CN102274740A - Novel method for preparing metal cyanide nanoparticles - Google Patents
Novel method for preparing metal cyanide nanoparticles Download PDFInfo
- Publication number
- CN102274740A CN102274740A CN 201110163884 CN201110163884A CN102274740A CN 102274740 A CN102274740 A CN 102274740A CN 201110163884 CN201110163884 CN 201110163884 CN 201110163884 A CN201110163884 A CN 201110163884A CN 102274740 A CN102274740 A CN 102274740A
- Authority
- CN
- China
- Prior art keywords
- nanoparticles
- metal
- nano
- cyanide
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种制备氰化金(AuCN),以及其它过渡金属氰化物(如AgCN,CuCN,Pt(CN)4,Pd(CN)2,Ru(CN)4等)纳米颗粒的绿色合成方法。将纳米金(或纳米银,纳米氧化银,纳米铜,纳米氧化铜,纳米钌,纳米铂,纳米钯等过渡金属纳米颗粒)负载于常规多孔载体(二氧化硅,氧化铝,氧化钛,碳,高分子等多孔材料),并与苯甲醛(或苯甲醇,双氧水)和乙腈混合,形成悬浊体系,在紫外光照下一步合成过渡金属氰化物纳米颗粒。产物分散均匀,结晶良好,粒径为1~100纳米。
The invention discloses a green synthesis method for preparing gold cyanide (AuCN) and other transition metal cyanide (such as AgCN, CuCN, Pt(CN) 4 , Pd(CN) 2 , Ru(CN) 4 , etc.) nanoparticles method. Nano-gold (or nano-silver, nano-silver oxide, nano-copper, nano-copper oxide, nano-ruthenium, nano-platinum, nano-palladium and other transition metal nanoparticles) is loaded on a conventional porous carrier (silica, alumina, titanium oxide, carbon , porous materials such as polymers), and mixed with benzaldehyde (or benzyl alcohol, hydrogen peroxide) and acetonitrile to form a suspension system, and synthesize transition metal cyanide nanoparticles in the next step of ultraviolet light irradiation. The product is uniformly dispersed, crystallized well, and the particle size is 1-100 nanometers.
Description
技术领域 technical field
本发明涉及一种金属氰化物纳米颗粒新的制备方法。 The invention relates to a new preparation method of metal cyanide nanoparticles.
背景技术 Background technique
氰化物是指化合物分子中含有氰基(-C≡N)的物质,根据与氰基连接的元素或基团是有机物还是无机物可把氰化物分成两大类,即有机氰化物和无机氰化物,前者称为腈,后者常简称为氰化物。氰化物是黄金工业的重要浸金溶剂,大部分黄金生产企业采用氰化法。其中具有代表性的氰化物为普鲁士蓝,氰化金等。 Cyanide refers to the substance containing cyano group (-C≡N) in the compound molecule. According to whether the element or group connected to the cyano group is organic or inorganic, cyanide can be divided into two categories, namely organic cyanide and inorganic cyanide. The former is called nitrile, and the latter is often referred to simply as cyanide. Cyanide is an important gold leaching solvent in the gold industry, and most gold production enterprises use cyanide. Among them, the representative cyanides are Prussian blue, gold cyanide and so on.
这里以氰化金为例。氰化金化学式为AuCN,分子量222.98,比重7.12,英文名称Gold(Ⅰ) Cyanide,是一种链状的无机聚合物,为六方晶系柠檬黄色细小结晶,在干燥的空气中稳定,但受热分解而游离出金,潮湿状态时遇光不稳定,难溶于水及稀酸,但溶于碱金属氰化物、氢氧化钾等溶液或氨水,也溶于硫代硫酸钠或硫化铵的溶液中。氰化金被广泛应用于化学分析及电镀、电子等工业,1783年,Carl Wilhelm Scheele发现金可以溶解在氰化钠中,并得到相应的金的氰盐,这个反应后来被称为“Elsner Equation”,其反应途径如下: Here we take gold cyanide as an example. The chemical formula of gold cyanide is AuCN, the molecular weight is 222.98, the specific gravity is 7.12, and the English name is Gold(I) Cyanide. It is a chain-like inorganic polymer, and it is a hexagonal lemon yellow fine crystal. It is stable in dry air, but it decomposes when heated. And free gold is unstable when exposed to light in a wet state, insoluble in water and dilute acids, but soluble in solutions such as alkali metal cyanide, potassium hydroxide or ammonia water, and also soluble in solutions of sodium thiosulfate or ammonium sulfide . Gold cyanide is widely used in chemical analysis, electroplating, electronics and other industries. In 1783, Carl Wilhelm Scheele discovered that gold can be dissolved in sodium cyanide to obtain the corresponding gold cyanide salt. This reaction was later called "Elsner Equation ", and its reaction pathway is as follows:
4 Au + 8 NaCN + O2 + 2 H2O → 4 Na[Au(CN)2] + 4 NaOH 4 Au + 8 NaCN + O 2 + 2 H 2 O → 4 Na[Au(CN) 2 ] + 4 NaOH
为了得到相应的AuCN固体沉淀,需加酸进行二次反应: In order to obtain the corresponding AuCN solid precipitation, it is necessary to add acid for a second reaction:
KAu(CN)2 + HCl = AuCN + HCN + KCl KAu(CN) 2 + HCl = AuCN + HCN + KCl
在冶金行业,这个反应过程被称作MacArthur-Forrest process。因为得到的产物(如Na[Au(CN)2]和K[Au(CN)2等)都能溶于水,因而有利于提炼高品质的金,银等贵重金属。但由于这个反应涉及剧毒的氰化物,如NaCN,HCN等,会对环境造成很大的污染,因此很多国家已经明令禁止用此类化学反应提炼金矿。到目前为止,世界上还未发展出一种可以替代上述过程的绿色而简便的一步合成化学方法用于AuCN的制备。 In the metallurgical industry, this reaction process is called the MacArthur-Forrest process. Because the obtained products (such as Na[Au(CN) 2 ] and K[Au(CN) 2 , etc.) are soluble in water, it is beneficial to extract high-quality gold, silver and other precious metals. However, since this reaction involves highly toxic cyanide, such as NaCN, HCN, etc., it will cause great pollution to the environment, so many countries have banned the use of such chemical reactions to extract gold ore. So far, a green and facile one-step synthetic chemistry method for the preparation of AuCN that can replace the above process has not been developed in the world.
在理论研究方面,已经有很多学者对AuCN的晶体作出了分析。由于氰化物一般为剧毒产品,人们很少考虑到它们做为催化剂的应用。最近,Oyama等人发现Na[Au(CN)2]具有类似于Pt的催化加氢效应(ChemCatChem 2010, 2, 1582 – 1586),引起了催化界的兴趣。但是,到目前为止,尚未有人公开报道AuCN纳米颗粒的制备及其在催化等领域的应用。此外,Au的氰化物还可以用于生物制药及医药方面,比如关节炎的治疗,甚至还有作为治疗癌症和艾滋病的前景(Chem. Rev. 1999, 99, 2589−2600)。 In terms of theoretical research, many scholars have analyzed the crystal of AuCN. Since cyanides are generally highly toxic products, little consideration has been given to their use as catalysts. Recently, Oyama et al. found that Na[Au(CN) 2 ] has a catalytic hydrogenation effect similar to that of Pt (ChemCatChem 2010, 2, 1582 – 1586), which aroused the interest of the catalytic community. However, so far, no one has publicly reported the preparation of AuCN nanoparticles and their applications in catalysis and other fields. In addition, Au cyanide can also be used in biopharmaceuticals and medicine, such as the treatment of arthritis, and even has the prospect of treating cancer and AIDS (Chem. Rev. 1999, 99, 2589−2600).
发明内容 Contents of the invention
由于采用MacArthur-Forrest process无法一步合成AuCN(AgCN,CuCN,Pt(CN)4,Pd(CN)2,Ru(CN)4等)纳米结构,本发明的目的在于提供一种一步合成负载型金属氰化物纳米颗粒。 Since the MacArthur-Forrest process cannot be used to synthesize AuCN (AgCN, CuCN, Pt(CN) 4 , Pd(CN) 2 , Ru(CN) 4 , etc.) Cyanide nanoparticles.
本发明的具体技术方案如下: Concrete technical scheme of the present invention is as follows:
本发明是一种制备金属氰化物纳米颗粒的新方法,该方法的制备步骤如下: The present invention is a kind of new method for preparing metal cyanide nano-particles, and the preparation steps of this method are as follows:
1)将不同摩尔比的负载型金属(或金属氧化物)纳米颗粒、乙腈、苯甲醛(或苯甲醇,双氧水)混合在一起,相对含量摩尔比为:金属(金属氧化物)纳米颗粒/苯甲醛(或苯甲醇,双氧水)/乙腈= 0.1~2.0/1~10/100; 1) Mix supported metal (or metal oxide) nanoparticles, acetonitrile, and benzaldehyde (or benzyl alcohol, hydrogen peroxide) in different molar ratios, and the relative content molar ratio is: metal (metal oxide) nanoparticles/benzene Formaldehyde (or benzyl alcohol, hydrogen peroxide) / acetonitrile = 0.1~2.0/1~10/100;
2)将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为1~20小时; 2) Place the above suspension under a 350-watt mercury lamp, stir and illuminate for 1 to 20 hours;
3)产物经过离心、干燥处理后得到负载型金属氰化物纳米颗粒。 3) The product is centrifuged and dried to obtain loaded metal cyanide nanoparticles.
本发明所述的金属或金属氧化物纳米颗粒是Au,Ag,Ag2O,Cu,Cu2O,Ru,Pt或Pd。 The metal or metal oxide nanoparticles in the present invention are Au, Ag, Ag 2 O, Cu, Cu 2 O, Ru, Pt or Pd.
本发明所述的金属或金属氧化物纳米颗粒直径为1~50纳米的纳米颗粒,并负载于常规的多孔载体上,所述的多孔载体是二氧化硅,氧化铝,氧化钛,碳或高分子多孔材料。 The metal or metal oxide nanoparticles described in the present invention are nanoparticles with a diameter of 1 to 50 nanometers, and are loaded on a conventional porous carrier, and the porous carrier is silicon dioxide, aluminum oxide, titanium oxide, carbon or high Molecularly porous materials.
本发明所述的纳米金属氰化物化学式为AuCN、AgCN,CuCN,Pt(CN)4,Pd(CN)2或Ru(CN)4,粒径为1~100纳米。 The chemical formula of the nano metal cyanide in the present invention is AuCN, AgCN, CuCN, Pt(CN) 4 , Pd(CN) 2 or Ru(CN) 4 , and the particle diameter is 1-100 nanometers.
本发明的有益效果如下:1)本发明摒弃了传统冶金行业中广泛使用的剧毒物质,如NaCN和KCN,对环境不造成污染,反应历程简单并且极为绿色;2)在本发明制备氰化物的过程中,使用了绿色的原料,乙腈和苯甲醇(或苯甲醛,双氧水);3)本发明不涉及有毒气体,氢氰酸(HCN)的产生;4)本发明反应条件温和,即室温下进行紫外光照;5)本发明可以在多孔材料上一步合成负载型金属氰化物纳米粒子,粒径可控;6)本发明不仅可以使用零价金属为反应物,也可以使用高价金属氧化物作为反应物,制备金属氰化物纳米粒子。 The beneficial effects of the present invention are as follows: 1) The present invention abandons the highly toxic substances widely used in the traditional metallurgical industry, such as NaCN and KCN, does not pollute the environment, and the reaction process is simple and extremely green; 2) The cyanide is prepared in the present invention In the process, green raw materials, acetonitrile and benzyl alcohol (or benzaldehyde, hydrogen peroxide) are used; 3) The present invention does not involve the generation of toxic gas, hydrocyanic acid (HCN); 4) The reaction conditions of the present invention are mild, that is, room temperature 5) The present invention can synthesize supported metal cyanide nanoparticles in one step on the porous material, and the particle size is controllable; 6) The present invention can not only use zero-valent metals as reactants, but also high-valent metal oxides As reactants, metal cyanide nanoparticles were prepared.
附图说明 Description of drawings
图1是实施例1所得AuCN纳米颗粒透射电镜照片; Fig. 1 is the transmission electron micrograph of the AuCN nanoparticle gained in embodiment 1;
图2是实施例2所得AuCN纳米颗粒的XRD图谱;
Fig. 2 is the XRD collection of illustrative plates of
图3是实施例3所得AuCN纳米颗粒的XPS图谱; Fig. 3 is the XPS collection of illustrative plates of embodiment 3 gained AuCN nanoparticles;
图4是实施例4所得AgCN纳米颗粒的XRD图谱。 Fig. 4 is the XRD spectrum of the AgCN nanoparticles obtained in Example 4.
具体实施方式 Detailed ways
本发明是一种制备金属氰化物纳米颗粒的新方法,其具体步骤如下: The present invention is a kind of novel method for preparing metal cyanide nano-particles, and its specific steps are as follows:
1、首先将纳米金(或其它金属/金属氧化物纳米颗粒)负载于多孔载体上(二氧化硅,氧化铝,氧化钛,碳,高分子等多孔材料); 1. First, load nano-gold (or other metal/metal oxide nanoparticles) on a porous carrier (porous materials such as silica, alumina, titanium oxide, carbon, and polymer);
2、将上述材料与乙腈、苯甲醛(或苯甲醇,双氧水)混合在一起,控制金属质量为1~500毫克;乙腈的摩尔量为0.0125~0.125摩尔;苯甲醛(或苯甲醇,双氧水)的浓度为0.008~0.08摩尔/升。搅拌; 2. Mix the above materials with acetonitrile and benzaldehyde (or benzyl alcohol, hydrogen peroxide), and control the metal mass to 1-500 mg; the molar weight of acetonitrile is 0.0125-0.125 moles; The concentration is 0.008-0.08 mol/liter. stir;
3、将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为1~20小时; 3. Place the above suspension under a 350-watt mercury lamp, stir and illuminate, and the illumination time is 1 to 20 hours;
4、产物经过离心、干燥处理后得到负载型纳米氰化金(或其它金属氰化物)。 4. The product is centrifuged and dried to obtain loaded nano-gold cyanide (or other metal cyanide).
下面通过具体实施例对本发明的技术方案作进一步说明。 The technical solutions of the present invention will be further described below through specific examples.
实施例Example 11
首先将10 mg纳米金负载的介孔二氧化硅、2 mL乙腈、100 µmol苯甲醛混合在一起,搅拌;将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为2小时,固体的颜色由红色逐渐转变为绿色;产物经过离心、干燥处理后得到纳米氰化金负载的介孔二氧化硅。图1是该纳米氰化金透射电镜照片,从中可以得到该产物是纳米颗粒,分散均匀,粒径为10~30纳米。 First, mix 10 mg nano-gold-loaded mesoporous silica, 2 mL acetonitrile, and 100 μmol benzaldehyde, and stir; place the above suspension under a 350-watt mercury lamp, stir and illuminate, and the illumination time is 2 hours , the color of the solid gradually changed from red to green; the product was centrifuged and dried to obtain nano-gold cyanide-loaded mesoporous silica. Fig. 1 is this nano-gold cyanide TEM photo, from which it can be obtained that the product is nanoparticles, uniformly dispersed, and the particle diameter is 10-30 nanometers.
实施例Example 22
将100 mg负载型纳米金、4 mL乙腈、200 µmol苯甲醇混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为5小时,固体的颜色由红色逐渐转变为绿色;产物经过离心、干燥处理后得到负载型纳米氰化金。图2为该纳米氰化金的XRD图谱,产物是纯的氰化金,化学式为AuCN。 Mix 100 mg of supported gold nanoparticles, 4 mL of acetonitrile, and 200 μmol of benzyl alcohol together and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate for 5 hours, and the color of the solid is determined by The red color gradually changed to green; the product was centrifuged and dried to obtain loaded nano-gold cyanide. Figure 2 is the XRD spectrum of the nano-gold cyanide, the product is pure gold cyanide, the chemical formula is AuCN.
实施例Example 33
将500 mg负载型纳米金、5 mL乙腈、500 µmol双氧水混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为10小时,固体的颜色由红色逐渐转变为绿色,甚至白色;产物经过离心、干燥处理后得到负载型纳米氰化金。图3为AuCN纳米颗粒的XPS图谱,显示Au4f5/2和Au4f7/2的峰位置对应于Au(I)的位置。 Mix 500 mg of supported gold nanoparticles, 5 mL of acetonitrile, and 500 μmol of hydrogen peroxide, and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate for 10 hours, and the color of the solid changes from red to Gradually turn into green or even white; the product is centrifuged and dried to obtain loaded nano-gold cyanide. Figure 3 is the XPS spectrum of AuCN nanoparticles, showing that the peak positions of Au4f 5/2 and Au4f 7/2 correspond to the positions of Au(I).
实施例Example 44
将200 mg负载型纳米银、4 mL乙腈、200 µmol双氧水混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为6小时,固体颜色逐渐变淡,产物经过离心、干燥处理后得到负载型纳米氰化银。图4为该纳米氰化银的XRD图谱,产物是纯的氰化银,化学式为AgCN。 Mix 200 mg of loaded nano-silver, 4 mL of acetonitrile, and 200 μmol of hydrogen peroxide together, and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate, and the illumination time is 6 hours, and the color of the solid gradually fades , the product is centrifuged and dried to obtain loaded nano-silver cyanide. Figure 4 is the XRD spectrum of the nano silver cyanide, the product is pure silver cyanide, the chemical formula is AgCN.
实施例Example 55
将100 mg负载型纳米氧化银负载的介孔二氧化硅、4 mL乙腈、200 µmol双氧水混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为5小时,固体颜色逐渐变淡,产物经过离心、干燥处理后得到负载型纳米氰化银。 Mix 100 mg of supported nano-silver oxide-supported mesoporous silica, 4 mL of acetonitrile, and 200 μmol of hydrogen peroxide, and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate, and the illumination time is After 5 hours, the color of the solid gradually became lighter, and the product was centrifuged and dried to obtain loaded nano-silver cyanide.
实施例Example 66
将60 mg负载型纳米钌、4 mL乙腈、200 µmol苯甲醇混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为12小时,产物经过离心、干燥处理后得到负载型纳米氰化钌。 Mix 60 mg of loaded nano-ruthenium, 4 mL of acetonitrile, and 200 μmol of benzyl alcohol together and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate for 12 hours, and the product is centrifuged, After drying treatment, the loaded nanometer ruthenium cyanide is obtained.
实施例Example 77
将50 mg负载型纳米铂、4 mL乙腈、400 µmol苯甲醇混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为20小时,产物经过离心、干燥处理后得到负载型纳米氰化铂。 Mix 50 mg of loaded nano-platinum, 4 mL of acetonitrile, and 400 μmol of benzyl alcohol together and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate for 20 hours, and the product is centrifuged, The loaded nano platinum cyanide is obtained after drying treatment.
实施例Example 88
将40 mg负载型纳米钯、4 mL乙腈、100 µmol苯甲醇混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为12小时,产物经过离心、干燥处理后得到负载型纳米氰化钯。 Mix 40 mg of loaded nano-palladium, 4 mL of acetonitrile, and 100 μmol of benzyl alcohol together and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate for 12 hours, and the product is centrifuged, After drying, the loaded nano palladium cyanide is obtained.
实施例Example 99
将100 mg负载型纳米钌、4 mL乙腈、200 µmol双氧水混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为12小时,产物经过离心、干燥处理后得到负载型纳米氰化钌。 Mix 100 mg of loaded nano-ruthenium, 4 mL of acetonitrile, and 200 μmol of hydrogen peroxide together, and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate for 12 hours, and the product is centrifuged and dried After treatment, the loaded nanometer ruthenium cyanide is obtained.
实施例Example 1010
将50 mg负载型纳米铂、5 mL乙腈、100 µmol双氧水混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为20小时,产物经过离心、干燥处理后得到负载型纳米氰化铂。 Mix 50 mg of loaded nano-platinum, 5 mL of acetonitrile, and 100 μmol of hydrogen peroxide together, and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate for 20 hours, and the product is centrifuged and dried After treatment, the loaded nano-platinum cyanide is obtained.
实施例Example 1111
将30 mg负载型纳米铂、2 mL乙腈、200 µmol苯甲醇混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为20小时,产物经过离心、干燥处理后得到负载型纳米氰化铂。 Mix 30 mg of loaded nano-platinum, 2 mL of acetonitrile, and 200 μmol of benzyl alcohol together and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate for 20 hours, and the product is centrifuged, The loaded nano platinum cyanide is obtained after drying treatment.
实施例Example 1212
将60 mg负载型纳米氧化亚铜、5 mL乙腈、200 µmol苯甲醇混合在一起,搅拌;再将上述悬浊液置于350 瓦汞灯下,搅拌并光照,光照时间为12小时,产物经过离心、干燥处理后得到负载型纳米氰化亚铜。 Mix 60 mg of supported nano-cuprous oxide, 5 mL of acetonitrile, and 200 μmol of benzyl alcohol together, and stir; then place the above suspension under a 350-watt mercury lamp, stir and illuminate, and the illumination time is 12 hours. After centrifugation and drying, the loaded nano-cuprous cyanide is obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110163884 CN102274740B (en) | 2011-06-17 | 2011-06-17 | A method for preparing metal cyanide nanoparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110163884 CN102274740B (en) | 2011-06-17 | 2011-06-17 | A method for preparing metal cyanide nanoparticles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102274740A true CN102274740A (en) | 2011-12-14 |
CN102274740B CN102274740B (en) | 2013-02-06 |
Family
ID=45100655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110163884 Active CN102274740B (en) | 2011-06-17 | 2011-06-17 | A method for preparing metal cyanide nanoparticles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102274740B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015062459A1 (en) * | 2013-10-28 | 2015-05-07 | 浙江大学 | Method for synthesizing metal cyanide through fenton reagent |
CN104810529A (en) * | 2014-01-24 | 2015-07-29 | 浙江大学 | Surface cyaniding modified nano metal material and preparation method thereof |
CN108179278A (en) * | 2017-12-21 | 2018-06-19 | 浙江理工大学 | A kind of noble metal extracting solution, preparation method and applications |
CN111269143A (en) * | 2020-03-30 | 2020-06-12 | 浙江理工大学 | Method for synthesizing butanedinitrile or adiponitrile |
CN111809063A (en) * | 2019-04-12 | 2020-10-23 | 上海师范大学 | A kind of photocatalytic metal dissolution method |
CN112156772A (en) * | 2020-09-30 | 2021-01-01 | 广州大学 | Ion poisoning noble metal catalyst and preparation method and application thereof |
CN112553465A (en) * | 2019-09-26 | 2021-03-26 | 上海师范大学 | Photocatalytic selective metal dissolving agent and dissolving method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4528166A (en) * | 1983-05-05 | 1985-07-09 | Sentrachem Limited | Recovery of gold and/or silver from cyanide leach liquors on activated carbon |
CN1089234A (en) * | 1992-12-04 | 1994-07-13 | 底古萨股份公司 | Alkali metal cyanide granulates and preparation method thereof |
CN1191205A (en) * | 1996-12-21 | 1998-08-26 | 德古萨股份公司 | Process for production of granulates from alkali metal or alkaline earth metal cyanide |
CN1208366A (en) * | 1996-01-19 | 1999-02-17 | 阿克奥化学技术公司 | Improved double metal cyanide catalysts and methods for making them |
CN1795050A (en) * | 2003-05-22 | 2006-06-28 | 陶氏环球技术公司 | Nano-scale dmc catalyst particles |
-
2011
- 2011-06-17 CN CN 201110163884 patent/CN102274740B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4528166A (en) * | 1983-05-05 | 1985-07-09 | Sentrachem Limited | Recovery of gold and/or silver from cyanide leach liquors on activated carbon |
CN1089234A (en) * | 1992-12-04 | 1994-07-13 | 底古萨股份公司 | Alkali metal cyanide granulates and preparation method thereof |
CN1208366A (en) * | 1996-01-19 | 1999-02-17 | 阿克奥化学技术公司 | Improved double metal cyanide catalysts and methods for making them |
CN1191205A (en) * | 1996-12-21 | 1998-08-26 | 德古萨股份公司 | Process for production of granulates from alkali metal or alkaline earth metal cyanide |
CN1795050A (en) * | 2003-05-22 | 2006-06-28 | 陶氏环球技术公司 | Nano-scale dmc catalyst particles |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015062459A1 (en) * | 2013-10-28 | 2015-05-07 | 浙江大学 | Method for synthesizing metal cyanide through fenton reagent |
US9505628B2 (en) | 2013-10-28 | 2016-11-29 | Zhejiang University | Fenton reagent improved cyanation and usage thereof |
AU2014344387B2 (en) * | 2013-10-28 | 2017-05-25 | Zhejiang University | Method for synthesizing metal cyanide through Fenton reagent |
CN104810529A (en) * | 2014-01-24 | 2015-07-29 | 浙江大学 | Surface cyaniding modified nano metal material and preparation method thereof |
CN108179278A (en) * | 2017-12-21 | 2018-06-19 | 浙江理工大学 | A kind of noble metal extracting solution, preparation method and applications |
CN108179278B (en) * | 2017-12-21 | 2019-09-20 | 浙江理工大学 | A kind of precious metal extraction solution, preparation method and application thereof |
CN111809063A (en) * | 2019-04-12 | 2020-10-23 | 上海师范大学 | A kind of photocatalytic metal dissolution method |
CN111809063B (en) * | 2019-04-12 | 2021-10-22 | 上海师范大学 | A kind of photocatalytic metal dissolution method |
CN112553465A (en) * | 2019-09-26 | 2021-03-26 | 上海师范大学 | Photocatalytic selective metal dissolving agent and dissolving method |
CN111269143A (en) * | 2020-03-30 | 2020-06-12 | 浙江理工大学 | Method for synthesizing butanedinitrile or adiponitrile |
CN111269143B (en) * | 2020-03-30 | 2023-07-07 | 浙江理工大学 | Synthesis method of succinonitrile or adiponitrile |
CN112156772A (en) * | 2020-09-30 | 2021-01-01 | 广州大学 | Ion poisoning noble metal catalyst and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102274740B (en) | 2013-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102274740A (en) | Novel method for preparing metal cyanide nanoparticles | |
CN103100725B (en) | Preparation method of silver/carbon quantum dot composite nanometer materials | |
Cui et al. | Synthesis and functions of Ag 2 S nanostructures | |
Wang et al. | Reduced state carbon dots as both reductant and stabilizer for the synthesis of gold nanoparticles | |
US20120329998A1 (en) | Luminescent gold nanoparticle functionalized by n-(4-aminobutyl)-n-ethylisoluminol, preparation and application thereof | |
Zhou et al. | Preparation of Ag/ZrGP nanocomposites with enhanced catalytic activity for catalytic reduction of 4-nitrophenol | |
CN105670618A (en) | Sulfur-doping graphene quantum dot, preparation method of sulfur-doping graphene quantum dot and application of silver ion detection | |
CN103990814B (en) | A kind of preparation method of gold nano grain | |
Nurwahid et al. | Investigation on SiO2 derived from sugarcane bagasse ash and pumice stone as a catalyst support for silver metal in the 4-nitrophenol reduction reaction | |
CN101905328B (en) | A kind of preparation method of water-soluble Au10 nano-cluster molecule | |
Lu et al. | MOF-derived strategy for monodisperse Cd0. 5Zn0. 5S nanospheres with enhanced photocatalytic activity for hydrogen evolution | |
CN102877084B (en) | Method for preparing zinc sulfide quantum dot | |
CN113877632A (en) | A kind of preparation method of noble metal nanoparticles loaded 2D bismuth vanadate@PDA core-shell structure composite material | |
Baoum et al. | Amended photocatalytic degradation of Tetracycline applying sol-gel assembled CuO@ rGO nanocomposite under visible light | |
Piao et al. | A high-efficiency Z-scheme Er3+: YAlO3@(Au/SrTiO3)-Au-WO3 photocatalyst for solar light induced photocatalytic conversion of Cr (VI) | |
Liu et al. | Polyaniline: poly (sodium 4-styrenesulfonate)-stabilized gold nanoparticles as efficient, versatile catalysts | |
Wu et al. | Photocatalytic reduction of Cr (VI) by AgIn5S8/ZnIn2S4 heterojunction under visible light: Experimental and density functional theory study | |
Meena et al. | Synthesis of g-C3N4/ZnO nanostructures via mechano-thermal method for photocatalytic degradation of methylene blue dye | |
Chen et al. | Fabrication of Ag nanowires–CdS–Au photocatalyst and its excellent visible light photocatalytic activity: the role of synergetic electron transfer | |
CN104307541B (en) | A kind of lamellar Ag/AgCl nano-heterogeneous structure and preparation method thereof | |
CN104556150B (en) | A kind of by the method for Fenton reagent synthesis metal cyanides | |
CN103691482B (en) | A kind of preparation method of hollow gold nano-sphere and application thereof | |
CN111841575B (en) | Surface sulfur modified porous copper-based composite catalyst and preparation method and application thereof | |
CN110434354B (en) | Au-Pt nano-particles with tubular core-shell structure and preparation method and application thereof | |
CN114085666A (en) | Preparation method of oligopeptide-protected gold cluster assembly material and application of gold cluster assembly material in detection of ferric ions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20111214 Assignee: ANHUI ANQING SHUGUANG CHEMICAL (GROUP) CO., LTD. Assignor: Zhejiang University Contract record no.: 2013330000414 Denomination of invention: Novel method for preparing metal cyanide nanoparticles Granted publication date: 20130206 License type: Exclusive License Record date: 20131230 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20111214 Assignee: ANHUI ANQING SHUGUANG CHEMICAL (GROUP) CO., LTD. Assignor: Zhejiang University Contract record no.: 2013330000414 Denomination of invention: Novel method for preparing metal cyanide nanoparticles Granted publication date: 20130206 License type: Exclusive License Record date: 20131230 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model |