expressed by plant anther
CN103540595B (en) Rice constitutive type promoter and application thereof
CN102260675B (en) Rice seed glutelin GluB-5 gene terminator and application thereof
CN102250892B (en) A kind of plant endosperm-specific expression promoter and application thereof
CN106148344B (en) A 5'UTR sequence with the activity of enhancing plant gene expression and its application
CN102250907B (en) Rice Seed Glutenin GluA-1 Gene Terminator and Its Application
CN102250908B (en) Rice seed 26kD globulin Glb-1 gene terminator and application thereof
CN106191063B (en) A kind of rice endosperm specific expression promoter pEnd1 and its application
CN103088022A (en) Plant-salt-induced expression promoter
CN102260677B (en) Rice Seed Glutenin GluC Gene Terminator and Its Application
CN103667291B (en) Derive from endosperm specificity expression promoter and the application thereof of paddy rice
CN102260674B (en) Glutelin GluB-4 gene terminator of rice seed and application thereof
CN102250906B (en) Rice seed glutelin GluD-1 gene terminator and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111214